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CHAPTER 3 
 

BOOLEAN ALGEBRA 

 

 

 

 Boolean algebra is the fundamental mathematics applied to the analysis and 

synthesis of digital systems. Because of its application to two-value systems, it is also 

called switching algebra. The development of switching algebra in this chapter will begin 

with the introduction of three basic logical operations: NOT, AND, and OR. 

 

 

 

3.1 Basic Logical Operations 

 

 NOT is a logical operation to convert a signal from one value to the other value. 

For a binary digital system, NOT will change a signal from one state to the other state 

The truth table for NOT is given in Table 3.1, where x is the signal to which the logical 

operation is applied, and F is the result of the operation. The device used to perform the 

NOT operation is called an INVERTER. The logic symbol for an inverter is shown in 

Figure 3.1. The mathematical representation of NOT is denoted by x', which is called the 

complement or inversion of x, or NOT x. The prime can also be replaced with a bar over 

x. 

   F = x’ = x 

 

Table 3.1   Truth table for NOT. 
          

x 

0 

1 

F 

0 1 

1 0 

 

Since the value of F depends on that of x, F can also be called a logic function, 

Boolean function, switching function, or in short a function of x. x is called a Boolean 

variable, switching variable, or in short, a variable. The function of x can be written as 

 

F(x) = x’ 

 

If the circle at the output of the inverter is missing, as shown in Figure 3.2, the 

symbol is called a buffer. The output of a buffer is the same as the input. 

 

 

        

 

 

Figure 3.2   Logic symbol for buffer.
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F(x) x 
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Figure 3.1   Logic symbol for inverter.
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 The AND operation is described by the truth table in Table 3.2. It defines a 

relationship between two signals x and y. The result of the operation is F(x, y), which is 

called "x AND y". F is a function of x and y. The algebraic form is 

 

F(x, y)  =  x • y  =  x y 

 

The dot between x and y may be omitted. x and y are the variables of the function F. The 

device that carries out the AND operation is called an AND gate. Its logic symbol is 

shown in Figure 3.3. An AND gate has at least two inputs. An AND gate with n inputs is 

called an n-input AND gate. 

 

 

Table 3.2   Truth table for AND. 

x   y F(x,y) 

0   0 0 

0   1 0 

1   0 0 

1   1 1 

 

 

 The truth table for the OR operation is given in Table 3.3. The algebraic 

expression for OR is  

 

F(x, y) = x + y 

 

The operation is carried out by a device called an OR gate as shown in Figure 3.4. An OR 

gate with n inputs is called an n-input OR gate. 

 

 

Table 3.3   Truth table for OR. 

x   y F(x,y) 

0   0 0 

0   1 1 

1   0 1 

1   1 1 

 

 

The properties of AND gates and OR gates with more than two inputs are discussed in the 

next section. 

 

 

 

Figure 3.4   Logic symbol for OR gate. 

gate.

 

Figure 3.3   Logic symbol for AND gate.
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Boolean Expressions and Digital Circuits 

  

 Input signals to a digital circuit are represented by Boolean or switching variables 

such as A, B, C, etc. The output is a function of the inputs. When there is more than one 

logical operation in a digital circuit, parentheses are used to specify the order of 

operations in the Boolean expression for the circuit. 

 

 

 

 

     A 

 

     B 

 

     C 

 

     D 

 

Figure 3.5   Logic circuit. 

 

 

For the circuit in Figure 3.5, the Boolean expression is written as follows: 

 

                                    ( A • C )   +  ( D • (   (  A +  B ’ ) '  +  C )   ) 

Parenthesis pair  1        1        4      3   2               2          3   4 

 

Four pairs of parentheses are used to determine the order of seven logical 

operations: two NOTs, three ORs, and two ANDs. The operation(s) within a pair of 

parentheses are performed before those outside this pair of parentheses. Precedence is 

always applied to the inversion of a variable. If an inversion is performed on the Boolean 

expression within a pair of parentheses, such as the prime attached to parentheses pair 2, 

it has the precedence over all operations outside this parenthesis pair. The Boolean 

function(s) performed within each of the four pairs of parentheses are also shown in 

Figure 3.5 as (1), (2), (3), and (4)  

 

If the precedence rule that ANDs are executed before ORs in the absence of 

parentheses, parentheses pairs 1 and 4 can be removed without ambiguity. The expression 

can be simplified to  

 

  A•C + D•( ( A + B’ )'  +  C ) 

 

 

3.2 Basic Laws 

 

The properties of Boolean algebra are described by the basic laws introduced in 

this section. Students should try to show the validity of basic laws (1) through (5) using 

truth tables. This method of proving the equality of two expressions is known as the 

(1) 

(2) 

(4) 

(3) 
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perfect induction method. Basic law (6a) will be used as an example to show how to 

prove the validity of a Boolean/switching identity using the perfect induction method. 

