89.325 Geology for Engineers

Minerals

How do we define a mineral?

- Naturally occurring
- Inorganic
- Characteristic Internal Structure
- Chemical composition that is fixed or varies within certain limits

The two characteristics that most useful in the study of minerals are

- Crystal structure - the way the atoms of the elements are packed together
- Composition - the major chemical elements that are present and their proportions

Types of Chemical Bonds

Oxygen (O2) Molecule
Ionic
Covalent

Hydrogen bonding

Bragg's law: $\lambda=2 \mathrm{~d} \sin \theta$ and $\mathrm{d}=\lambda(2 \mathrm{~d} \sin \theta) . \theta=$ angle of incidence and diffraction when Bragg's law conditions are met. $\mathrm{d}=$ interplanar spacing.

Table 4.3 Atomic radii in Ångstroms for 12 -fold coordination.

Atom	Radius	Atom	Radius
Li	1.57	Cr	1.29
Be	1.12	Mn	1.37
Na	1.91	Fe	1.26
Mg	1.60	Cu	1.28
Al	1.43	Ag	1.44
K	2.35	Sn	1.58
Ca	1.97	Pt	1.39
Ti	1.47	Au	1.44
S			

Source: Wells (1991)

Coordination Principle

Radius Ratio = Radius
cation/Radius Anion

This ratio determines how many anions can be packed around a cation.

Packing of anions around a cation for a coordination number of 4. The minimum radius ratio can be calculated from the geometry of the packing. R_{a} and R_{c} are the radii of the anion and cation, respectively. In this case, $\theta=45^{\circ}$.

Table 4.4 Radii of common ions (in Ångstroms) as a function of coordination number.

Atomic number	Element	Ion	Radius as a function of coordination number				
			III	IV	VI	VIII	XII
3	Lithium	Li^{+}		0.73	0.90	1.06	
4	Beryllium	Be^{2+}	0.30	0.41	0.59		
5	Boron	B^{3+}	0.15	0.25	0.41		
6	Carbon	C^{4+}	0.06	0.29	0.30		
8	Oxygen	O^{2-}	1.22	1.24	1.26	1.28	
9	Fluorine	F-	1.16	1.17	1.19		
11	Sodium	Na^{+}		1.13	1.16	1.32	1.53
12	Magnesium	Mg^{2+}		0.71	0.86	1.03	
13	Aluminum	Al^{3+}		0.53	0.68		
14	Silicon	Si^{4+}		0.40	0.54		
15	Phosphorus	P^{3+}			0.58		
		$\mathrm{P}^{\text {st }}$		0.31	0.52		
16	Sulfur	S^{2-}			1.70		
		S^{4+}			0.51		
		S^{6+}		0.26	0.43		
17	Chlorine	Cl^{-}			1.67		
19	Potassium	K^{+}		1.51	1.52	1.65	1.78
20	Calcium	Ca^{2+}			1.14	1.26	1.48
22	Titanium	$\mathrm{Ti}^{\text {+ }}$		0.56	0.65	0.88	
24	Chromium	Cr^{3+}			0.76		
25	Manganese	Mn^{2+}		0.80	0.97	1.10	
		Mn^{++}		0.53	0.67		
26	Iron	Fe^{2+}		0.77	0.92	1.06	
		Fe^{3+}		0.63	0.78	0.92	
27	Cobalt	Co^{2+}		0.72	0.88	1.04	
28	Nickel	Ni^{2+}		0.69	0.83		
29	Copper	Cu^{+}		0.74	0.91		
		Cu^{2+}		0.71	0.87		
30	Zinc	Zn^{2+}		0.74	0.88	1.04	
38	Strontium	Sr^{2+}			1.32	1.40	1.58
40	Zirconium	Zr^{4+}		0.73	0.86	0.98	
47	Silver	Ag^{+}		1.14	1.29	1.42	
56	Barium	Ba^{2+}			1.49	1.56	1.75
82	Lead	Pb^{2+}			1.33	1.43	1.63
92	Uranium	U^{3+}			1.17		
		U^{4+}			1.03	1.14	1.31
		U^{6+}		0.66	0.87	1.00	

Note: These data represent the crystal radii reported by Shannon (1976). In textbooks such as Klein and Dutrow (2008) and Dyar et al. (2008), the traditional radii (based on the
radius of oxygen $=1.40 \AA$) are reported. The difference between crystal radii and traditional radii is a constant factor of $0.14 \AA$.

