Chapter 4: Series circuits

Instructor: Jean-François MILLITHALER

http://faculty.uml.edu/JeanFrancois_Millithaler/FunElec/Spring2017

Learning with Purpose

Attributes

- Three common attributes
 - 1. A source of voltage
 - 2. A load
 - 3. A complete path

One path

A series circuit is one that has only one current path

Rule for current

An ammeter placed anywhere will give the **same value**

These two circuits are exactly the same

The 2nd can be easier for visualization and to make calculations

Learning with Purpose

 $R_1 = 500\Omega, R_2 = 1.3k\Omega, R_3 = 2.2k\Omega$

Using Ohm's law, the current is:

Learning with Purpose

 $R_T =$

I =

Current	Resistance	Voltage	Power
I=	R_1 =500 Ω	V ₁ =	P ₁ =
I=	R_2 =1.3 k Ω	V ₂ =	P ₁ =
I=	R_3 =2.2 k Ω	V ₃ =	P ₁ =
I= 3 mA	R _T =	V _T =12 V	P _T =

Kirchhoff's voltage law

Kirchhoff's voltage law (KVL):

The sum of all voltage drops around a single closed path in a circuit is equal to the total source voltage in that closed path.

KVL applies to all circuits, but you must apply it to only one closed path. In a series circuit, this is (of course) the entire circuit

A mathematical shorthand way of writing KVL is $\sum_{i=1}^{n} V_i = 0$

Voltage sources in series

Kirchhoff's voltage law

Current	Resistance	Voltage	Power		
I= 3 mA	R_1 =500 Ω	V ₁ =1.5 V	P ₁ =4.5 mW		
I= 3 mA	R_2 =1.3 k Ω	V ₂ =3.9 V	P ₁ =11.7 mW		
I= 3 mA	R_3 =2.2 k Ω	V ₃ =6.6 V	P ₁ =19.8 mW		
I= 3 mA	$R_T = 4 k\Omega$	V _T =12 V	P _T =36 mW		

The sum of all resistor voltages is equal to the source voltage

$$\sum_{i=1}^{n} V_i = V_1 + V_2 + V_3 - V_T = 0$$

Voltage divider rule

The voltage drop across any given resistor in a series circuit is equal to the ratio of that resistor to the total resistance, multiplied by source voltage

$$V_i = \frac{R_i}{R_T} V_S$$

Q 1: If R_1 is twice R_2 , What is the voltage across R_2 ?

Q2: If $R_1 = R_2$, What is the voltage across R_2 ?

What is the power dissipated ?

Voltage measurements

Voltage is relative and is measured with respect to another point in the circuit.

Voltages that are given with respect to ground V_S are shown with a single subscript.

 V_A means the voltage at point A with respect to ground (reference ground)

 V_B means the voltage at point B with respect to ground

 V_{AB} means the voltage between points A and B

With $V_s = 12V$, $R_1 = 5k\Omega$ and $R_2 = 10k\Omega$

 $V_A =$ $V_B =$ $V_{AB} =$ R_1

 R_2

Learning with Purpose

Voltage measurements

Ground reference is not always at the lowest point in a circuit. Assume the ground is moved to B as shown.

With $V_S = 12V$, $R_1 = 5k\Omega$ and $R_2 = 10k\Omega$ $V_A =$ $V_B =$ $V_C =$

Did V_{AB} changed from previous circuit ?

