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Chapter 3 Acid-Base Equilibria 

Acid–Base Equilibria 

Acids and bases play a key role in a number of environmentally important chemical reactions, 

including weathering, transport of metals in solution, and CO2 atmosphere–water equilibria. In this 

chapter we will develop the concept of an acid and a base, characterize strong and weak acids, 

develop the pH scale and the concept of buffers, and look at some of the important reactions that 

take place in the surface environment. 

DEFINITION OF ACIDS AND BASES 

Acids 

According to the Arrhenius concept, acids are substances that produce hydrogen ions (H
+
) in 

aqueous solutions. A more generalized view of acids is provided by the Brönsted–Lowry model. 

In this model an acid is a proton donor. Consider the following reaction 

HC1 (aq) + H2O (1) ⇌ H3O
+
 (aq) + Cl

–
 (aq) 

In this reaction a proton is transferred from the HC1 molecule to the water molecule to form the 

hydronium ion (H3O
+
). A more general form of this type of reaction can be written 

       2 3aq l aq aq
BaseAcid Conjugate Conjugate

acid base

HA   H O   H O   A    

One way to view this reaction is that it represents a competition between two bases (H2O (1) and A
–
 

(aq)) for the proton. If H2O (1) is a much stronger base than A
–
 (aq) the equilibrium position will be far 

to the right and the HA (aq) will be completely broken down (dissociated). If A
–
 (aq) is a stronger 

base, then the reaction will not go far to the right and the HA (aq) will be only partially dissociated. 

As with any chemical reaction, we can calculate an equilibrium constant for the reaction. This is a 

particular type of equilibrium constant called an acid dissociation constant, which represents the 

degree to which the acid has dissociated. 

 

 

  

 
3

a

H O A H A
   

HA HA
K

     
    (3–1) 
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These types of reactions are often written using only the H
+
 (aq) species, rather than the H3O

+
 (aq) 

species, and this is the convention we will use in this book. A strong acid is one that undergoes 

significant dissociation and has a very large Ka. A weak acid only partially dissociates and has a 

relatively small Ka. 

Table 3–1  Dissociation Constants for Acids at 25°C* 

Acid Formula 
1apK
 2apK

 3apK
 

Hydrochloric HCl ~ –3   

Sulfuric H2So4 ~ –3 1.99  

Nitric HNO3 0   

Oxalic H2C2O4 1.2 4.2  

Phosphoric H3PO4 2.15 7.20 12.35 

Hydrofluoric HF 3.18   

Formic HCOOH 3.75   

Acetic CH3COOH 4.76   

Carbonic H2CO3 6.35 10.33  

Hydrosulfuric H2S 7.03 >14  

Boric H3BO3 9.27 >14  

Silicic H4SiO4 9.83 13.17  

*Data from Drever (1997), Faure (1998), and Langmuir (1997). 

Acids can contain more than one acidic proton. An example is the diprotic (contains two acidic 

protons) acid H2SO4 (sulfuric acid). This acid undergoes a two-step dissociation as follows: 

2 4 4H SO H HSO    

and 

2
4 4HSO H SO     

A triprotic acid has three acidic protons. An example is H3PO4 (phosphoric acid), which is a weak 

acid. If the acid contains more than one acidic proton, there will be more than one dissociation 

constant. These are listed in the order of the dissociation reactions. Table 3–1 lists dissociation 
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constants for a number of common and/or environmentally important acids. The dissociation 

constants are often reported as pKa values, where pKa = –log Ka. This is the format used in Table 

3–1. Acids that undergo significant dissociation have a negative pKa, and acids that only partly 

dissociate have a positive pKa. 

Bases 

Bases are defined similarly to acids. Thus, according to the Arrhenius concept, a base is a 

substance that produces OH
–
 ions in aqueous solution, and according to the more general 

Brönsted–Lowry model, a base is a proton acceptor. Let us consider two reactions. The first is the 

dissolution of NaOH (s) in water, 

NaOH (s) ⇌ Na
+
 (aq) + OH

–
 (aq) 

in which the OH
–
 ions are derived from the solid NaOH. The second reaction involves the aqueous 

ammonia molecule (NH3), 

       2 13 aq 4 aq aq
NH H O NH OH    

In this reaction, the NH3 molecule acts as a proton acceptor and water acts as an acid and provides 

the proton for the aqueous ammonia. Strong bases are those that undergo essentially complete 

dissociation, and weak bases only undergo partial dissociation. As was the case for acids, we can 

write a general equation for the dissociation of a base and define an equilibrium constant for the 

dissociation. The generalized equation is 

     2aq aq aq
AcidBase Conjugate Conjugate

acid base

B H O BH OH    

Table 3–2  Dissociation Constants for Bases at 25°C* 

Base (hydroxide) Formula 
1bpK
 2bpK

 3bpK
 

Methylamine CH3NH2 3.36   

Ammonium NH4(OH) 4.7   

Magnesium Mg(OH)2 8.6 2.6  



4 

Base (hydroxide) Formula 
1bpK
 2bpK

 3bpK
 

Pyridine C5H5N 8.8   

Manganese Mn(OH)2 9.4 3.4  

Ferrous Fe(OH)2 10.6 4.5  

Al, amorphous Al(OH)3 12.3 10.3 9.0 

Al, gibbsite Al(OH)3 14.8 10.3 9.0 

Ferric, amorphous Fe(OH)3 16.5 10.5 11.8 

*Data from Faure (1998) and Zumdahl (1989). 

and the equilibrium constant for this reaction is 

  
 b

BH OH

B
K

 

    (3–2) 

A base such as Al(OH)3 contains three OH molecules and, as was the case for acids that contain 

more than one H, there are multiple dissociation steps. As was done for acids, we define pKb = –log 

Kb. Dissociation constants for some common and/or environmentally important bases are given in 

Table 3–2. 

THE DISSOCIATION OF WATER AND pH 

pH is an important and fundamental concept. It arises from the dissociation of water as represented 

by the following equation: 

H2O ⇌ H
+
 + OH

–
 

and 

  

 
  

2

H OH
H OH

H O
wK

 
      (3–3) 

Note that the activity of H2O(1) = 1 in dilute solutions. For this reaction, at 25°C, 

     0 0 157.2 237.14 79.94RG          (3–4) 

and 
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79.94
log 14.00

5.708
wK


    

or 

Kw = 10
–14

 = [H
+
][OH

–
] (3–5) 

This is the equilibrium constant for water at 25°C. The equilibrium constant varies as a function of 

temperature (Table 3–3), and at higher temperatures the equilibrium constant is greater than 10
–14

. 

Thus, the pH of a neutral solution is a function of temperature. Also note that Kw = 10
–14

 exactly at 

24°C (Table 3–3), not at 25°C, but the difference is so minor that for simplicity Kw = 10
–14

 is used 

at 25°C. 

The pH scale is defined, at 25°C, using equation 3–3. By definition, pH = –log[H
+
]. When the 

activity of H
+
 and OH

–
 are equal, the solution is neutral (i.e., the activity of both ions is 10

–7
, pH = 

7). When [H
+
] > 10

–7
, the pH is less than 7 and the solution is acidic. When [H

+
] < 10

–7
, the pH is 

greater than 7 and the solution is basic; i.e., there are more OH
–
 ions than H

+
 ions. Remember that 

we are dealing with a negative exponent, so the larger the number the smaller the activity of the 

particular ion. pH is referred to as an environmental parameter; that is, pH is theoretically 

determined by all the equilibria reactions in the system. 

Table 3–3  Dissociation Constants (Kw) for Water as a Function of Temperature* 

T (°C) –log Keq T (°C) –log Keq 

0 14.938 30 13.836 

5 14.727 35 13.685 

10 14.528 40 13.542 

15 14.340 45 13.405 

20 14.163 50 13.275 

24 14.000 55 13.152 

25 13.995 60 13.034 

*Data from CRC Handbook of Chemistry and Physics (2000). 
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pH OF NATURAL WATERS 

The majority of natural waters have pH values between 4 and 10 (Figure 3–1). For most natural 

waters the carbonic acid–carbonate system exerts the major control on pH. Waters in equilibrium 

with atmospheric CO2 would have pH values of around 5.7. The controlling reaction involves the 

dissociation of the weak acid H2CO3. The presence of calcium carbonate, a salt of the weak acid 

H2CO3, results in a buffered system with a pH around 8.2. This buffer is the major control for 

ocean water pH. Because of its importance, the carbonic acid–carbonate system is discussed at 

some length in a subsequent section. Additionally, most minerals can be considered to be salts of 

weak acids and strong bases. For example, CaAl2Si2O8 (plagioclase) contains the salt of a weak 

acid (H4SiO4) and two strong bases [Ca(OH)2, Al(OH)3]. The addition of powdered silicate and 

aluminosilicate minerals, with the exception of quartz, to pure water usually gives rise to a basic 

pH. pH values less than 4 are usually due to the weathering of sulfide minerals or acid rain. pH 

values greater than 10 are usually due to the presence of strong bases. The more important pH 

controlling reactions are discussed in the following sections. 

 

Figure 3–1 Schematic diagram showing the frequency of pH values in natural waters. The major 

controls for each pH range are indicated on the diagram. After Langmuir (1997).
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Strong Acids 

The principal strong acids in natural waters are hydrochloric (HCl), nitric (HNO3), and sulfuric 

(H2SO4). The primary source of nitric acid is acid rain. The nitric acid is produced by the oxidation 

of various NOx compounds produced during combustion. The principal sources of sulfuric acid are 

the weathering of sulfide minerals and acid rain. The source of the sulfur in acid rain is the 

combustion of fossil fuel, which releases SO2. Subsequent oxidation in the atmosphere results in 

sulfuric acid aerosols. The topic of acid rain is considered in Chapter 8, and acid mine drainage is 

considered in Chapter 9. The effect of strong acids on the pH of natural waters is controlled to 

some extent by mineral–water reactions. These buffering reactions will be considered in a 

subsequent section. 

Weak Acids 

The common weak acids are carbonic acid (H2CO3), silicic acid (H4SiO4), and various organic 

acids. The organic acids are discussed in Chapter 5. In addition to these naturally occurring acids, 

other organic acids can be produced by anthropogenic actions. These include acetic acid 

(CH3COOH), often found in landfill leachates and sewage, and formic acid (HCOOH), often 

found in groundwater in association with hydrocarbons. 

Acetic Acid Acetic acid is a weak monoprotic acid. The dissociation of acetic acid in water can be 

written 

CH3COOH (aq) ⇌ CH3COO
–
 + H

+
 

and the equilibrium equation, at 25°C, is 

 

 

3 4.76
a

3 aq

H CH COO
10

CH COOH
K

 


   
  

   (3–6) 

Because acetic acid is a weak acid, as is evident from the small equilibrium constant, only a small 

amount of the dissolved acid will disassociate. Example 3–1 illustrates how to calculate the 

amount of H
+
 in solution. 
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EXAMPLE 3–1 Calculate the concentration of H
+
 ions in solution if 0.1 mol of acetic acid is 

dissolved in 1 L of water. 

Because we start with only acetic acid and pure water, [H
+
] = [CH3COO

–
] = x, and the amount 

of acetic acid left after dissociation is 0.1 – x. We can now write the equilibrium equation (3–6) as 

  

 

2
4.76

a 10
0.1 0.1

x x x
K

x x

  
 

 

The student will recall from introductory algebra that this is a quadratic equation. If we put this 

equation into the standard form, we get 

ax
2
 + bx + c = 0 = x

2
 + 10

–4.76 
x – 10

–5.76
 

Substituting the appropriate values, a = 1, b = 10
–4.76

, and c = –10
–5.76

, we get 

      
 

1/2
1/2 2

2 4.76 4.76 5.76

3

4 10 10 4 1 10

2 (2) 1

1.32 10

b b ac
x

a

  



 
       

 

 

 

We ignore the negative answer, which is clearly inappropriate. Thus, at equilibrium [H
+
] = 

[CH3COO
–
] = 1.32 × 10

–3
 mol L

–1
 and [CH3COOH (aq)] = 0.1 – 1.32 × 10

–3
 = 0.0987 mol L

–1
. The 

degree of dissociation is 

31.32 10
 = 100 1.34%

0.0987
D


   

a very small amount indicative of the weak acid character of acetic acid. Note that we could 

simplify the calculation, without introducing a significant error, by assuming that x is small 

relative to the amount of CH3COOH (aq). This would immediately give 

2
4.76 2 5.76 3

aK 10 , 10 , 1.32 10
0.1

x
x x          

 

Carbonic Acid Carbonic acid (a diprotic acid) is the most abundant acid in natural waters. With its 
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salt, CaCO3, it forms a buffer that plays an important role in regulating the pH of natural waters. 

