39.325 — Geology for Engineers
gneous Rocks




Rock — an aggregate of minerals, particles, glass

* Igneous — formed from the cooling and consolidation of magma or lava

» Sedimentary — formed from either chemical precipitation of material or deposition of particles
transported in suspension

» Metamorphic — formed from changing a rock as a result of high temperatures, high pressures, or

both




Classification of Rocks

« Texture: the overall appearance of a rock, resulting from the size, shape,
and arrangement of its mineral grains

» Mineral assemblage: the kinds and relative amounts of minerals present

In the crust On the surface
Sedimentary (B)

rock 5% TABLE 3.2 Minerals Most Commonly Found in the
Three Rock Families

Rock Family Common Minerals
Sedimentary rock

75% e Igneous Feldspar, quartz, olivine, amphibole,
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The Rock Cycle
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Igneous Rocks - Occurrence and Classification




Classification of Igneous Rocks

Rocks are classified on the basis of

e Texture

* Mineralogy

Very fine-grained or glassy rocks are classified on the basis of chemistry
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Extrusive igneous rocks — fine-grained or glassy
o Lava flows

e \/olcanoes

Intrusive igneous rocks — medium to coarse-grained

« Hypabyssal — transitional between fine- and coarse-grained.
Often porphyritic.

 Plutonic — coarse-grained




Shallow intrusive igneous
bodies

Dikes — tabular intrusions that cross-cut
existing layering (discordant)

Sills — tablular intrusions that are parallel
to existing layering (concordant)
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Ring dikes and cone sheets

Laccolith — domes up overlying
strata — concordant intrusion

Dikes are intruded by magma
fracturing and sills involve lifting
of the overlying rock (bouyancy).
These are hypabyssal intrusions
and imply that the crust showed
brittle behavior.




Batholith > 100 km?
Stock < 100 km?

Lopolith Batholiths are everywhere
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ava Flows and Columnar Joints
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Physical Properties and Behavior of

Various Typesof Magmas

Magma type Basaltic Andesitic Dacitic Rhyolitic

Si0, (Wt. %) 50.83 54.20 63.58 73.66
Eruptive T (°C) 1150 1000 900 800

Viscosity (Pa s) 50 1x103 4 x 103 4 x 108

Eruptive
behavior

Fluid ~ Explosive



Magma Viscosity

Table 8.1 Viscosities of magmas and common substances.

Material Viscosity (Pa-s)  Weight % Si0,  Temp. (°C)

Water 1.002 x 10~ - 20
ASE 30 motor oil 2107 20
Kimberlite 107" =1

Komatiite 107" - 10

Ketchup ~5x% 10

Basalt 10 —10°

Peanut butter ~2.5 % 10°

Crisco shortening 2x10°

Andesite ~3.5 x 10°

Silly Putty ~10*

Tonalite 6% H,O ~10*

Rhyolite ~10°

Granite 6% H,O ~10°

Rhyolite ~108

Average mantle 10 = _

Note: Magma viscosities from Dingwell (1995) and references therein. Granite and
Tonalite viscosities from Petford (2003). Mantle viscosity is from King (1995).




Types of volcanic eruptions

Hawaiian — fluid basaltic lava is thrown into the air in jets
from a vent or line of vents (a fissure) at the summit or on the
flank of a volcano.

Strombolian — distinct bursts of fluid lava (usually basalt or
basaltic andesite) from the mouth of a magma-filled summit
conduit.

Vulcanian - short, violent, relatively small explosion of
viscous magma (usually andesite, dacite, or rhyolite).

Pelean - explosive outbursts that generate pyroclastic flows,
dense mixtures of hot volcanic fragments and gas.

Plinian - caused by the fragmentation of gassy magma, and are
usually associated with very viscous magmas (dacite and
rhyolite).

Volcanic Explosivity Index

Ejecta

VEI
volume

Classification Description Plume

0 <10,000 m* |Hawaiian effusive <100 m

Tephra — volcanic ash (<
2mm)

100~

3
> 10,000 m 1000 m

Hawaiian/Strombolian | gentle

:1:'000'000 Strombolian/Vulcanian

10,000,
:13 0.000.0001 . canian/Peiéan

explosive 1-5 km

Lapilli — 2 to 64 mm

severe 3-15 km

Bombs - >64 mm. Bombs
form a cow pancake on
landing

10-25
km

20-35
km

>0.1km* Peléan/Plinian cataclysmic
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Occurrences in last

EXaiyics 10,000 years*

Kilauea, Piton de la

; man
Fournaise y

Stromboli, Nyiragongo
(2002)

