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CHAPTER 10 
 

SYNCHRONOUS SEQUENTIAL CIRCUITS 

 

 

 

 Registers and counters, two very common synchronous sequential circuits, are 

introduced in this chapter. Register is a digital circuit for storing information. Contents of 

registers can also be manipulated for purposes other than storage. A counter is a device 

that performs state transitions. Analysis and synthesis of synchronous sequential circuits 

are also introduced in this chapter. 

 

 

 

10.1  Registers 

 

 An n-bit register is a circuit that can store n bits of information. Every bit in a 

register is assigned a position number. The position numbers ranges from 0 to n-1, with 0 

assigned to the rightmost bit and incremented toward the left. Since a flip-flop can store 

one bit of information, a register can be constructed from n flip-flops. Figure 10.1(a) 

shows the bit positions and the contents of a 4-bit register. The contents are Q2Q2Q1Q0. 

Figure 10.1(b) shows the circuit of a 4-bit register. When a 4-bit data a3a2a1a0 is applied to 

the inputs of the four D flip-flops, they will be stored in the register when the flips-flops 

are triggered by the positive edge of a clock pulse. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.1   (a) Notation for a 4-bit register. (b) Circuit for a 4-bit register. 

 

 The usage of a register is limited if it can only store information. A shift register 

not only can store information but also can shift its contents to either right or left. The 

operation of a 4-bit shift-right register is shown in Figure 10.2(a). A circuit diagram for 

this register is given in Figure 10.2(b). Q3Q2Q1Q0 can be shifted to the right one bit in 

each clock cycle. SRin is an external bit shifted into position 3. Q0 is lost after the shift.  
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The contents are SRin Q3Q2Q1after shifting. If Q0 is connected to the D input of the 

leftmost flip-flop, i.e. SRin = Q0, the contents will be Q0Q3Q2Q1 after shifting. This is 

called a right rotation. Implementation of a shift-right register is simple. As shown in 

Figure 10.2(b), the output of one flip-flop is connected to the input of the next (less 

significant) flip-flop. 

 

 

Figure 10.2    (a) Operation of a 4-bit 

                      shift-right register.  

                      (b) Circuit of register. 

                               

 

 

 

 

 

 

 

 

 

 

 

 A universal 4-bit shift-register that performs four different functions is introduced. 

The four functions are hold, shift right, shift left, and parallel load. The function “hold” 

leaves the contents of the register intact after the register is triggered by a clock pulse. 

Parallel load allows a 4-bit data to be loaded into the register following the positive edge 

of a clock pulse. The functions and the contents of the register after being triggered by a 

clock pulse are listed in Table 10.1. The function to be executed is defined by two 

selection signals s1 and s0. 

 

Table 10.1   Function table for a 4-bit universal shift register. 

 

 

Function 

 

s1 s0 

Contents 

Bit position 

3           2           1           0 

Hold 0  0 Q3  Q2 Q1 Q0 

Shift right 0  1 SRin 

 

Q3

 

Q2

 

Q1

 

Shift left 1  0 Q2 

 

Q1

 

Q0

 

SLin

 

Parallel load 1  1 a3  a2 a1 a0 

 

 

Figure 10.3 is a design of the universal 4-bit shift register. A 4-to-1 multiplexer is 

used to select the data to be stored in each flip-flop. The right column in Table 10.1 lists  
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the contents of the register after an operation has been carried out. Therefore they are the 

inputs to the multiplexers as shown in Figure 10.3. SLin is an external bit shifted into 

position 0 for left-shift. a3a2a1a0 is a 4-bit data to be loaded into the register. 

  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.3   Design of a 4-bit universal shift register. 
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clock 

Q2 

Q1 

Q0 

State       000         110         001         100        101         011        000       110 

10.2 Counters 

 

 A counter is a synchronous sequential circuit that can generate a sequence of 

numbers or states. The sequence can be in descending, ascending, or random order. 

Figure10.4 is the state diagram of a counter of six different states. It is called a 6-state 

counter. The sequence is repeated every six clock cycles. Assume 000 is the initial state, 

followed by five other states in the order of 110, 001, 100, 101, and 011. The three binary 

values are the outputs Q2, Q1, and Q0 of three flip-flops used to implement the counter. 

The timing diagrams for the counter are shown in Figure 10.5. 

 

 
         
 

 

 

  
                                                        
 

 

Figure 10.4   State diagram of a 6-state counter. 

 

 

 

                

 

  

       

   

 

       

 

 

      

 

 

 

Figure 10.5   Timing diagram of the 6-state counter in Figure 10.4. 
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Ring Counter 

 

 In a ring counter, each state is represented by one flip-flop. An n-state ring counter 

requires n flip-flops. In each state, only one flip-flop output is asserted and all the others 

are de-asserted. In other words, only one flip-flop output is 1 and all the other flip-flop 

outputs are 0. Table 10.2 is the state assignment table for a 4-bit or 4-state ring counter. 