 

(1)    Involution law 

   (A')' = A 

 

 (2) Idempotency law 

  (a) A • A = A 

  (b) A + A = A 

 

 (3) Laws of 0 and 1 

  (a) A • 1 = A 

  (b) A + 0 = A 

  (a') A • 0 = 0 

  (b') A + 1 = 1 

 

 (4) Complementary law 

  (a) A • A' = 0 

  (b) A + A' = 1 

 

 (5) Commutative law 

  (a) A • B = B • A 

  (b) A + B = B + A 

 

 (6) Associative law 

  (a) (A • B ) • C = A • (B • C) 

  (b) (A + B ) + C = A + (B + C) 

 

     Table 3.4   Proof of associative law (6a) 

 

 

A  B  C 

 

A • B  

Left-hand-side 
of (6a) 

(A • B ) • C 

 

B • C 

Left-hand-side 
of (6b) 

A • (B • C) 

0   0   0 0 0 0 0 

0   0   1 0 0 0 0 

0   1   0 0 0 0 0 

0   1   1 0 0 1 0 

1   0   0 0 0 0 0 

1   0   1 0 0 0 0 

1   1   0 1 0 0 0 

1   1   1 1 1 1 1 

  

  

  Table 3.4 is the proof for the associative law (6a). All the possible combinations 

of A, B, and C are given in the first column from the left. In the next two columns, the 
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values of the left-hand-side of (6a) are derived. Those values for the right-hand-side of 

(6a) are given in the two right columns. For each and every possible combination of A, B, 

C, the values listed for the left-hand-side and the right-hand-side of (6a) are equal. Thus it 

can be concluded that (A • B ) • C is equal to A • (B • C). 

 

 
A   AB              B           BC     
B                 C               A 
                     B 
C            (AB) C      A       A (BC)          C                    ABC 
 
           (a)             (b)             (c) 
 

Figure 3.6 (a) Logic circuit for (AB) C. (b) Logic circuit for A (BC). (c) 3-input AND gate. 
 

 

  The left-hand-side and the right-hand-side of (6a) are implemented using 2-input 

AND gates in Figures 3.6(a) and 3.6(b) respectively. The associative law indicates that 

the order of the two AND operations is immaterial. The parentheses can be omitted 

without ambiguity. By applying the commutative property, the expression ABC can also 

be written in any other permutations such as ACB, BCA, etc. In fact, the expression ABC 

can be implemented by an AND gate with three inputs, or a 3-input AND gate as shown 

in Figure 3.6(c). The output of a 3-input AND gate is 1 if and only if all inputs are 1. This 

can be extended to any number of inputs. 

 

  Similarly, the associative law (6b) can be written as A + B + C, A + C + B, B + A 

+ C, etc. A 3-input OR gate can be used to implement the expression A + B + C. The 

output of an n-input OR gate is 1 when one or more than one input is equal to 1, where n 

is an integer equal to or greater than 2. 

 

 (7) Distributive law 

  (a) A (B + C) = A B + A C 

  (b) A + B C = (A + B) (A + C) 

   

  The validity of the distributive law (7a) is proved in Table 3.5 using the perfect 

induction method. The value obtained for the left-hand-side (LHS) of the distributive law 

and that for the right-hand-side (RHS) are equal for each and every one of the eight 

different input states for A, B, C. 

 

  The validity of the distributive law (7b) is proved by a more compact approach. In 

the compact method, perfect induction is applied to only some of the variables. These 

variables are expressed as 0 and 1 in a truth table. Algebraic operations such as the basic 

laws are used for other variables. Such approach will reduce the number of rows in a truth 

table and is called “compact truth table” method. 

 

   In Table 3.6, the perfect induction method is applied to A only. Therefore there 

are two rows in the table, one row for A = 0 and a second row for A = 1. Algebraic 

approach is used for B and C. The values of B and C are not explicitly listed in the table. 
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The variable A on the right-hand-side and the left-hand-side of the distributive law (7b) is 

then substituted by 0 and 1. When A = 0, both sides are equal to BC. When A = 1, both 

sides are equal to 1. Thus it can be concluded that the distributive law (7b) is valid. 

 

 

          Table 3.5   Proof of distributive law (7a) by perfect induction. 

 

 

A  B  C 

 

B + C 

Left-hand-
side of (7a) 

A (B + C) 

 

A B 

 

A C 

Right-hand-side 
of (7a) 

AB + AC 

 0   0   0 0 0 0 0 0 

0   0   1 1 0 0 0 0 

0   1   0 1 0 0 0 0 

0   1   1 1 0 0 0 0 

1   0   0 0 0 0 0 0 

1   0   1 1 1 0 1 1 

1   1   0 1 1 1 0 1 

1   1   1 1 1 1 1 1 

 

    Table 3.6   Proof of distributive law (7b) by the compact truth table method. 

 

A Left-hand-side of (7b) 

A + B C 
Right-hand-side of (7b) 

(A + B)( A + C) 

 

0 

 

0 + B C = B C 

 

 

(0 + B ) (0 + C) = B C 

 

1 

 

1 + B C = 1 

 

 

(1 + B ) (1 + C) = 1•1 = 1 

  

 

 

3.3  Sum-of-Products and Product-of-Sums Expressions 

 

  When a variable appears unprimed or primed in a switching expression, it is 

called a literal. An unprimed or a primed variable is also said to be, respectively, in true 

form or complemented form. If several literals are ANDed together, the result is called a 

product. Similarly, the ORing of several literals produces a sum. When several products 

are ORed together, the expression is called a sum-of-products (SOP) expression. In a 

sum-of-products expression, a product can have only one literal. Two examples for sum-

of-products expression are given below. The first expression is a sum of three products. 

