Chapter 2: Voltage, Current, and Resistance

Instructor: Jean-François MILLITHALER

http://faculty.uml.edu/JeanFrancois_Millithaler/FunElec/Spring2017

Atom

Visualization of atomic structure

Nucleus: positively charged (protons and neutrons)

Electrons: negatively charged

- Atomic number = number of protons
- # electrons = # protons

Shells

- Electrons are orbiting at different energy levels
- They are called shells
- They allow a fixed number of electrons (2N²)
 - Shell 1 allows $2x1^2 = 2 e^{-1}$
 - Shell 2 allows $2x2^2 = 8 e^{-1}$
 - Shell 3 allows 2x3² = 18 e⁻
 - Next is more complicated ...

Electrons in the outer shell (valence shell) are involved in chemical reactions and they account for electrical and thermal conductivity in metals

Slide

Mandeleïv Table

Dimitri Ivanovitch Mandeleïv, Russian scientist, 1834-1907

1 14	5																18 VILLA
1 1.00/9	1																4.0026
н																	не
HYDROGENE	2 11A	1										13 IIIA	14 NA	15 VA	16 VIA	1/ VIIA	HELIUM
3 6.941	4 9.0122											5 10.811	0 12.011	7 14.007	8 15.999	9 18.998	10 20,180
Li	Be											B	C	N	0	F	Ne
LITHUM	BÉRYLLIUM											BORE	CARBONE	AZOTE	OXYGENE	FLUOR	NEON
11 22.990	12 24.305											13 26.982	14 28.086	15 30.974	16 32.065	17 35.453	18 39.948
Na	Mg							VIIIR				Al	Si	P	S	Cl	Ar
SODIUM	MAGNESIUM	3 1118	4 IVB	5 V8	6 VB	7 118	8	9	10	II B	12 (IB	ALUMINIUM	SILICIUM	PHOSPHORE	SOUFRE	CHLORE	ARGON
19 39.098	20 40.078	21 44.956	22 47.857	23 50.942	24 51.995	25 54.938	26 55.845	27 58.933	28 58,693	29 63.546	30 65.39	31 69.723	32 72.64	33 74.922	34 78.96	35 79.904	36 83.80
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
POTASSIUM	CALCIUM	SCANDIUM	TITANE	VANADIUM	CHROME	MANGANÈSE	FER	COBALT	NICKEL	CUIVRE	ZINC	GALLIUM	GERMANIUM	ARSENIC	SÉLÉNIUM	BROME	KRYPTON
37 85.468	38 87.62	39 88.906	40 91.224	41 92.906	42 95.94	43 (98)	44 101.07	45 102.91	46 108.42	47 107.87	48 112.41	49 114.82	50 118.71	51 121.76	52 127.60	53 128.90	54 131.29
Rb	Sr	Y	Zr	Nb	Mo	Te	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
RUBIOIUM	STRONTIUM	YTTRUM	ZIRCONIUM	MUBDIA	MOLYBOENE	TECHNÉTIUM	RUTHÉMUM	RHODIUM	PALLADIUM	ARGENT	CADMIUM	INDIUM	ETAIN	ANTIMOINE	TELLURE	IODE	XENON
55 132.91	56 137.33	57-71	72 178.49	73 180.95	74 183.84	75 186.21	76 190.23	77 192.22	78 195.08	79 196.97	80 200.59	81 204.38	82 207.2	83 208.98	84 (209)	85 (210)	86 (222)
Cs	Ba	La-Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
CESUM	BARYUM	Lanthanide	HAFNIUM	TANTALE	TUNGSTÈNE	RHÉNIUM	OSMIUM	RIDIUM	PLATINE	OR	MERCURE	THALLIUM	PLOMB	BISMUTH	POLONAIM	ASTATE	RADON
87 (223)	88 (226)	89-103	104 (261)	105 (262)	106 (266)	107 (264)	108 (277)	109 (268)	110 (281)	111 (272)	112 (285)		114 (289)				
Fr	Ra	Ac-Lr	IRI	IDb	Sø	IBh	IHIS	MIC	Uum	Umm	Uub		Una				
FRANCIUM	RADIUM	Actinides	RUTHERFORDUM	DUBNIUM	SEABORGLM	BOHRIUM	HASSIUM	MEITNERUM	UNUNNILIUM	UNUNUNUM	UNUNBIUM		UNUNQUARIUM				
			ANTHAN	IDES	-				12					10	(0)	-	-
			57 138.91	58 140.12	59 140.91	60 144.24	01 (145)	62 150.36	03 151.96	04 157.25	05 158.93	00 162.50	07 164.93	08 167.26	69 168.93	70 173.04	71 174.97
			La	Ce	Pr	Nd	IPm	Sm	Eu	Gd	Ib	Dy	Ho	Er	Im	Yb	Lu