The four states are named T0, T1, T2, and T3. State assignment is to assign a combination 

of flip-flop output values to a state, or vice versa. The state diagram of the 4-bit ring 

counter is shown in Figure 10.6. The asserted output is shifted from left to right and  

 

Table 10.2  State assignment table for a 4-state ring counter 

 

State Q0 Q1 Q2 Q3 

T0 

T1 

T2 

T3

 

1   0   0   0 

0   1   0   0 

0   0   1   0 

0   0   0   1

 

 

 

 

              
 
                   
 
 

 

Figure 10.6   State diagram of a 4-state ring counter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.7   Circuit diagram for a 4-bit ring counter. 
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is rotated to the leftmost position from the rightmost position. The state transition is T0  

T1  T2  T3  T0 ……. Figure 10.7 is the circuit diagram for the 4-state ring counter. 

Note that it is essentially a right-rotate register. Asynchronous clear (C) and preset (P) are 

used to initialized the counter to the initial state T0 by applying a positive pulse to the 

“Reset” input. All asynchronous preset and clear inputs are de-asserted during normal 

counting. 

 

 

 

10.3 Analysis of Synchronous Sequential Circuits 

 

 Analysis is the reverse of synthesis or design. It is a process to understand the 

function of a circuit. Two models of synchronous sequential circuits are used to show the 

procedure in analysis. 

 

 

Moore Model 

 

 The circuit diagram for a synchronous sequential circuit of Moore model is given 

in Figure 10.8. The circuit has one input x, one output Z, and two JK flip-flops. The 

combinational portion of the sequential circuit consists of one AND gate and one XOR 

gate. The analysis can be carried out in a number of steps. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.8   Synchronous sequential circuit of Moore model for analysis. 

 

Step 1: Write the excitation and output functions. 

 

  J2 = x  K2 = x Q1’ 

J1 = x  K1 = x  Q2’ 

Z = Q2’Q1 

 

Step 2: Substitute the excitation functions into the characteristic equations for the two 

flip-flops to get the next-state equations.       
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   Q2
+
 = J2Q2’ + K2’Q2  = xQ2’ + (x Q1’)’Q2 = xQ2’ + x’Q2 + Q2Q1 

 

  Q1
+
 = J1Q1’ + K1’Q1  = xQ1’ + (x  Q2’)’Q1 = xQ1’ + x’Q2Q1 + xQ2’Q1 

     

Step 3: Convert the next-state equations to next-state maps. 

 

 

 

 

  

 

 

 

 

 

Figure 10.9   Next-state maps. 

 

Step 4: Convert the next-state maps to a table. The table is called a transition table 

because it shows the transition from present states to next states. If the output is 

also included in the table, it is called a transition/output table. 

 

Table 10.3   Transition/output table. 

 

 

Q2Q1 

Q2
+
 Q1

+ 
 

Z 
x = 0 x = 1 

0 0 0 0 1 1 0 

0 1 0 0 1 1 1 

1 1 1 1 1 0 0 

1 0 1 0 0 1 0 

 

Step 5:  Replace the states in the transition/output table using the state assignment in 

Table 10.4. The transition/output table is converted to a state/output table. 

 

           Table 10.4  State assignment.                    Table 10.5  State/output table. 
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Z 
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0  0 A A A C 0 

0  1 B B A C 1 
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Step 6: Convert the state/output table to a state diagram. 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.10   Moore model state diagram. 

  

 

  In this example, the output of the circuit is a function of Q2 and Q1. It does not 

depend on the present input of x. Therefore the output is placed together with the state 

name inside the circle. A synchronous sequential circuit is called a Moore model machine 

if the outputs are functions of the present state but not of the present inputs. A 

synchronous sequential circuit with a finite number of states is also called a finite-state 

machine. 

 

 

Mealy Model 

 

 The circuit in Figure 10.11 is a sequential circuit of Mealy model. The output of 

this circuit depends on the present state as well as the present input x. The procedure for 

analyzing a Mealy model machine and a Moore model machine are the same, except 

some minor differences due to different types of outputs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.11   Synchronous sequential circuit of Mealy model for analysis. 

 

 

 

 

Q1 

Q2 
D Q 

 
Q’ 

T Q 
 
Q’ 

x 

clock 

Z 

0 
0 

0 0 

1 

1 

A/0 B/1 

D/0 C/0 

1 

1 



 177 

Step 1: Write the excitation and output functions. 

 

  D2 = (x Q2’)’Q1 

T1 = x  Q2’ = (x  Q2’)’ = x  Q2 

Z = xQ2Q1’ 

 

Step 2: Substitute the excitation functions into the characteristic equations to get the next-

state equations.  

 

Q2
+
 = D2  = (xQ2’)’Q1 = x’Q1 + Q2Q1 

 

 Q1
+
 = T1  Q1 =  x  Q2  Q1 

 

Step 3: Convert the next-state equations to next-state maps. Q1
+
 is the same as the        

function in Example 5.6. 

 

 

 

 

 

 

 

 

  

 

Figure 10.12   Next-state maps. 

 

Step 4: Convert the next-state maps to a transition/output table. Note that the values of Z 

do not have to be listed separately. They are placed next to the values of Q2
+
Q1

+
 

because Z is also a function of Q2, Q1, and x.  

 

Table 10.6   Transition/output table. 