The second expression has four products, one of which is a single literal. 

 

   AB’ + BC + A’BD’ 

   B’ + CD + A’C’D’ + AE’  
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  A product-of-sums (POS) expression is the AND of several sums. In a product-of-

sums expression, a sum may have just one literal. Two examples for product-of-sums  

expression are shown below. The first product-of-sums expression has three sums. The 

second expression also has three sums. But one of them is a single literal. 

 

   (A’ + C’) (A + C + D’) (B + D’) 

   C’ (B’ + D’)  (A + B + D) 

 

 

Simplest (Minimal) Sum-of-Products and Product-of-Sums Expressions 

 

 Sum-of-products and product-of-sums are two fundamental expressions for 

Boolean functions. When a literal or a product is deleted from a sum-of-products 

expression for a switching function, the expression with deleted literal/product is no 

longer correct for the function. Then the sum-of-products expression is said to be simplest 

or minimal. In other words, a sum-of-products expression is simplest if and only if no 

literal or product can be deleted from the expression. Thus a simplest sum-of-products 

expression for a function consists of a minimum number of product terms and the total 

number of literals from all the product terms is also minimum. Two examples to illustrate 

what is a simplest sum-of-products expression are given in Section A.1 of Appendix. 

 

Sum-of-products and product-of-sums expressions can be implemented as standard 2-

level AND-OR and 2-level OR-AND circuits respectively as shown in Figure 6.1. 

 

 

 

 

3.4  Theorems 

 

  The theorems given in this section are useful in simplifying switching expressions 

or in changing an expression to different forms. In proving a theorem by algebraic 

approach, only the basic laws and the theorems that have been proved will be used. When 

a basic law (L) or a theorem (T) is used, the basic law or the theorem number will be 

quoted inside a pair of square brackets at the end of a line. 

 

(1) Combination theorem 

 (a) A B + A B' = A 

 (b) (A + B) (A + B') = A 

 

 Proof:  (a)   LHS  = A B + A B'      

    = A (B + B')     [L7a]    

    = A • 1      [L4b]   

          = A = RHS     [L3a]   

 

  (b)   LHS  = (A + B) (A + B') 

    = A + B B'     [L7b] 
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    = A + 0     [L2a'] 

       = A = RHS     [L3b] 

 

  The combination theorem allows two product (sum) terms to be combined to one 

product (sum) term. The number of literals in the resulting product (sum) is also reduced 

by one. 

 

(2) Absorption theorem 

 (a) A + A B = A 

 (b) A ( A + B) = A  

 

Proof:  (a)   LHS = A + A B  

         = A • 1 + A B     [L3a]       

    = A (1 + B)     [L7a] 

       = A • 1      [L3b'] 

    = A = RHS     [L3a] 

 

    (b)  LHS = A (A + B) 

          = A A + A B     [L7a] 

         = A + A B     [L2a] 

         = A = RHS     [T2a] 

 

The following is an alternate proof of (b) using only basic laws. 

 

  (b)  LHS = A (A + B) 

          = (A + 0) (A + B)    [L3b] 

         = A + 0 • B     [L7b] 

         = A + 0     [L3a’] 

    = A = RHS     [L3b] 

 

  When applying the absorption theorem, a product (sum) term will be absorbed by 

another term and disappears completely. The absorbed term is in fact part of the 

absorbing term. This is illustrated by Venn diagrams in Section A.2 of Appendix. 

 

 

 Example 3.1 

 

The absorption theorem is used to simplify two expressions in this example. 

 

 (a) AC + AB’CDE  =  (AC) + (AC) (B’DE)  =  AC 

 

 (b) B’ ( A + B’) (B’ + CD’) = B’ (B’ + CD’) = B’ 

 

 Example 3.1 (b) can also be simplified using basic laws. 

 

 B’ ( A + B’) (B’ + CD’) = (B’+ 0) ( A + B’) (B’ + CD’) =B’ + (0)(A)(CD’) = B’ 
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(3) Elimination theorem 

 (a) A + A' B = A + B 

 (b) A ( A' + B) = A B 

  

 Proof: (a)   LHS = A + A' B 

    = (A + A') (A + B)     [L7b] 

    = 1 • (A + B)      [L4b] 

        = A + B = RHS     [L3a] 

 

   (b)   LHS = A (A' + B) 

    = A A' + A B      [L7a] 

    = 0 + A B      [L4a] 

     = A B = RHS      [L3b] 

  

 In the elimination theorem, a literal is eliminated from a product (sum) term that has 

more literals. 

 

 

 Example 3.2 

 

 This example illustrates the simplification of Boolean expression using the 

elimination theorem. 