Mineral Identification

Physical Properties:

- Habit
- State of aggregation
- Color
- Luster
- Cleavage
- Hardness
- Specific gravity (density)
- Fluorescence
- Magnetism

Habit - visible external shape of a mineral

A. Prismatic - elongate with the bounding faces forming a prism-like shape
B. Columnar - rounded columns
C. Acicular - "needle-like"
D. Tabular - flat like a board

E. Bladed - elongate and flat
F. Fibrous - threadlike masses
G. Dendritic - leaflike branching
H. Foliated - stack of thin leaves or plates
I. Capillary - hairlike or threadlike thin crystals
J. Massive - specimen totally devoid of crystal faces

Color and Luster

Luster - interaction of white light with the surface of a mineral

- Metallic - most of the light is reflected or scattered from the surface of the mineral. The mineral is opaque.

- Nonmetallic - most of the light passes through the mineral. The mineral is translucent.
- Vitreous - luster of glass
- Resinous - luster of resin

Vitreous

Resinous

Play of color - example Opal $\left(\mathrm{SiO}_{2} \cdot \mathrm{nH}_{2} \mathrm{O}\right)$ - stacked $3000 \AA$ amorphous silica spheres causes diffraction. This leads to the display of colors.

Chatoyancy - as the mineral is tilted light moves from side to side. This is due to the presence of closely spaced fibers, inclusions or cavities.

Labradorescence - presence of closely spaced, parallel planar lamellae (exsolution lamellae). Scattered light diffracts from the microstructures producing colors.

Spectrolite

Asterism - six-rayed optical phenomenon due to the alignment of inclusions along crystallographic directions. Seen in star rubies and star sapphires when cut perpendicular to c. The inclusions are fine needles of rutile $\left(\mathrm{TiO}_{2}\right)$.

Fluorescence - occurs when UV light promotes electrons to higher energy levels. When the electrons return to an intermediate energy level the emitted photon is in the visible region of the spectrum.

Streak - color of powdered mineral. The color is usually more consistent. Most useful for metallic minerals.

Cleavage - breaking of minerals long planes of weakness. These planes are crystallographic planes. The cleavage planes are controlled by weak bonds or large interplanar spacings across atomic planes in a crystal structure.

Types of cleavage:

- Planar - cleavage along a single planar direction
- Prismatic - two different cleavage directions whose lines of intersection are commonly parallel to a specific crystallographic direction. In hand specimen, the distinction between an amphibole and a pyroxene is largely based on the intersection of the cleavage planes ($\sim 90^{\circ}$ for pyroxene, 56° and 124° for amphibole). Feldspars also show approximately right-angle cleavage intersections.

- Cubic - three cleavages at right angles. Isometric minerals such as halite and galena.
- Rhombohedral - three cleavage directions not at right angles. Example calcite
- Octahedral - breaking along four different directions. Example fluorite
- Conchoidal fracture - no specific directions. Irregular fracture pattern. Quartz and glasses show this type of fracture.

Conchoidal

Rhombohedral

Octahedral

Hardness - resistance to abrasion or indentation.

Absolute hardness - weight in grams required to produce a standard scratch. This is done using an instrument known as a sclerometer. Note that grams are a unit of mass, not force. The correct measurement would be in dynes cm^{-2}. On the scale to the right the values should be multiplied by 980 to get the force in dynes cm^{-2}.

The Turner-sclerometer test consists of microscopically measuring the width of a scratch made by a diamond under a fixed load, and drawn across the face of the specimen under fixed conditions.

