Chapter 13: RC \& RL Circuits

Instructor: Jean-François MILLITHALER

http://faculty.uml.edu/JeanFrancois_Millithaler/FunElec/Spring2017

Impedance \& Admittance

Element	Impedance	Admittance
R	$\mathbf{Z}=R$	$\mathbf{Y}=\frac{1}{R}$
L	$\mathbf{Z}=j \omega L$	$\mathbf{Y}=\frac{1}{j \omega L}$
C	$\mathbf{Z}=\frac{1}{j \omega C}$	$\mathbf{Y}=j \omega C$

RC Circuit

Determine the source voltage and the phase angle.
Draw the impedance triangle.

$$
\begin{aligned}
& Z=R+\frac{1}{j \omega C}=R-j \frac{1}{\omega C}=10^{4}-j \frac{1}{2 \pi * 10^{3} * 10^{-8}}=10^{4}-j\left(15.9 * 10^{3}\right) \\
& Z=A+j B \quad A=10 \mathrm{k} \Omega \quad B=15.9 \mathrm{k} \Omega \\
& Z=\sqrt{A^{2}+B^{2}}=18.8 \mathrm{k} \Omega \\
& \theta=\tan ^{-1}\left(\frac{-15.9 \mathrm{k} \Omega}{10 \mathrm{k} \Omega}\right)=57.8^{\circ} \\
& V_{S}=I Z=0.2 * 18.8=3.76 \mathrm{~V}
\end{aligned}
$$

Variation of phase angle with frequency

- Phasor diagrams that have reactance phasors can only be drawn for a single frequency because $X_{C}=\frac{1}{\omega C}$ is a function of frequency.
- As frequency changes, the impedance triangle for an $R C$ circuit changes as illustrated here because X_{C} decreases with increasing f . This determines the frequency response of RC circuits.

Frequency response

Frequency response

Frequency response of the low-pass $R C$ circuit

Frequency response

Cutoff Frequency
 $$
f_{C}=\frac{1}{2 \pi R C}
$$

Applications

- For a given frequency, a series $R C$ circuit can be used to produce a phase lag by a specific amount between an input voltage and an output by taking the output across the capacitor. This circuit is also a basic low-pass filter, a circuit that passes low frequencies and rejects all others.

Applications

Reversing the components in the previous circuit produces a circuit that is a basic lead network. This circuit is also a basic high-pass filter, a circuit that passes high frequencies and rejects all others. This filter passes high frequencies down to a frequency called the cutoff frequency.

RL Circuit

The current is $200 \mu \mathrm{~A}$. Determine the source voltage.

$2 \pi f L=2 \pi(10 \mathrm{kHz})(100 \mathrm{mH})=6.28 \mathrm{k} \Omega$

The impedance is
$|Z|=\sqrt{(10 \mathrm{k} \Omega)^{2}+(6.28 \mathrm{k} \Omega)^{2}}=11.8 \mathrm{k} \Omega$
$\theta=\tan ^{-1}\left(\frac{6.28 \mathrm{k} \Omega}{10 \mathrm{k} \Omega}\right)=32.1^{\circ}$

Applying Ohm's law yields

$$
V_{S}=I Z=(200 \mu \mathrm{~A})(11.8 \mathrm{k} \Omega)=2.36 \mathrm{~V}
$$

Phase Relationships of the Current and Voltages

Example

Determine the source voltage and the phase angle

The source voltage is the phasor sum of V_{R} and V_{L}.
$V_{S}=\sqrt{V_{R}^{2}+V_{L}^{2}}=\sqrt{50^{2}+35^{2}}=61 \mathrm{~V}$
The phase angle between the resistor voltage and the source voltage is
$\theta=\tan ^{-1}\left(\frac{V_{L}}{V_{R}}\right)=\tan ^{-1}\left(\frac{35}{50}\right)=35^{\circ}$

Phase Relationships of the Current and Voltages

$$
V_{S}=\sqrt{V_{R}^{2}+V_{L}^{2}} \quad \theta=\tan ^{-1}\left(\frac{V_{L}}{V_{R}}\right)
$$

Variation of Impedance and Phase Angle with Frequency

Phasor diagrams that have reactance phasors can only be drawn for a single frequency because X is a function of frequency.

As frequency changes, the impedance triangle for an $R L$ circuit changes as illustrated here because $j \omega L$ increases with increasing f. This determines the frequency response of $R L$ circuits.

