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“Civilization exists by geologic consent, subject to
change without notice”

William Durant
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Figure 3.1 A: Variation of density of the planets with mean distance from the Sun. Note that
the Earth has the highest density among the earthlike planets, which, as a group, are more
dense than the outer gaseous planets. B: The planets of the solar system magnified 2000 times
relative to the distance scale. The earthlike planets are very small in relation to the Sun and
the gaseous planets of the solar system.
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Precision depth sounding has
been used to determine the
topography of the seafloor. A
mountain chain (called the
mid-Atlantic ridge) runs down
the center of the Atlantic
ocean. At various points
volcanoes associated with this
chain extend above water.
There are also deep sea
trenches along the Caribbean
islands.
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The Pacific oceanis-rimmed with trenches and volcanoes (the “ring-of-fire””) and
has volcanic island chains
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Geographic North Pole Magnetic South Pole

The Earth’s Magnetic-Field

Magnetic North Pole Geographic South Pole

Earth's magnetic

Fig. 8-5 (a) Diagrammatic representation of the earth’s magnetic field. The directions of the
lines of magnetic force at the earth’s surface and in space around the earth (measured from
satellites) are consistent with the presence of a magnet within the earth in the orientation
shown (Figure 8-3). In fact, there is not a magnet within the earth. (b, ¢, d) illustrate in larger
scale the lines of magnetic force as they would be measured by a person standing on the
earth’s surface at points n, e, and s, respectively.

Geographic Magnetic
North (GN) North (MN}




Magnetic Inclination

» The change in magnetic inclination can
be related to magnetic latitude.
If one can determine the magnetic
inclination at some time in the past this
information can be used to determine
paleolatitude.
Magnetite becomes magnetic at 580°C
(the Curie temperature). When a rock
cools below this temperature the
mineral records the direction of the
magnetic field at that time.

Earth's Magnetic Field Direction
Magnetite ll“;-rair\!slL
— N
T |

T= 580°C (Curie Temperature) T=580°C (Curie Temperature)

Fig. 8-8 (a) Compare Figures 8-52 and 8-6. For an idealized model of the earth’s magnetic
field, there are lines of magnetic latitude in concentric circles about the magnetic poles.
Angles of dip and magnetic field intensities are constant aiong each of these lines. (b) Lines
of magnetic latitude compared with geographic latitude and longitude lines on a mag. {c)
The angle of dip is 90° at the magnetic poles, and (° at the magnetic equator (Figura 8-5). At
any magnetic latitude between these limits the angle of dip is given by the graph. For a point
with measured angle of dip, the graph gives the magnetic latitude and also the distance to
the magnetic pole.
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Measuring Paleomagnetism (Remnant Magnetism)

]




Fig. 12-2 (a) Apparent polar wandering path for Eurasia, determined as shown in Figure

12-1, using rocks from Eurasia. (b) Comparison of apparent polar wandlering paths for North
America and Eurasia.
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Polar wandering curves.
Did the magnetic poles
shift or did the continents
shift?
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Oceanic Magnetic Anomalies

Measurements of magnetism in the ocean basin revealed that magnetic intensity varied as one moved
across the ocean basin. How might this happen?

FORMATION OF MAGNETIC ANOMALIES AT A MID-OCEAN RIDGE

Age before present
Normal Magnetic Polarity (millions of years)

. _ Calculated magnetic profile

Reversed Magnetic Polarity assuming seafloor spreading

[ |

Mid Ocean Ridge _. Observed magnetic profile
L e e -

from oceanographic survey

i Lithosphere

o

Oceanic crust <
Zone of magma injection, cooling, and
“locking in" of magnetic polarity tp:/fusos.

Enduring Resources for Earth Science Education — http://earthref.org/ERESE

http://earthref qi-binferda.cgitn=212




Based on the relationship-between geologic age and magnetic reversal, spreading rates were
calculated for the various ocean basins.
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Using the calculated spreading-rate for each ocean basin, the age of the various magnetic
reversals was determined. The result was-a map showing the age of the seafloor. It turned out
the oldest rocks in the ocean were about 200 Ma old, much younger than the oceans.
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Fig. 14-1 Sketch of the Glomar ChaHenger lowering its drill stem through the ocean toward
Enter the Deep Sea the drill reentry funnel that has been secured in the ocean-floor sediments. (Based on a
National Science Foundation report.)

Drilling Project.
Sediment cores were | T
collected from the deep = P Chtotar .
ocean. The cores 2
reached the seafloor
basalts, hence we could
determine the age of the
sediments lying directly

on the basalts.
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Fossils in the sediments
just above the seafloor
basalts verified the ages
determined using the

magnetic anomaly scale.
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Earthquake Studies

Earthquakes are-not randomly distributed




Fig. 4-9 Schematic map of distribution of earthquake epicenters for deep-focus earthquakes
between the Tonga trench and the Fiji Islands, north of New Zealand. Locate this on Figures

Earthquakes associated with oceanic 3-12 and 47, (Based on data of L. R. Sykes, 1966, Jour. Geophys. Res.. 71, 2961-3006.)
trenches extended to great depths. This =

was a puzzle since for earthquakes to W
occur rocks must behave as elastic solids. ci s, ||
At depths below 70 km rocks do not a
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behave as elastic solids. Something else .
must be going on. What can we learn
from gravity and heat flow data?
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Fig. 4-10 Vertical cross section through line XY in Figure 4-9, showing schematically the dis-
tribution of earthquake foci down to depths of 700 km. The foci lie close to line WZ extend-

Volcanic  Trench
ing downward from the ocean trench. (Based on data of L. R. Sykes, 1966, see Figure 4-9.)
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Heat Flow-varies across the Earth’s surface

HFU = Heat Flow Unit =1 x 106 cal/cm? - min=41.86 mW/m?2 - min

Heat flow variations:
e 1-2 HFU over trenches
e 2-3 HFU ocean average

e 4-6 HFU over ocean ridge




The lithosphere of the Earth was-divided into about a dozen large pieces called tectonic
plates. Plate boundaries are marked by spreading centers, subduction zones, and faults.
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Types of plate boundaries
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RG. 1-5. Rodar images. A. San Francisco Peninsula. Unlike conventional cerial photos, radar
imoges con be obfained in cloudy weather or even at night. The radar penetrates the vegetation and:
reveols the actual surface. The bottom (west) part of this area has thick redwood forests. From U. §.
Gealogical Survey in ccoperation with NASA and Westinghouse Electric Co.



. Kauai
’ 3.8-5.6 Oahu
2.2-3.3
Molokai
1.3-1.8

" Maui
) All less than 1.0

Hawaii
0.8 to present

Dates in millions of years

The interpretation of this observation is that there
Is a fixed mantle hotspot that is traversed by the
oceanic lithosphere. The volcanoes represent the
time when a particular piece of oceanic lithosphere
was over the hotspot. This interpretation is still
debated today.

There is a regular age
progression for the Hawaiian
volcanoes. Similarly for the
entire Hawaii-Emperor
Seamount chain.

Aleutian trench

Kurile trench

Hawaiian+
2 -4 seamounts
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The Wilson
Cycle

Opening and closing of
ocean basins. Continent-
continent collision leads
to thickening of the crust
and the formation of
relief. The European
block provided the
sediment for the
Appalachian mountains.
Horizontal tectonics with
a vertical component.

hitpr/fgeollab.imu.edu/FichterWilkon Awileoncivcl tml
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http://www.tectonics.caltech.edu/movies/outreach/sumatra/anim_pangaea.wmv
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