Table 3.1 Mohs hardness scale minerals.
Mohs scale (relative hardness)

Hardness number (H)	Mineral name	Chemical formula	Remarks
1	Talc	$\mathrm{Mg}_{3} \mathrm{Si}_{4} \mathrm{O}_{10}(\mathrm{OH})_{2}$	Soft, greasy feel; flakes are left on the fingers
2	Gypsum	$\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	Can be easily scratched by the fingernail fingernail hardness ~ 2.2
3	Calcite	CaCO_{3}	Can be easily scratched with a knife and just scratched by a copper penny copper penny hardness ~ 3.2
4	Fluorite	CaF_{2}	Less easily scratched by a knife than calcite
5	Apatite	$\mathrm{Ca}_{5}\left(\mathrm{PO}_{4}\right)_{3}(\mathrm{~F}, \mathrm{Cl}, \mathrm{OH})$	Is scratched by a knife with difficulty pocket knife hardness -5.1 glass plate hardness -5.5
6	Orthoclase	$\mathrm{KAlSi}_{3} \mathrm{O}_{8}$	Not scratched by a knife and will scratch ordinary glass
7	Quartz	SiO_{2}	Scratches glass easily porcelain streak plate hardness ~7
8	Topaz	$\mathrm{Al}_{2} \mathrm{SiO}_{4}(\mathrm{~F}, \mathrm{OH})_{2}$	Scratches glass very easily ${ }^{\text {a }}$
9	Corundum	$\mathrm{Al}_{2} \mathrm{O}_{3}$	Cuts glass ${ }^{\text {a }}$
10	Diamond	C	Used as a glass cutter ${ }^{2}$

[^0]Specific Gravity - the density of a mineral compared to the density of water. Specific gravity is non-dimensional.

Specific gravity for minerals is determined by

- The atomic weight of the elements that comprise the mineral
- Atomic packing - the way in which the atoms are packed in the crystal structure

Other Physical Properties:

- Magnetism - magnetite $\left(\mathrm{Fe}_{3} \mathrm{O}_{4}\right)$ and pyrrhotite $\left(\mathrm{Fe}_{1-\mathrm{x}} \mathrm{S}\right)$
- Solubility in acid - carbonates - aragonite and calcite $\left(\mathrm{CaCO}_{3}\right)$ versus dolomite $\left[\mathrm{CaMg}\left(\mathrm{CO}_{3}\right)_{2}\right]$, magnesite $\left(\mathrm{MgCO}_{3}\right)$, siderite $\left(\mathrm{FeCO}_{3}\right)$, and rhodochrosite $\left(\mathrm{MnCO}_{3}\right)$.
- Radioactivity - Uraninite $\left(\mathrm{UO}_{2}\right)$, Carnotite $\left[\mathrm{K}_{2}\left(\mathrm{UO}_{2}\right)_{2}\left(\mathrm{VO}_{4}\right)_{2}-1-3 \mathrm{H}_{2} \mathrm{O}\right]$, Thorite [(Th, U)SiO ${ }_{4}$]

X-rays generated by an X-ray tube. Common tubes are Cu, Fe, and Mo .

X-ray diffraction patterns for the silica polymorphs - quartz and cristobalite

Scanning Electron Microscope (SEM)

Electron Microprobe Analyzer (EMPA)

