Lecture 3

Chapter 2

Equations of motion for constant acceleration

(c)

PHYS. 1410 Lecture 3 Damlau
Department of Physics and Applied Physics
Course website:
http://faculty.uml.edu/Andriy Danylov/Teaching/PhysicsI

Today we are going to discuss:

Chapter 2:

$>$ Motion with constant acceleration: Section 2.4
$>$ Free fall (gravity): Section 2.5

Simplifications

$>$ Objects are point masses: have mass, no size

> In a straight line: one dimension

Consider a special, important type of motion:
$>$ Acceleration is constant ($a=$ const)

NEED: Equations???
The Kinematic Equations of Constant Acceleration

Velocity equation. Equation 1.

(constant acceleration)

av
Since $a=$ const, v is a straight line and it doesn't matter which acceleration to use, instantaneous or average. Let's use average acceleration.
by definition, acceleration

$$
a=\frac{v(t)-v_{o}}{t-t_{0}} \text { and } t_{0}=0
$$

$$
\begin{equation*}
a=\frac{v(t)-v_{0}}{t} \quad \Rightarrow \tag{1}
\end{equation*}
$$

Velocity equation

$$
v(t)=v_{o}+a t
$$

the velocity is increasing at a constant rate

Position equation. Equation 2

(constant acceleration)

Recall Eq (2.11) $x_{f}=x_{0}+$ Area under $v-v s-t$ between t_{0} and t_{f}

$$
x_{f}=x_{0}+A_{O A D C}+A_{A B D}
$$

Position equation

$$
\begin{equation*}
x_{f}=x_{0}+v_{0} t+\frac{1}{2} a t^{2} \tag{2}
\end{equation*}
$$

No time equation. Equation 3

(constant acceleration)

We can also combine these two equations so as to eliminate t :

Motion at Constant Acceleration (all equations)

We now have all the equations we need to solve constant-acceleration problems.

Velocity equation

$$
v(t)=v_{o}+a t
$$

Position equation

$$
\begin{equation*}
x_{f}=x_{0}+v_{0} t+\frac{1}{2} a t^{2} \tag{2}
\end{equation*}
$$

No time equation

$$
\begin{equation*}
v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right) \tag{3}
\end{equation*}
$$

Problem Solving

How to solve:

- Divide problem into "knowns" and "unknowns"
- Determine best equation to solve the problem
- Input numbers

Example

A plane, taking off from rest, needs to achieve a speed of $28 \mathrm{~m} / \mathrm{s}$ in order to take off. If the acceleration of the plane is constant at $2 \mathrm{~m} / \mathrm{s}^{2}$, what is the minimum length of the runway which can be used?
initial

o which eq-n to use?
() $/ v=v_{0}+a t$ (no time info)
(x) $x=x_{0}+v_{0} t+a t^{2} / 2$ (no time info)
(3) $v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right) \quad$ (our eq-u)

known known

$$
x=\frac{v^{2}}{2 a}=\frac{(28 \mathrm{~m} / \mathrm{s})^{2}}{2.2 \mathrm{~m} / \mathrm{s}^{2}}=196 \mathrm{~m}
$$

The runway unst be 196 m long.

PHYS. 1410 Lecture 3 Danylou
Department of Physics and Applied Physics

Freely Falling Objects

One of the most common examples of motion with constant acceleration is freely falling objects.

Near the surface of the Earth, all objects

 experience approximately the same acceleration due to gravity.> All free-falling objects (on Earth) accelerate downwards at a rate of $9.8 \mathrm{~m} / \mathrm{s}^{2}$ Evacuated tut
> Air resistance is neglected

ConcepTest

Free Fall

You drop a ball. Right after it leaves your hand and before it hits the floor, which of the above plots represents the v vs. t graph for this motion? (Assume your y -axis is pointing up).

The ball is dropped from rest, so its initial velocity is zero. Because the y-axis is pointing upward and the ball is falling downward, its velocity is negative and becomes more and more negative as it accelerates downward.

$v_{x}>0 \quad$ Direction of motion is to the right.
$v_{x}<0$
Direction of motion is to the left.
$a_{x}>0 \quad$ Acceleration vector points to the right.
$a_{x}<0$

Freely Falling Objects

$$
\begin{equation*}
v(t)=v_{0}+a t \tag{1}
\end{equation*}
$$

Position equation

$$
\begin{equation*}
x_{f}=x_{0}+v_{0} t+\frac{1}{2} a t^{2} \tag{2}
\end{equation*}
$$

No time equation

$$
\begin{equation*}
v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right) \tag{3}
\end{equation*}
$$

$$
\begin{aligned}
& v=v_{0}+g t \\
& y=y_{0}+v_{0} t+g t^{2} / 2 \\
& v^{2}=v_{0}^{2}+2 g\left(y-y_{0}\right)
\end{aligned}
$$

Example: Ball thrown upward.

