Chapter 12: Sinusoids and Phasors

Instructor: Jean-François MILLITHALER

http://faculty.uml.edu/JeanFrancois_Millithaler/FunElec/Spring2017

Learning with Purpose

Sinusoids

 $T = \frac{2\pi}{2\pi}$

(1)

- Consider the sinusoidal voltage $v(t) = V_m \sin \omega t$
- Where
 - V_m = the amplitude of the sinusoid
 - ω = the angular frequency in radians/s
 - ωt = the argument of the sinusoid
- The period is

Slide

Sinusoids

Phasors

A phasor is a complex number that represents the amplitude and phase of a sinusoid

Complex Numbers

- A complex number z can be written in rectangular form as: z = x + iy
- Where j = √−1; x is the real part of z; y is the imaginary part of z
- *z* can also be written in exponential form as: $z = r e^{j\phi}$
- The relationship between the rectangular and the exponential form is:

$$r = \sqrt{x^2 + y^2}, \quad \phi = \tan^{-1}\frac{y}{x}$$
$$x = r\cos\phi, \qquad y = r\sin\phi$$

- A phasor is a complex number that represents the amplitude and phase of a sinusoid
- Let's see the phasor relationship for circuit elements

phasor relationship for circuit elements

Resistor

If the current through a resistor R is $i = I_m \cos(\omega t + \phi)$, the voltage across it is given by Ohm's law as

 $v = iR = RI_m \cos(\omega t + \phi)$

The phasor representation in frequency domain is

 $\mathbf{V} = R\mathbf{I}$

Slide

phasor relationship for circuit elements

Inductor

Re

र्दे L

phasor relationship for circuit elements

Capacitor

For the Capacitor C, assume the voltage across it is $v = V_m \cos(\omega t + \phi)$. The current through the capacitor is

$$i = C \frac{dv}{dt}$$

$$i = C \frac{dv}{dt}$$

$$i = j\omega CV$$

$$I = j\omega CV$$

In frequency we obtain

$$\mathbf{I} = j\omega C \mathbf{V} \qquad \Rightarrow \qquad \mathbf{V} = \frac{\mathbf{I}}{j\omega C}$$

v

Impedance and Admittance

From the table we can write the ratio of the phasor voltage and the phasor current as

$$\frac{\mathbf{V}}{\mathbf{I}} = R, \qquad \frac{\mathbf{V}}{\mathbf{I}} = j\omega L, \qquad \frac{\mathbf{V}}{\mathbf{I}} = \frac{1}{j\omega C}$$

The impedance **Z** of a circuit is the ratio of the phasor voltage **V** to the phasor current **I**, measured in ohms (Ω)

$$Z = \frac{v}{I'}$$
 $V = ZI$

As a complex quantity, the impedance may be expressed as $\mathbf{Z} = R + jX = |\mathbf{Z}|e^{\theta}$ $|\mathbf{Z}| = \sqrt{R^2 + X^2}, \qquad \theta = tan^{-1}\frac{X}{R}$ $R = |\mathbf{Z}|\cos\theta, \qquad X = |\mathbf{Z}|\sin\theta$

Summary

Element	Time domain	Frequency domain
R	v = Ri	$\mathbf{V} = R\mathbf{I}$
L	$v = L \frac{di}{dt}$	$\mathbf{V} = j\omega L\mathbf{I}$
С	$i = V \frac{dv}{dt}$	$\mathbf{V} = \frac{\mathbf{I}}{j\omega C}$

Element	Impedance	Admittance
R	$\mathbf{Z} = R$	$\mathbf{Y} = \frac{1}{R}$
L	$\mathbf{Z} = j\omega L$	$\mathbf{Y} = \frac{1}{j\omega L}$
С	$\mathbf{Z} = \frac{1}{j\omega C}$	$\mathbf{Y} = j\omega C$

Impedance Combination

$$\mathbf{V} = \mathbf{V}_1 + \mathbf{V}_2 + \dots + \mathbf{V}_N = \mathbf{I}(\mathbf{Z}_1 + \mathbf{Z}_2 + \dots + \mathbf{Z}_N)$$
$$\mathbf{Z}_{eq} = \frac{\mathbf{V}}{\mathbf{I}} = \mathbf{Z}_1 + \mathbf{Z}_2 + \dots + \mathbf{Z}_N$$
$$\mathbf{Z}_{eq} = \mathbf{Z}_1 + \mathbf{Z}_2 + \dots + \mathbf{Z}_N$$