Hence, an understanding of the carbonic acid system is essential to the understanding of the pH of 

natural waters. Three equilibrium relationships are required to describe this system. The first 

involves the equilibrium between atmospheric CO2 and H2CO3 in solution, which is written 

CO2 (g) + H2O ⇌ H2CO3 (aq) 

where    
0

2 2 33 aq 2 aq
H CO CO H CO   (the true concentration of H2CO3, which at 25°C is 

slightly less than 0.3%). For convenience, the convention is adopted that all the CO2 in solution 

exists as H2CO3 (aq), and the equilibrium constants used are consistent with this convention. The 

amount of H2CO3 in solution in equilibrium with a particular CO2 pressure in a coexisting gas 

phase can be calculated from Henry’s law, 

  2 22 CO CO3 aq
H CO K P  

   (3–7) 

where CO2
K  is the Henry’s law constant and CO2

P  is the partial pressure of CO2 in atm. Henry’s 

law constants for various temperatures can be found in Table 2–1. 

H2CO3 is a weak acid and undergoes a two-step dissociation. The first dissociation is 

 
 

2 33 aqH CO H HCO      
 

and the equilibrium equation is 

 

 
1

3
a

2 3 aq

H HCO

H CO
K

   
  

   (3–8) 

The second dissociation is 

  2
3 3HCO H CO          

and the equilibrium equation is 
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 
2

2
3

a

3

H CO

HCO
K

 



  
  

   (3–9) 

Equilibrium constants, as a function of temperature, for the carbonate system are listed in Table 3–

4. 

Let us rewrite equations 3–8 and 3–9 as follows, and insert the appropriate equilibrium 

constants for a solution at 25°C. 

     

1

2 3 aq

6.35
a3

H CO H H

10HCO K

 



    
  

   (3–10) 

and 

   

2

3

10.332
a3

HCO H H

10CO K

  



    
  

   (3–11) 

Table 3–4 Equilibrium Constants for the Carbonate System* 

 Dissociation constants Solubility products 

T (°C) 
1apK  

2apK  pKcal pKarg 

0 6.58 10.63 8.38 8.22 

5 6.52 10.55 8.39 8.24 

10 6.46 10.49 8.41 8.26 

15 6.42 10.43 8.43 8.28 

20 6.38 10.38 8.45 8.31 

25 6.35 10.33 8.48 8.34 

30 6.33 10.29 8.51 8.37 

45 6.29 10.20 8.62 8.49 

60 6.29 10.14 8.76 8.64 

*Data from Plummer and Busenberg (1982). 
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Figure 3–2 Relative activity of various carbonate species as a function of pH.

 

According to equation 3–10, when [H
+
] = 10

–6.35
 (pH = 6.35), the ratio  2 33 aq

H CO / HCO 1  ; 

that is, these two species are present in equal abundance (or more precisely, they are of equal 

activity). Similarly, from equation 3–11, when pH = 10.33, 3HCO  and 2
3CO   are present in equal 

abundance. These positions of equal abundance (activity) of species are determined solely by the 

dissociation constants, which vary only slightly with temperature. Returning to equation 3–10, if 

the pH is less than 6.35,  2 33 aqH CO HCO      , and if the pH is greater than 6.35, 

 3 2 3 aqHCO H CO        . Similarly, from equation 3–11, if pH < 10.33, 
2

3 3HCO CO         and 

if pH > 10.33
2
3 3CO HCO        . These variations in the relative abundances (activities) of the 

different species are shown qualitatively on Figure 3–2. Note that in waters of intermediate pH, 

3HCO
 is the dominant species. In relatively acidic waters H2CO3 (aq) is the dominant species, and 

only in very basic waters is 
2
3CO 

 the dominant species. 
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EXAMPLE 3–2 Calculate the relative activity, at 25°C, of H2CO3 to 3HCO  in a water whose pH 

= 4. 

   

1

4.0
2 3 aq

6.35
a3

H CO H 10
224

10HCO K

 



     
  

 

The activity of [H2CO3 (aq)] is 224 times greater than that of 3HCO  

 

So far we have considered the abundances of the carbonate species in a qualitative way and 

have found that the relative abundance of the various species is controlled by pH. We will now 

consider quantitative solutions to the distribution of the species. There are two end-member cases, 

an open system when the system is in equilibrium with atmospheric CO2 and a closed system when 

the system is isolated from atmospheric CO2. 

We will first consider an open system, which is in equilibrium with atmospheric CO2
P

 We 

need four equations to solve this problem: (1) equation 3–7, which relates the partial pressure of 

CO2 to the concentration of H2CO3 (aq); (2) equation 3–8, which describes the dissociation of 

H2CO3 (aq); (3) equation 3–9, which describes the dissociation of 3HCO
; and (4) a charge balance 

equation. A basic constraint of solution chemistry is that the positive and negative charges of the 

species in solution must be equal. This is an important concept and is used repeatedly in solving 

water-chemistry problems. For the system CO2–H2O, the charge balance equation is written 

2
3 3H HCO CO OH

2m m m m       (3–12) 

where m is the molar concentration of each species. We will make the assumption that measured 

molar concentrations are equal to activity. This is approximately true in very dilute solutions. For 

more precise calculations, activity coefficients can be calculated as described in Chapter 2 and the 

molar concentrations adjusted to take into account activity. 
2
3CO 

 has two negative charges so the 

molar concentration of 
2
3CO 

 is multiplied by 2 to get the electronic charge. From equation 3–12, 
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note that if there are any 3HCO
 or 

2
3CO   

ions in solution, [H
+
] > [OH

–
] and the solution is 

acidic. From Figure 3–2, we see that at acidic pHs the dominant charged species in solution is 

3HCO
. Thus, we can make the simplifying assumption that the relative concentrations of 

2
3CO 

 

and OH
–
 are negligible and 3H HCO

m m  . Example 3–3 illustrates a calculation of this type.

EXAMPLE 3–3 Calculate the pH of rainwater in equilibrium with atmospheric CO2. 

For the present-day atmosphere, 
3.5

CO2
10 atmP  . At 25°C, the Henry’s law constant is 10

–

1.47
 (Table 2–1). 

 
  

2 2

1.47 3.5 4.97
2 CO CO3 aqH CO 10 10 10K P       

 

Rearranging equation 3–8 gives 

 1

6.35 4.97 11.32
3 a 2 3 aq

[H ][HCO ] [H CO ] (10 )[10 ] 10K        

Making the simplifying assumption that 2
3[H ] [HCO ]  , 

   
2

11.32 5.66H 10 and H 10      

Therefore, 

pH = –log[H
+
] = –log[10

–5.66
] = 5.66 

Note that the pH of pure rainwater is acidic. The term acid rain is used to describe rainwater that 

has a pH of less than 5.66.

 

Returning to equation 3–12, note that the presence of any anions other than OH
–
 results in an 

acidic pH. There are a number of waters in equilibrium with atmospheric CO2— ocean water, 

groundwater in contact with limestone, alkaline lake waters, etc.—that are basic. For this to be 

true, other cations must be present in the system. 

In Example 3–3 we calculated the pH of waters in equilibrium with atmospheric CO2. Changes 
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in the concentration of CO2 will cause changes in pH. Table 3–5 lists some of the processes that 

can lead to changes in the pH and CO2 content of surface and ground waters. 

From previous calculations, as schematically summarized in Figure 3–2, we determined that at 

pH values of less than 10.3, 3HCO  is the dominant anion in solution. Because this is the case, we 

can combine equations 3–7 and 3–8 to form an equation that relates the CO2 partial pressure, pH, 

and bicarbonate ion activity. Substituting equation 3–7 into equation 3–8, we get 

 
1

2 2

3
a

CO CO

H HCO
K

K P

      (3–13) 

Table 3–5 Examples of Processes That Control the CO2 Content and pH of Surface and Ground 

Waters 

Process Reaction pH 

Temperature change Increase T, decrease solubility of CO2 (g) Increases 

 Decrease T, increase solubility of CO2 (g) Decreases 

Photosynthesis 6CO2 (g) + 6H2O → C6H12O6 + 6O2 (g) Increases 

Respiration C6H12O6 + 6O2(g) → 6CO2 (g) + 6H2O Decreases 

Anaerobic decay 2CH2O → CH4(g) + CO2 (g) Decreases 

Denitrification 
   2 3 22 g 2 g

5CH O 4NO 4H 5CO 2N 7H O       Increases 

Dissolution of carbonate CaCO3 calcite + 2H
+
 → Ca

2+
 + H2O + CO2 (g) Increases 

Precipitation of 

carbonate 

Ca
2+

 + H2O + CO2 (g) → CaCO3 calcite + 2H
+
 Decreases 

Weathering of Al-silicate 

minerals 

 

 
 

3 8 fledspar 22 g

4kaolinite2 2 5 3 4 4 aq

2KAISi O 2CO 11H O

     Al Si O OH 2K 2HCO 4H SiO 

  

  
 
Increases 

 

Rearranging and solving for CO2
P  gives 

 
2

1 2

3
CO

a CO

H HCO
P

K K

      (3–14) 

Taking the log, and remembering that pH = – log[H
+
], results in the final form of the equation 

relating the partial pressure of CO2, pH, and bicarbonate ion activity. 
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2

1 2

3
CO

a CO

HCO
log pH +logP

K K

     
 
 

 (3–15) 

See also Case Study 3–1. 

EXAMPLE 3–4 A groundwater sample has a measured pH of 6.84 and 3HCO
 of 460 mg L

–l
. 

We will assume that activity equals concentration. At 25°C, calculate the CO2
P  for this 

groundwater sample. 

First, we need to convert the measured concentration of 3HCO
 to moles per liter. The atomic 

weight of 3 61.HC .O 0 g   Therefore, 

3 1
3 1

3

460 10 g L
HCO 7.54 10 molL

61.0g mol

 
  

       

Substituting into equation 3–15, and using the proper constants for T = 25°C, 

 
2

3 1
5

CO 6.35 1.47

7.54 10 molL
log 6.84 log 6.84 log 4.982 10

10 10

6.84 5.70 1.14

P
 

 

          
 

    

 

The calculated partial pressure for CO2 is significantly greater than that for the atmosphere, hence 

the water is supersaturated in CO2 with respect to the atmosphere and the groundwater is behaving 

as a closed system. The ground water sample was collected near a septic tank, and the elevated 

CO2
P  presumably due to aerobic and/or anaerobic decay of dissolved organic carbon in the water 

from the drain field.

 

Lastly, we will consider a system in which the total carbonate concentration remains constant. 

What we are interested in are the absolute abundances of the different species as a function of pH. 

Four equations are required to describe this system, one which represents the total amount of 

carbonate and the other three the absolute abundances of the three carbonate species. The equation 

for the total carbonate concentration is 
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 
2

T 2 3 33 aq
C H CO HCO CO       (3–16) 

Rewriting equation 3–8 in terms of 3HCO  gives 

 

 
1a 2 3 aq

3

H CO
HCO

H

K




         (3–17) 

Substituting in equation 3–9 for 3HCO
 gives 

 

 

1 2a a 2 3 aq2
3 2

H CO
CO

H

K K




         (3–18) 

Equations 3–17 and 3–18 are combined with equation 3–16 to give 

     
1 1 2a a a

T 2 3 aq 2
C H CO 1

H H

K K K

 

 
       

 

   (3–19) 

We now have an expression that relates total carbonate to the amount of H2CO3 (aq). As we will 

see, this is a very useful expression. In order to simplify subsequent equations, we will define a 

variable, αH, that encompasses all of the terms inside the parentheses in equation 3–19. Note that 

this portion of equation 3–19 deals with the activity of the hydrogen ion, i.e., pH. 

