Radioisotope Geochemistry
An Introduction

« Variety of naturally occurring and anthropogenic
radioisotopes can be used to provide information
on a wide variety of processes

e Can be used as tracers In same manner as stable
Isotopes but have the advantage of time as a
parameter

 Theilr use requires certain assumptions be made —
must be assessed on a case by case basis
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Fig. 1-2 Chart of the light element isotopes showing percent abundances of the stable isotopes (shaded black) and half-lives of
radioisotopes (s = second, m = minute, d = day, a = year) with their principal and secondary decay modes, where a = alpha
emission (2p and 2n), € = electron capture, B~ = electron (beta) emission, * = positron, y = gamma emission, n = neutron
emission, p = proton emission (after General Electric Ltd., 1989).



Examples of Processes

e Water Column Vertical and Horizontal Transport
by
— Mixing
— Particle Scavenging and Sedimentation
— Lateral advection

e Sediment Accumulation & Dating
— Accumulation Rates
— Mixing
— Resuspension



Modes of Decay

e Alpha(a) — emission of two neutrons and

two protons together as helium ion from
nucleus

e Beta () — emission of electron from nucleus

resulting In Increase in atomic number of 1
In original nucleus

e Gamma (y) — emission of photons from
excited nuclel
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Basic Equations of Decay

N =N, e’
Where N, = number of atomsatt=0
N = number of atoms at time =t
A= first order rate (decay) constant

AN = Activity (Bq (= dps) or dpm unit used)



Decay Equations (cont.)

INN =InN_-At
When N =% N,
t=1y
l.e. In 0.5 = -Aty,
t;, = 0.693/A



1 Becquerel = 1 decay/sec
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Classes of Radioisotopes

1. Primordial
e Parents produced by super-novae, long-lived
* not produced on earth
e e.g.U-series

2. Cosmogenic

e Produced by interaction of cosmic rays with atoms in
the atmosphere or land surface

e Short to long-lived
¢ eg. 4C
3. Artificial
1. Man-made
2. Purposefully or incidentally (nuclear bombs)
3. e.g.>°Pu



Production of **C in Atmosphere

Incoming
cosmic-ray
N protan Shatters
nucleus of
\ atmospheric
atom
—
®
Among the fragments
IS a neutron

Meutron
so produced /

, O
& ‘e
s @
Enters a © AN 4
nucleus of
atmospheric

(7p + 7n) +n

14N atom \
Knocks out \ @)

a proton HC+p
(6p + 8n) + p

Net result:

14N atom
becomes
14C atom



TABLE 28.6
Basic Information Concerning Nuclides Produced by Cosmic Rays

Nuclide
H ‘Be “Be ol 4] 8

Half-life (y) 12.3 0.145 2.5 % 1P 5680 7.4 =% 1P S0
Production rate in total atmosphere

{atomcm-*s5°") 0.25 0.081 0.045 2.5 1.4 x 10-* 1.6 x 10-*
Fraction of total earth inventory in

Atmosphere 0.072 0.71 3.9 x 1077 0.019 1.4 =% 10-* 2.0 % 107

Land surface 0.27 0.08 0.29 0.04 0.29 0.29

Ocean—mixed layer 0.33 0.2 b e i | el 0.022 1.4 % 10-° 0,0035

Ocean—excluding mixed layer 0.3 0.002 10-* 0.92 7 3 1073 0.68

Oceanic sediments 0 0 (.71 0.004 0.71 0.028
Average concentration in ocean

(10~ dpm kg water™'") 36 — 10-3 260 1.2 % 103 2.4 x 102
Average specific activily in ocean

(dpm g element™') 33 x 10+ — 1600 10 0.0012 0.008
Global inventory (kg) 3.5 3.2 % 1073 4.3 = 10° 7.5 x 108 1.1 % 10° 1.4
Global inventory (MCi) 35 1.1 6.4 340 0.020 0.023

Source: From Chemical Oceanography, vol, 3, 1. D, Burton (eds: J. P, Riley and G. Skirrow), copyright © 1975 by Academic Press, Orlando,
FL. p. 140. Reprinted by permission. Data from The Hamdbook of Physics, 2E, E. U. Condon and H. Odishaw. copyright @ 1967 by McGraw=
Hill, Inc., Mew York. pp. 9.277, 9.285, 9.319. Reprinted by permission.
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Hughen et al.
Science 2004;
Cariaco Basin
sediment 4C

1) Annual laminations in
this anoxic basin allows
for ‘tree-ring’ year
counting for much of the
record

