Chapter 13: RC & RL Circuits

Instructor: Jean-François MILLITHALER

http://faculty.uml.edu/JeanFrancois_Millithaler/FunElec/Spring2017

Impedance & Admittance

Element	Impedance	Admittance
R	$\mathbf{Z} = R$	$\mathbf{Y} = \frac{1}{R}$
L	$\mathbf{Z} = j\omega L$	$\mathbf{Y} = \frac{1}{j\omega L}$
С	$\mathbf{Z} = \frac{1}{j\omega C}$	$\mathbf{Y} = j\omega C$

RC Circuit

- Determine the source voltage and the phase angle.
- Draw the impedance triangle.

JILLE

$$Z = R + \frac{1}{j\omega c} = R - j\frac{1}{\omega c} = 10^{4} - j\frac{1}{2\pi * 10^{3} * 10^{-8}} = 10^{4} - j(15.9 * 10^{3})$$

$$Z = A + jB \quad A = 10 k\Omega \qquad B = 15.9 k\Omega$$

$$Z = \sqrt{A^{2} + B^{2}} = 18.8 k\Omega$$

$$\theta = tan^{-1} \left(\frac{-15.9 k\Omega}{10 k\Omega}\right) = 57.8^{\circ}$$

$$V_{S} = IZ = 0.2 * 18.8 = 3.76 \text{ V}$$

Variation of phase angle with frequency

- Phasor diagrams that have reactance phasors can only be drawn for a single frequency because $X_C = \frac{1}{\omega C}$ is a function of frequency.
- As frequency changes, the impedance triangle for an RC circuit changes as illustrated here because X_C decreases with increasing f. This determines the *frequency response* of RC circuits.

Frequency response

Frequency response

Frequency response of the low-pass *RC* circuit

Frequency response

Applications

For a given frequency, a series RC circuit can be used to produce a phase lag by a specific amount between an input voltage and an output by taking the output across the capacitor. This circuit is also a basic *low-pass filter*, a circuit that passes low frequencies and rejects all others.

Applications

Reversing the components in the previous circuit produces a circuit that is a basic lead network. This circuit is also a basic *high-pass filter*, a circuit that passes high frequencies and rejects all others. This filter passes high frequencies down to a frequency called the *cutoff* frequency.

RL Circuit

The current is 200 μA. Determine the source voltage.

- $2\pi fL = 2\pi (10 \text{ kHz})(100 \text{ mH}) = 6.28 \text{ k}\Omega$
- The impedance is

$$|Z| = \sqrt{(10 \text{ k}\Omega)^2 + (6.28 \text{ k}\Omega)^2} = 11.8 \text{ k}\Omega$$

$$\theta = tan^{-1} \left(\frac{6.28 \text{ k}\Omega}{10 \text{ k}\Omega} \right) = 32.1^{\circ}$$

Applying Ohm's law yields

$$V_S = IZ = (200 \ \mu A)(11.8 \ k\Omega) = 2.36 \ V$$

Phase Relationships of the Current and Voltages

- Determine the source voltage and the phase angle
 - The source voltage is the phasor sum of V_R and V_L .

$$V_S = \sqrt{V_R^2 + V_L^2} = \sqrt{50^2 + 35^2} = 61 \text{ V}$$

The phase angle between the resistor voltage and the source voltage is

•
$$\theta = \tan^{-1}\left(\frac{V_L}{V_R}\right) = \tan^{-1}\left(\frac{35}{50}\right) = 35^{\circ}$$

Phase Relationships of the Current and Voltages

Variation of Impedance and Phase Angle with Frequency

- Phasor diagrams that have reactance phasors can only be drawn for a single frequency because X is a function of frequency.
- As frequency changes, the impedance triangle for an *RL* circuit changes as illustrated here because *jωL* increases with increasing *f*.
- This determines the *frequency response* of *RL* circuits.

Slide