No.	SiO2	TiO2		A12O3	Feo	Mno	CaO	P205	V203		La203	Ce203	Pr203	Nd203	Sm203	Eu203	Gd203	Tb203	D2203	Но203	Er203	Tm203	Yb2O3	Lu203	Y203	Nb205	Pbo	zroz	Th02	vo2
116	1.9		0	0.004	0	0	0.195	27.559		0	14.72	31.043	3.12	10.051	0.974	0.088	1.183	0.073	0.344	0	0.031	0.046	0	0.06	1.191	0	0.126	0.043	7.589	0.296
117	2.078		0	0	0	0	0.174	27.147		0	13.95	30.607	3.09	10.537	1.116	0.086	1.274	0.125	0.271	0.032	${ }^{0.123}$	0.141	0.066	0.065	1.418	0.057	0.112	0.017	8.45	0.33
118	1.065		0	0.019	0.015	0	0.178	28.744		0	14.704	33.228	3.372	10.905	0.998	0.089	1.177	0.105	0.434	0	0.097	0.129	0.141	0.169	1.746	0.007	0.096	0.064	3.936	0.325
119	${ }^{4.321}$		0	0.015	0.004	0	${ }^{0.238}$	23.928		0	11.036	${ }^{26.526}$	2.775	10.056	1.319	0.195	1.062	0.089	0.329	0.107	0.091	0.007	0.009	0.056	1.573	0.007	0.293	0.039	17.49	0.588
120	4.9		0	0	${ }^{0.058}$	0	0.221	22.894		0	11.211	25.178	2.742	9.962	0.996	0.075	1.042	0.04	0.405	0.017	0.198	0.042	0.078	0.018	1.373	0.042	0.318	0.088	19.277	0.679
121	1.499		0	0.004	0.027	0	${ }^{0.325}$	28.174		0	13.629	31.073	3.103	10.644	1.225	0.087	1.348	0.176	0.429	0	0.16	0.079	0.204	0.133	1.749	0	0.113	0.047	6.842	. 232
122	3.627		0	0.011	0.044	0	0.265	24.925		0	11.756	27.256	2.932	10.618	1.231	0.048	1.303	${ }^{0.056}$	0.47	0.246	0.142	0.134	0	0	1.572	0.003	0.253	0.003	14.541	0.514
123	1.451		0	0	0	0.014	0.176	28.232		0	15.186	32.484	3.095	10.142	1.006	0.068	1.098	0.076	0.354	0.1	0.014	0.048	0.02	0.109	1.078	0.057	0.085	0.007	5.817	0.2
124	1.661		0	0	0.008	0	0.129	27.924		0	15.045	32.451	3.197	10.447	0.861	0.072	1.019	0.153	0.255	0.135	0.122	0.168	0.09	0	1.235	0.01	0.106	0.04	6.629	0.247
125	${ }^{1.433}$		0	0.004	0.011	0.025	${ }^{0.153}$	28.19		0	14.987	32.457	3.289	10.557	0.806	0	1.181	${ }^{0.121}$	0.259	0.063	0.197	0.118	0	0	1.102	0	0.088	0.027	5.704	0.197
126	1.907		0	0.001	0.04	0.004	0.147	27.454		0	14.344	31.682	${ }^{3.187}$	10.534	1.102	0.162	1.082	0.105	0.304	0	0.039	0.006	0.03	0.094	1.269	0.02	0.117	0	7.444	0.278
127	${ }^{0.857}$		0	0.006	0	0.01	0.182	29.241		0	15.73	33.814	3.268	10.563	1.144	0.094	1.134	0.145	0.379	0.195	0.073	0	0.035	0.065	1.464	0	0.052	0.104	3.06	0.299
128	2.343		0	0	0	0	0.158	26.773		0	14.964	30.944	2.904	9.904	0.87	0.051	1.03	0.081	0.304	0.106	0	0.115	0	0	1.162	0	0.13	0.03	9.334	0.304
129	1.54		0	0	0	0	0.186	27.958		0	15.017	32.512	3.169	10.347	${ }^{0.826}$	0.13	1.015	0.154	0.378	0.144	0.146	0.029	0.009	0	1.337	0	0.096	0.09	6.07	0.313
130	2.06		0	0	0.061	0	0.332	27.154		0	14.523	31.369	3.085	10.002	0.861	0	1.111	0	${ }^{0.334}$	0	0.126	0.073	0.14	0.059	1.098	0.05	0.129	0	8.094	0.23
131	1.818		0	0.007	0.039	0	0.349	27.781		0	14.702	${ }^{31.238}$	3.299	10.411	1.119	0.015	1.317	0.153	0.514	0.139	${ }^{0.142}$	0.089	0.08	0.002	1.255	0	0.111	0.11	7.014	0.264
132	1.839		0	0	0.019	0	${ }^{0.327}$	27.376		0	14.735	31.676	3.28	10.54	1.125	0.096	1.237	0.154	0.395	0.037	0.096	0.03	0	0.082	1.304	0	0.11	${ }^{0.053}$	7.174	0.27
133	1.349		0	0.001	0.007	0	0.121	28.336		0	14.824	33.301	3.138	10.859	1.108	0.135	1.079	0.093	0.306	0.004	0.043	0	0.039	0.167	1.175	0.084	0.082	0.06	5.364	0.19