 

 

Q2Q1 
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+
 Q1

+
, Z 

x = 0 x = 1 

0 0 0 0,  0 0 1,  0 

0 1 1 1,  0 0 0,  0 

1 1 1 0,  0 1 1,  0 

1 0 0 1,  0 0 0,  1 
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Step 5:  Convert the transition/output table to a state/output table using the state 

assignment in Table 10.7. 

 

          Table 10.7  State assignment.                    Table 10.8  State/output table. 

 

 

Q2Q1 

 

State 

 Present 

state 

Next state, output 

x = 0 x = 1 

0 0 A A A, 0 B, 0 

0 1 B B C, 0 A, 0 

1 1 C C D, 0 C, 0 

1 0 D D B, 0 A, 1 

 

Step 6: Convert the state/output table to a state diagram. Because Z is a function of the 

present state and the input x, its values are placed after x and separated by a slash. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.13   Mealy model state diagram. 

 

 

 

10.4 Design of Counters 

 

 The design of a logic circuit usually starts with a word description of the function 

or behavior of the circuit. In synchronous sequential circuit design, a state diagram is 

usually constructed first from the word description. Construction of a state diagram 

probably is the most difficult step in the design procedure. Lack of understanding in the 

behavior of a circuit may lead to an incorrect state diagram.  Sample inputs and their 

corresponding outputs may be drawn in the form of timing diagrams or in other forms to 

better understand the behavior of the circuit. The rest of the design procedure can more or 

less follow the analysis procedure in reverse order. 
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10.4.1 Counter Design 

 

 The design of an 8-state counter is given to illustrate the design procedure. The 

sequence is in the order of 0, 1, 2, 3, 4, 5, 6, 7, 0 ...... More specifically, it is called a 

modulo-8 counter. The state that is also the outputs is Q2Q1Q0. As shown in Table 10.9, a 

transition table, after being constructed from the state diagram in Figure 10.14, is 

converted to three next-state maps in Figure 10.15. The next-state equations can be 

obtained directly from the next-state maps. 

 

Q2
+ 

 = Q2’Q1Q0 + Q2Q0’ + Q2Q1’ = Q2’Q1Q0 + (Q0’ + Q1’) Q2 

          = (Q1Q0) Q2’ + (Q1Q0)’ Q2 = (Q1Q0)  Q2 

  Q1
+
 = Q1Q0’ + Q1’Q0 = Q1  Q0 

  Q0
+  

= Q0’
 

 

          Table 10.9   Transition table for 

          modulo-8 counter. 

 

Present state 

Q2Q1Q0 

Next state 

Q2
+
Q1

+
Q0

+ 

0 0 0 

0 0 1 

0 1 0 

0 1 1 

1 0 0 

1 0 1 

1 1 0 

1 1 1 

0 0 1 

0 1 0 

0 1 1 

1 0 0 

1 0 1 

1 1 0 

1 1 1 

0 0 0 

Figure 10.14   State diagram for a modulo-8 counter. 

 

 

 

 

 

 

 

 

 

Figure 10.15   Next-state maps for modulo-8 counter. 

 

The next step is to determine the excitation functions. It is necessary to decide 

what type of flip-flops to use in the design before the excitation functions can be 

determined. The use of D flip-flops will first be demonstrated because of its simple 

characteristic. 
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Design with D Flip-Flops 

 

Because the excitation is the same as the next state for D flip-flops, the excitation 

functions are available without further derivations. Figure 10.16 is the circuit diagram of 

the counter using D flip-flops. 

 

D2 = Q2
+ 

 = (Q1Q0)  Q2 

  D1 = Q1
+
 = Q1  Q0 

  D0 = Q0
+  

= Q0’
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.16  Circuit diagram for modulo-8 counter. 

 

 

Design with JK Flip-Flops by Excitation Table 

 

In analysis, the next-state equations are obtained by substituting the excitation 

functions into the characteristic equations. Q
+
 is a function of the excitations or flip-flop 

inputs and the present state Q. In design, the excitations are to be determined from Q
+
 and 

Q. The information of Q
+
 and Q is given by the next-state maps or next-state equations. 

The characteristic table for JK flip-flops provides Q
+
 if J, K, and Q are given. The 

excitation table determines the values of J and K if Q
+
 and Q are given. The excitation 

table for JK flip-flops is given in Table 10.10. From the table, it is seen that each 

combination of Q and Q
+
 values can result from two different functions of JK flip-flops. 

For example, for the transition of Q from 0 to 0, it can be either “no change” or “reset”. 

The JK values for those two functions are 00 and 01 respectively. Thus the value of J is 0. 

The value of K can be either 0 or 1, which is denoted by a don’t-care value “d”. 

 

By using the excitation table, the flip-flop inputs Ji and Ki for i = 0, 1, 2 can be 

determined as shown in Table 10.11. The first two columns are the transition table in  
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Table 10.9. To determine the excitations for state transitions, the transition from Q2Q1Q0 

= 001 to 010 is explained. For the transition of Q2 from 0 to 0, J2 = 0 and K2 = d. For Q1 

to change from 0 to 1, J1 = 1 and K1 = d.  For Q0 to change from 0 to 1, J0 = d and K0 = 1. 

After the excitations have been determined, Table 10.11 becomes the truth table for all Ji 

and Ki  after removing the high-lighted column for Q2
+
Q1

+
Q0

+
. 