N impedance in parallel

$$\mathbf{I} = \mathbf{I}_1 + \mathbf{I}_2 + \dots + \mathbf{I}_N = \mathbf{V} \left(\frac{1}{\mathbf{Z}_1} + \frac{1}{\mathbf{Z}_2} + \dots + \frac{1}{\mathbf{Z}_N} \right)$$
$$\frac{1}{\mathbf{Z}_{eq}} = \frac{\mathbf{I}}{\mathbf{V}} = \frac{1}{\mathbf{Z}_1} + \frac{1}{\mathbf{Z}_2} + \dots + \frac{1}{\mathbf{Z}_N}$$
$$\mathbf{Y}_{eq} = \mathbf{Y}_1 + \mathbf{Y}_2 + \dots + \mathbf{Y}_N$$

Slide 12

Impedance Combination

If N=2, the current through the series impedances is

 $\mathbf{I} = \frac{\mathbf{V}}{\mathbf{Z}_1 + \mathbf{Z}_2}$

Since
$$\mathbf{V}_1 = \mathbf{Z}_1 \mathbf{I}$$
 and $\mathbf{V}_2 = \mathbf{Z}_2 \mathbf{I}$

$$\mathbf{V}_1 = \frac{\mathbf{Z}_1}{\mathbf{Z}_1 + \mathbf{Z}_2} \mathbf{V}, \qquad \mathbf{V}_2 = \frac{\mathbf{Z}_2}{\mathbf{Z}_1 + \mathbf{Z}_2} \mathbf{V}$$

If N=2, the current through the parallel impedances is

$$\mathbf{Z}_{eq} = \frac{1}{\mathbf{Y}_{eq}} = \frac{1}{\mathbf{Y}_{1} + \mathbf{Y}_{2}} = \frac{1}{1/\mathbf{Z}_{1} + 1/\mathbf{Z}_{2}} = \frac{\mathbf{Z}_{1}\mathbf{Z}_{2}}{\mathbf{Z}_{1} + \mathbf{Z}_{2}}$$

$$\mathbf{I}_{1} = \frac{\mathbf{Z}_{2}}{\mathbf{Z}_{1} + \mathbf{Z}_{2}}\mathbf{I}, \qquad \mathbf{I}_{2} = \frac{\mathbf{Z}_{1}}{\mathbf{Z}_{1} + \mathbf{Z}_{2}}\mathbf{I}$$

$$\mathbf{I}_{1} = \frac{\mathbf{Z}_{2}}{\mathbf{Z}_{1} + \mathbf{Z}_{2}}\mathbf{I}, \qquad \mathbf{I}_{2} = \frac{\mathbf{Z}_{1}}{\mathbf{Z}_{1} + \mathbf{Z}_{2}}\mathbf{I}$$

$$\mathbf{I}_{2} = \frac{\mathbf{Z}_{1}}{\mathbf{Z}_{1} + \mathbf{Z}_{2}}\mathbf{I}$$

$$\mathbf{I}_{3} = \frac{\mathbf{Z}_{1}}{\mathbf{Z}_{1} + \mathbf{Z}_{2}}\mathbf{I}$$

$$\mathbf{I}_{3} = \frac{\mathbf{Z}_{2}}{\mathbf{Z}_{1} + \mathbf{Z}_{2}}\mathbf{I}$$

Exercice

Find the input impedance of the circuit. Assume that the circuit operates at $\omega = 50$ rad/s

Learning with Purpose

Solution

- Let Z_1 = Impedance of the 2-mF capacitor
 - Z_2 = Impedance of the 3- Ω resistor in series with the10-mF capacitor
 - Z_3 = Impedance of the 0.2-H inductor in series with the 8- Ω resistor

Then

$$\mathbf{Z}_{1} = \frac{1}{j\omega C} = \frac{1}{j50 \times 2 \times 10^{-3}} = -j10 \ \Omega$$
$$\mathbf{Z}_{2} = 3 + \frac{1}{j\omega C} = 3 + \frac{1}{j50 \times 10 \times 10^{-3}} = (3 - j2) \ \Omega$$
$$\mathbf{Z}_{3} = 8 + j\omega L = 8 + j50 \times 0.2 = (8 + j10) \ \Omega$$

The input impedance is

$$Z_{in} = Z_1 + Z_2 || Z_3 = -j10 + \frac{(3 - j2)(8 + j10)}{11 + j8}$$
$$= -j10 + \frac{(44 + j14)(11 - j8)}{11^2 + 8^2} = -j10 + 3.22 - j1.07 \Omega$$

Thus

$$\mathbf{Z}_{in} = 3.22 - j11.07 \ \Omega$$