ND

Pu

89 (227) 90 232.04 91 231.04 92 238.03 93 (237) 94 (244) 95 (243) 96 (247) 97 (247) 98 (251) 99 (252) 100 (257) 101 (258) 102 (259) 103 (262)

Cm

Am

Cf

IBIK

Fm

Es

Md

NO

Atoms are looking for the most stable configuration

Atoms can become ions Ex: $H \Rightarrow H^+$

Conductors Semiconductors Insulators

LUTÉTIUM

Lip

		01
Slide	5	UMASS

LANTHANE

Ac

Th

Pa

Copper atom

- Inner shell = Core
- Outer shell: 1 e⁻
- With energy this e⁻ can move freely
- Copper = excellent conductor

Electrical charge

There is a force (F) between electrical charges.

The force is directly proportional to charge.

The force is inversely proportional to square of distance.

Coulomb: the unit of charge

Charles Augustin Coulomb, French scientist, 1736-1806

▶ One **coulomb** is the total charge possessed by 6.25 x 10¹⁸ e⁻

• Charge of a single $e^- = 1.6 \times 10^{-19} C$

• Total charge
$$Q = \frac{number of e^-}{6.25 \times 10^{18} e^-/C}$$

Voltage

Alessandro Volta, Italian scientist, 1745-1827

Voltage = energy per unit of charge

$$V = \frac{W}{Q}$$

- V is voltage in volts, W is energy in joules (J), and Q is charge in coulombs (C).
- One volt is the potential difference (voltage) between two points when one joule of energy is used to move one coulomb of charge from one point to the other.

Voltage

- Ideal voltage source can provide a constant voltage
- Doesn't exist but can be closely approximated in practice

Voltage source graph

Voltage

Batteries and Sources

Voltage is responsible for establishing current

Current

André Marie Ampère, French scientist, 1775-1836

Random motion of free electrons in a material

Electrons flow from negative to positive when a voltage is applied across a conductive material

Slide

Current

Ampere: the unit of current

Electrical current is the rate of flow of charge

- I is current in amperes (A), Q is the charge of the electrons in coulombs (C), and t is time in seconds (s)
- One ampere (1 A) is the amount of current that exists when a number of electrons having a total charge of one coulomb (1 C) move through a given cross-sectional area in one second (1 s).

Slide

Current

- An ideal current source can provide a constant current in any load.
- Does not exist but can approximated in practice

Resistance

Georg Simon Ohm, German scientist, 1787-1854

- Resistance is the opposition to current
- One ohm (1 Ω) of resistance exists when there is one ampere (1 A) of current in a material with one volt (1 V) applied across the material

Conductance

Ernst Werner von Siemens, Russian scientist, 1816-1892

Conductance is the reciprocal of resistance

 $G=\frac{1}{R}$

The unit of conductance is the siemens, symbolized by S.

Resistance color-code

Mnemonic phrase

Better Be Right Or Your Great Big Venture Goes West

Slide 17

Variable resistors

Variable resistors include the potentiometer and rheostat. The center terminal of a variable resistor is connected to the wiper.

Wire resistance

Resistance of wire is:

ρ is the resistivity in Ω.m, / the length in meter (m), and A is the cross sectional area in m²

 $R=\frac{\rho l}{A}$

Circuits

Voltage source + Load + path for current

Wire conductor (current path)

Slide 20

Circuit and switch

Switch ON circuit is closed

Switch OFF circuit is open

Ammeter & Voltmeter