 

Table 10.10   Excitation table for JK flip-flops. 

Q     Q
+ 

J     K Function 

0     0 

0     1 

1     0 

1     1 

0     d 

1     d 

d     1 

d     0 

No change (JK = 00) or reset (JK = 01) 

Set (JK = 10) or toggled (JK = 11) 

Reset (JK = 01) or toggle (JK = 11) 

No change (JK = 00) or set (JK = 10) 

 

 

                       Table 10.11   J and K excitations for a modulo-8 counter. 

Present state 

Q2Q1Q0 

Next state 

Q2
+
Q1

+
Q0

+ 
Excitations 

J2  K2 J1  K1 J0  K0 

0 0 0 

0 0 1 

0 1 0 

0 1 1 

1 0 0 

1 0 1 

1 1 0 

1 1 1 

0 0 1 

0 1 0 

0 1 1 
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1 1 0 

1 1 1 

0 0 0 

0    d 

0    d 

0    d 

1    d 

d    0 

d    0 

d    0 

d    1 

0    d 

1    d 

d    0 

d    1 

0    d 

1    d 

d    0 

d    1 

1    d 

d    1 

1    d 

d    1 

1    d 

d    1 

 1    d 

d    1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.17   K-maps for excitation functions.  
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 The K-maps for the excitation functions in Table 10.11 are plotted in Figure 10.17. 

The simplest sum-of-products expressions for the excitation functions are 

 

  J2 = Q1Q0  J1 = Q0   J0 = 1 

  K2 = Q1Q0  K1 = Q0  K0 = 1 

 

 

Design with JK Flip-Flops by Partition 

 

Design of synchronous sequential circuits with JK flip-flops using the excitation 

table is straightforward but tedious. A better method that partitions a next-state map into 

two sub-maps, one for J and one for K’, is introduced. If a synchronous sequential circuit 

consists of n JK flip-flops and A set of external inputs X, the next-state equation Qi
+ 

for 

flip-flop i is a function of all the flip-flop outputs and X. As shown below, Qi
+
 can be 

expanded to two sub-functions by Shannon’s expansion theorem. 

   

    Qi
+
(Qn1, Qn2, ..., Qi, ... , Q1, Q0, X) 

= Qi’ Qi
+
(Qn1, Qn2, ..., Qi = 0, ... , Q1, Q0, X) 

     + Qi Qi
+
(Qn1, Qn2, ..., Qi = 1, ... , Q1, Q0, X) 

 

By comparing the above equation with the characteristic equation of JK flip-flops 

which is 

 

   Qi
+
 = JiQi’ + Ki’Qi 

 

It is seen that Ji and Ki’ are in fact the two sub-functions of Qi
+
 with Qi

 
as the expansion 

variable. 

 

    Ji = Qi
+
(Qn1, Qn2, ..., Qi = 0, ... , Q1, Q0, xm1, xm2, …., x1, x0) = (Qi

+
)Qi = 0 

 

    Ki’ = Qi
+
(Qn1, Qn2, ..., Qi = 1, ... , Q1, Q0, xm1, xm2, …., x1, x0) = (Qi

+
)Qi = 1 

 

The expansion of the next-state equation for Qi is shown in the following binary diagram. 

 

 

 

 

 

 

 

 

 

Figure 10.18   Expansion of next-state equation into J and K excitations. 

 

Qi
+
(Qn1, Qn2, ..., Qi, ... , Q1, Q0, X) 

Next-state equation for flip-flop i 

Ji = (Qi
+
)Qi = 0 

 

 

   Ki’ = (Qi
+
)Qi = 1 

 

 



 183 

From the next state equations of the modulo-8 counter, which are 

Q2
+ 

 = (Q1Q0)  Q2 

  Q1
+
 = Q1  Q0 

  Q0
+  

= Q0’
 

the excitation functions can be obtained as follows:  

 

J2 = (Q2
+
)Q2 = 0

 
 = (Q1Q0)  0 = Q1Q0 

K2 = [(Q2
+
)Q2 = 1]’

 
 = [(Q1Q0)  1]’ = Q1Q0 

J1 = (Q1
+
)Q1 = 0

 
 = 0  Q0 = Q0 

K1 = [(Q1
+
)Q1 = 1]’ = (1  Q0)’ = Q0 

J0 = (Q0
+
)Q0 = 0

 
 = 1  

K0 = [(Q0
+
)Q0 = 1]’ = 1  

 

The results are identical to those using the excitation table. 

 

 

  

Design with T Flip-Flops 

 

 A T flip-flop can perform two functions, either “no change” or “toggle”. The 

excitation table can be readily constructed, as shown in Table 10.12. When Q = Q
+
, it is 

“no change”, T = 0. When Q  Q
+
, the state is “toggle”, T = 1. Therefore the excitation 

equation is 

 

   T = Q  Q
+ 

 

          Table 10.12   Excitation table for T flip-flops. 

 

Q     Q
+ 

T Function 

0     0 

0     1 

1     0 

1     1 

0 

1 

1 

0 

Hold (No change) 

Toggle  

Toggle 

Hold (No change) 

 

The excitation functions for the modulo-8 counter can be obtained by substituting the 

next-state equations into the above equation. 