 

(a)     AC’ + AB’CDE’ = A (C’ + B’CDE’) = A [C’ + C(B’DE’)] 

                = A (C’ + B’DE’) = AC’ + AB’DE’ 

 

 (b)     (B + C’) (A + B + C’ + D + E) 

   = (B + C’) [ (B + C’) + (A + D + E)] 

   = B + C’ 

 

 

 Example 3.3 

 

Simplify the sum-of-products expression   (AB’ + BCD + A’B’D’). 

 

By applying the elimination theorem 

 

     AB’ + BCD + A’B’D’  

 = BCD + B’( A + A’D’ ) 

 = BCD + B’ ( A + D’) 

 = AB’ + BCD + B’D’ 

 

 Since (AB’ + BCD + A’B’D’) can be simplified by removing a literal, it is not a 

simplest sum-of-products expression. 
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 Some of the basic laws, the combination theorem, absorption theorem, elimination 

theorem and DeMorgan’s theorem are illustrated by Venn diagrams of Set Theory in 

Section A.2 of Appendix. 

 

 

(4) Consensus theorem 

 (a) A B + A' C + B C = A B + A' C 

 (b) (A + B) (A' + C) (B + C) = (A + B) (A' + C) 

  

 Proof:  (a)   LHS = A B + A' C + B C  

    = A B + A' C + 1•B•C     [L3a] 

    = A B + A' C + (A + A') B C     [L4b] 

    = A B + A' C + A B C + A' B C   [L7a] 

    = (A B) + (A B) C + (A' C) + (A' C) B  [L6a] 

    = A B + A' C = RHS     [T2a] 

 

 The proof of the second form of the consensus theorem is left as an exercise. The 

consensus theorem will remove a redundant term known as the “consensus term”. To find 

the consensus term, first look for a variable that appears in true form in one product and 

in complemented form in another product. This variable is A in the first form of the 

consensus theorem. A and A’ are ANDed with B and C respectively. The consensus term 

is BC. From the proof, it is seen that the consensus term BC is divided into two terms, 

one “absorbed” by AB and the other by A’C. 

 

 

 Example 3.4 

 

 Simplify the sum-of-products expression (A B D’ + A B C’ + C D’) by eliminating a 

consensus term. 

 

                          Variable in true form Variable in complemented form 

 

                            A B D’    +    A B C’    +    C D’ 

    =   A B D’    +    C’ (AB)  +   C (D’) 

 

       (AB) (D’) = ABD’          Consensus term 

    =  ABC’ + CD’ 

 

 Example 3.5 

   B D’ + A B’ C’ + A’ C’ D’ 

 The above expression is used to show how the consensus theorem can be used to 

simplify a Boolean expression in a manner different from that in Example 3.6. In 
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Example 3.6, a consensus term exists in a Boolean expression and is removed. In this 

example, the expression cannot be simplified before a consensus term is added to the 

expression. 

    

  Consensus term from A and A’                 (B’C’) (C’D’) = B’C’D’ 

 

 

                                     B D’ + A B’ C’ + A’ C’ D’ 

 

  Consensus term from B and B’                 D’ (A C’) = AC’D’ 

 

Two consensus terms, B’C’D’ and AC’D’, can be generated from the variables A and B 

respectively. None of them exists in the expression. However, AC’D’ is added to the 

expression so that  

 

  BD’ + AB’C’ + A’C’D’ = BD’ + AB’C’ + A’C’D’ + AC’D’ 

 

By using the combination theorem,  

 

  A’C’D’ + AC’D’ = (A’ + A) C’D’ = C’D’ 

 

The expression is simplified to 

 

  BD’ + AB’C’ + C’D’ 

 

 

 Example 3.6 

 

 In this example, the application of consensus theorem is illustrated by adding a 

consensus term to a Boolean expression in order to eliminate two other terms in the 

original expression.  

 

   A’C + BCD + AC’D + AB’C’ 

 

In the above expression, a consensus term ABD can be generated from BCD and AC’D 

and are added to the expression. 

 

 A’C + BCD + AC’D + AB’C’ = A’C + BCD + AC’D + AB’C’ + ABD 

 

BCD is a consensus term from A’C and ABD and can be eliminated from the expression. 

 

 A’C + BCD + AC’D + AB’C’ + ABD = A’C + AC’D + AB’C’ + ABD 

 

AC’D is a consensus term derived from AB’C’ and ABD. Thus 
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 A’C + AC’D + AB’C’ + ABD = A’C + AB’C’ + ABD 

 

 

(5) Interchange Theorem 

 

  A B + A' C = (A + C) (A' + B) 

 

 Proof:          RHS = (A + C) (A' + B) 

           = A A' + A B + A' C +  B C    [L7a] 

           = 0 + A B + A' C +  B C    [L4a] 

           = A B + A' C +  B C     [L3b] 

    = A B + A' C = LHS     [T4a] 

 

  The interchange theorem is not for simplification of Boolean expressions. It is 

used for the conversion of an expression from a sum-of-products to a product-of-sums, or 

vice versa. In applying this theorem from the conversion between a SOP expression and a 

POS expression, a variable should appear in true form in one product and in 

complemented form in the other product. Or the true form of a variable in one sum and its 

completed form in another sum. If such a variable does not exist, the theorem is not 

applicable. The conversion involves a process of interchanging literals. If the variable 

appears in true and complemented forms is A. The literals associated with A and A’ in 

the sum-of-products (LHS of Theorem 5) are B and C respectively. To change the 

expression to a product-of-sums (RHS of Theorem 5), B will associate with A’ and C 

becomes a partner of A. The process of interchanging associating literals is also 

applicable to the conversion from product-of-sums expression to sum-of-products 

expression. 