   
1 1 2a a a

H 2
1

H H

K K K


 

 
   
 
 

   (3–20) 

CASE STUDY 3–1 

Relationship Between Concentration of Bicarbonate Ion, pH, and Partial Pressure of CO2 

Langmuir (1997) summarizes the results of several studies that investigated the relationships 

between pH, 3HCO
, and CO2

P
 (Figure 3–Cl–1). The three investigations gave very different 

trends in terms of these variables, and the reasons for these trends are illustrative of the various 

factors that can effect the carbonate system. The NJ Coastal Plain is a sand aquifer. As the waters 

move downdip they react with alumino-silicate minerals. These reactions consume CO2 (see Table 
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3–5), leading to an increase in pH, a decrease in CO2, and an increase in 3HCO
. In the case of the 

Floridian aquifer, traces of gypsum are present in the carbonate rock. The Ca released by the 

dissolution of gypsum causes the precipitation of additional calcite and an increase in CO2, 

according to the reaction 

2
4 2 gypsum 3 3 clacite 4 2 2CaSO 2H O 2HCO CaCO SO 3H O CO        

This is referred to as common-ion driven precipitation, because the dissolution of gypsum releases 

Ca
2+

, which is also involved in the calcite precipitation reaction. Anaerobic decay of organic 

matter (Table 3–5) and sulfate reduction also occur, and both reactions release CO2. The result is 

that CO2 increases in the downdip direction and this increase is accompanied by both a decrease in 

pH and an increase in 3HCO
. In the case of Slab Cabin Run, the 3HCO

 concentration in the 

stream remains essentially constant. The plotted data represent diurnal variations in the CO2 

content with concomitant changes in pH. CO2 decreases during the day when photosynthesis is 

occurring (increasing pH) and increases at night when only respiration is taking place (decreasing 

pH). Plots such as that shown in Figure 3–C1–1 represent a useful way to summarize relations in 

the carbonate system and to investigate the factors that lead to variations in pH, CO2
P , and 3HCO

. Source: Langmuir (1997). 

 

Figure 3–Cl–1 Variations in pH, 3HCO
, and CO2

P  for two groundwater and one stream system. 

Arrows indicate the direction of groundwater flow. From Langmuir (1997).
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We now write equation 3–19 in terms of αH: 

CT = [H2CO3 (aq)]αH  (3–21) 

Solving equation 3–21 for [H2CO3 (aq)] gives 

 
T

2 3 aq
H

C
H CO


  

   (3–22) 

Substituting equation 3–22 into equation 3–17 gives 

 
1T a

3

H

C
HCO

H

K






       (3–23) 

Substituting equation 3–22 into equation 3–18 gives 

 
1 2T a a2

3 2

H

C
CO

H

K K







       (3–24) 

EXAMPLE 3–5 Calculate the concentration of each carbonate species in solution at 25°C when 

CT = 1 × 10
–3

 mol L
–1

 and pH = 5.7. 

Selecting the appropriate dissociation constants from Table 3–4 and setting [H
+
] = 10

–5.7
 mol 

L
–1

. 

   

 

 

  

 
1 1 2

6.35 6.35 10.33
a a a

H 2 25.7 5.7

10 10 10
1 1 1.224

H 10H 10

K K K


  

  
        

 

3 1
4 1T

2 3 aq
H

C 1 10 molL
H CO 8.17 10 molL

1.224

 
 

     

 
 

  

  

1

3 1 6.35
T a 4 1

3 5.7
H

C 1 10 molL 10
HCO 1.83 10 molL

H 10 1.224

K



  
  

 


     
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 
 

   

   

1 2

3 6.35 10.33
T a a2 9 1

3 2 2
5.7

H

C 1 10 10 10
CO 4.29 10 molL

H 10 1.224

K K



  
  

 


     

As expected, at pH = 5.7, H2CO3 (aq) is the dominant species and the abundance of 
2
3CO 

 is 

negligible.

 

Silicic Acid Silicic acid is produced during the weathering of silicate minerals (Chapter 9). Silicic 

acid is a tetraprotic acid and has four dissociation steps. Because of the very small dissociation 

constants (Table 3–1), in natural waters only the first two dissociation steps are important. The first 

dissociation is 

 4 3 44 aq
H SiO H SiO H   

and the equilibrium equation, at 25°C, is 

 

 
1

3 4 9.83
a

4 4 aq

H H SiO
10

H SiO
K

 


   
  

   (3–25) 

The second dissociation is 

2
3 4 3 4H SiO H SiO H    

and the equilibrium equation, at 25°C, is 

 
2

2
2 4 13.17

a

3 4

H H SiO
10

H SiO
K

 




   
  

   (3–26) 

Inspection of equation 3–25 reveals that at pH = 9.83,  4 3 44 aqH SiO H SiO      . For pH values 

less than 9.83, the dominant species is H4SiO4 (aq). Similarly, at pH = 13.17 (equation 3–26), 

2
3 4 2 4H SiO H SiO        . Only at pH values greater than 13.17, which are essentially never 

encountered in natural waters, is 
2

2 4H SiO 
 the dominant species. Thus, H4SiO4 (aq) is the 

dominant species in all but relatively basic waters.
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EXAMPLE 3–6 Calculate the relative abundance of H4SiO4 (aq) to 3 4H SiO
 at pH = 7.0 and 25°C. 

     

1

7.0
4 4

9.83
a3 4

H SiO H 10
676

10H SiO K

 


  

  

 

H4SiO4 (aq) is 676 times more abundant in solution than 3 4H SiO
. Note that we have ignored 

activities in this calculation. In dilute solutions the activity of the aqueous species, H4SiO4 (aq), 

would be 1, but the activity of 3 4H SiO
 would be less than 1. More precise calculations require 

the calculation of the activity coefficient, and these more precise calculations would give a slightly 

lower ratio in terms of the absolute abundance of the two species in solution.

 

As we did for the carbonate system, we can calculate the total dissolved concentration of silica 

species as follows: 

 
2

T 4 3 4 2 44 aq
Si H SiO H SiO H SiO       (3–27) 

The second and third terms would only be significant in relatively basic solutions. We can rewrite 

equation 3–27 as follows: 

     
1 1 2a a a

T 4 4 aq 2
Si H SiO 1

H H

K K K

 

 
       

 

 (3–28) 

As we did for the carbonates, we can solve for αH and the concentrations of the various silicic acid 

species at a fixed pH and fixed total dissolved silica content. 

Carbonic Acid–Carbonate System When we developed the equations for the carbonic acid 

system, it was pointed out, with reference to equation 3–12, that in order for natural waters to have 

a pH greater than 7, other cations in addition to H
+
 must be present in solution. In mildly basic 

waters, the most important equilibria are those involving carbonic acid and the carbonate minerals 

calcite and aragonite. In this case, Ca
2+

 is the additional cation and waters in equilibrium with 

carbonate minerals are basic. These carbonate equilibrium reactions are important in determining 

the pH of the ocean and waters in contact with limestones. There are a number of possible cases 
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involving these equilibria, depending on whether or not we are dealing with an open system ( CO2
P  

constant) or a closed system (Σ CO2 fixed) and when the system became closed. As an example, 

we will consider the pH of a system open to the atmosphere and saturated in calcite, for instance, 

water in a lake located in limestone. Other cases can be found in Garrels and Christ (1965), Drever 

(1997), and Langmuir (1997). 

The following equations describe the system CO2–CaCO3. The solubility products for the 

CaCO3 phases (the polymorphs calcite and aragonite) as a function of temperature are listed in 

Table 3–4. The following three equations were developed previously: 

  2 22 CO CO3 aq
H CO K P  

   (3–29) 

 

 
1

3
a

2 3 aq

H HCO

H CO
K

   
  

   (3–30) 

 
2

2
3

a

3

H CO

HCO
K

 



  
  

   (3–31) 

Because this system also involves calcite, an additional reaction representing the solubility of 

calcite is required. 

2 2
3 calcite 3CaCO Ca CO   

and 

 2 2
sp 3Ca COK        (3–32) 

A final equation represents the charge balance and is written 

2 2
3 3

H Ca HCO CO OH
2 2m m m m m   

        (3–33) 

We now have five equations and six unknowns ( CO2
P , [H2CO3 (aq)], 3HCO   , 

2
3CO    , [Ca

2+
], 

and [H
+
]). If we fix one of these variables, we can solve for the other variables. The exercise now 

becomes one of algebraic manipulation, although the manipulations may not always be obvious. In 
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this example, CO2
P  is fixed and we are going to solve for pH. We need to emphasize a significant 

point. In all of the equilibrium equations, we are dealing with the activities of the species. In the 

charge balance equation, we are dealing with the absolute concentrations. In order to solve this 

problem, we are going to assume that activity = concentration. A more exact solution requires the 

calculation of the activity coefficients. This can be done by an iterative technique, as was 

illustrated in Chapter 2. 

EXAMPLE 3–7 Calculate the pH of a solution saturated with respect to calcite and in equilibrium 

with atmospheric CO2. For the solution, T = 25°C. 

As an initial assumption, we will anticipate that the final pH is going to be near neutrality, so 

equation 3–33 can be simplified to 

2
3Ca HCO

2m m   

Rewriting equation 3–31 in terms of 2
3CO   and substituting into equation 3–32, 

 
 2

32
sp a

HCO
Ca

H
K K






    

Substituting 3HCO  for Ca
2+

 using the simplified charge balance equation, 2
3Ca 0.5HCO  , 

 2

3
sp 3 a

HCO
0.5 HCO

H
K K






       

Combining equations 3–29 and 3–30 and solving for 3HCO  gives 

 
1 2 2a CO CO

3HCO
H

K K P



     

Combining this result with the previous equation for calcite solubility gives 

   
1 2 2 2

2

a CO CO a

sp 0.5
H H

K K P K
K

 

 
  

 
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Solve for [H
+
] by inserting the appropriate constants and CO2

.P  

 
       

 
1 2 2 2

1/31/3 2 2 22 2 2 6.35 1.47 3.5 10.33
a CO CO a 8.26

8.48
sp

10 10 10 10
H 10

2 2 10

K K P K

K

   
 



  
      
  

 

pH = –log[H
+
], so the final pH is 8.26. Is our assumption that the dominant ionic carbonate species 

would be 3HCO  correct? Rearranging equation 3–31 and solving for the 2
3 3CO / HCO   ratio 

gives 

 
2

2 10.33
a3 2.07

8.26
3

CO 10
10 0.009

10HCO H

K 


 

      
  

 

The activity of 2
3CO   is less than 1% that of 3HCO  so our simplification of the charge balance 

equation is acceptable.

 

Case Study 3–2 demonstrates how carbonate equilibria can be used to determine the source(s) 

of groundwater and the changes that occur along the flow path. 

CASE STUDY 3–2 

Groundwater Chemistry of a Plateau near Matsumoto City, Japan 

Li and Misawa (1994) investigated the chemistry of groundwater seeping into the Matsumoto 

tunnel and the chemistry of well, spring, and river waters in the immediate vicinity of the tunnel. 

The purpose of the study was to determine the source of the groundwater seeping into the tunnel 

and the changes that occurred along the flow path of the groundwater. 

The plateau consists of Miocene andesitic tuff breccia and sandstone overlain by Quaternary 

river terrace deposits. The plateau is forested and the source of the 3HCO  ions in the groundwater 

was thought to be CO2 gas derived from the soils. The reaction is 

2 2 3CO H O HCO H     
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Solving equation 3–15 at T = 25°C, 

2CO 3log pH log HCO 7.81P        

The source of Ca
2+

 ions in the groundwater was inferred to be dissolution of calcite veins found in 

the rocks surrounding the tunnel, according to the reaction 

CaCO3 calcite + 2H
+
 → Ca

2+
 + CO2 + H2O 

For this reaction at 25°C, 

 

 
2

2
CO9.8

eq 2

Ca
10

H

P
K




   

and 

 
2

2
COlog 2pH log Ca 9.8P      

Plots of 3HCO  and Ca
2+

 versus pH are shown in Figure 3–C2–1. Calculated log CO2
P  varies 

from –1 to –4, with tunnel seepage showing the smaller values. CO2
P  values for waters calculated 

using both equations were generally in agreement. A number of groundwater samples had CO2
P  

values that exceeded atmospheric CO2
P , supporting the hypothesis that CO2 had been added by the 

decay of organic material. The lower CO2 pressures found in the tunnel seepage were ascribed to 

reactions between the groundwater and the silicate minerals of the andesitic tuffs as the 

groundwater flowed to the tunnel. These reactions are of the general type 

 2
4kaolinite2 2 8anorthite 2 2 3 2 2 5CaAl Si O 2CO 3H O Ca 2HCO Al Si O OH       

which consume CO2. 