  



 184 

T2 = Q2  Q2
+ 

= Q2  (Q1 Q0)  Q2 = Q1Q0 

  T1 = Q1  Q1
+
 = Q1  Q1  Q0 = Q0 

  T0 = Q0  Q0
+ 

= Q0  Q0’ = 1
 

 

 The K-maps for the excitation functions can also be derived directly from the 

next-state maps. By examining the excitation equation, it is apparent that Ti = Qi
+
 when 

Qi = 0. When Qi = 1, Ti = (Qi
+
)’. Therefore the K-map for Ti can be obtained from the 

next-state map Qi
+ 

 by complementing the portion in which Qi = 1. The K-maps for T2, T1, 

and T0 are shown in Figure 10.19. The highlighted portion in each map is the complement 

of the next-state map. 

 

 

 

 

 

 

 

 

 

Figure 10.19   K-maps for the excitations of T flip-flops. 

 

 

10.4.2 Self-Correcting Counter 

 

The state diagram for a 6-state counter is given in Figure 10.20. The transitions of 

states are not in descending or ascending order. It is a random order. Three flip-flops are 

required in the implementation of this counter. States 2 and 7 are not used. They are 

called unused or invalid states. If for any reason the counter starts from an unused state or 

goes astray to one of the unused states, it should be able to return to the normal count 

sequence. Such a counter is said to be self-correcting. 

 

 Table 10.13 is the transition table. The next-state of an unused state is a 

don't-care state. Next-state verification for the two unused states is required at the 

completion of design to ensure that the counter is self-correcting. The following 

excitation functions are obtained from the next-state maps in Figure 10.21 if D flip-flops 

are used. 

 

 D2 = Q2
+ 

 = Q2’Q1’ + Q1’Q0’ 

   D1 = Q1
+
  = Q2’Q0’ + Q2Q0 = (Q2  Q0)’ 

   D0 = Q0
+  

= Q2 
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        Table 10.13   Transition table for a 

                 6-state self-correcting counter. 

 

Present state 

Q2Q1Q0 

Next state 

Q2
+
Q1

+
Q0

+ 

0 0 0 

0 0 1 

0 1 0 

0 1 1 

1 0 0 

1 0 1 

1 1 0 

1 1 1 

1 1 0 

1 0 0 

d d d 

0 0 0 

1 0 1 

0 1 1 

0 0 1 

d d d 

 

 

 

 

 

 

 

 

 

 

Figure 10.21   Next-state maps for the 6-state self-correcting counter. 

 

The next-state of an unused state can be determined by substituting the values of 

Q2Q1Q0 into the above equations. An easier approach is to examine the groupings of 1-

cells on the next-state maps. A don’t-care value is equal to 1 if it is grouped with 1-cells. 

Otherwise it is 0. Examination of the don’t-care values on the next-state maps shows that 

the next states of 010 and 111 are 010 and 011 respectively. If the counter happens to be 

in the state 010, it will stay in this state forever and cannot return to the normal sequence. 

Since the counter is not self-correcting, a different design is necessary.  

 

 

 

 

 

 

 

 

 

Figure 10.22   Re-design of the 6-state self-correcting counter. 

 

 In re-designing the counter, the don’t-care terms on the next-state map Q1
+
 are left 

out in grouping. The groupings for Q2
+ 

and Q0
+ 

remain unchanged. The excitation 

function D1 is
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Figure 10.20   State diagram for a 6-state 

                           self-correcting counter. 
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   D1 = Q1
+
  = Q2’Q1’Q0’ + Q2Q1’Q0 = Q1’(Q2  Q0)’ 

 

The next-states of 010 and 111 are now 000 and 001 respectively. Thus the counter is 

self-correcting. 

 

 To implement the counter using JK flip-flops, each of the next-state maps in 

Figure 10.21 is partitioned into two sub-function maps as shown in Figure 10.23. The K-

maps in the second row of Figure 10.24 are the K-maps for K2’, K1’, and K0’. They are 

inverted to the K-maps for K2, K1, and K0 in the third row of the figure. The excitation 

functions are 

 

 J2  = Q1'     K2 = Q1 + Q0 

J1  = Q2’Q0’ + Q2Q0 = (Q2  Q0)’  K1 = 1 

J0  = Q2     K0 = Q2’ 

 

 

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 There are various ways to determine the next-states of the two unused states. One 

of them is to find the next state from the following next-state equations. 
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Figure 10.23   K-maps for JK excitations. 



 187 

Q2
+
 = J2Q2’ + K2’Q2  = Q1

’
Q2’ + (Q1 + Q0)’Q2 = Q2’Q1’ + Q2Q1’Q0’ 

 

 Q1
+
 = J1Q1’ + K1’Q1  = (Q2  Q0)’Q1’ + (1)’Q1 = Q2’Q1’Q0’ + Q2Q1’Q0 

 

 Q0
+
 = J0Q0’ + K0’Q0  = Q2 Q0’ + Q2Q0 = Q2 

 

By substituting Q2Q1Q0 by 010 in the next-state equations, Q2
+
Q1

+
Q0

+
 = 000. With 

Q2Q1Q0 = 111, the values of Q2
+
Q1

+
Q0

+
 in the next-state equations are 001. 

