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Graphical representation of decay of radioactive parent (N)
and growth of radiogenic progeny (P).
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# Radioactive Isotopes used in Geologic Dating
#* Parent Progeny half-life (y)
» U-238 Lead-206 4.5 billion
» U-235 Lead-207 713 million
s % Thorium 232 Lead 208 14.1 Billion
ig * K-40 Argon-40 1.3 billion
S s RS87 Sr-87 47 billion
% * C-14 N-14 5730
?ﬁ% #* Half-life = time it takes for 1/2 of the parent mass

to decay into the daughter mass
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Carbon 14 Dating

A cosmic ray neutron (n) collides with an atom
of atmospheric Nitrogen (“N) which decays
into 4C and hydrogen (p=proton)

14N + n => 14C + Hydrogen (proton)
14C is rapidly oxidized to 1“CO, which is
continuously taken up into living organisms
When the organism dies it stops taking in 14C
which disappears as it decays to 14N

14C => 14N + Beta (beta comes from a neutron
going to a proton)
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Nitrogen-14 ' Neutron capture
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14Carbon Dating

Dating is accomplished by determining the
ratio of 14C to non-radioactive 2C which is
constant in living organisms but changes after
the organism dies
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Carbon 14 Dating
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Because of variations in the cosmic ray flux,
the rate of formation of 14C varies with time.
This can be corrected by determining 4C
activity in samples of know historical age.
Bristlecone Pines are often used for this
calibration

For an old sample (>40,000 years) trace
contamination by modern carbon results in an
incorrect young age

Testing of nuclear weapons since 1945 have
added 4C to the atmosphere
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Forensic “Carbon Cases

# Dead Sea Scrolls — 5-150 AD

# Stonehenge — 3100 BC

# Hezekiah’s Tunnel - 700 BC



http://jeru.huji.ac.il/pba8.htm

e King Arthur’s Table
in Winchester
Castle, England
14C dated to 13th
century AD

e Cave painting at
Lascaux, France

14C dated to 14,000
BC

e Rhind Papyrus on
Egyptian math 14C
dated to 1850 BC




ek

Forensic “Carbon Cases

L LOWELL

® The Shroud of Turin was 4C
dated 1260-1390 AD which
suggests that it is a fake

e However, recent evaluation shows
that the sample measured was
from a medieval patch and/or that
it was seriously contaminated
with molds, waxes, etc

e New estimates date the shroud
from 1300-3000 ybp bases on
vanillin retention
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Above ground nuclear testing during 1955-63 put
» large amounts of “C into the atmosphere which was
% incorporated into the enamel of human teeth. When
 above ground testing stopped, the '4C input ended
. and the “C in the teeth decayed at a fixed rate
¢ allowing dating of the teeth
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Element Isotope | Atom %
Hydrogen H 99.985
2H 0.015
3 Carbon 12C 98.9
T 1.1
Nitrogen %N 99.63
15N 0.37
Oxygen 160 99.762
Q) 0.038
L@ 0.2
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# The absolute values of isotope concentrations
are usually too small to measure and compare
accurately

#* So the convention is to compare isotope ratios of
any given element to a standard value for that

element



Stable Isotopes

Notation

R: “ratio”

R = "eavwElement/'9""Element
carbon: "2C/"“C
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Stable Isotopes

More Notation
5 “del”

5HEEWE|EH’IEHT = ['[ Rgammefﬁﬁtaﬂdam }—1]1{:}{:}0 '[:'D!ijll. pEI
thousand, also called per mil)

For carbon this becomes &'°C (termed “del 13 C")

For carbon. R:izaarg COMes from “"Pee Dee Belemnite”,
or “"PDB" a limestone rock from South Carolina.

Plant carbon always has less of the heavy isotope

compared with this standard, so the &'°C of plant
material is always a hegative number.
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Stable Isotopes

As the value of &6 for a sample
Increases, the relative abundance
of the rare (heavy) also isotope Increases.