 

 

Conversions between Sum-of-Products and Product-of-Sums Expressions 

 

 When a product-of-sums expression is converted to a sum-of-product expression, the 

process is called “multiplying-out”. On the contrary, the change of a sum-of-products 

expression to a product-of-sums expression is called “factoring”. 

 The distributive laws are always used in conversions between sum-of-products and 

product-of-sums. In fact, there are two opposite processes in the distributive laws. These 

two processes are shown below. Distribution is to distribute a literal to each and every 

literal in another term. Collection is to collect a common literal from each and every term. 

One process is the reverse of the other process. 

  

     Distributive law (7a) 

                   

                             A • (B + C)                                     A • B + A • C 

       Distribution 

 

 

    A • (B + C)                                          A • B + A • C 

Collection 
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 Distributive law (7b) 

 

                             A  +  B • C                                        ( A + B) • (A + C) 

       Distribution 

 

 

    A  +  B • C                                         (A + B) • (A + C) 

      Collection 

 

 

  When converting a product-of-sums expression to a sum-of-products expression, 

applying the distributive law (7a) is correct but may not be the best approach. For 

instance,  

             

      (A + B + C)(A + B + D) 

  = AA + AB + AD + AB + BB + BD + AC + BC + CD 

 

Not only that it is tedious in multiplying out the two sums, the result is not simple and 

needs to be simplified using the idempotency law and the absorption theorem. 

 

      AA + AB + AD + AB + BB + BD + AC + BC + CD  

  = A + AB + AD + B + BD + AC + BC + CD   [L2] 

  = A + B + BD + BC + CD      [T2a] 

  = A + B + CD       [T2a] 

 

If the second form of the distributive law (7b) is used, it requires only one step in getting 

the simplest sum-of-products expression. 

 

     (A + B + C)(A + B + D) 

  = [ (A + B) + C] [ (A + B) + D] 

 

   

  = (A + B) + CD 

 

 

 Example 3.7 

 

 The collection process of the distributive law can be applied to more than two terms. 

It is illustrated in this example by converting the following expression to a simplest sum-

of-products expression. 

 

               (A + B + C)(A + B + D)(A + B + E)(B’ + D’) 

 

      (A + B + C)(A + B + D)(A + B + E)(B’ + D’) 

 

 

  =  (   A + B  + CDE ) (B’ + D’) 
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  =   [ B + ( A + CDE )] ( B’ + D’ ) 

  =   BD’ + B’ (A + CDE)      [T5] 

  =   BD’ + AB’ + B’CDE 

 

 

 Example 3.8 

 

 The interchange theorem is employed in the conversion of (BCD’ + B’D + AB) to a 

product-of-sums expression. B or B’ appears in every product. Therefore the expression 

can be formulated into two parts, one with B and another with B’.  

 

   BCD’ + B’D + AB = B(A + CD’) + B’D 

 

By applying the interchange theorem, the expression becomes 

 

   (B + D) (B’ + A + CD’) 

 

By distributing A + B’ to C and D’ 

 

   A + B’ + CD’ = (A + B’ + C) (A + B’ + D’) 

Thus  BCD’ + B’D + A’B = (B + D) (A + B’ + C) (A + B’ + D’) 

 

 

 Example 3.9 

 

 This example illustrates the conversion of a product-of-sums expression to a sum-of-

products expression in its simplest form. For a simplest or minimal sum-of-products 

expression, the number of product terms should be a minimum. The total number of 

literals should also be a minimum. There should not be any expression in which the 

number of product terms or/and the total number of literal are smaller. 

 

   (A + B) (A’ + C) (C’ + D) 

      = (AC + A’B) (C’ + D)     [T5] 

      =   ACC’ + ACD + A’BC’ + A’BD   [L7a] 

      = ACD + A’BC’ + A’BD 

 

  If the distributive law (7a) is used to multiply out (A + B)(A’ + C), the result is 

(AC + A’B + BC) instead of (AC + A’B). The consensus theorem has to be used in the 

elimination of BC. Thus in the interchange theorem, the consensus theorem has already 

been built in. 

 

 

 Example 3.10 

 

 Convert the sum-of-products expression (A’B + CD) to a product-of-sums. The 

distributive law (7b) is used to distribute A’B to C and D. 
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  A’B + CD = (A’B + C) (A’B + D) 

 

For each of the two expressions within the parentheses, C as well as D is again distributed 

to A’B using the same distributive law. 