Source: Li and Misawa (1994). 
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Figure 3–C2–1 The relationship between pH and 3log HCO    and log [Ca
2+

]. From Li and 

Misawa (1994).

 

Salts of Weak Acids and Strong Bases 

Most, but not all, minerals can be considered to be salts of weak acids and strong bases. Waters in 

equilibrium with these minerals are normally basic. We will illustrate this by considering two 

examples, one involving our old friend calcite (CaCO3), a common mineral in limestones, and the 

other natron (Na2CO3 ·10H2O), a mineral that forms in evaporative alkaline lakes, such as those 

found in the Rift Valley of East Africa.

EXAMPLE 3–8 An excess of pure calcite is placed in distilled water that has been purged of all 

gas phases—for example, by boiling. Therefore, for the purpose of this example we will assume 
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that CO2
0 atmP  . The following chemical reactions describe what happens in this system: 

 

2 2
3 calcite 3

2
3 2 3

3 2 2 3 aq

CaCO Ca CO

CO H O HCO OH

HCO H O H CO OH

 

  

 



 

 

 

All the carbon atoms in solution come from the dissolution of calcite, giving the mass balance 

equation 

2 2
2 33 3

H COCa CO HCO
m m m m      

We can also write a charge balance equation: 

2 2
3 3Ca H CO HCO OH

2 2m m m m m         

We will once again assume that concentration equals activity, bearing in mind our standard 

warning about this simplification. We anticipate that the solution will be sufficiently basic so that 

[H2CO3 (aq)] is significantly smaller than 3HCO    and can be neglected in the following 

calculations. At 25°C (equilibrium constants from Table 3–4), the following equations describe 

this system: 

 

 

 

 

  

2 2 8.48
3

3 6.35

2 3 aq

2
3 10.33

3

14

Ca CO 10

H HCO
10

H CO

H CO
10

HCO

H OH 10

  

 


 




  

   

   
  

   
  



 

We will write the mass balance equation substituting the activities of the various species for 

concentrations and ignoring H2CO3 (aq). 

 2 2
3 3Ca CO HCO           
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Similarly, for the charge balance equation, making the assumption that H
+
 will be small relative to 

Ca
2+

, 

   2 2
3 32 Ca 2 CO HCO OH             

Substituting from the mass balance equation for Ca
2+

 into the charge balance equation, 

 
3HCO OH      

What we are interested in is the pH of the solution. Therefore, it is more useful to solve this 

problem in terms of the H
+
 rather than the OH

–
 ion. Hence, we want to write the equations in what 

is called the proton condition. As a first step we write OH
–
 in terms of H

+
. 

 
   

14
w 10

OH
H H

K 


 
   

We can now write 

 
 

14

3

10
HCO OH

H


 


      

We solve for 2
3CO   in terms of H

+
 by rearranging the 2

3 3HCO H CO    equilibrium 

equation and solving for 2
3CO  : 

      

10.33 14 10.33 24.33
32

3 2

HCO 10 10 10 10
CO

H H H H

    


   

         

Substituting for 3HCO  in the calcite solubility equation, 

 
 

 
2

8.48 8.48 2
2 15.85

24.332
3

10 10 H
Ca 10 H

10CO

  
 


  
  

 

Substituting into the modified mass balance equation,  2 2
3 3Ca CO HCO          , 
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 
   

24.33 142
15.85

2

10 10
10 H

HH

 
 


   

Multiplying through by [H
+
]
2
 and rearranging, 

   
4

15.85 14 24.3310 H 10 H 10       

This equation can be solved by successive approximations. The final value is [H
+
] = 10

–9.9
 and pH 

= 9.9. We can compare this result with the calculation we did in Example 3–7, in which the system 

was in equilibrium with atmospheric CO2. In the case of the open system, pH = 8.26, a less basic 

pH than that calculated here, indicating the effect of CO2
P  on carbonate equilibria.

EXAMPLE 3–9 Evaporative alkaline lakes contain a number of strange and exotic minerals. One 

such mineral is natron, which dissolves according to the following reaction: 

2
2 3 2 natron 3 2Na CO 10H O 2Na CO 10H O      

releasing Na
+
 ions to solution and increasing the alkalinity of the lake water. 

Calculate the pH for an alkaline lake in Tanzania in which the concentration of Na = 0.1 mol L
–

1
. The lake waters are in equilibrium with atmospheric CO2, and the water temperature is 30°C. 

We expect that this lake will have a very basic pH, hence we will ignore the H
+
 ion. In addition, 

we will assume that Na
+
 is the only other cation in the water. We can now write the combined mass 

balance and charge balance equation as follows: 

2
3 3

1

Na HCO CO OH
2 10m m m m   

     

As we have done in the other examples, we now solve the various carbonate equilibria equations 

for the activity of 3HCO  and 2
3CO  . The appropriate equilibrium constants are from Table 2–1 

(Henry’s law constants) and Table 3–4. 

 

       
1 2 2 1

1.53 3.5 6.33 11.36
2 a3 aq CO CO a

3

H CO 10 10 10 10
HCO

H H H H

K K P K    


   

          
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     
2

11.36 10.29 21.65
3 a2

3 2 2

HCO 10 10 10
CO

H H H

K   


  

         

As in the case of Example 3–8, OH
–
 is replaced by 10

–14
/[H

+
]. Substituting into the charge balance 

equation, 

 
 

   

11.36 21.65 14
1.0

2

10 10 10
2 10

H HH

  


 

 
   

 
 

 

Multiplying through by [H
+
]
2
, 

     
2

11.36 21.35 14 1.010 H 10 10 H 10 H          

Rearranging and grouping terms, 

   
2

10.36 20.35H 10 H 10 0       

This is a quadratic equation and can be solved in the standard way (Example 3–1), giving pH = 

10.04. In doing this problem we have once again made the simplifying assumption that activity 

equals concentration. The alkaline lake water has a significantly higher ionic charge than the 

solutions in the preceding examples, and a more precise calculation taking into account activity 

would give a slightly different pH value

 

Strong Bases 

pH values greater than 10 are rarely found in nature, and when they are found they are inevitably 

due to the presence of strong bases such as Ca(OH)2 and Mg(OH)2. Possible natural sources for 

such bases are the weathering products of ultramafic rocks. 

AMPHOTERIC HYDROXIDES 

Amphoteric hydroxides are hydroxides that can behave as either an acid or a base. This behavior 

varies as a function of pH. As an example, consider the following reaction, which represents the 

dissolution of Cd(OH)2 (s) when a hydroxyl ion is added: 
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     2 s 3Cd OH OH Cd OH
  

The equilibrium equation for this reaction is 

 

 
3 5.3

A

Cd OH
10

OH
K






     (3–34) 

where KA is the equilibrium constant for the amphoteric reaction. Equilibrium constants for other 

amphoteric compounds are found in Table 3–6. When Cd(OH) is partially dissolved in water, OH
–
 

ions are taken up to form  3Cd OH


 and a hydrogen ion is released through the dissociation of 

water. In this case, Cd(OH)2 acts as an acid because H
+
 (protons) are released. Le Châtelier’s 

principle predicts that in a basic solution the reaction will move to the right, using up OH
–
 ions, 

while in an acidic solution the reaction will move to the left, releasing OH
–
 ions. Thus, in basic 

solutions amphoteric compounds act as acids, and in acidic solutions they act as bases. If this does 

not seem obvious, consider the dissociation reaction for water. If OH
–
 ions are removed from 

solution, in order for the equilibrium constant to stay constant, the activity of H
+
 ions must 

increase. The reverse is true for an acidic solution. 

Table 3–6 Equilibrium Constants for Amphoteric Compounds* 

Hydroxide Formula –log KA 

Aluminum, amorphous Al(OH)3 –1.1 

Aluminum, gibbsite Al(OH)3 1.4 

Cadmium Cd(OH)2 5.3 

Cobalt CO(OH)2 5.2 

Copper CU(OH)2 2.9 

Ferrous Fe(OH)2 5.1 

Ferric Fe(OH)3 4.4 

Manganese Mn(OH)2 5.1 

Nickel Ni(OH)2 4 

Thorium, amorphous Th(OH)4 5.8 

Uranium UO2(OH)2 3.6 
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Zinc, amorphous Zn(OH)2 1.9 

*Data from Krauskopf and Bird (1995). 

ACIDITY AND ALKALINITY 

Acidity is the capacity of water to donate protons; alkalinity is the capacity of water to accept 

protons. What do we mean by the capacity of water to donate or accept protons? Let us suppose we 

have an acidic solution whose acidity is due to the presence of hydrochloric acid. In this solution, 

HC1 will have dissociated to H
+
 and Cl

–
 ions. If we add hydroxyl ions to the solution, the 

following reaction will occur: 

2H + OH H O    

A hydronium ion in solution has donated a proton (i.e., an H
+
), which combines with the OH

–
 to 

produce H2O. For a weak acid, such as H2CO3, the reaction would be 

 2 3 23 aq
H CO OH HCO H O     

and once again an H
+
 ion has combined with an OH

–
 ion to produce water. The preceding are 

examples of acidity reactions. The acidity of a solution can be determined by titrating the solution 

with a strong base, such as NaOH. Examples of alkalinity reactions are those involving OH
–
 or 

3HCO
 ions, such as 

 2 3 2 3 aq
OH H H O and HCO H H CO        

Alkalinity is determined by titrating a solution with a strong acid, such as HCl. 

Recall that a fundamental principle of aqueous chemistry is that solutions must be electrically 

neutral. Suppose that we have a solution of distilled water in equilibrium with atmospheric CO2. 

For this solution we can write the following charge balance equation: 

2
3 3

H HCO CO OH
2m m m m  

     

Note, as we already know, this solution is acidic, because 
H

m   must be greater than OH
m  . If we 
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add acid to the solution, the H
+
 ions will combine with OH

–
 to form H2O, with 2

3CO   to form 

3HCO , and with 3HCO  to form H2CO3 (aq). During this set of reactions, the overall electrical 

neutrality of the solution must be maintained, but the concentration of the individual species will 

change. Hence, these species are considered to be nonconservative species because their 

abundances vary as a function of pH or some other intensive variable (such as pressure or 

temperature). 

Now let us consider a more complicated solution in which other species occur. As an example, 

consider a typical groundwater. For this solution, an appropriate charge balance equation is 

2 2 2 2
4 3 3Ca Mg Na K H Cl SO HCO CO OH

2 2 2 2m m m m m m m m m m                   

If we add acid to this solution, the concentrations of 3HCO , 2
3CO  , and OH

–
 will change, but the 

concentrations of the other species (as long as precipitation or complex species formation doesn’t 

occur) will remain constant. These species are referred to as conservative species because their 

abundances do not vary as a function of pH or some other intensive variable (such as pressure or 

temperature). Rearranging the equation so the conservative species are on the left and the 

nonconservative species are on the right (a reversal of the political spectrum) gives 

2 2 2 2
4 3 3Ca Mg Na K Cl SO HCO CO OH H

2 2 2m m m m m m m m m m                   

The term on the right now represents the excess of nonconservative bases with respect to hydrogen 

and is a quantity known as total alkalinity. A final point with regard to conservative and 

nonconservative species is that during water mixing the total abundance of each conservative 

species will remain constant but the total abundance of each nonconservative species may change 

because of changes in pH, temperature, etc. 

For waters in which acidity or alkalinity are largely determined by the carbonate system and 

completely dissociated acids or bases, we can define acidity (CA) and alkalinity (CB) as follows: 

 A 2 33 aq
2H CO HCO H OHC         (3–35) 

2
B 3 3HCO 2CO OH HC          (3–36) 
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Systems in which other species are important contributors to the acidity or alkalinity would 

require additional terms. For example, weathering of pyrite and other sulfide minerals in coal leads 

to acid mine drainage that has pH values of 2 to 3. Under these conditions, sulfuric acid, bisulfate 

ion  4HSO , and acid cations are produced. In this case, total acidity might be defined as 

   23
2A 4H HSO 3Fe 2Fe OH Fe OHC

         

Fe
3+

 is considered an acid cation because it can combine with OH
–
 to form Fe hydroxides. 