For carbon isotopes:

As the value of There is

=13 1 i
f:r CLI‘HCI’EESES enrichmentin
i.e., "becomes 130

more positive”

As the value of Thereis

d'"C decreases depletion in '°C
l.e., "becomes

more negative”




Stable Isotopes (Oxygen as an Example)

Same element with two different atomic masses:

c'Sciences
&

¢

Changes in 180/'Q ratios are TOO small to directly measure.

3180 = |180/%0 (ompie) - 0760 (smow x 1000

180/160 smowy

i
=
LLl

Sample is compared to a standard; in the case of oxygen, the
standard is seawater:
SMOW = Standard Mean Ocean Water

8180 in units of per thousand, called 'per mil' and denoted as oo .
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Department Environmental

00 =0 Sample has same ratio as that in seawater.

00 >0 Sample enriched in heavy isotope (®Q) relative to
seawater.

00 <0 Sample depleted in heavy isotope (120) relative to
seawater.
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Stable isotopic fractionation takes place
during

1. Physical,
2. Chemical, and

3. Biological processes

The partitioning of the isotopes is a function of
the mass differences and occurs because the
Isotopically lighter molecule has a greater
velocity or ahigher vibrational energy.
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Variation of the isotope fractionation factor for oxygen, as a
function of temperature, during the evaporation of water. Note that
with increasing temperature the fractionation factor approaches
1.0000. Values from Dansgaard (1964).
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Fractionation of oxygen isotopes during Rayleigh
distillation of water vapor at 25°C. The initial 58O
value of the vapor is —13°/00.
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-« Meteoric Water Lines

~

-80 Geothermal Exchange

oD Relative to SMOW, °/oo

Low Temperature Water-Rock Exchange

-100
-12 -8 -4 0

330 Relative to SMOW, °/oo

Plot of 8D versus 3'80 illustrating the mean global meteoric water line
and local meteoric water lines.



Isotopic Composition of Water in the
USA

5120, %o

N
-4 to -2
-6 to -4
-8 to -6
-10 to -8
-12 to -10
-14 to -12
-16 to -14
-18 10 -16
< =-18

source: Kendall and Coplen (2001)
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L aser used to analyze enamel layers of an elephant tooth,
Amboseli National Park. Drinking water usually comes
from snowmelt (Kilimanjaro) but during the rainy season

meteoric water isthe major source of drinking water.

Meteoric water

Elephant tooth enamel
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83C (°/00)

-120
-400 -200 0

8D (°/o0)

13C and deuterium isotopic values for methane from various sources and reservoirs.
P — petroleum, A — atmosphere, G — geothermal (pyrolitic from interaction with
magmatic heat), T — thermogenic (from kerogen at elevated temperatures), F —
acetate fermentation (bacterial), and R — CO, reduction (bacterial). After Schoell
(1984, 1988).
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Denitﬁﬁcaﬁcm

Fertilizer

-5 5 15 25 35 45
§'°N
Determination of the relative importance of nitrate sources to a groundwater system.
Two sources for nitrates are fertilizer and manure. Both are undergoing
denitrification. A and B represent each source at a particular stage in the
denitrification process. C is the isotopic composition of the nitrate in the groundwater

due to simple mixing. In this example, approximately 60% of the nitrate is
contributed by the fertilizer.
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Terrestrial biogenic sulfur

Precipitation sulfate

Marine sulfate

Eastern North America
anthropogenic sulfur

| | | | | |
-20 -10 0 10

3*s (°/oo)

Range of 334S values for sulfur sources that contribute to
atmospheric sulfur.



@H Forensic Stable Isotope Cases

#* In 1980 there was a large (80,000gal) gasoline
spill from a service station

# Unusual large amounts of methane off gases
were found

#* Borings showed the area was underlain by lake
sediments and sawdust
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# OD (methane) plotted against 613C showed that the
methane was coming from the sawdust and not the
gasoline spill
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sources. Landfill methane plots in the field of
acetate-fermentation.