 

 

Up-Down Self-Correcting Counter 

 

 The state diagram shown in Figure 10.24 is another example of a 6-state counter. 

However, the state transitions can also be in the reverse direction. It is called an up-down 

counter. Up-count and down-count are controlled by an external signal C. When C = 0, 

the counting is in the up or forward direction. When C = 1, the counting is in the down or 

backward direction. Next states are determined not only by present states but also by C.  

The transition table is given in Table 10.14. The next-state maps are shown in Figure  

10.25. The counter is implemented using T flip-flops. The K-maps for T2, T1, and T0 are 

obtained from the next-state maps in Figure 10.25 using the method developed in Section 

10.4.1 and shown in Figure 10.26.  The highlighted cells are the complements of the 

corresponding cells in Figure 10.26. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.24    State diagram for a 6-state up-down counter. 

 

 

The K-maps for the excitations in Figure 10.27 show high contents of XOR. 

 

 T2 = C’Q1Q0 + CQ1’ Q0 = Q0 (C  Q1) 

 

  T1 = (C + Q1 + Q0’) (C’ + Q1 + Q0) = Q1 + (C  Q0)’ 

 

  T0= (C + Q1’ + Q0’) (C’ + Q1 + Q0’) = Q0’ + (C  Q1)’ 
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                      Table 10.14   Transition table for a 6-state up-down counter. 

 

Present state 

Q2Q1Q0

 
Next state   Q2

+
Q1

+
Q0

+
 

C = 0 C = 1 

0 0 0 

0 0 1 

0 1 0 

0 1 1 

1 0 0 

1 0 1 

1 1 0 

1 1 1 

0 1 1 

0 0 0 

d d d 

1 0 1 

1 1 1 

1 0 0 

d d d 

0 0 1 

0 0 1 

1 1 1 

d d d 

0 0 0 

1 0 1 

0 1 1 

d d d 

1 0 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.25    Next-state maps for a 6-state up-down counter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.26   T excitations for the 6-state up-down counter in Figure 10.26. 

 

 

 The next states of the unused states can be read off directly from the K-maps for 

the excitations T2, T1, and T0. Note that the values for the highlighted cells in Figure 

10.26 should be complemented. The next-state maps obtained from Figure 10.26 are 
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shown in Figure 10.27.  The next-states of the two unused state read from Figure 10.27 

are as follows. They are independent of the value of C.  

 

   Q2Q1Q0 = 010  Q2
+
Q1

+
Q0

+
 = 001 

   Q2Q1Q0 = 110  Q2
+
Q1

+
Q0

+
 = 101 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 10.27    Next-state maps for a 6-state up-down counter after design. 

 

 

 

 

10.5 Synthesis of Synchronous Sequential Circuits 

  

In the design of a counter, the state diagram can be constructed very easily from a 

given counting sequence. In general, such is not the case for a synchronous sequential 

circuit. Sometimes, it is helpful to understand the problem by generating a sample input 

sequence and its corresponding output sequence. A bit-sequence detector or recognizer is 

used as an example. A bit-sequence detector is a synchronous sequential circuit to detect 

a specific sequence applied to a single input x. One bit is inputted to the circuit in each 

clock cycle. When a specific input sequence is detected, the output of the circuit becomes 

1; otherwise the output is 0. The sequence to be detected in this example is a 3-bit 

sequence 101. After a sequence of 101 is detected, the circuit starts to detect the next 

sequence. No part in one sequence can be used as part of the next sequence. This is 

referred to as a non-overlapping sequence. The designs for both Moore model and Mealy 

model will be illustrated. 

 

   

Moore Model 

 

 A sample sequence of input x and its corresponding output Z are listed in Table 

10.15. All sequences of 101 are highlighted. The output will not become 1 until the clock 

cycle after the sequence has been detected. If Z becomes 1 in the same clock cycle as the 

third bit, the output is a function of the input. This is then a Mealy model. For instance, if 

Z = 1 in clock cycle 7 because of the input sequence in clock cycles 5, 6, and 7, what is 
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the value of Z in clock cycle 7 if the input x is 0 in clock cycle 7? Z will be 0, not 1. The 

value of Z in clock cycle 7 now depends on the value of x. 

 

 

Table 10.15   Sample input/output sequence for a Moore model bit-sequence detector. 

  

Clock cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Input x 1 1 0 0 1 0 1 0 1 0 1 1 0 1 …. 

Output Z 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 

 

 

 Before constructing the state diagram, it is realized that four different conditions 

may occur during detection.  

 

 Condition A: Nothing has been detected, not even the first bit of the sequence. 

 Condition B: The first bit, 1, has been detected. 

 Condition C: The first two bits, 10, have been detected. 

 Condition D: All three bits, 101, have been detected. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.28  State diagram for a circuit of Moore model to detect 101. 

 

Therefore, the minimum number of states is four. Sometimes, a state diagram with extra 

states may be constructed. The state diagram may still be correct. But this will increase 

the amount of components to be used. For example, four states can be represented by two 

flip-flops. Five states require three flip-flops. For one state diagram with six states and 

another with eight states, both need three flip-flops. However, the one with six states has 

two unused states, the next states of which are don’t-care states. With more don’t care 

terms on the next-state or excitation maps, the excitation functions may be simpler.  