Galeras (1993), Mount
Sinabung (2010)

Nevado del Ruiz (1985),
Soufriére Hills (1995)
Mount Pelée (1902),
Eyjafjallajokull (2010)
Mount Vesuvius (79 CE),
Mount St. Helens (1980)

many

3477

868

421

166

Krakatoa (1883), Mount

51
Pinatubo (1991)

Thera (Minoan Eruption),
Tambora (1815)

Yellowstone (640,000 BP),
Toba (74,000 BP)

5 (+2 suspected)




Shield Volcanoes
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Jokulhlaup - glacial outburst flood. Generally,
large and abrupt release of water from a
subglacial or proglacial lake/reservoir.




Composite Volcano (Strato-volcano)

Stratovolcano (Composite Volcano) Erupting

_.____,_..--tharn and Ash
Flowing Lava.,
Alternating Layers of Lava
and Pyroclastic Material.

Vent

—Magma Chambear




Types of Volcanic Hazards

Types of Volcanic Hazards

e Lava flows: e.g. Hawaii, 1998

o (Gas: e.g. Lake Nyos (Cameroon),
1984 (1700 people killed)

 Ashfall: e.g. Mt. Pinatubo, 1991

»  Pyroclastic flows: e.g. Mt. Pelee,
1902 (28,000 killed)

o Lahars (mudflows): e.g. Nevado
del Ruiz, 1985 (23,000 killed)

e Tsunami: e.g. Krakatoa, 1883
(36,417 killed)

ZUSGS

science for a changing world

Geologic Hazards at Volcanoes
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Ash Loading on Roofs

Loading of Volcanic Ash on Roofs
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Pyroclastics and Landslides
Mt. St. Helens (May 18, 1980)
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Mt. St. Helens Eruption
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elens - the aftermath

Flattened trees
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. Helens - today

Mt. St. Helens today Regrowth



Growth of lava dome in the Mt.
St. Helens crater.
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Lahars
Nevado del Ruiz (November 13, 1985)
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An explosive eruption from Ruiz's summit
crater at 9:08 PM generated an eruption
column and sent a series of pyroclastic
flows and surges across the volcano's broad
ice-covered summit. In this view, the dark
pyroclastic-flow  deposits are partly
covered with fresh snow.

Hot rock fragments of the pyroclastic
flows and surges quickly eroded and
mixed with Ruiz's snow and ice,
melting about ten percent of the
volcano's ice cover. Flowing mixtures
of water, ice, pumice and other rock
debris poured from the summit and
sides of the wvolcano into rivers
draining the volcano.

rom November 1985
f Nevado del Ruiz




Lahars merge at the base of the voleano.
Headwaters of the Guali river.

Lahars grow in size
Guali river valley




Rio Lagunillas, former location of
Armero. Bottom, remains of
Armero. 75% of the population of
28,700 perished when lahars buried
the town. There were multiple pulses
with flow depths of 2 to 5 m.
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Paleo-lahars surround Mt.
Rainier. Recent developments
are built on these lahars.
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Lahars can originate from Mt. Rainier
without volcanic activity. Hydrothermal
alteration of volcanic rocks by acid gases
oxidizes the ferromagnesian silicates and
converts the feldspars to clay minerals. The
resulting weak altered layers can fail under
gravitational loading. Downslope movement
of material with entrainment and melting of
glacial ice and snow leads to the formation
of a volcanic mudflow (lahar).




GGas release

ake Nyos, A‘UQUSt 21 19898 j
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Lake Nyos pyroclastic dam, valley and

town of Nyos.




Orange color of Lake iImmediately after the gas release. The color is due to the
oxidation of iron and the formatio ferric hydroxides

Dead cows in Nyos village. Over
1700 people perished as a result of
the CO, release.



Disaster due to build-up of CO, in deep waters. Overturn
leads to catastrophic release of CO.,.
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Conception by Raphagl Paris (Géolab UMR 6042 CNRS, France)
Project directed by Juan Carlos Carracedo (EVC-IPNA CSIC, Tenerife)

Volcanic hazard map of Tenerife
(Canary Islands)
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Legend of the volcanic hazards map.

1. Northwest rift-zone: the most active part of the island since 20.000 year
least 5 eruptions during the last 2.000 years. Strombolian eruptions prodt
basaltic cones, and lavaflows. Scoria falls and forest fires. Gas emisions ¢
eventually contaminate water galleries. Last eruption: Chinyero (1909).