 

  C + A’B = (C+ A’) (C + B) 

  D + A’B = (D+ A’) (D + B) 

Thus A’B + CD = (A’+ C) (B + C) (A’ + D) (B + D) 

 

  From the four examples given above for conversions between sum-of-products 

and product-of-sums expression, it is suggested that the collection process of the 

distributive law be used first and followed by the interchange theorem, and then the 

distribution process of the distributive law. 

 

Examples 3.7 to 3.10 and the example before Example 3.7 provide a 3-step guideline that 

can be used for conversions between sum-of-products and product-of-sums expressions. 

Note that this guideline may not be the best approach in all cases. The procedure is as 

follows: 

 

  (i)  Apply the collective process of the distributive law. 

  (ii)  Apply the Interchange theorem. 

  (iii)  Apply the distributive process of the distributive law. 

 

Ignore any step that is not applicable. Basic laws and theorems that can be used for 

simplification must be used when they are applicable in any step. 

 

 

(6) DeMorgan's theorem 

  (a) (A • B)' = A' + B' 

  (b) (A + B)' = A' • B'  

 

         Table 3.7   Proof of DeMorgan’s theorem (6a). 

 

 

A   B 

 

 

A B 

Left-hand-
side of (6a) 

(A B)’ 

 

A’   B’ 

Right-hand-
side of (6a) 
A’ + B’ 

 

A’B’ 

0    0 0 1 1     1 1 1 

0    1 0 1 1     0 1 0 

1    0 0 1 0     1 1 0 

1    1 1 0 0     0 0 0 

 

DeMorgan’s theorem is used to manipulate the inversion or complement of a Boolean 

expression. The first form of the theorem (6a) is proved in Table 3.7 using the perfect 
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induction method. The proof for the second form is left as an exercise. By comparing the 

two rightmost columns of Table 3.7, it shows that 

 

   (A B)’  A’ B’ 

 

Similarly, (A + B)’  A’ + B’  

 

  DeMorgan’s theorem is not limited to just two variables and can be extended to 

any number of variables. The general forms are as follows. 

 

 (a) (x1•x2•x3• ......... •xn-1•xn)' = x1’+x2’+x3’+ .......... +xn-1’+xn’  

 (b) (x1+x2+x3+ .......... +xn-1+xn)' = x1’•x2’•x3’+ .......... •xn-1’•xn’ 

 

  The general DeMorgan’s theorem can be proved using the induction method. To 

prove the first form (a), the starting step is to show that the theorem is true for two 

variables, which has already been established. The second step is to show that it is also 

true for three variables. 

 

     (x1•x2•x3)' = ((x1•x2)•x3)' = (x1•x2)’ + x3’ 

  = (x1’ + x2’) + x3’ = x1’ + x2’ + x3’ 

 

The first form of the 2-variable DeMorgan’s theorem is applied to the second equality in 

the above proof. Now assume the general DeMorgan’s theorem is true for (n-1) variables. 

 

 (x1•x2•x3• ......... •xn-1)' = x1’ + x2’ + x3’ + ......... + xn-1’
 

 

It is necessary to prove that the theorem is also true for n variables. 

 

         (x1•x2•x3• ......... •xn-1•xn)' 

  =  ((x1•x2•x3• ......... •xn-1)•xn)' 

  =  (x1•x2•x3• ......... •xn-1)’ + xn’ 

  =  (x1’ + x2’ + x3’ + .......... + xn-1’) + xn’ 

  =  x1’ + x2’ + x3’ + .......... + xn-1’ + xn’ 

 

The 2-variable DeMorgan’s theorem is used for the second equality. DeMorgan’s 

theorem for (n-1) variables is applied to the third equality. The second general form of 

DeMorgan’s theorem for n variables can be proved in a similar manner. 

 

 

 Example 3.11 

 

 The application of DeMorgan’s theorem is illustrated by converting the expression 

 [A’ + B(C + D’) + E]’ to a sum-of-products form. In eliminating a prime outside a pair of 

parentheses or brackets, each term within the parentheses or brackets is complemented, 

and the logical operation AND is changed to OR, or vice versa. 
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     [A’ + B(C + D’) + E ]’ 

                   =  A  [B (C + D’)]’  E’ 

           = A  [B’ + (C + D’)’]  E’ 

           = A  (B’ + C’ D)  E’ 

           =  AB’E’ + AC’DE’ 

 

  

 

3.5 Minimization of Literals 

 

 Under certain circumstances, the number of literals in a Boolean expression needs to 

be minimized. The expression with a minimum number of literals may not necessarily be 

a sum-of products or product-of-sums expression. Inversions can be applied only to 

variables if an expression is defined as one with a minimum number of literals. The 

collection process of the distributive law is useful in reducing the number of literals. The 

process may also be applied to part of an expression and the common factor is not limited 

to just a single literal. 

 

 

 Example 3.12 

 

 F(A,B,C,D) = BD + CD + A’BC + ABC’ 

 

Given above is the simplest sum-of-products form for a 4-variable function 

F(A,B,C,D). By factoring D from the first two products and B from the last two products, 

the expression becomes  

 

  D(B + C) + B(A’C + AC’) 

 

The number of literal for the given expression can also be minimized by factoring 

different literals, which results in the following two expressions.  