Acidity and alkalinity are often reported in meq L
–1

. Recall from Chapter 1 that a gram–

equivalent weight is the molecular or atomic weight divided by the valence, or, in the case of acids 

and bases, the number of H
+
 or OH

–
 ions that can be produced when the acid or base is dissolved in 

water. Hence, in the equation for total acidity, the number of moles of H2CO3 is multiplied by 2 

because this acid can produce two H
+
 ions. In the total alkalinity equation, the number of moles of 

2
3CO   is multiplied by 2 because there are two gram–equivalents in one mole of 2

3CO  . 

EXAMPLE 3–10 In Example 3–5 we calculated the abundances of the various carbonate species 

in a solution in equilibrium with the atmosphere at pH = 5.7. Calculate the total acidity and 

alkalinity of this solution. 

From equation 3–35, total acidity is 

 

  

A 2 33 aq

3.09 3.74 5.7 8.3

3 1 1

2H CO HCO H OH

2 10 10 10 10

1.81 10 eq L 1.81 meq L

C   

   

  

   

   

  

 

From equation 3–36, the total alkalinity is 

  2 3.74 8.37 8.3 5.7
B 3 3

4 1 1

HCO 2CO OH H 10 2 10 10 10

1.80 10 eq L 0.18 meq L

C        

  

       

  

 

Another common way to report total alkalinity is as equivalent weight of calcium carbonate (in 

mg L
–1

). In this calculation one must use the equivalent weight of calcium carbonate. The equation 
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is 

 A A 3

s

eq.wt CaCO 0.050g/meq 1000mg/g
Totalalkalinity=

C V

V

 
 (3–37) 

where CA is the concentration of the acid (in meq L
–1

) used in the alkalinity titration, VA is the 

volume (in L) of acid used in the alkalinity titration, and VS is the volume (in L) of the solution. 

Acidity and alkalinity are important environmental parameters for natural waters. Acidity 

affects the weathering of silicate and carbonate minerals, the transport of metal ions in solution, 

and the functioning of aquatic ecosystems. High–acidity waters are generally considered to be 

environmentally detrimental. Conversely, alkalinity is important in determining the capacity of a 

water to ameliorate acid additions and is generally considered to be a positive characteristic. 

ACIDITY AND ALKALINITY TITRATIONS 

If we know the concentrations of all the acidic (or basic) species in a solution, we can calculate the 

acidity (or alkalinity). This is generally a straightforward problem for very dilute (low ionic 

strength) solutions. However, in more concentrated (high ionic strength) solutions, uncertainties 

arise regarding the formation of complexes and the calculation of activity coefficients. Thus, total 

acidity or alkalinity is often determined by titrating the solution with a strong base (acidity 

determination) or a strong acid (alkalinity determination). At the endpoint pH (discussed next), the 

acidity (or alkalinity) can be calculated using the following equation: 

Ct × Vt = Cs × Vs (3–38) 

where Ct is the concentration (meq L
–1

) of acid or base in the titrant, Vt is the volume of the titrant 

(L
–1

), Cs is the acidity or alkalinity (meq L
–1

) of the unknown solution, and VS is the volume (L
–1

) 

of the unknown solution. 

We will first consider a solution that contains only a strong acid. We take a fixed volume of 

this solution and titrate with a strong base. As we add the base we monitor the change in the pH of 

the solution (Figure 3–3). In this case, we would find that there is an inflection in the curve at pH = 

7.0, i.e., at neutrality. The reaction taking place in the solution is 

H
+
 + OH

–
 → H2O 
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and at neutrality all the excess H
+
 has been consumed. If we repeat this experiment using a solution 

that contains only a strong base and titrate with an acid, we once again find that there is an 

inflection point at pH = 7.0. We are only dealing with strong acids and bases, so the definitions of 

acidity and alkalinity reduce to the following simple equations: 

CA = H
+
 – OH

–
 and CB = OH

–
 – H

+
 

Because the activity of the OH
–
 ions in acidic solutions is negligible, and the activity of H

+
 ions in 

basic solution is negligible, CA = H
+
 and CB = OH

–
. 

 

Figure 3–3 Schematic representation of an acid–base titration curve for a strong acid (base). The 

inflection point is at pH = 7.0, where all the excess H
+
 (acid) or OH

–
 (base) has been consumed. 

Titrant is a base for an acidity determination; an acid for an alkalinity determination.

EXAMPLE 3–11 100 mL of an acidic solution is titrated with a 100 meq L
–1

 NaOH solution. 

Neutrality (pH = 7) is achieved after 50 mL of titrant have been added to the acid solution. 

Calculate the acidity of the solution. 

From equation 3–38, 
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  1 3
1t t

s 3
s

100 meq L 50 10 L
50 meq L

100 10 L

C V
C

V

 





  


 

Total acidity is 50 meq L
–1

.

 

If both strong and weak acids are present in a solution, the titration curve is more complex. A 

schematic titration curve is shown in Figure 3–4 for a solution that contains a strong acid and 

carbonic acid. You will note that there are a number of inflection points on this curve, so the 

question arises as to what we are measuring at each inflection point. The total acidity of this 

solution is 

 A 2 33 aq
2H CO HCO H OHC        

 

Figure 3–4 Schematic acidity titration curve for a solution that contains a strong acid and carbonic 

acid. See text for details.

 

We titrate this solution with a strong base and measure the pH changes. The first inflection point 

occurs at pH ≈ 4.5. This is the point at which the reaction H
+
 + OH

–
 → H2O is essentially complete 
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and 3H = HCO  . A point to note here is that while the position of the H
+
 and OH

–
 curves on the 

top part of Figure 3–4 are fixed relative to pH, the positions of the curves representing the various 

carbonate equilibria change as a function of total carbonate content. Thus, the crossing points can 

vary by several tenths of a pH unit as a function of carbonate concentration. This first inflection 

point corresponds to the strong–acid acidity. The next segment of the titration curve is relatively 

steep; i.e., large additions of base result in only small changes in pH. In this region there is a buffer 

reaction involving H2CO3 (aq) and 3HCO

, which tends to inhibit pH changes. Buffers will be 

discussed in the next section. At pH ≈ 8.35, there is another inflection point. At this point, 99% of 

the H2CO3 (aq) has been converted to 3HCO , as demonstrated by the following calculation, with 

which you should be very familiar: 

   
1

6.35
a3 2.00

8.35
2 3 aq

HCO 10
10

H CO 10H

K 




     
  

 

This inflection point corresponds to the CO2 acidity. The final inflection point occurs when 

3HCO OH  . This inflection point corresponds to the total acidity. 

If our solution contained a strong base and a weak acid, the titration curve would have the same 

shape as in Figure 3–4, except we would titrate with a strong acid and the pH would decrease as the 

titration proceeded. The point at which 3OH HCO   represents the caustic alkalinity (the free 

OH
–
 ions from strong bases), the inflection point at pH ≈ 8.3 represents the carbonate alkalinity, 

and the inflection point at pH ≈ 4.5 represents the total alkalinity. 

Alkalinity titrations are done using a strong acid and two endpoint indicators— 

phenolphthalein (pH = 8.3) and methyl orange (pH = 4.5). The first endpoint corresponds to the 

carbonate alkalinity and the second endpoint to the total alkalinity. Note from Figure 3–4 that near 

the two endpoints pH changes rapidly with small additions of acid. Hence, a precise determination 

of pH is not required. If a more precise measurement is desired, the pH change of the solution, as a 

function of the volume of acid added, can be monitored with a pH meter and a titration curve 

plotted from the data. 

EXAMPLE 3–12 In Example 3–9 we calculated the pH of water from an alkaline lake in 
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Tanzania. A 100 mL water sample from the lake is titrated with 100 meq L
–1

 nitric acid. Inflection 

points are noted in the titration curve at about pH = 8.34 (after 54 mL of titrant have been added) 

and at about pH = 3.0 (after 102 mL of titrant have been added). Calculate the carbonate alkalinity 

and total alkalinity for this water sample in equivalent weight of calcium carbonate. Carbonate 

alkalinity corresponds to the inflection point at pH = 8.34. 

 

    

 

A A 3

s

1 3 1
1

33 1

eq.wt CaCO 0.050g/meq 1000mg/g
Carbonatealkalinity

100meq L 54 10 L 0.050 1000
2700 mg L as CaCO

100 10 L

C V

V

  


 

 



 



 

Total alkalinity corresponds to the inflection point at pH = 3.0. 

 

 

    

 

A A 3

s

1 3 1
1

33 1

eq.wt CaCO 0.050g/meq 1000mg/g
Totalalkalinity=

100meq L 102 10 L 0.050 1000
5100 mg L as CaCO

100 10 L

C V

V

  


 

 


 



 

 

BUFFERS 

A weak acid and its salt (or a weak base and its salt) form what is known as a buffer. A buffered 

solution is a solution that resists changes in pH when either hydrogen or hydroxyl ions are added 

to the solution. Let us first illustrate what we mean by a buffer by considering once again the 

carbonic acid system. For all acidic waters, H2CO3 (aq) and 3HCO  (Figure 3–2) will be the 

dominant carbonate species. Equation 3–8 relates the activity of these carbonate species to the H
+
 

activity. We can rewrite equation 3–8 as follows: 

   1

3

a 2 3 aq

HCO1 1

H COH K





  
  

   (3–39) 

Taking the logs of both sides, and remembering that pH = –log [H
+
], gives 
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 
1

3
a

2 3 aq

HCO
pH log log

H CO
K

    
  

   (3–40) 

We can use equation 3–40 to calculate the effect that the addition of hydrogen ions will have on the 

pH. 

EXAMPLE 3–13 Let us suppose that we have 1 L of pure water with pH = 7.0. If we add 10
–4

 mol 

of H
+
 ions to the pure water, the pH will drop to 4 (10

–7
 mol + 10

–4
 mol = 10

–4
 mol L

–1
 of H

+
). If 

carbonic acid is present in the solution, what will be the change in pH when the H
+
 ions are added? 

At pH = 7 and T = 25°C, assume that 3 1
3HCO 10 mol L      . 

From equation 3–8 we get [H2CO3 (aq)] = 10
–3.65

 mol L
–1

. When we add H
+
 ions to the solution, 

the following reaction occurs: 

 3 2 3 aq
H HCO H CO    

an example of LeChâtelier’s principle. According to this reaction, the added H
+
 ions combine with 

the 3HCO  to form H2CO3 (aq). Thus, the activity of 3HCO  decreases by 10
–4

 mol L
–1

 and the 

activity of H2CO3 (aq) increases by 10
–4

 mol L
–1

. Solving equation 3–40 for pH gives 

 

 

 

1

3
a

2 3 aq

3.0 4.0

3.65 4.0

HCO
pH log log

H CO

10 10
6.35 log 6.35 0.44 6.79

10 10

K



 

 

      
    

 
      

 

 

Due to the presence of carbonic acid, the pH only decreases by 0.21 units rather than 3.0 units.

 

The calculation we have just done used the Henderson–Hasselbalch equation. 

Consider the following reaction: 

H
+
 + A

–
 → HA 



40 

In this reaction, a H
+
 ion has combined with the salt of a weak acid (a conjugate base) to form a 

weak acid. We can write equation 3–40 in a general form (the Henderson– Hasselbalch equation) 

as 

 
 a

A
pH log log

HA
K

 
    

 
   (3–41) 

Buffers are important in the natural environment because they control the impact of acid or 

base additions on natural waters. A widely discussed example of this type of impact is acid rain 

(see Chapter 8), which can lead to the acidification of streams and lakes. Even in the same 

geographic area, lakes can have widely different pH values, depending upon the available buffers. 

There are two types of reactions that can control pH—those due to dissolved species in water and 

those that require interactions between water and mineral species. The carbonic acid–bicarbonate 

ion reaction considered in Example 3–13 is illustrative of the first type of pH–controlling reaction. 

An example of the second type of pH–controlling reaction is the calcite–carbonate system, which 

controls the long–term pH of the oceans. If we add H
+
 ions to the ocean, in addition to the 

carbonate equilibria illustrated in Example 3–13, the following reaction can occur, which will 

remove H
+
 ions from solution: 

2
3 calcite 3CaCO H Ca HCO      

If we add OH
–
 ions, the following reaction may occur: 

2
3 3 calcite 2Ca HCO OH CaCO H O       

As a second example, consider the following reaction between the clay minerals illite and 

kaolinite: 

2KAl3Si3O10(OH)2 illite + 2H
+
 + 3H2O → 3Al2Si205(OH)4 kaolinite + 2K

+
 

In this reaction, hydrogen ions are consumed during the conversion of illite to kaolinite. 