The analyzed mineral is monazite monazite-Ce (Ce, La, Pr, Nd, Th, Y)PO ${ }_{4}$

Class	Chemical characteristics	Examples
Borates	Various elements in combination with boron	Borax $\left[\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} 10 \mathrm{H}_{2} \mathrm{O}\right]$
Carbonates	Metals in combination with carbonate ($\mathrm{CO}_{3}{ }^{2-}$)	Calcite $\left[\mathrm{CaCO}_{3}\right]$ Cerrusite $\left[\mathrm{PbCO}_{3}\right]$
Halides	Alkali metals or alkaline earths in combination with halogens ($\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$)	Halite $[\mathrm{NaCl}]$ Fluorite $\left[\mathrm{CaF}_{2}\right]$
Hydroxides	Metals in combination with hydroxyls (OH-)	Brucite $\left[\mathrm{Mg}(\mathrm{OH})_{2}\right]$
Native elements	Pure compound of a metallic or nonmetallic element	Gold [Au] Graphite [C]
Oxides	Metals in combination with oxygen	Hematite $\left[\mathrm{Fe}_{3} \mathrm{O}_{4}\right]$
Phosphates, arsenates, vanadates, chromates, tungstates \& molybdates	Various elements in combination with the ZO_{4} radical where $\mathrm{Z}=\mathrm{P}, \mathrm{As}, \mathrm{V}, \mathrm{Cr}, \mathrm{W}$, Mo	Apatite $\left[\mathrm{Ca}_{5}\left(\mathrm{PO}_{4}\right)_{3}(\mathrm{~F}, \mathrm{Cl}, \mathrm{OH})\right]$ Carnotite $\left[\mathrm{K}_{2}\left(\mathrm{UO}_{2}\left(\mathrm{VO}_{4}\right)_{2} 3 \mathrm{H}_{2} \mathrm{O}\right]\right.$ Scheelite $\left[\mathrm{CaWO}_{4}\right]$
Silicates	Metals in combination with silica tetrahedra ($\mathrm{SiO}_{4}{ }^{4}$) forming three dimensional networks, sheets, chains and isolated tetrahedra	Quartz [SiO_{2}] Forsterite $\left[\mathrm{MgSiO}_{4}\right]$ Orthoclase $\left[\mathrm{KAlSi}_{3} \mathrm{O}_{8}\right]$
Sulfates	Alkaline earths or metals in combination with sulfate ($\mathrm{SO}_{4}{ }^{2-}$)	Barite $\left[\mathrm{BaSO}_{4}\right]$ Epsomite $\left[\mathrm{MgSO}_{4} 7 \mathrm{H}_{2} \mathrm{O}\right.$]
Sulfides	One or more metals in combination with reduced sulfur or chemically similar elements (As, Se, Te)	Pyrite $\left[\mathrm{FeS}_{2}\right]$ Galena [PbS] Skutterudite $\left[\mathrm{CoAs}_{3}\right]$

Silica and oxygen are the two most abundant elements in the Earth's crust (and mantle). They combine to form the silica tetrahedron which is the basic building block of the silicate minerals. The silicate minerals comprise 92\% of the Earth's crust.

Table 7.1 The eight most common elements in the Earth's crust.
\(\left.$$
\begin{array}{lcccl} & \begin{array}{c}\text { Weight }^{a} \\
\text { percentage }\end{array} & \begin{array}{c}\text { Atom }^{b} \\
\text { percentage }\end{array} & \begin{array}{c}\text { lonic radius } \\
\\
(\AA)\end{array} & \begin{array}{c}\text { Volume }^{d} \\
\text { percentage }\end{array}
$$

\hline \mathrm{O} \& 46.60 \& 62.55 \& 1.26 \& \sim 86

\mathrm{Si} \& 27.72 \& 21.22 \& 0.40^{[\mathrm{IV]}}

\mathrm{Al} \& 8.13 \& 6.47 \& 0.53^{[\mathrm{IV]}} \&

\mathrm{Fe} \& 5.00 \& 1.92 \& 0.92^{[\mathrm{VV]}} \& \sim 14

\mathrm{Ca} \& 3.63 \& 1.94 \& 1.14^{[\mathrm{VV]}}

\mathrm{Na} \& 2.83 \& 2.64 \& 1.32^{[\mathrm{VIII}]}

\mathrm{K} \& 2.59 \& 1.42 \& 1.65^{[\mathrm{VIII}]}

\mathrm{Mg} \& 2.09 \& 1.84 \& 0.86^{[\mathrm{VV]}}\end{array}\right\}\)| in total |
| :--- |
| |

${ }^{a}$ Data from Mason and Moore, 1982.
${ }^{b}$ Values obtained by dividing the numbers in the first column by the appropriate
atomic weights, then normalized to 100 .
${ }^{c}$ Radii taken from Table 4.4.
${ }^{d}$ These values fluctuate somewhat depending on the radii used in the calculation of the
ionic volume $\left(\mathrm{V}=4 / 3 \pi r^{3}\right)$.