 

 CD + B(D + A’C + AC’) 

 

and  B(D + AC’) + C(D + A’B) 

 

Each of the three expressions has eight literals. 

 

 

 Example 3.13 

 

  F(A,B,C,D) = (A + C’) (B + D) (A’ + C + D) 
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 D is the only literal that appears more than once in the above expression. By 

collecting D from the last two sums, F becomes 

 

   F(A,B,C,D) = (A + C’) (B + D) (A’ + C + D) 

            = (A + C’) [D + B(A’ + C)] 

 

The number of literals is reduced from seven to six.  The following is another form of F 

using the interchange theorem. 

 

  F(A,B,C,D) = (A + C’) (B + D) (A’ + C + D) 

           = (B + D) (A + C’) [A’ + (C + D)] 

           = (B + D) [A’C’ + A(C + D)] 

The expression still consists of seven literals. The interchange theorem only changes the 

form of an expression. It does not reduce the number of literals. 

 

 

3.6  Duality 

 

  For all the laws and theorems of Boolean algebra introduced in this chapter, it is 

seen that each of them always occur in pairs, except the involution law and the 

interchange theorem. The relationship between the two different forms of a law or a 

theorem is called duality. One is said to be the dual of the other. The dual of a Boolean 

expression, identity, or equation can be obtained by the following transformations. 

 

    AND   OR 

    OR   AND 

    0   1 

    1   0 

 

All the variables and their complements are left intact and the order of logical operations 

is not altered by the transformations. To ensure that the order is not changed, a Boolean 

expression can be fully parenthesized. In other words, the convention that AND 

operations are performed before OR operations in the absence of parentheses cannot be 

applied. The order of operations is specified by parentheses and brackets. Mathematically, 

the dual of a Boolean expression, F
D
, can be specified as follows: 

  

    F
D
(xn-1, xn-2, …… , x2, x1, x0, 0, 1, , +) 

                          = F(xn-1, xn-2, …… , x2, x1, x0, 1, 0, +, ) 

 

 

 Two basic laws are used to illustrate the principle of duality. 

 

    

 Laws of 0 and 1: (L3a’)   A    0   =  0 

 

 

 Laws of 0 and 1: (L3b’)   A  +  1  =  1 
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 Distributive law: (7a)  A    ( B  +  C )  =  ( A    B )  +  ( A    C ) 

 

  

 Distributive law: (7b)  A  +  ( B    C )  =  ( A  +  B )    ( A  +  C ) 

 

 

 

 Example 3.14 

 

 The dual of a Boolean expression F is obtained by fully parenthesizing the expression 

before transformation and by removing unnecessary parentheses and brackets using the 

AND/OR convention after transformation.      

 

       F  = [ A’  +  B ( C + D’ )  +  E    0 ]’    B’ 

 

F fully parenthesized:    F  = { A’  +  [ B  ( C + D’ ) ]  +  ( E    0 ) }’    B’ 

 

 

Transformation:  F
D
  = { A’     [ B + ( C  D’ ) ]    ( E  +  1 ) }’  +  B’ 

 

          =  [ A’ ( B + C D’ ) ( E + 1 ) ]’ + B’ 

 

 

 

 

Positive Logic and negative Logic 

 

  The logic values of a signal in a binary digital system are defined by two different 

voltage levels called HIGH (H) and LOW (L). As described in Section 1.1, the two levels 

denote two different states. The two states can also be represented by 0 and 1. Because 0 

and 1 may not have any numerical significance, it is not required that 0 is assigned to L 

and 1 to H. When 0 is assigned to L and 1 to H, it is referred to as "positive logic". On the 

other hand, “negative logic” will assign 0 to H and 1 to L. 

 

 

 

 

 

 

 

 

 

 

Figure 3.7   A digital circuit with three different components and un specified logic. 
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 Figure 3.7 is a circuit built from three different types of components specified by 

colors. Table 3.8 is the truth tables for these three different components. Regardless of the 

selected logic, a component that satisfies the truth table in Table 3.8(a) is always an 

inverter. If positive logic is adopted, the truth table in Table 3.8(b) is for AND gates. It 

becomes a truth table for OR gates if the adopted logic is negative.  Similarly, the truth 

table in Table 3.8(c) is for OR gates in positive logic and for AND gates in negative logic. 

The change of one logic to the other logic is equivalent to converting 0 to 1, 1 to 0, AND 

to OR, and OR to AND. Thus, when a circuit output or Boolean expression F is given for 

one type of logic, the output or the Boolean function F for the other type of logic is the 

dual of F. 

 

 

  Table 3.8 Truth tables for three types of gates. 

 

(a)  (c) 

Input Output  Inputs Output 

L  H   L L L  L  

H  L   L L H  H  

   L H L  H  

   L H H  H  

(b)  H L L  H  

Inputs Output  H L H  H  

L L  L   H H L  H  

L H  L   H H H  H  

H L  L     

H H  H     

 

 

  If positive logic is applied to the circuit in Figure 3.7 and as shown in Figure 

3.8(a), the output Z is 

 

   F = vw + x’y + 0 

 

A “LOW” input to the circuit is purposely included in the circuit for illustrating the 

relationship between positive logic and negative logic. If negative logic is adopted for the 

circuit, the OR operation is replaced with an AND operation and the two OR operations 

will replace the two AND operations. The circuit for negative logic in Figure 3.7(b) is 

shown in Figure 3.8(b). 