The buffering capacity is a measure of the amount of H
+

 or OH
–
 ions a solution can absorb 

without a significant change in pH. The capacity of a buffered solution is determined by the 

amount of [HA] and [A
–
] in the solution. For an acidity titration, the buffering index, B, is defined 
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as 

B

pH

dC
B

d
    (3–42) 

where dCB is the increment of strong base added in eq L
–1

 (or meq L
–1

) and dpH is the 

corresponding change in solution pH. For an alkalinity titration, the buffering index is written 

A

pH

dC
B

d
    (3–43) 

where dCA is the incremental amount of strong acid added. 

The ability of a particular system to buffer changes in pH varies as a function of pH. For weak 

acids and bases, the maximum buffering capacity occurs at pH values that equal the dissociation 

constants, pKa or pKb, of the weak acid or base. At pH = pKa (or pKb), the ratio [A
–
]/[HA] = 1 and 

is most resistant to change. The following example will illustrate this point. 

EXAMPLE 3–14 We will return to Example 3–13, the carbonate buffer. In this case, the initial pH 

is 6.35, equivalent to the first dissociation constant for carbonic acid. The total carbonate content is 

2 × 10
–3

 mol L
–1

. At pH = 6.35, H2CO3 (aq) and 3HCO  will be present in equal abundance. The 

activity of the 2
3CO   ion is negligible. 

Hence, we can write 

 

 

 1

3.0
3

a 3.0
2 3 aq

HCO 10
pH log log 6.35 log 6.35 0.0 6.35

H CO 10
K

 



                     

 

We now add 10
–5

 mol of H
+
 ions to 1 L of solution. After the addition we recalculate the pH: 

 

 

 
 

1

3
a

2 3 aq

3.0 5.0

3.0 5.0

HCO
pH log log

H CO

10 10
6.35 log 6.35 0.009 6.34

10 10

K



 

 

      
    

 
       

 
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Because of the buffering capacity of the system, the pH has only changed by –0.01 units. Let us 

continue to add acid until the pH of the solution is reduced to 5.35. At this pH, H2CO3 (aq) is 10 

times more abundant in the solution than 3HCO . Under these conditions, what is the effect of a 

10
–5

 mol addition of H
+
? 

 

 

 
 

1

3
a

2 3 aq

4.0 5.0

3.0 5.0

HCO
pH log log

H CO

1.818 10 10
6.35 log 6.35 1.03 5.32

1.818 10 10

K



 

 

      
    

  
       

  

 

In this case, the pH has changed by –0.03 pH units. Although not a large difference from the 

previous calculation, we can see that there has been a decrease in the buffering capacity of the 

solution. Repeating the calculation when pH = 4.35, with the same addition of acid, gives pH = 

4.04, a change of –0.31 pH units, clearly showing the declining effectiveness of the buffer.

 

The derivation of the buffering index for various systems is not always straightforward. 

Several examples will be considered next. A more complete discussion can be found in Langmuir 

(1997). We will start with the simple system H2O and then extend our analysis to include weak 

acids. 

Buffering Index for H2O 

We start with pure water, which we titrate with a NaOH solution; i.e., we are determining the total 

acidity of water. In this example, and all the following examples, we will assume that activity 

equals concentration. The charge balance equation is 

Na
+
 + H

+
 = OH

–
 

and CB = Na
+
, which represents the total amount of base added to the solution. Substituting into the 

charge balance equation we can write 

w
B OH H H

H

K
C   


       (3–44) 
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Taking the derivative of both sides gives 

 
w

B 2
1 H

H

K
dC d 



 
   
 

   (3–45) 

pH = –ln(H
+
)/2.3, so dH

+
 = dpH[–2.3(H

+
)]. Substituting for dH

+
 gives the final form of the 

equation: 

2

wB
H O 2.3 H

pH H

KdC
B

d





 
   

 
   (3–46) 

Equation 3–46 is easily solved on a spreadsheet for a range of pH values, and the result of such a 

computation is shown graphically in Figure 3–5. The buffering capacity of water is greatest at very 

low and very high pHs and quickly declines to essentially zero at intermediate pH values. Hence, 

in most natural waters, H2O is not an important pH buffer. 

 

Figure 3–5 Variations in buffer capacity as a function of pH for water. Only at very low and very 

high pH values is water an important buffer.

 

Buffering Index for a Weak Monoprotic Acid 

We start with a solution that contains a weak monoprotic acid (HA) and we determine its acidity 

by titrating with NaOH. The total acidity due to the weak acid is 
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CA = HA + A
–
 

The charge balance equation for the system monoprotic weak acid plus water plus NaOH is 

Na
+
 + H

+
 = A

–
 + OH

–
 

Because CB = Na
+
, we can write the charge balance equation as 

CB = A
–
 + OH

–
 – H

+
 

What we now want to do is express A
–
 in terms of hydrogen ions and the acidity (CA). We do this 

by rearranging the equation for total acidity to give 

HA = CA – A
–
 

and then substituting for HA in the equilibrium equation: 

  
 

  
 a

A

H A H A

HA A
K

C

   


 


   (3–47) 

Solving equation 3–47 for A
–
 gives 

 
a A

a

A
H

K C

K







   (3–48) 

We now substitute into the charge balance equation: 

 
a A w

B

a

A +OH H H
HH

K C K
C

K

   


    


   (3–49) 

Taking the derivative of both sides, 

   
a A w

B 2 2

a

1 H

H H

K C K
dC d

K



 

 
    

  

   (3–50) 

and rearranging gives 
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   
a A wB

2 2

a

1
H H H

K C KdC

d K


 

 
     

  

   (3–51) 

Recalling that dR
+
 = dpH[– 2.3(H

+
)] and substituting for dH

+
 gives the final form of the buffering 

index equation for a weak monoprotic acid: 

 

+
a A wB

2

a

(H )
2.3 H

pH HH

K C KdC
B

d K



 


 
    

  

   (3–52) 

The first term in this equation describes the buffering index for the weak monoprotic acid; the 

second and third terms describe the buffering index for water. This equation is plotted for acetic 

acid in Figure 3–6 with CA = 1 mol. As noted previously, acetic acid has its maximum buffering 

capacity at a pH equal to the pKa for acetic acid. 

 

Figure 3–6 Variations in buffering capacity as a function of pH for water and acetic acid when CA 

= 1 mol.

 

Buffering Index for Weak Polyprotic Acids 

As long as the dissociation constants differ by a factor of 20 or more, the solution for the buffering 

index of polyprotic acids is analogous to equation 3–52. Additional terms are added to represent 

the additional dissociation steps. Equation (3–53) is for a diprotic acid. Note that there are now two 

terms at the beginning of the equation that describe the first and second dissociation for the 
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diprotic acid. 

 

 

 

 
1 2

1 2

a A a A wB
2 2

a a

H H
2.3 H

pH HH H

K C K C KdC
B

d K K

 



 
 

 
     
  
 

   (3–53) 

As previously mentioned, carbonic acid is one of the most important acids in the natural 

waters. Because carbonic acid is a diprotic acid, it will have two pH regions in which it acts as a 

buffer. The equation for carbonic acid is plotted in Figure 3–7 for CA = 1 × 10
–3

 mol L
–1

. Note the 

two regions of highest buffering capacity corresponding to 
1ap 6.35K   and 

2ap 10.33K  , the 

first and second dissociation constants, respectively, of carbonic acid. At pH values less than 4.7 

and greater than 10.4, the buffering capacity of water is greater than that of carbonic acid. 

 

Figure 3–7 Variations in buffering capacity as a function of pH for the system carbonic acid–

water when CA = 1 × 10
–3

 mol L
–1

.

 

MINERAL–WATER REACTIONS 

So far we have considered buffering reactions that utilize dissolved species. On a longer time 

frame, we are also interested in acidity and alkalinity due to interactions between minerals and 

water. Most minerals can be considered to be salts of weak acids and strong bases, so these 

interactions contribute to the alkalinity of the water. There are several exceptions to this generality, 

particularly in the case of acid mine drainage, where minerals may be present that are salts of a 
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weak base and a strong acid. Such minerals would contribute to the acidity of the water. 

Consider what happens when acidic waters come in contact with K-feldspar. This reaction can 

be written as follows: 

 
 

 4kaolinite3 8 K-fledspar 2 2 2 2 5 2 33 aq 4 aq
2KA1Si O 2H CO 9H O Al Si O OH 2K 4H SiO 2HCO      

 

In the course of this reaction, carbonic acid is consumed and bicarbonate ion  3HCO  is formed. 

Also formed is silicic acid, but this acid is essentially undissociated in acidic waters. The net result 

of this reaction is the consumption of carbonic acid and an increase in bicarbonate ion. Thus, the 

weathering of feldspar tends to offset acid additions (reduces acidity). Carbonate minerals play a 

significant role in buffering acid additions, particularly because they react with water much more 

quickly than do the silicate minerals. A representative reaction is 

 
2

3 calcite 2 33 aq
CaCO H CO Ca 2HCO     

in which the carbonic acid reacts with calcite to form Ca
2+

 and bicarbonate ions. As in the case of 

the silicate minerals, carbonic acid is consumed and there is an increase in the bicarbonate ion. 

Buffering Index for the Calcite–Carbonic Acid System 

As has been noted, this important system controls the long-term pH of the ocean. It also exerts a 

significant influence on the pH of fresh waters in contact with limestone or in soils containing 

carbonate minerals. The full derivation will not be done here (it can be found in Langmuir, 1997). 

This calculation is for a calcite-saturated solution with fixed total carbonate. The solution is 

titrated with HCl; therefore, CA = Cl
–
. The charge balance equation is 

2 2
3 32Ca H HCO 2CO Cl +OH          

Substituting CA for Cl
–
 and rearranging the charge balance equation in terms of CA gives 

2 2
A 3 3H OH 2Ca HCO 2COC           

As we have done in the previous cases, we now carry out a set of substitutions so that the equation 
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is written in terms of the H
+
 ion and then differentiate the resulting equation. After completion of 

these operations, the equation becomes 

 
 

     

   

 
 

2 1 2 2

1 2 2

1

2
1 1 1 1

T a a a aw

2
2

1 1 1
a a a

a
cal T

H H 4 H 1
2.3 H 2.3

H
H H 1

H
2.3 2 H

C K K K KK
B

K K K

K
K C

      




    




  
           

        

 
    

 

  (3–54) 

where CT is the total carbonate concentration, 
1aK  and 

2aK  are the first and second dissociation 

constants for carbonic acid, and Kcal is the solubility constant for calcite. If we wanted to solve this 

equation for aragonite, we would use the aragonite solubility constant, Karag. The equation has 

been written in three parts to illustrate the various components of the calculation. The first part 

represents the buffering capacity of water, the second the buffering capacity of carbonic acid, and 

the third the buffering capacity due to the dissolution of calcite. This system reacts relatively 

rapidly to changes in pH because calcite readily dissolves in acidic waters. Note that the 

dissolution of calcite tends to offset pH decreases. The precipitation of calcite is more difficult, so 

this system would not be as effective in mitigating pH increases. The buffering curve for the 

system calcite–carbonic acid, at 25°C and CT= 1 × 10
–3

 mol L
–1

, is shown in Figure 3–8. 

 

Figure 3–8 Variations in buffering capacity as a function of pH for the calcite–carbonic acid 

system. CT = 1 × 10
–3 

mol L
–1

.
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EXAMPLE 3–15 Calculate the buffering index for the system calcite–carbonic acid at pH = 6, 

total carbonate = 1 × 10
–2

 mol L
–1

, and T = 25°C. Select the appropriate equilibrium constants from 

Table 3–3 (for water) and Table 3–4 (for the carbonates). Solve for the buffering index using 

equation 3–54. 

