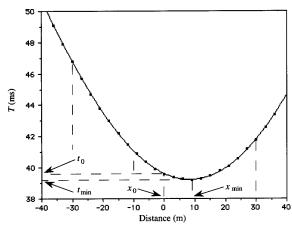

Name		

89.456 - APPLIED GEOPHYSICS CHAPTER 4 PROBLEMS


1. With reference to the diagram below, calculate the travel time and normal move-out (NMO) for geophone G given x = 100 m, $h_1 = 10$ m, and $V_1 = 1200$ m s⁻¹.

2. For a particular seismic reflection profile an x^2 - t^2 plot gives a slope of 0.2511 and an intercept = 676 ms² (t_o^2). Calculate the depth of the reflector.

3. For three horizontal layers, an x^2 - t^2 plot yields the following: $V_{rms_3} = 2831 \text{ m s}^{-1}$, $t_{o_3} = 227.1 \text{ ms}$ and $V_{rms_2} = 2406 \text{ m s}^{-1}$, $t_{o_2} = 149.3 \text{ ms}$. Calculate V_3 and h_3 .

4. From the diagram below we determine that $x_{min} = 9$ m, $t_{min} = 39.1$ ms, and $t_o = 39.7$ ms. Given that $V_1 = 1150$ m s⁻¹, calculate values for β , j, and h.

5. For a dipping interface we determine the following values from an x^2 - t^2 plot: V = 1650 m s⁻¹ and $t_o = 37.5$ ms (Figure 4-21 illustrates the approach). A particular geophone is 30 m from the shot point and the travel time to this geophone is 40.5 ms. Calculate the values for j, β , and h.

6. From the diagram below, $t_{+x} = 39.14$ ms, $t_{-x} = 36.74$ ms, +x = 30 m, and $x_{min} = 6.08$ m. We have independently determined V = 2000 m s⁻¹. Calculate β , j, and h.