 

   F = (v + w)  (x’ + y) 1 

 

  The two different expressions of Z show that one is the dual of the other. 
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   (a)            (b) 

 

Figure 3.8   A digital circuit with different logic.  (a) Positive logic.  (b) Negative logic. 
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PROBLEMS 

 

 

1. Find the truth table for each of the following expressions. 

 

 (a) f(A,B,C,D) = AC’ + CD’ + B(AC + BD) 

 (b) f(A,B,C,D) = A(B + C’) + A’B’C’D’ + A’(BD + C) 

 (c) f(A,B,C,D) = (AB + C’D’)(C + A) + A’CD’ 

 

2. Simplify each of the following expressions to a single literal or constant value using 

Boolean algebra. 

 

 (a) ABC + B’CD + C 

 (b) B’ + B’(A’ + CD + CE’) 

 (c) (A’ + A + BCD)(A + A’ + B’C’D’) 

 (d) ABC + AB’ + AC’ 

 

3. Simplify each of the following expressions to a sum-of-products or product-of-sums 

expression using Boolean algebra. 

 

 (a) ABC’+ C 

 (b) AB + B’CD + BCD 

 (c) A(B’ + C’)  + A(B + C) + B + C 

 (d) A’B’ + AB’ + BC’D’ 

 

4. Minimize the number of literals in each of the following expressions using Boolean 

algebra. 

 

 (a) x’y’ + xy + xy’ 

 (b) x’y’ + (xy)’ + xy’ 

 (c) x’y’ + (x’y’)’ + xy’ 

 (d) x’y’ + xy + x’y 

 

5. Minimize the number of literals in each of the following expressions using Boolean 

algebra. 

 

 (a) f(a,b,c,d) = [(a + bc’)(a + c’d’) + ab]’ 

 (b) f(a,b,c,d) = [ a + b’ + (ab’ + cd’)(c + ab)]’ 

 (c) f(a,b,c,d) = (abc’ + d)’ (a’d + b)’ 

 (d) f(a,b,c,d) = [(a’b’ + ab)’ + (a + b’ + c)’]’ 

 

6. Minimize the number of literals in each of the following expressions using Boolean 

algebra. 

 

 (a) (w’ + y’)(y’ + xz)(y’ + x) 

 (b) a’bc + ab + bcd’ 

 (c) (ad’ +c)(a +d)(d’ + c) + bc 
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7. Simplify each of the following switching expressions to a simplest sum-of-products 

  expression. Use consensus theorem if necessary. 

 

 (a) ab + ab’d + a’cd 

 (b) ab’ + a’b’d’ + bc’d’ + abcd’ 

 (c) a’bd  + a’bc + bcd’ 

 (d) abc + a’b’c’ + a’c’d + b’c 

 

8. Prove the validity of the following equation using 

 (a) Perfect induction method. 

 (b) Compact truth table method. 

 (c) Consensus theorem. 

 

   A’B + AC + B’C’ = A’C’ + BC + AB’ 

 

9.  Simplify each of the following expressions to a sum-of-products expression. 

 

 (a) (a + b) (a + c) (a’ + c’ + bd’) 

 (b) d (c’ + abd) (ac’ + bc) 

 (c) (abc’ + d)(bd + a’)(a’ + b + c) 

 

10. Simplify each of the following expressions to a product-of-sums expression. 

 

 (a) (a + c) (a + c’ + b) (a + c’ + d’) 

 (b) d (c’ + abd) (ac’ + b) 

 (c) (a + bc’d)(ad + d’)( b + c + d’) 

 

11. Find the dual for each of the following expressions. (Do not simplify the expression 

and the result). 

 

 (a) a b c + [ e (d' + c') + a'] 

 (b) a b d + c' (a' b' + 0 + d') 

 (c) (w' x + 1) (y z + u) + u' w' (y + x) 

 

12. Each of the following expressions is the output of a circuit using negative logic. 

What should the output be if positive logic is adopted? 

 

 (a) abc' + bcd +a'c'd' 

 (b) a (b' + d) + a'c' (b + e) 

 (c) d' [ (a' + c)(b' + c') ] + a d 

 

13. Convert each of the following expressions to a simplest sum-of-products expression. 

 

 (a) (a + b + c)(a’ + b’ + c)(c + d’) 

 (b) (a + b + c' ) (a + b' + d) (b' + d' ) 

 (c) (w + x + y' ) ( w' + x' + y' ) (y' + z) (u' + x + y' ) 
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14. Convert each of the following expressions to a simplest product-of-sums expression. 

 

 (a) a' c' + a b' d  

 (b) a' b' c' + b' d + b d' 

 (c) ab’c’ + a’bc’ + b’cd’ + bd  

  

  