 
 

     

   

 
 

 

2 1 2 1

1 2 2

1

2
1 1 1 1

T a a a aw

2
2

1 1 1
a a a

a
cal T

13.995
6

6

2
2 10.33 6 6.35 10.33 6

H H 4 H 1
2.3 H 2.3

H
H H 1

H
 2.3 2 H

10
2.3 10

10

10 10 10 10 10 10 4
 2.3

C K K K KK
B

K K K

K
K C

      




    









   

  
           

        

 
    

 

 
  

 




 

 

6.35 6

2
2

6.35 10.33 6 10.33 6

6
6 6.35

8.48 2

6 3 1 1

1 1

10 10 1

10 10 10 10 10 1

10
 2.3 2 10 10

10 10

2.32 10 4.91 10 0.16994 0.17485eq L pH

174.9 meq L pH



 


 

 

   

 

  
   

  
    

 
   

 

     



 

Buffering Index for Water–Silicate Mineral Systems 

Various water-silicate mineral reactions can occur that tend to mitigate the effect of the acid 

addition. These reactions proceed much more slowly than those just discussed because of kinetic 

constraints. As examples of these types of buffers, consider the following reactions: 

KAl3Si3O10(OH)2 muscovite + H
+
 + 1.5H2O → 1.5Al2Si2O5(OH)4 kaolinite + K

+
 

and 

KAlSi3O8 K–feidspar + H
+
 + 4.5H2O → 0.5Al2Si2O5(OH)4 kaolinite +K

+
+ 2H4SiO4 (aq) 

In the first reaction, hydrogen ions are consumed in the conversion of muscovite to the clay 

mineral kaolinite. In the second reaction, a common weathering reaction in humid temperate 
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climates, hydrogen ions are consumed when K-feldspar is weathered to kaolinite. Both reactions 

are essentially irreversible, so they will only buffer hydrogen ion additions, i.e., pH decreases. We 

start by calculating the equilibrium constants (at 25°C) for both reactions. In each case, 

 

 eq

K

H
K




  

because activity = 1 for the other species in both equations. We calculate the equilibrium constants 

as was done in Chapter 2. For this set of calculations, we will use the free–energy values of Robie 

et al. (1978) (Appendix II, source 3), an internally consistent set of thermodynamic data for 

calculations involving common minerals. For the muscovite–kaolinite reaction, 

0 1
RΔ 25.25 kJmolG    and log Keq = 4.42. For the K-feldspar–kaolinite reaction, 

0 1
RΔ 11.05 kJmolG   and log Keq = –1.94. 

The buffering index will have the same form for both mineral pairs. Here we will derive the 

buffering index equation for the muscovite–kaolinite pair. We start by assuming that we are 

titrating a water–mineral mixture with HCl (CA = Cl
–
). The charge balance equation is 

H
+
 + K

+
 = OH

–
 + Cl

–
 

The total acidity equation is 

CA = H
+
 + K

+
 – OH

–
 

Because [K
+
] = Keq[H

+
], substitution into the total acidity equation for K

+
 and OH

–
 gives 

    w
A eq H H

H

K
C K  


      (3–55) 

Taking the derivative and substituting for dH
+
, as in previous examples, gives 

 
 

   
 

 
14

4.42w
eq

10
2.3 H H 2.3 H 10 H

H H

K
B K


   

 

  
       

   
   (3–56) 

For the K-feldspar–kaolinite reaction, we have a similar equation—the only difference is the 

value for the equilibrium constant. Silicic acid is not included in the buffer calculation because 
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only at very basic pH values would there be any significant dissociation to 3 4H SiO  (first 

dissociation constant = 10
–9.9

). The buffering index equation for the K-feldspar–kaolinite pair is 

 
 

 
14

1.9410
2.3 H 10 H

H
B


  



 
   

 
  (3–57) 

Equations 3–56 and 3–57 are plotted in Figure 3–9. 

Buffering Capacities of Natural Waters 

Figure 3–9 summarizes the results of our calculations of buffering reactions for natural waters. 

Several important generalizations can be made from this diagram. Except at very low or very high 

pH, water has little buffering capacity. In most natural waters carbonic acid is the most important 

system for buffering pH at intermediate values. If calcite is present in the system, there is a 

significant increase in buffering capacity. Hence, waters in contact with limestone, or soils 

containing carbonate minerals, will be very resistant to pH changes, particularly decreasing pH 

changes. Although they operate more slowly because of kinetic factors, clay– type minerals have 

significant buffering capacity for acid additions. Conversely, weathering reactions involving 

feldspar have very low buffering capacity (note from Figure 3–9 that the buffering capacity of the 

feldspar–kaolinite reaction is less than that of water). These are important observations in terms of 

the effect of acid additions on natural waters. In terrains where carbonates (and/or clay minerals) 

are present, there will be significant buffering of acid additions. In terrains underlain by rocks such 

as granite (quartz and feldspar minerals), buffering capacity will be nil. Hence, we would expect 

that lakes and streams draining limestones areas would be much less affected by acid rain than 

those draining granitic terrains. 
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Figure 3–9 Summary of buffering reactions for natural waters containing carbonic acid and/or in 

contact with various minerals. Note the importance of the carbonate and clay minerals for 

buffering acid additions to natural waters

 

Mineral Reactivity 

A final factor to consider is the rate at which buffering reactions will occur. Carbonate minerals are 

generally considered to be highly reactive, particularly when present as minute grains. Using the 

reactivity of carbonate minerals as a reference point, Table 3–7 lists the relative reactivity, at pH = 

5, for a number of common minerals. What is meant by relative reactivity is, under the given set of 

conditions, compared to calcite, how readily the mineral will react with the fluid. For minerals 

with low relative reactivity, there is little interaction between the fluid and the mineral. Even if 

these minerals were effective buffers, we would not expect them to have a significant effect on pH. 

Table 3–7 Relative Reactivity of Common Minerals at pH = 5* 

Mineral group Typical minerals 

Relative 

reactivity at 

pH 5 

Dissolving Calcite, aragonite, dolomite, magnesite, brucite 1.00 

Fast weathering Anorthite, nepheline, forsterite, olivine, garnet, jadeite, leucite, 

spodumene, diopside, wollastonite 

0.40 
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Mineral group Typical minerals 

Relative 

reactivity at 

pH 5 

Slow weathering Plagioclase feldspars (albite, oligoclase, labradorite), clays 

(vermiculite, montmorillonite) 

0.01 

Very slow 

weathering 

K-feldspars (orthoclase, microcline), muscovite 0.01 

Inert Quartz, rutile, zircon 0.004 

*From Lawrence and Scheske (1997). 

Lawrence and Scheske (1997) used relative reactivities to calculate the neutralization potential 

of mining wastes. This was done by using the normative mineralogy (weight abundance of ideal 

end-member minerals calculated from the chemical composition of the rock) and the relative 

reactivity of the various minerals to calculate a neutralization potential for the rock that could be 

compared to that of limestone. From a strictly kinetic point of view, rocks composed of reactive 

minerals would be more effective at neutralizing acid waters than those containing minerals of low 

relative reactivity. 

EXAMPLE 3–16 A rock contains 24% (24 g/100 g) normative forsterite (Mg2SiO4). Calculate the 

contribution of the forsterite to the neutralization potential (NP) of the rock. NP values are 

expressed as kg CaCO3-equivalent per 1000 kg of rock (1 ton). 

In doing the calculation, we must take account of the differences in molecular weights. 

 

1

1
3

Normative wt mineral g mol wt calcite
NP contribution=

100g mol wt mineral

1000g
relative reactivity

ton

24 100.1
= 1000kg ton 0.4

100 140.7

68.3kg CaCO -equivalent ton







 

  


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ACID–BASE EQUILIBRIA CASE STUDIES 

We conclude our discussion of acid–base equilibria with two case studies that illustrate the 

application of several concepts developed in this chapter to “real-world” problems. In Case Study 

3–3, a model is developed for the attenuation of acid mine drainage by natural processes. In Case 

Study 3–4, the potential of deep saline aquifers as disposal sites for carbon dioxide and other acid 

gases is investigated. 

CASE STUDY 3–3 

A Process Model for the Natural Attenuation of Acid Mine Drainage 

Berger et al. (2000) investigated the chemistry of acid mine drainage from an abandoned 

Cu-Pb-Zn mine located in the southern Sangre de Cristo mountains in New Mexico. Waste rock 

from the mining operation was piled on top of an existing drainage channel, and acid waters 

discharged directly from this waste pile. The waste rock is largely composed of quartz- chlorite 

and biotite schists. The underlying bedrock consists of a Pennsylvanian-age conglomeratic unit 

composed of siliclastic and carbonate components. Flow through the waste pile is essentially 

vertical, and atmospheric O2 + rainwater react with the waste pile to produce acid waters and metal 

ions in solution. In the immediate vicinity of the waste pile, waters have a pH of 4.1 to 4.2. Willow 

Creek runs along the western edge of the site, and the contaminated waters enter this creek. 

Upstream from the site, Willow Creek waters have pH = 7.2. Given the relatively high pH of 

Willow Creek, simple mixing with Willow Creek water would lead to a pH increase and a dilution 

in the concentrations of the dissolved metals in the acid mine drainage. This pH increase may also 

cause the precipitation of metal ions as insoluble hydroxides, oxides, and sulfates. An additional 

factor affecting pH and the precipitation of metals is the interaction between the acid mine 

drainage and the carbonate component of the underlying bedrock. Field observations indicated that 

there had been acid water–carbonate interactions, as shown by the cracked and discolored nature 

of the limestone. The calcite dissolution reaction can be written 

CaCO3 calcite + 2H
+
 → Ca

2+
 + H2O + CO2 (aq) 

This reaction will lead to an increase in pH and will release Ca
2+

 ions to the water. 
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The authors investigated these questions by collecting water samples from several drainage 

channels and measuring the change in chemistry of the water samples. The assumption was made 

that 2
4SO   was a conservative component; i.e., its concentration was not affected by processes 

occurring in the water. Thus, sulfate concentration varies simply as a function of the ratio of 

contaminated water to uncontaminated water. For example, contaminated waters from the site had 

maximum sulfate concentrations of approximately 8400 mg L
–1

, while uncontaminated Willow 

Creek water had sulfate concentrations on the order of 120 mg L
–1

. A 50/50 mixture of 

contaminated and uncontaminated water would have a sulfate concentration of approximately 

4260 mg L
–1

. Plots of various components versus sulfate showed that Zn, Mg, and Mn behaved 

conservatively; Fe, Al, Pb, and to some degree Cu showed concentrations less than that expected 

by simple mixing. Ca concentrations exceeded those due to simple mixing. The elevated Ca 

concentrations led the authors to conclude that the dissolution of limestone was a factor in 

determining the pH of the acid mine drainage. The authors developed a reaction path model, 

illustrated in Figure 3–C3–1, to explain the variations in Ca
2+

. In this model, calcite dissolution 

and mixing lead to an increase in pH to a value of 6; mixing alone leads to a final pH value of 7.2. 

Under these conditions Al, Cu, and Fe precipitate directly from solution. The authors concluded 

that the chemistry of the acid mine drainage was controlled by two processes: mineral buffering 

and mixing with ambient waters. 

 

Figure 3–C3–1 Trend in Ca concentration predicted by the reaction path model. Dashed lines 

show simple mixing for fluids with different amounts of added Ca. Filled squares represent 

individual water samples. The reaction pathway is shown by the heavy line. In leg 1, Ca is added 

by dissolution of limestone. In leg 2, Ca concentrations change only by simple dilution. In leg 1, 
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2.5 kg of uncontaminated water and 250 mg of Ca are added to the solution. In leg 2, 12.5 kg of 

uncontaminated water is added. From Berger et al. (2000). 

Source: Berger et al. (2000). 

CASE STUDY 3–4 

Aquifer Disposal of Acid Gases 

Gunter et al. (2000) investigated the possibility of disposing of acid gases (CO2, H2SO4 and H2S) 

in deep saline aquifers in the Alberta sedimentary basin. Models were developed for the chemical 

reactions that would occur between these acid gases and two sedimentary reservoirs: the 

Glauconitic Sandstone aquifer, consisting of 87% quartz, 2% K-feldspar, 1% plagio-clase, 5% 

glauconite, 2% kaolinite, 1% calcite, 1% dolomite, and 1% siderite; and the Nisku carbonate 

aquifer, consisting predominantly of dolomite and/or calcite with or without accessory anhydrite, 

quartz, pyrite, and illite. The modeling was done using the reaction path computer model 

PATHARC.94 and a single injection of acid gases. The reaction between the acid gases and the 

carbonate aquifer was essentially instantaneous, while reactions with the Glauconitic Sandstone 

took hundreds of years to run to completion (Figure 3–C4–1). In the carbonate aquifer, the reaction 

involving CO2 is 

2
3 calcite 2 2 3CaCO H O CO Ca 2HCO      

This reaction quickly reaches equilibrium (Figure 3–C4–1), but little CO2 is removed from 

solution. In the model calculation, the reduction in CO2 pressure is from 87 to 86 bars. Thus, 

carbonate rocks have little trapping capacity for CO2. For the Glauconitic Sandstone, hundreds of 

years were required to reach equilibrium (Figure 3–C4–1), but in this case essentially all of the 

CO2 is trapped by mineral reactions of the following types. In the calculations, muscovite was used 

as a proxy for illite. 

