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Justus von Liebig, generally
credited as the "father of the
fertilizer industry”, formulated the
law of the minimum: if one crop
nutrient is missing or deficient,
plant growth will be poor, even if
the other elements are abundant.
Liebig likens the potential of a crop
to a barrel with staves of unequal
length. The capacity of this barrel
is limited by the length of the
shortest stave (in this case,
phosphorus) and can only be
increased by lengthening that
stave. When that stave is
lengthened, another one becomes
the limiting factor.

For Phytoplankton
1)Light

2)Macronutrients (N, P)
3)Micronutrients (Fe, Zn)

Primary production
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ooy Behavior of Light in the Sea

1)Exponential decrease in intensity with depth (z)
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Fig. 3.12. The effects of high and low li
phytoplankton. Population (1)

7

ght conditions on photosynthetic responses in
is located at the top of the euphotic zone, population

(2) at the bottom. Situation (a) reflects the response of increased chlorophyll content
of population (2), that is, the light reaction rate is higher in (2) than (1). Situation (b)
reflects the response of the light reactions being equal.
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= dr
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FIGURE 9.6. Seasonal variation of phytoplankton, nutrients, and light in a typical northern temperate sea.
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Major Coastal Upwelling Zones
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long duration station (14 days) in the Equatorial Atlantic Ocean (0°-4° W), Cruise SOP 1.
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Direction reversed
In southern hemisphere
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Martin et al. Fe studies in subarctic N. Pacific
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nitrate; data from Appendix Table A4.

Primary production



MAR 510

Martin et al. (1989) Deep-Sea Res.
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Fig. 12. Chlorophyll and NO; levels vs experimental day at Stas T-6, T-7 and T-8. Data for

second sets of replicates measured only at the end of the experiment are in the boxes marked with

an *. Stas T-6 and T-7 data are not shown for day 6 since growth had stopped, as evidenced by
decreases in chlorophyll levels (Appendix Tables A8 and A9).
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FIGURE 9.16.  The effect of the additions of Fe on the doubling times of the growth of phytoplankton in
the North Pacific, Equatorial Pacific, and South Pacific.
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FIGURE 9.17. The historical record of atmospheric CO,, dust deposition, and nonseasalt aerosols.
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Large-Scale Fe Fertilization Experiments
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Chemical Boyd, P. W, et al. (2000) A mesoscale phytoplankton bloom in the polar Southern Ocean
Oceanography stimulated by iron fertilization. Nature 407: 695 - 702.
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FIG.5. Major processes by which marine snow is produced, broken down and Tlost from

the pelagic zone. Marine snow is produced by two major pathways. First, marine
plankton produce marine snow aggregates de novo as mucus webs, houses, sheaths,
and flocculent fecal pellets. Second, smaller component particles, including
phytoplankton, fecal pellets, microaggregates, bacteria and inorganic part-
icles, collide together via physical processes and become stuck together,
facilitated by biological "glues". Snow is broken down or Tost by processes
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ken from sediment traps; the
shorter fecal pellets are several
millimeters long. (D) An
enlargement of the fecal pellet in
(C), showing that it contains small
particles of detritus. Photo
courtesy of Michael Peterson,
University of Washington.
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function of depth in sediment traps
(circles, from Martin et al., 1987)
with predictions using a Stokes
settling model for several different
cases. Particles were 60 % organic
matter mass and 40 % mineral mass
with an initial diameter of 125 um.

Densities were: psecawater= 1.0,

pom= 1.1, pmin=2.5g cm>.

Organic matter degradation rates
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Fig. 3: Variations in net carbon assimilation at Station 'S' (Menzel and Ryther, 1%61)
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6.3 BIOLOGICAL EXPORT FROM EUPHOTIC ZONE

Table 6.1. | The annual organic carbon export from the surface ocean determined at three time series

locations by different methods

These locations are the time series stations at BATS (near Bermuda), HOT (near Hawaii),
and Station P (in the subarctic Pacific). Total organic C flux at BATS is the sum of the sediment
trap and DOC flux. At HOT it is the sum of the ***Th particle flux, DOC flux, DOC accumulation

Spliiny

rate (0.3 mol C m~2y~?) and zooplankton migration flux (0.2mol Cm *y ).

Organic C (mol m~2y~")

Subtropical Atlantic

Subtropical Pacific Subarctic Pacific

(BATS) (HOT) (Station P)

"*C primary productivity 12.7° 14.6° 17.9¢
Estimates of organic C

export

Sediment traps 0.7¢ 0840.1¢f

23%Th particle flux 15+ 1.0

DOC flux .1 £0.19 04 £02¢8f

Total organic C flux 1.8+0.17 244097

Oxygen mass balance 36::068 274175 204+ 10"

l1=1.7'
DIC and 8'*C DIC 35405 27413
*H-He (OUR) 2.8%

®Michaels and Knap (1996)
PKarl et al. (1996)

“Varela and Harrison (1999)
4 Carlson et al. (1994)
*Emerson et al. (1997)
fBenitez-Nelson et al. (2001)
£ Spitzer and Jenkins (1989)
" Emerson et al. (1991)

i Gruber et al. (1998)

7 Quay and Stutzman (2003)
¥ Jenkins and Wallace (1992)
'"Hamme and Emerson (2006)
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