 

Various techniques can be used to minimize a state diagram. But it is not the topic 

in this chapter. Since the behavior of a synchronous sequential circuit can be described by 

a finite number of states. It is also called a finite-state machine. 
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 The state diagram for the bit sequence detector is constructed in Figure 10.28 

based on the four conditions. The state diagram is converted to a state/output table in 

Table 10.16. The next step is state assignment. For the four combinations of flip-flop 

output values, 00, 01, 10, and 11, one of them is assigned to state A. There are four 

choices. After one of them is selected for A, there are three combinations left for state B.  

Then there will be two combinations left for state C. Finally, only one combination is left 

for state D. Thus, there are 4321 = 24 different ways to assign the four combinations 

of values to the four states. A good assignment will reduce the amount of components 

used to realize the circuit. The topic of how to get a good state assignment is not covered 

here. A random assignment as the one in Table 10.4 is used. The state/output table is 

transformed to a transition/output table in Table 10.17. The next-state maps are shown in 

Figure 10.29. They are partitioned to obtain the JK excitations in Figure 10.30. A circuit 

diagram is given in Figure 10.31. 

 

J2  = x’Q1   K2 = (xQ1)’ 

J1  = x    K1 = Q2 

Z  = Q2Q1’ 

 

      Table 10.16    State/output table for               Table 10.17   Transition/output table for 

        bit-sequence detector.       bit-sequence detector. 
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state 

Next state  
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Q2Q1 
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+
 Q1
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Z 
x = 0 x = 1  x = 0 x = 1 

A A B 0  0 0 0 0 0 1 0 

B C B 0  0 1 1 1 0 1 0 

C A D 0  1 1 0 0 1 0 0 

D A B 1  1 0 0 0 0 1 1 
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Figure 10.29  Next-state maps for the bit sequence detector. 
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Mealy Model 

 

 To design the bit sequence detector for 101 as a Mealy model, a sample 

input/output sequence is given in Table 10.18. Overlapping is not allowed.  

 

Table 10.18   Sample input/output sequence for a Mealy model bit-sequence detector. 

  

Clock cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Input x 1 1 0 0 1 0 1 0 1 0 1 1 0 1 …. 

Output Z 0 0 0 0 0 0 1 0 0 0 1 0 0 1 …. 
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+
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Figure 10.30  K-maps for the excitations of the bit sequence detector. 
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Figure 10.31   Sequential circuit of Moore model to detect a sequence of 101. 
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 For Mealy model, the output becomes 1 in the same clock cycle when the third bit 

of the sequence 101 is detected. There is no need to wait until the next clock cycle to 

generate an output of 1 and it saves one state. The three conditions required for a Mealy 

model are  

 

 Condition A: Nothing has been detected, not even the first bit of the sequence. 

 Condition B: The first bit, 1, has been detected. 

Condition C: The first two bits, 10, have been detected. If present input x = 0, Z 

= 0. If x = 1, Z = 1.  

 

The state diagram based on the above conditions is plotted in Figure 10.32. 

The state diagram is converted to a state/output table in Table 10.19. By using the 

following state assignments  

 

Q2Q1 = 00 for states A  

Q2Q1 = 10 for states B  

Q2Q1 = 11  for states C  

Q2Q1 = 01  Unused state  

 

the state/output table is converted to the transition/output table in Table 10.20. Note that  

 

 

 

 

 

 

 

 

 

 

 

Figure 10.32  State diagram of a Mealy model circuit for detecting a sequence of  101. 

 

           

  Table 10.19    State/output table                   Table 10.20   Transition/output table  

    for bit-sequence detector.    for bit-sequence detector. 
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    0 1 d d, d d d, d 
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The transition/output table is further converted to two next state maps and the K-map for 

Z in Figure 10.33, from which the following excitation and output functions are obtained. 

A circuit diagram is given in Figure 10.34. 

 

J2  = x    K2 = Q1 

J1  = x’Q2   K1 = 1 

Z  = xQ1 

 

 

 

 

 

 

 

 

 

Figure 10.33  Next-state maps and output K-map. 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

Figure 10.34   Sequential circuit of Mealy model to detect a sequence of 101. 

 

 

 

Overlapping of Sequences 

 

If overlapping is allowed in the detection of the sequence 101, the state diagrams 

for Moore model and Mealy model can be easily modified. For Moore model, state D 

represents the following situation. A sample input/output sequence for Moore model with 

consideration of overlapping is given in Table 10.19. 
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Table 10.19   Sample input/output sequence for a Moore model bit-sequence 

detector with overlapping. 

  

Clock cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Input x 1 1 0 0 1 0 1 0 1 0 1 1 0 1 …. 

Output Z 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 

 

Condition D: All three bits, 101, have been detected. It is a state for the third bit of the 

sequence just detected and for the first bit of the next sequence. 