(1) 

 

 

2 annite3 3 10 2

2 muscovite3 3 10 3siderite

2 quartz 2 3

3KFe AlSi O OH 11CO

KAl Si O OH 9FeCO

6SiO H O 2K 2HCO 

 



   
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(2) 
 

3 8 albite 2 2

2 muscovite3 3 10 2 3

3NaAlSi O 2H O 2CO K

KAl Si O OH 6SiO 3Na 2HCO



 

   

  
 

(3) 
 

3 8 K-fledspar 2 2

2 muscovite3 3 10 2 3

3KAlSi O 2H O 2CO

KAl Si O OH 6SiO 2K 2HCO 

  

  
 

The calculations showed that the carbonate aquifer would not be a good trap for CO2, but the 

Glauconitic Sandstone would be an effective trap. 

Similar calculations were done for the disposal of SO2 (as H2SO4). In the carbonate aquifer, the 

reaction is 

3calcite 2 4 4anhydrite 2 2CaCO H SO CaSO H O CO   
 

In this process CO2 pressure builds up to substantial levels, in the model run to 80 bars. This is a 

significant overpressure that can fracture the rocks, thus permitting the escape of CO2. Because the 

Glauconitic Sandstone also contained carbonate minerals, a similar reaction would occur. 

However, in this case reactions 1–3 would also occur, leading to the reduction of the CO2 pressure 

to ambient values. Thus, the Glauconitic Sandstone is a potential trap for sulfuric acid. 

Source: Gunter et al. (2000). 

 

Figure 3–C4–1 Water–rock reactions as a function of time. Initial input is 1 mol of CO2 into 1 kg 



58 

of formation water. 

(a) Variation in amounts of aqueous species and (b) minerals for the Nisku carbonate aquifer. (c) 

Variation in amounts of aqueous species and (d) minerals for the Glauconitic Sandstone aquifer. 

From Gunter et al. (2000). 

QUESTIONS AND PROBLEMS 

1. Distinguish between the Arrhenius concept and the Brönsted–Lowry model of acids and bases. 

2. How does a strong acid differ from a weak acid? 

3. Does a pH of 7 always indicate neutrality? Explain. 

4. At 250°C, the equilibrium constant for the dissociation of water is 10
–11.16

 (Ohmoto et al., 

1994). At this temperature, what is the pH of a neutral solution? 

5. pH is referred to as an environmental parameter. What does this mean? 

6. Most minerals can be considered to be salts of weak acids and strong bases. Identify the 

weak-acid and strong-base components in each of the following minerals: 

a.Olivine [Mg2SiO4] 

b.K-feldspar [KAlSi3O8] 

c.Diopside [CaMgSi2O6] 

d.Kaolinite [Al2Si2O5(OH)4] 

7. In terms of the carbonic acid system, distinguish between an open system and a closed system. 

8. Explain why the pH of surface waters increases when green plants in the water are actively 

photosynthesizing. 

9. With reference to Case Study 3–1, explain the trends shown by waters from the NJ Coastal 

Plain and Floridian aquifers. 

10. With reference to Case Study 3–2, explain why interactions between groundwaters and silicate 
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minerals would lead to a reduction in 
2CO .P  

11. What is an amphoteric hydroxide? 

12. Define acidity and alkalinity. 

13. Why do titration curves for weak acids show regions in which large additions of base result in 

very small pH changes while in other regions small additions of base lead to large pH changes? 

14. What is a buffer? 

15. Define buffering capacity. 

16. Refer to Figure 3–9 to answer this question. For waters of pH 4, 5.7, 7, 8.5, and 10, identify the 

most important buffer(s). Why did you choose these particular buffers? 

17. What is meant by mineral reactivity? 

18. In Case Study 3–3, the authors assumed that 2
4SO   was a conservative component. What does 

this mean? 

19. With reference to Case Study 3–4, why would a limestone formation be a poor choice as a 

disposal site for CO2? Why would a siliciclastic unit be a better choice? 

20. With reference to Case Study 3–4, in terms of the various chemical reactions explain the 

observed variations in the mineral abundances with time (Figure 3–C4–1). 

21. At 60°C, the pH of a water sample is 5.1. Calculate the concentration of the hydroxyl ion. 

22. Calculate the concentration of H
+
 ions in solution if 0.2 mol of formic acid (Table 3–1) is 

dissolved in 1 L of pure water. The water temperature is 25°C. 

23. Calculate the concentration of OH
–
 ions in solution if 0.1 mol of ammonium (Table 3–2) is 

dissolved in 1 L of pure water. The water temperature is 25°C. 

24. Water from a septic tank drainage field enters an aquifer. The water contains a significant 

amount of dissolved organic carbon. Oxidation of this dissolved organic carbon adds CO2 to 

the groundwater. The system is effectively isolated from the atmosphere and after the 
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breakdown of the dissolved organic carbon, 
2

2.5
CO 10 atmP  . The temperature of the 

groundwater is 15°C. Calculate the pH of the groundwater. 

25. A sandstone aquifer underlies an agricultural area. Extensive use of nitrogen fertilizer has led 

to a significant nitrogen burden in the groundwater of the sandstone aquifer. Denitrification 

has caused an increase in dissolved CO2 in the groundwater. The measured 
2

2
CO 10 atmP  . 

The temperature of the groundwater is 20°C. Calculate the pH of the groundwater. 

26. A water sample from a lake has a measured pH = 8.0 and 1
3HCO 22mg L  . The water 

temperature is 15°C. Is the lake water in equilibrium with atmospheric CO2 (a calculation is 

required)? What type of rock serves as the basin for the lake, and why did you chose this type 

of rock? 

27. Calculate the concentration of each carbonate species in a solution at 20°C when CT = 3 × 10
–

3
 mol L

– 1
 and pH = 6.2. 

28. Water samples were collected from a series of wells drilled into a sandstone aquifer. 

Bicarbonate ion concentration and pH were measured for each water sample. The following 

table lists the data for the wells measured in the downdip (1 → 7) direction. Plot pH versus 

3HCO  in millimoles L
–l

. You will first have to convert the concentration of 3HCO  to 

millimoles L
– 1

.  Draw a smooth curve through the data. For each water sample, calculate the 

2COP  Assume the water temperature is 25°C. Interpret the data. You may want to refer to Case 

Study 3–1 when you do this problem. 

Well pH  1
3HCO mg L    3 1

3HCO 1 10 mol L     
2CO atmP  

1 5.7 92   

2 6.0 122   

3 6.4 171   

4 6.9 220   

5 7.3 244   

6 7.7 262   
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Well pH  1
3HCO mg L    3 1

3HCO 1 10 mol L     
2CO atmP  

7 8.0 275   

 

29. Calculate the relative abundance of H4SiO4 (aq) to 3 4H SiO  at pH = 8.2. T  =  25°C. 

30. A river contains 10.5 mg L
–1

 of dissolved silica (as SiO2). The measured pH = 6.5 and the 

water temperature is 25°C. Calculate the concentration of each silica species in solution. 

31. Calculate the pH of a solution saturated in calcite and in equilibrium with atmospheric CO2. 

The temperature of the solution is 5°C. 

32. A water sample collected from a well has T  = 25°C, pH = 7.9, Ca
2+

 = 96 mg L
–1 

and 

1
3HCO 30 mg L  . With reference to Case Study 3–2, calculate the 

2COP  for the water 

sample using both the 3HCO  and Ca
2+

 concentrations. Do the calculations agree? Is this 

sample in equilibrium with atmospheric CO2? 

33. A water sample collected from a well has T  = 12°C, pH = 7.9, Ca
2+

 = 61 mg L
–1

, and 

1
3HCO 48 mg L  . With reference to Case Study 3–2, calculate the 

2COP  for the water 

sample using both the 3HCO  and Ca
2+

 concentrations. Note that the equations in Case Study 

3–2 are for 25°C. These will have to be modified because of the temperature difference. The 

equation for the bicarbonate ion can be modified using Henry’s law (Table 2–1) and the 

carbonate equilibria constants in Table 3–4. The equation for the Ca ion can be modified by 

using Henry’s law (Table 2–1) and the solubility products for calcite from Table 3–4. Do the 

calculations agree? Is this sample in equilibrium with atmospheric CO2? 

34. CU(OH)2 (s) is an amphoteric compound and dissolves according to the following reaction: 

     2 s 3Cu OH OH Cu OH
   

For the following calculations assume that the water temperature is 25°C. 

a. Excess copper hydroxide is added to beaker of water; i.e., solid copper hydroxide is present 

in the water. Using a base, the solution pH is adjusted to 10. Calculate the concentration of 
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 3Cu OH


 in the solution at equilibrium. Equilibrium constants for amphoteric 

compounds are found in Table 3–6. 

b. A strong acid is added to the solution until the pH is reduced to 4. At this pH, calculate the 

concentration of  3Cu OH


 in the solution. Will the amount of CU(OH)2 (S) in the beaker 

increase or decrease? Explain. 

35. Calculate the total acidity and total alkalinity of a carbonic acid solution for which CT = 3 × 10
–

3
 mol L

–1
, T =  20°C, and pH = 6.2. If you did problem 27 you have already calculated the 

abundance of the various carbonate species. 

36. Calculate the buffering index for a solution containing 1 × 10
–2

 mol L
–1

 of acetic acid when the 

solution pH = 5 and T =  25°C. 

37. Calculate the buffering index, as a function of pH, for an aqueous solution containing 1 × 10
–

2
 mol L

–1
 of acetic acid at 25°C. This problem is easily done on a spreadsheet. 

38. Calculate the buffering index for a solution containing 1 × 10
–2

 mol L
–1

 of silicic acid at pH = 

7,  T  = 25°C. Assume that only the first two dissociation steps are significant. 

39. Calculate the buffering index, as a function of pH, for an aqueous solution containing 1 × 10
–

2
 mol L

–1
 silicic acid at 25°C. Assume that only the first two dissociation steps are significant. 

This problem is easily done on a spreadsheet. 

40. Calculate the buffering index for the system calcite–carbonic acid at pH = 8.2, total carbonate 

= 1 × 10
–2

 mol L
–1

, and T =  15°C. Select the appropriate equilibrium constants from Table 3–

3 (for water) and Table 3–4 (for the carbonates). 

41. Calculate the buffering index, as a function of pH, for the system calcite–carbonic acid with 

total carbonate = 1 × 10
–2

 mol L
–1

 and T  = 15°C. Select the appropriate equilibrium constants 

from Table 3–3 (for water) and Table 3–4 (for the carbonates). This problem is easily done on 

a spreadsheet. 

42. Calculate the buffering index for the reaction 

KAl3Si3O10(OH)2 muscovite + H
+
 + 1.5H2O → 1.5Al2Si2O5(OH)4kaoIinite + K

+ 
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at pH = 5.7. T =  25°C. 

43. Derive the buffering index equation for the reaction 

Al2Si2O5(OH)4 kaolinite + 6H
+
 → 2A1

3+
 + 2H4SiO4(aq) + H2O 

and at pH = 3.5, calculate the buffering index for the reaction. Use the thermodynamic data 

from Appendix II, source 3. T =  25°C. 

44. Derive the buffering index equation for the reaction 

Mg2SiO4 forsterite + 4H
+
 → 2Mg

2+
 + H4SiO4(aq) 

and at pH = 5.0, calculate the buffering index for the reaction. Use the thermodynamic data 

from Appendix II, source 3. T =  25°C. 

45. Use the model of Lawrence and Scheske (1997) to calculate the acid neutralization potential of 

waste rock from a sulfide ore deposit that has the following mineralogical composition: 

Quartz (SiO2)—26% 

Orthoclase (KAlSi3O8)— 10% 

Albite (NaAlSi3O8)—13% 

Anorthite (CaAl2Si2O8)—11% 

Diopside (CaMgSi2O6)—4% 

Hypersthene (MgSiO3)—26% 

Calcite (CaCO3)—10% 

 