Forensic Stable Isotope Cases

#* Oil spills were found at an industrial facility
where crude oil was stored

# Natural seeps of oil and gas were also present
as well as numerous pipelines

# Large amounts of hydrocarbons, CO,, CH,, H,
were present in the soil

#* OD (methane) plotted
against 013C
(methane) showed
IEIRGEINERERENES
coming from
microbial
fermentation
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Forensic Stable Isotope Cases
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Ej:"' # When plants convert CO, into sugars by

5> . photosynthesis They use two different
processes Yyielding sugars with 3 carbon atoms
(C3 plants) and 4 carbon atoms (C4) plants

* » C3 plants are barley, rice, etc.
. = C4 plants are corn,
. cane sugar, etc.
% Each plant leaves
its isotopic
sighatures in

the resulting

beer
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The Delta C-13 valuefor the beer depends upon the
relative amounts of C; and C, carbon
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T Forensic Stable Isotope Cases
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# Gasoline from leaky service station tanks
is a frequent ground water contaminant

#* A professor at Penn State who woke up
one night to a popping sound in his
basement

* |t turned out to be gasoline leaking into
his sump pump from a leaky gas station
up the hill from his house

# The gasoline was exploding every time
the pump came on



(_, 2 Thereweretwo gasoline stations up hill from the
MASS ¥ : :
L professor’s house. Which one was the sour ce of
the gasoline leaking into the sump pump?

Correlation of isotope ratios in groundwater extracts and two gasoline brands

-

The station dispensing Brand A gasoline
was the sour ce. '
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Source of oil found in oil spills

Distinguish between Alaska and California crude oils on the
basis of their C-13 content

Carbon Isolope(13C/12C) Ralios

ol differenl crude vils

California Crude Oils g};

Celta 13C of Saturates(o/0o,PDB)

Muska Crude Qils

T T it T
=29 =27 —-25

Della 13C of Aromalics(o/00,PDB)

Figure 9.9: BP "American Trader"” accident in Huntington Beach, California, February 7, 1990,
Correlalion among Alaska and California crude oils and beach lar balls on
Southern California beaches, based on lheir carbon isotope ratios.




You Are What You Eat & Drink

# The isotopic content of both food and water
vary from place to place

# People and animals eating and drinking in
different places take on the isotopic signatures
of their environment

#* Your travel history is in your hair, teeth, bones,
etc
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Isotopic values
from the hair of
an Inca mummy
The sinusoidal
variations are
thought to be
related to
seasonal
variations (more
corn in summer,
etc.)
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Forensic Stable Isotope Cases

From where did the Ice Man Commeth?

Research reported in Science (31
Oct 2003) compared Sr, Pb, O,
and Ar isotopes from the
iceman to the local geology and
concluded that he originated
within ~60 miles of where he
was found and that he migrated
through a number of local
valleys




. -336 | C aine
For ensic Geology P
S = -33.8 ‘ Ecuaﬂg_&)_' "
Stable isotopes can be used to g e |
identify the geo-location of g S S B
herO|_n (and morphine) and g :34'6 - I e .
COCal ne. g ' Bolivia L
O -348 | ‘
Ehleringer et al. (1999) .35_q1; o

Nitrogen isotope ratio, %o

Heroin Morphine

'29 Y T y T . v T E,
o

= o ' SW Asia T SW Asia

= S -30F - O~ _

GE) © . . SE Asia

d 1Mexico o

= o -3 " :: >

o & ' g I a

= 8 ¥ Mexico SE Asial |+ SA g

UCJ c i e gaa T 1
i S 33t %SA "} 4
'!C Ea L

g O _34 1 J‘I llllll N | 1

= B3 2 o G EA L Sfi0.1 273

S

£33

m . . .

A Nitrogen isotope ratio, %o



ek

o fLowELL

......

Concluding Comment

Therearemany more potential
applications using both radioactive and
stable isotopes. However, given cost and
availability of instrumentation, C-14
dating and car bon, oxygen, and hydrogen
stable isotope measur ements are most
appropriate for forensic investigations.
Thereareanumber of commercial
laboratoriesthat can providethese
measurementsif required.
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