# Chapter 6: Series-Parallel Circuits

Instructor: Jean-François MILLITHALER

http://faculty.uml.edu/JeanFrancois\_Millithaler/FunElec/Spring2017



- Most practical circuits have combinations of series and parallel components.
- Components that are connected in series will share a common path.
- Components that are connected in parallel will be connected across the same two nodes.



# **Combination circuits**

- Most practical circuits have various combinations of series and parallel components. You can frequently simplify analysis by combining series and parallel components.
- An important analysis method is to form an equivalent circuit.
- An equivalent circuit is one that has characteristics that are electrically the same as another circuit but is generally simpler.













#### **Examples**







 $R_{T} = R_{1} + R_{2} || R_{3} + R_{4} || R_{5}$ 



### **Total resistance**



Identifying the components

• Total resistance  $R_T = R_1 + R_2 || R_3 = 10 + 50 = 60 \Omega$ 



## **Example**



Find  $R_T = 148 \Omega$ 



### **Total Current**



Find  $I_4 = 3.45 \text{ mA}$  ( $I_2 = 9.29 \text{ mA}$ )



# **Voltage Relationships**









#### Sir Charles Wheatstone, 1802-1875



- Used to precisely measure resistance
- Used also in conjunction with transducers
- Transducer = sensor. Change physical parameter in resistance, for example.



Slide 1

#### The balanced bridge

- Balanced bridge when the output  $V_{OUT} = 0V$
- We have then  $V_1 = V_2$  and  $V_3 = V_4$

• Therefore 
$$\frac{V_1}{V_3} = \frac{V_2}{V_4}$$
 and  $\frac{I_1R_1}{I_3R_3} = \frac{I_2R_2}{I_4R_4}$ 

Since 
$$I_1 = I_3$$
 and  $I_2 = I_4$   
We got  $\frac{R_1}{R_3} = \frac{R_2}{R_4}$  and finally  $R_1 = R_3 \frac{R_2}{R_4}$ 

#### Bridge to find an unknown resistance



 $R_2$ 



#### Example

Determine the value of  $R_X$ . The bridge is balanced ( $V_{OUT} = 0 V$ ) when  $R_V$  is set at 1200  $\Omega$  $R_X = R_V \frac{R_2}{R_4} = 1200 * \frac{150}{100} = 1800 \Omega$ 



#### The unbalanced bridge

Unbalanced bridge when the output

 $V_{OUT} \neq 0V$ 

- Used to measure several types of physical quantities such as mechanical strain, temperature, or pressure.
- Connecting the transducer in one leg of the bridge.
- The resistance of the transducer changes proportionally to the changes in the parameter that it is measuring.
- If the bridge is balanced at a known point, then the amount of deviation indicates the amount of change in the parameter being measured.
- Therefore, the value of the parameter being measured can be determined by the amount that the bridge is unbalanced





Slide 1

#### Example

- Determine the output voltage of the temperature-measuring bridge circuit if the thermistor is exposed to a temperature of 50°C and its resistance at 25°C is 1.0 kΩ.
- Assume the resistance of the thermistor decreases to 900  $\Omega$  at 50°C.



- At 25°C the bridge is balanced.
- At 50°C the bridge is unbalanced. We can apply the voltage-divider formula to the left and right sides.

$$V_A = \left(\frac{R_3}{R_3 + R_{therm}}\right) V_S = \left(\frac{1k\Omega}{1k\Omega + 900\Omega}\right) 12 V = 6.32 V$$

$$V_B = \left(\frac{R_4}{R_2 + R_4}\right) V_S = \left(\frac{1k\Omega}{2k\Omega}\right) 12 V = 6.V$$

• 
$$V_{OUT} = V_A - V_B = 6.32 - 6 = 0.32 \text{ V at } 50^{\circ}\text{C}$$







# **THEVENIN's Theorem**

#### Léon Charles Thévenin, French Engineer, 1857-1926

- What for ?
- To simplify Electric Engineer's Life !!!
- Simplify a complicate series-parallel circuit into an equivalent circuit
- Consists of an equivalent voltage source V<sub>TH</sub>
- And an equivalent resistance R<sub>TH</sub>





# **THEVENIN's Theorem**

- The Thevenin equivalent voltage V<sub>TH</sub> is the open circuit (no-load) voltage between two specified output terminals in a circuit.
- The Thevenin equivalent resistance R<sub>TH</sub> is the total resistance appearing between two specified output terminals in a circuit with all sources replaced by their internal resistances (which for an ideal voltage source is zero).







#### **Three steps: #1**



Step 1: Find  $V_{TH}$  = Find the voltage between A and B





### **Three steps: #2**

- Step 2: Find R<sub>TH</sub>
- Short-circuiting the battery
- Find the resistance between A and B





## **Three steps: #3**

- Step 3: Combining both V<sub>TH</sub> and R<sub>TH</sub>
- Thevenin equivalent circuit





# **Depends on the viewpoint**





# **Depends on the viewpoint**





# **Thevenizing a Bridge Circuit**









#### **Maximum Power Transfer Theorem**

- For a given source voltage, maximum power is transferred from a source to a load when the load resistance is equal to the internal source resistance.
- Maximum power is transferred to the load when  $R_L = R_S$ .





# **Maximum Power Transfer Theorem**



- Example: Determine the load power for different values of the variable load resistance [0:125] Ω
- Solution: Using Ohm's law and Power Formula

For 
$$R_L = 0 \ \Omega$$
  
 $I = \frac{V_S}{R_S + R_L} = \frac{10}{75 + 0} = 133 \ mA$   
 $P_L = I^2 R_L = 133^2 * 0 = 0 \ W$ 



# **Maximum Power Transfer Theorem**



For  $R_L = 0 \ \Omega : P_L = 0 W$ For  $R_L = 25 \ \Omega : P_L = 250 mW$ For  $R_L = 50 \ \Omega : P_L = 320 mW$ For  $R_L = 75 \ \Omega : P_L = 334 mW$ For  $R_L = 100 \ \Omega : P_L = 326 mW$ For  $R_L = 125 \ \Omega : P_L = 313 mW$ 



Note that  $R_S = R_{TH}$  if we are using the Thevenin's Theorem



## **Superposition Theorem**

#### What is happening when there are two or more voltage sources ???How do we calculate $I_2 ???$





# **Superposition Theorem**



 $I_2 = I_{2(S1)} + I_{2(S2)}$ 



# **Superposition Theorem**



Find  $I_2$ , the current through  $R_2$ 

- 1\_ short replace  $V_{S2}$ , find  $R_{T1}$ , then  $I_{T1}$  and finally  $I_{2(S1)}$
- $R_{T1}=232 \text{ W} // I_{T1} = 43.1 \text{ mA} // I_{2(S1)}=25.9 \text{ mA}$
- > 2\_ short replace  $V_{S1}$ , find  $R_{T2}$ , then  $I_{T2}$  and finally  $I_{2(S2)}$
- ▶  $R_{T1}$ =399 W //  $I_{T1}$  = 12.5 mA //  $I_{2(S1)}$ =3.9 mA
- ►  $I_2 = I_{1(S1)} + I_{2(S2)} = 25.9 + 3.9 = 29.8 \text{ mA}$