Table 7-4. Properties of the silicate crystal classes

Class	Tetrahedral arrangement	\# shared corners	Che mical unit	Si:O	Example
Nesosilicate	Independent tetrahedra	0	$\mathrm{SiO}_{4}^{4 \&}$	$1: 4$	Olivine
Sorosilicate	Two tetrahedra sharing a corner	1	$\mathrm{Si}_{2} \mathrm{O}_{7}^{6 \&}$	$1: 3.5$	Melilite
Cyclosilicate	Three or more tetrahedra sharing two comers, forming a ring	2	$\mathrm{SiO}_{3}^{3 \alpha}$	$1: 3$	Beryl
Inosilicate	Single chain of tetrahedra sharing two corners	2	$\mathrm{SiO}_{3}^{3 \alpha}$	$1: 3$	Augite
	Double chain of tetrahedra alternately sharing two or three corners	2.5	$\mathrm{Si}_{4} \mathrm{O}_{11}^{6 \&}$	$1: 2.75$	Hornblende
Phyllosilicate	Sheet of tetrahedra sharing three corners	3	$\mathrm{Si}_{2} \mathrm{O}_{5}^{2 \&}$	$1: 2.5$	Kaolinite
Tektosilicate	Framework of tetrahedra sharing all four comers	4	SiO_{2}	$1: 2$	K-feldspar

(E) Olivine, garnet and $\mathrm{Al}_{2} \mathrm{SiO}_{5}$

$\left(\mathrm{SiO}_{4}\right)^{4-}$
independent tetrahedron

(F) Epidote

Quartz - SiO_{2}

P-T conditions and polymorphs

Metamorphic Rock-Forming Minerals

Serpentine minerals - antigorite, chrysotile, and lizardite All are polymorphs of $\mathrm{Mg}_{3} \mathrm{Si}_{2} \mathrm{O}_{5}(\mathrm{OH})_{2}$

Chrysotile

Corundum

Extremely high-grade contact metamorphism of aluminous (pelitic) rocks.

Sedimentary Rock-Forming Minerals and Materials

Minerals of Sedimentary Rocks

- Formed by chemical weathering of minerals that are unstable under surface conditions - clay minerals, oxides (hematite, magnetite), hydroxides (goethite, brucite, gibbsite)
- Minerals that precipitate from solution - carbonates, evaporites (halite, sylvite, gypsum), Precambrian iron formation (BIF)
- Detrital minerals - survive physical and chemical weathering processes - e.g. quartz, garnet, rutile, ilmenite, magnetite

Clay Minerals

The basic building blocks of the clay minerals are tetrahedral layers and octahedral layers \{Brucite $\left[\mathrm{Mg}(\mathrm{OH})_{2}\right]$ or $\left.\mathrm{Gibbsite}\left[\mathrm{Al}(\mathrm{OH})_{3}\right]\right\}$

Octahedral Iayer

Tetrahedral layer

2:1 layer clays (e.g. Montmorillonite)
The general term for this group is smectites and they are expandable (swelling) clays

It is difficult to distinguish between clay minerals either in hand specimen or in thin section (there are 220 varieties). The method of choice is X-ray diffraction (XRD).

Cation Exchange
Capacity (CEC) of various minerals

Mineral	Formula	CEC $\left(\mathbf{c m o l ~ K g}^{-1}\right)$
Kaolinite		$2-15$
Montmorillonite		$80-150$
Chlorite		$10-40$
Vermiculite (Trioctahedral)		$100-200$
Vermiculite (Dioctahedral)		$10-150$
Allophane		$3-250$
Gibbsite		4
Goethite		4

Carbonate minerals - CaCO_{3} polymorphs - aragonite and calcite

Evaporite Minerals - Halite and Sylvite

Halite: NaCl
and sylvite: KCl
F4/m $\overline{3} 2 / m$

Halite

Gypsum (monoclinic) and
Anhydrite (orthorhombic)

[^0]: ${ }^{\text {a }}$ There are few minerals that are as hard as, or harder than, quartz, and these include several of the highly prized gems