A person throws a ball upward into the air with an initial velocity of $10.0 \mathrm{~m} / \mathrm{s}$.

Calculate

(a) how high it goes, and
(b) how long the ball is in the air before it comes back to the hand.
(Ignore air resistance.)

Example

Given: $v_{0}=10 \mathrm{~m} / \mathrm{s} ; y_{0}=0$
Calculate low high it goes:y -?

1. Choose a word system:
y-upward,
g - downward (always)
so $a=-g$

$$
\begin{aligned}
& \left\{\begin{array}{l}
y=y_{0}+v_{0} t+\frac{a t^{2}}{2} \\
v=v_{0}+a t \\
v^{2}=v_{0}^{2}+2 a\left(y-y_{0}\right)
\end{array} \quad a=-g\right. \\
& \begin{array}{l}
y=y_{0}+v_{0} t-\frac{g t^{2}}{2} \times\left(w_{0} t \text { info }\right) \\
v=v_{0}-g t \\
v^{0}=v_{0}^{2}-2 g\left(y-y_{0}\right)
\end{array} \quad \times(\text { no } t \text { iufo })
\end{aligned}
$$

at max. hight, $v=0$

$$
\begin{aligned}
& 0=v_{0}^{2}-2 \cdot g \cdot y \\
& y=\frac{v_{0}^{2}}{2 \cdot g}=\frac{(10 \mathrm{~m} / \mathrm{s})^{2}}{2 \cdot 9 \cdot 8 \mathrm{~m} / \mathrm{s}^{2}} \simeq \frac{100}{20} \mathrm{~m}=5 \mathrm{~m}
\end{aligned}
$$

Example

(0) How loup the ball is in the air?

$$
\begin{aligned}
& \text { 1. } y=y_{0}+v_{0} t-\frac{g t^{2}}{2} \quad V \quad b_{0} h_{l} \\
& 2!\quad v=v_{0}-g t!! \\
& 3!v^{2}=v_{0}^{2}-2 g\left(y-y_{0}\right) \times
\end{aligned}
$$

initial and
final points
(8) At the final point: $y=0$
let's use eq-n 1.

$$
y^{\prime 0}=y_{0}^{0}+v_{0} t-\frac{g t^{2}}{2}
$$

$0=t\left(v_{0}-\frac{g t}{2}\right)^{2}$ there ore two solution.

$$
\begin{aligned}
& t_{1}=0 ; \quad v_{0}-\frac{g t}{2}=0 \\
& t_{2}=\frac{2 v_{0}}{g}=\frac{2.10 \mathrm{~m} / \mathrm{s}}{9.8 \mathrm{~m} / \mathrm{s}^{2}} \simeq 2 \mathrm{~s}
\end{aligned}
$$

PHYS. 1410 Lecture 3 Damion
Department of Physics and Applied Physics

Example

$$
Y(m)
$$

PHYS. 1410 Lecture 3 Danuloa
Department of Physics and Applied Physics

Determining the Sign of the Position, Velocity, and Acceleration

- The sign of velocity $\left(v_{x}\right.$ or $\left.v_{y}\right)$ tells us which direction the object is moving.
- The sign of acceleration $\left(a_{x}\right.$ or $\left.a_{y}\right)$ tells us which way the acceleration vector points, not whether the object is speeding up or slowing down.

Velocity/Acceleration/Position

- 4,5 - negative acceleration,

but from $0<t<t_{4}$ or t_{5} - decceleration
but for $\mathrm{t}>\mathrm{t}_{4}$ or t_{5} - acceleration

ConcepTest

Pasitian fram velacity

A) 20 m

Here is the velocity graph of an object that is at the origin ($\mathrm{x}=0 \mathrm{~m}$) at $\mathrm{t}=0 \mathrm{~s}$.
B) 16 m

At $t=4.0 \mathrm{~s}$, the object's position is
C) 12 m
D) 8 m
E) 4 m

$$
x_{f}=x_{i}+\text { Area under } v-v s-t \text { between }_{i} \text { and } t_{f}
$$

Displacement $=$ area under the curve