2. Difference between
calendar year and 4C
age due to:

— 14C production rate
in atmosphere

—Deep mixing rate
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Fig. 2. Radiocarbon calibration data from various sources. (A) Calibration data from Cariaco leg 165,
holes 1002D and 1002E (blue circles), plotted versus GISP2 calendar age (72) assigned by correlation of
detailed paleoclimate records (77) (SOM Text and fig. S2). The thin black line is high-resolution
calibration data from Intcal98 tree rings (2, 3) joined at ~12 cal. ka B.P. to the Cariaco PLO7-58PC varve
chronology (73). Red squares are paired '*C-U/Th dates from corals (5). Replicate measurements,
including overlap between 1002D and 1002E, have been averaged. Light gray shading represents the
Cariaco calibration curve shifted within limits of calendar age uncertainty. Dashed line shows equal
4C-calendar ages. Error bars are 1 o. (B) Cariaco site 1002 data set plotted versus other published '*C
calibration data. Symbols are the same as above, with additional data from Lake Suigetsu varves (6)
(open circles), Bahama speleothem U/Th (7) (open diamonds), and North Atlantic cores PS2644 (9)
(upside-down triangles) and SO82-5 (10) (triangles) correlated to GISP2. Error bars for all records are 1 .
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Fig. 3. Atmospheric AC for the past 50 cal. ka B.P. Symbols are the same as those in Fig. 2A.
Cariaco error bars represent independent uncertainty in A'#C due to 1-a 14C age error. Light gray
shading shows additional uncertainty in Cariaco A™C due to calendar-age error that is not
independent from sample to sample, but rather would shift sections of the curve together within
the limits of the shading. Dotted line is modern preindustrial atmospheric A#C, defined as 0%.o.
Upper and lower limits were determined by adding and subtracting 1—o errors to the calendar age
and recalculating A'C with the use of the new calendar ages.



th of
3000 m, determined during the
WOCE program in the 1990s.
Courtesy of Robert Key, Princeton
University; Key et al. (2004). (See




14C also an ‘artificial’ radioisotope as a result
of nuclear bomb testing
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U-Th Decay Series
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RNV The relation

between the half life of a
radioisotope (ordinate) and the
characteristic timescale for marine
processes (abscissa). The shaded
area indicates the range where the

two lifetimes are a good match.
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Secular Equilibrium
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Scavenging

[e.g soluble long-lived 238U with
P constant A in the Ocean]
\l/ KP[P] o Ap

D —————> >sScavenging (F)
FD[D] =F [e.g adsorption of Th

onto sinking particles]
\l/ Ap|D] = Ag

At steady state; A, = A + F



Scavenging and Decay

Both first order processes
If decay dominant then A, = A,
Where both are important Ay < A,

Under steady state conditions the activity
ratio can be used to estimate the scavenging
rate and hence scavenging residence time



Equations for Scavenging Rate

Ap[P] = Ap[D] + Fp|[ D]
AplAp = Aol (Apt+ Fp)

Where A, = decay constant for parent

Ap = decay constant for daughter
[ ] = atom concentration

F, = scavenging rate constant



Equations for Scavenging Rate (cont.)

Solving for F;:
Fo = [(1 = Ap/Ap) (AplAp)] Ap
or
T, = [(Ap/Ap) (1 — Ap/Ap)] 1o,
Where t,,, = scavenging “half-life”

ty,, = half-life of daughter



Table 4-4. Typical activity ratios for daughter-parent pairs in
various water types.

Estuaries Coastal Surface Ocean Deep Sea
210py, /226R, 2 = >1% 0.4-1.0
230qp,/ 234y - = <3x1i0=73 Sxages
22601/ ¢29Ra 0.01 0.05 0.2 0.5-1.0
&3 /220 0.2 0.6 >0.9 =1
231p, /235y . b t= 2x10-3
210p,,210pp = i 0.5 1.0

*Although %!%Pb is being removed from surface water by particles,
it has an additional source. Radon ato%ﬁnescaping tOEE%E atmo-
sphere from continental soils decay to Pb. These Pb atoms
are incorporated into aerosols and are brought back to the earth's
surface by raln and aerosol impact. The flux of these atoms to
the sea surface exceeds by about a factor of 10 the 1in siftu pro-
duction by radiodecay of 22°Ra in the upper 200 meters of the
ocean.
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26 Coale and Bruland
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Fig. 2. Vertical profiles of temperature, nitrate, particulate and dissolved **Th activity (4, and A4%;,) for
VERTEX I and CEROP I, IT, and III. 2381J activity—0O.
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