2. Flanks of the northwest rift-zone: area invaded by the lavaflows coming fror
rift-zone and often reaching the coast. Destruction associated to lavaflows
forest fires. Minor ash falls, depending on the wind direction. Phreatic explo:
and lava bench collapses when the flows reach the sea.

3. Peripheral domes of the Teide volcano: phenolitic domes and domes-cou
Long-lasting eruptions, associated with pumice falls and eventually r
pyroclastic flows due to dome collapse. Earthquakes mag. < 5.0. Last ery
Roques Blancos (1790 BP).

4. North flanks of the Teide volcano: thick phonalitic lavaflows coming from d
(zone 3) and always reaching the north coast of the island. Destruction assoc
to huge but slow lavaflows, forest fires and minor pumice flows. At le:
eruptions during the last 6.000 years.

5. Teide stratovolcano: thick phonelitic lavaflows. Only one eruption during the
30.000 years (obsidianic phonolite, 1240 BP). Very low probability for expl
eruptions (last phreatomagmatic activity > 17.500 years).

6. East part of the Las Cafadas caldera: Montafia Blanca and Montafia Rz
phonolite domes and lavaflows. Same hazards as zones 3 and 4, but less 2
during the last 6.000 years. Last eruption: explosive eruption of Montana Bl
(dense pumice falls, 2020 BP).

7. West part of the Las Cafiadas caldera: basanitic to phonolitic lavaflows co
from the Teide and Pico Viejo volcanoes. No volcanic activity during the
15.000 years, except the historic eruption of 1798 (Narices del Teide). Areas c
northwest rift-zone not covered by lava since 15.000 years are also includ
zone 7.

8. Northeast rift-zone: strombolian eruptions producing basaltic cones
lavaflows. Same hazards as zone 1. No volcanic activity during the last 3(
years, except the small-volume historic eruptions of 1704-1705 (Fasnia,
Fuentes and Arafo).

9. La Orotava and Guimar valleys, Fasnia: basaltic lavaflows coming fron
northeast rift-zone. Last eruptions: 11.000 BP in La Orotava, 1704-1705 in F:
and 1705 in Guimar.

10. Distal parts and less active rift-zones, without recent volcanic activity (> 3(
years)

11. Teno and Anaga shield volcanoes (6-4 Ma) and south flanks of the
Cafiadas volcano (no volcanic activity since 170.000 years).




Monitering and Predicting

Volcanic Eruptions
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Ground defo

Rising magma intrudes volcano and
changes its shape

Distance across
summit j

Tilt increases

+ = earthquakes

Installing tiltmeter




Seismicity

Rising magma exerts
pressure on the
surrounding rock which
leads to fracturing and
small earthquakes

Installing seismometer Seismograph, Mt. Pinatubo




Gas monitoring

Monitor emission of carbon dioxide and sulfur dioxide. The emission rate
may increase immediately before a volcanic eruption and sulfur dioxide
may become a more important component of the gas stream.




Vesuvius St. Helens Rainier
3.3 cu km © 0.25 cu km 0.30 cu km

79 AD (VEI 57) 1880 (VEI 4) 250 BC (VEI 4)

Response
e Evacuation procedures

 Design structures to resist volcanic
hazards (ash fall)

 Diversionary structures (for lahars)

e Land use restrictions

s—éa




Monitoring and alert system (Lake Nyos)
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Plate Tectonics and Igneous Rock Associations

Tholeiitic basalt series

Tholeiitic
picrite-basalt

Olivine
tholeiite

Calcalkaline series
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Quartz tholeiite

High-alumina
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Alkali
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ALKALINE ROCKS
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Icelandite
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Hawaiite
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Nephelinic, leucitic
and analcitic rocks
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Melilite
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Potassic series |
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Leucite

trachybasalt

Divergent plate
boundaries
and
hot spots
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Slow moving divergent boundaries, rift valleys




The mid-ocean ridge system. The Earth’s great basalt generator.

Midocean ridge cooled and

- _ hydrothermaly altered by circulating
Siliceous sediment ocean water
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Oceanic Islands and Hot Spots

e Volcanoes are progressively older <Jommmm
N'bhou Kam'i O'shu Maloka'i Maui Harwal'y
5649M 3.4 Ma) (18 M) (1.3My) 10.7-0 M) Mouna Los
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The Hawallan Hotspot”
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Oceanic islands are mostly composed of
tholeiitic basalt with a late stage alkaline
sequence (alkali olivine basalt).

MORB and oceanic island tholeiites consist
of olivine + two pryoxenes (Ca-rich and Ca-

poor).

