Chapter 5: Parallel circuits

Instructor: Jean-François MILLITHALER

http://faculty.uml.edu/JeanFrancois_Millithaler/FunElec/Spring2017

Learning with Purpose

Resistors in parallel

Resistors that are connected to the same two points are said to be in parallel.

R₂ R_1 R₃ V_{S}

Resistors in parallel

A parallel circuit is identified by the fact that it has more than one current path (branch) connected to a common voltage source.

Resistors in parallel

Because all components are connected across the same voltage source, the voltage across each is the same.

 R_2 R₃ R_1 V_{S}

Parallel circuit

Voltage	Resistance	Current	Power
V ₁ =5.0 V	R_1 =680 Ω	I ₁ =	P ₁ =
V ₂ =5.0 V	R_2 =1.5 k Ω	l ₂ =	P ₂ =
V ₃ =5.0 V	R_3 =2.2 k Ω	I ₃ =	P ₃ =
V _T =5.0 V	R _T =	I _T =	P _T =

Is there a problem?

Rule for resistances

Rule for resistances

What is the total resistance if $R_1 = 27k\Omega$ and $R_2 = 56 k\Omega$?

Kirchhoff's current law

Gustav Robert Kirchhoff, German physicist, 1824-1887

- Kirchhoff's current law (KCL) is generally stated as:
- The sum of the currents entering a node is equal to the sum of the currents leaving the node.

Voltage	Resistance	Current	Power
V ₁ = 5.0 V	R_1 = 680 Ω	I ₁ = 7.4 mA	P ₁ = 36.8 mW
V ₂ = 5.0 V	R_2 = 1.5 k Ω	l ₂ = 3.3 mA	P ₂ = 16.7 mW
V ₃ = 5.0 V	R_3 = 2.2 k Ω	l ₃ = 2.3 mA	P ₃ =11.4 mW
V _T = 5.0 V	R_T = 386 Ω	l _T = 13.0 mA	P _T = 64.8 mW

Kirchhoff's current law

The current entering any junction is equal to the current leaving that junction. $i_2 + i_3 = i_1 + i_4$

$$\sum_{k=1}^{n} I_k = \mathbf{0}$$

Current divider

- When current enters a node (junction) it divides into currents with values that are inversely proportional to the resistance values.
- The most widely used formula for the current divider is the two-resistor equation. For resistors R₁ and R₂,

$$I_{1} = \left(\frac{R_{2}}{R_{1} + R_{2}}\right) I_{T} \qquad I_{2} = \left(\frac{R_{1}}{R_{1} + R_{2}}\right) I_{T}$$

Notice the subscripts. The resistor in the numerator is not the same as the one for which current is found.

Current divider

Assume that R₁ is a 2.2 kΩ resistor that is in parallel with R₂, which is 4.7 kΩ. If the total current into the resistors is 8.0 mA, what is the current in each resistor?

$$I_1 = \left(\frac{R_2}{R_1 + R_2}\right) I_T =$$

$$I_2 = \left(\frac{R_1}{R_1 + R_2}\right) I_T =$$

Notice that the larger resistor has the smaller current.

Slide

Power in parallel circuits

- Power in each resistor can be calculated with any of the standard power formulas. Most of the time, the voltage is known, so the equation $P = \frac{V^2}{R}$ is most convenient.
- As in the series case, the total power is the sum of the powers dissipated in each resistor.

What is the total power if 10 V is applied to the parallel combination of $R_1 = 270 \Omega$ and $R_2 = 150 \Omega$?

Exercise

- Assume there are 8 resistive wires that form a rear window defroster for an automobile.
- If the defroster dissipates 90 W when connected to a 12.6 V source, what power is dissipated by each resistive wire?
- What is the total resistance of the defroster?