 

Therefore, if the input x is 0 in state D, the first two bits of the next possible sequence, 10, 

have been detected. The next state should then be C. If the input x is 1 in state D, the 

second 1-bit of the previous sequence can be ignored because only one 1-bit is needed for 

the first bit of a new sequence. Thus the transition is from state D to state B. The 

modified state diagram for Moore model is given in Figure 10.35. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.35  Moore model state diagram for overlapping sequences. 

 

To modify the state diagram to allow overlapping for Mealy model, a sample 

input/output sequence is shown in Table 10.29. Condition C is explained below. 

 

Condition C: The first two bits, 10, have been detected. If the present input x = 0, 

Z = 0. If x = 1, Z = 1. When x = 1, it also serves as the first bit of 

the next sequence and the next state is state B. 

 

Table 10.20   Sample input/output sequence for a Mealy model bit-sequence 

detector with overlapping. 

  

Clock cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Input x 1 1 0 0 1 0 1 0 1 0 1 1 0 1 …. 

Output Z 0 0 0 0 0 0 1 0 1 0 1 0 0 1 …. 

 

1 
0 

0 

1 

1 

0 

A/0 B/0 

D/1 C/0 

0 

1 



 196 

The modified state diagram is given in Figure 10.36. 

 

 

 

 

 

 

 

 

 

 

Figure 10.36  Mealy model state diagram for overlapping sequences. 

 

 

 

 

 

 

PROBLEMS 

 

 

1. Analyze the synchronous sequential circuit in Figure P10.1 using the following state 

assignment:                  

    Q1Q0  

   A:  0 0 

   B:  0 1 

   C:  1 1 

   D:  1 0 

 

2. Repeat Problem 1 for the synchronous sequential circuit in Figure P10.2. 
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 Figure P10.2 

 

 

 

 

 

 

 

3. Given below are the excitation and output functions of a Moore model synchronous 

sequential circuit. 

 

 J1 = (xQ0’)’ K1 = x + Q0 T0 = x Q1 + x’Q0 Z = Q1 Q0’ 

 Analyze the synchronous sequential circuit. 

 

4. Given below is the transition table for an 8-state counter known as Johnson counter. 

Realize the counter using D flip-flops. 

 

Q0 Q1 Q2 Q3 Q0
+

 Q1
+
 Q2

+
 Q3

+ 

0   0   0   0 

0   0   0   1  

 

0   0   1   1 

0   1   1   1 

1   0   0   0 

1   1   0   0 

1   1   1   0 

1   1   1   1

 

1   0   0   0 

0   0   0   0 

0   0   0   1 

0   0   1   1 

1   1   0   0 

1   1   1   0 

1   1   1   1 

0   1   1   1 

 

5. Given below are the state table and state assignment for a synchronous sequential 

circuit. Realize the circuit using D flip-flops. 

 

State assignment 

Q2 Q1Q0 
Present state Next State, output 

x = 0 x = 1 

0 0 0 

0 0 1 

0 1 0 
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6. Realize the following Moore model state table using (a) D flip-flops, (b) JK flip-

flops. 

 

State 

assignment 

Q1Q0 

Present state Next state Output 

Z x = 0 x = 1 

0 0 

0 1 

1 1 

1 0 

A 

B 

C 

D 

B 

B 

A 

A 

C 

C 

D 

D 

0 

1 

0 

1 

 

7. Realize the following state table using (a) D flip-flops, (b) T flip-flops, and (c) JK 

flip-flops. 

 

State 

assignment 

Q1Q0 

Present state Next state, output 

x = 0 x = 1 

0 0 

0 1 

1 1 

1 0 

A 

B 

C 

D 

A, 0 

C, 0 

D, 0 

B, 1 

B, 0 

B, 0 

B, 0 

A, 0 

 

8. Realize the following state table using JK flip-flops. 

 

State assignment 

Q2 Q1Q0 
Present state Next State, output 

x = 0 x = 1 

0 0 0 

1 0 1 

1 0 0 

0 0 1 

0 1 0 

1 1 0 

A 

B 

C 

D 

E 

F 

B, 0 

A, 0 

D, 1 

B, 1 

C, 0 

E, 0 

D, 0 

C, 1 

C, 0 

E, 1 

A, 0 

F, 1 

 

9. Construct a state diagram for a synchronous sequential circuit that detects an input 

sequence of 1010. The output z is 1 when the sequence is detected. Otherwise z is 0. 

Sequences are allowed to overlap. A sample input/output is given below. 

 

  Input x 001011110100111010100100 

  Output z 000000000001000000101000 

 

10. Design a synchronous sequential circuit of Moore model that recognizes the input 

sequence 110. The output Z is 1 when the sequence is detected. Otherwise Z is 0. 

Use D flip-flops in the realization. A sample input/output is given below. 

 

  Input x 00101111010011001110010 

  Output z 00000000010000010000100 
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11. Design the bit-sequence recognizer in Problem 10 as a Mealy model machine. 

 

12. Design a synchronous sequential circuit of Moore model that recognizes the input 

sequence 1100. When the sequence is detected, the output z becomes 1. z will 

return to 0 after two consecutive 1’s are detected. The circuit will then start the 

detection of the next 1100 sequence. Use T flip-flops. A sample input/output 

sequence is given below. 

 

  Input x 001011001011010011001110010 

  Output z 0000000011110000000011000000 

 

 

 

 