Alkali olivine basalt has one pryoxene (a Ca-
rich pyroxene)
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Flood basalts are associated with large plumes. The major basalt type is a quartz tholeiite
difference between MORB and oceanic island tholeiites versus flood basalt tholeiites.
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Alkaline Igneous Rocks Associated with Continental Rift Valleys

m Fault liries AFRICAN ARABIAN

Tectonic plate PLATE B PLATE

boundary

EAS-TERN

l/)f Ak, E|l:|l i —_—

I'l'."'luLLE"I"
T 2rya

2l Doimya Lengai
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il Tndian Kilimanjaro is a snow-covered mountain 19,710
Ocean feet high, and is said to be the highest mountain in
Africa. Its western summit is called the Masai
"Ngaje Ngai," the House of God. Close to the
western summit there is the dried and frozen
carcass of a leopard. No one has explained what
the leopard was seeking at that altitude.
(Hemmingway, The Snows of Kilimanjaro)
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Bunyaraguru
Olivine-bearing
tephras & rare
lavas. Leucite +
augite
(ugandite),
augite + kalsilite
(mafurite) and
melilite + leucite
(katungite)

Bufumbira
Basanite,
leucitite, leucite-
phonolite, latite
& trachyte

\ Fort Portal
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Extrusive
carbonatites

Katwe-Kikorongo
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cpx-rich tephras
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flows




Field party

Lunch time



Tu es In the Fort Portal field
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Tuff cone and
crater lake
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Katwe-Kikorongo

Guide =Joseph Machati, Chief Ranger, Queen
lizabeth National Park
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The Subduction Zone Factory

Regularly spaced composite volcanoes

along volcanic arc ~ Back arc basin

Alkaline series or MORB if
new ocean floor is formed

Turbidite sediment
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Formation of Igneous Rocks




h’s heat production

Heat production

\ curve {all sources)
\ curve (all sources)
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A 2- to 4-fold decrease from the Archean to now




Andesitic composite volcano

Basaltic shield volcano '

Laccolith

> T
Magma forms various _ [~ Granite ™

intrusive bodies - U batholith /,"
. - Large bodies of
b 4 granitic magma

cool very slowly

Crystals may segregate
in basaltic magma
during slow coolingin —— *

large magma chambers
9 9 Magma chamber

Partial melting of

t duce
Magma buoyantly __-_,__.—-——""—P crust produces

ranitic magma
ascends 9 9

Partial melting take
place in mantle
to produce
andesitic magma

Ly .
Partial melting takes - - ! 4 4 — Water is released
place in mantle i Tt Py Tt aes from subducting
to produce : i 1€ S oceanic plate
basaltic magma = - v /
" - . A o,
A
Divergent Convergent
plate boundary plate boundary

New ocean floor
Rift valley

Failed arm Terrestrial sediment
Riftbasin

Marine sediment
Deep ocean sediment

Molten rock, magma

Metamorphism

Upwelling mantle plume
with some partial melt

Divergent oceanic plates Divergent continental plates Convergent oceanic and continental plates Mantle plume and triple junction




Why do rocks melt?
* Increasing temperature
» Decreasing pressure

« Adding water

Types of Mantle rocks

©
Q.
O
v
e
>
Vi
v
v
S
Q.

» Plagioclase lherzolite

» Spinel Iherzolite

e G@Garnet lherzolite

Temperature (°C)

Lherzolite — olivine > orthopyroxene > Ca-pyroxene > aluminous phase




Exsolution of magmatic gases and
explosive volcanism

Disruption
of magma

Nucleation
of bubbles



Magma erupting on surface normally cools too
rapidly to have a chance to undergo differentiation

I Convection

Assimilation  w|THIN MAGMA CHAMBERS ~ Magma mixing T
S Convection |

¢ ¢ 2 ¢ ¢ e ¢ e . Dense minerals may settle to bottom
C | h ; Convection . :
rystal mush compaction _ to form cumulates with residual

expels residual liquid upward ~ « liquid remaining on top

~ - - = . - -,
LRl T B PO R AP P Y | s T

Crystals may separate from
liquid during flow.
Flowage differentiation.

Separation of crystals from liquid
changes magma composition
leading to magmatic differentiation

Granitic magma

may rise as large
diapiric domes to
form batholiths

As magma rises it loses heat
and begins to crystallize.
Magma is.a mixture of
liquid and-crystals

Heat released from crystallizing
basaltic magma may melt crustal
rocks to form granitic magma

Magma rises to a level
of neutral buoyancy

Crust o | Magma may intrude along base of crust

Mantle Basaltic magma

buoyantly rises
from mantle
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