
92.530 Applied Mathematics I: Solutions to
Homework Problems in Chapter 7

• 7.26 (c) If you begin by subtracting 20 from the function, it becomes an odd

function, leading to a sine series.

• 7.26(d) Since the period is given as 2L = 6, we seek a Fourier series of the

form
a0

2
+

∞∑
n=1

an cos(
nπ

3
x) +

∞∑
n=1

bn sin(
nπ

3
x).

Using integration by parts once, we calculate

an =
1

3

∫ 3

−3
f(x) cos(

nπ

3
)dx =

1

3

∫ 3

0
2x cos(

nπ

3
)dx

and find that

an = 6
(cos(nπ)− 1)

(nπ)2
.

Also

a0 =
1

3

∫ 3

0
2xdx = 3.

Similarly,

bn =
1

3

∫ ∞
0

2x sin(
nπ

3
x) = −6

cos(nπ)

nπ
.

• 7.27 In part (a), the discontinuities are at x = 2, and again at every point

having the form x = 2 + 2m, for any integer m. The Fourier series converges to

0, the mean of 8 and −8, at these discontinuity points. In part (b), f(x) has no

discontinuities. In part (c), f(x) has a discontinuity at x = 0, and again at every

point of the form x = 10m, for any integer m. The Fourier series converges, at

these points of discontinuity, to the value 20. Finally, in part (d), f(x) has a

discontinuity at x = 3 and again at every point of the form x = 3+6m, for any

integer m. The Fourier series converges, at these points of discontinuity, to the

value 3.
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• 7.29 When we extend f(x) periodically, with period 2L = π, we get an odd

function. Therefore, its Fourier series is automatically a sine series,

∞∑
n=1

bn sin(2nx),

with

bn =
2

π

∫ π

0
cos(x) sin(2nx).

Using integration by parts twice, we find that∫ π

0
cos(x) sin(2nx)dx =

4n

4n2 − 1
.

• 7.30 When we extend f(x) so that the period is 2L = π, the resulting function

is odd. Therefore, its Fourier series is just a sine series, and, in fact, is the same

series we obtained in the previous exercise.

• 7.42 We need to find constants a0, a1, a2, a3, a4, and a5 so that∫ 1

−1
a0(a1 + a2x)dx = 0,

∫ 1

−1
a0(a3 + a4x + a5x

2)dx = 0,

and ∫ 1

−1
(a1 + a2x)(a3 + a4x + a5x

2)dx = 0.

Notice that we can assume, for simplicity, that a0 = a2 = a5 = 1, and then

normalize at the end. We want

0 =
∫ 1

−1
(a1 + x)dx = a1x|1−1 + x2|1−1 = 2a1 + 0,

so a1 = 0. Also, we want

0 =
∫ 1

−1
(a3 + a4x + x2)dx = 2a3 +

2

3
,

so a3 = −1
3
. Finally, we want

0 =
∫ 1

−1
x(
−1

3
+ a4x + x2)dx =

2

3
a4,

so a4 = 0. The three orthogonal polynomials are then 1, x, and x2 − 1
3
, or any

scalar multiples of these. Now we normalize, to get an orthonormal set.

2



The first polynomial is a constant, P1(x) = c, with∫ 1

−1
c2dx = 1.

It follows that c = 1√
2
, so that

P1(x) =
1√
2
.

We have ∫ 1

−1
x2dx =

2

3
,

so the second polynomial is

P2(x) =

√
3

2
x.

Finally, ∫ 1

−1
(x2 − 1

3
)2dx =

8

45
,

so that the third polynomial in the orthonormal family is

P3(x) =

√
45

8
(x2 − 1

3
).

• 7.46 Suppose that r = (a, b, c). Then a = r · i and b = r · j, so

(r · i)2 + (r · j)2 = a2 + b2 ≤ a2 + b2 + c2 = |r|2.

• 7.48 We multiply out

F (c1, ..., cM) =
∫ b

a

[
f(x)−

M∑
n=1

cnφn(x)
]2

dx

and use the fact that ∫ b

a
φn(x)φm(x)dx = 0,

if m and n are not the same, and equals one if they are, to get

F (c1, ..., cM) =
∫ b

a
f(x)2dx− 2

M∑
n=1

cn

∫ b

a
f(x)φn(x)dx +

M∑
n=1

c2
n.

Since this is a function of the M variables c1,...,cM , we set to zero the partial

derivatives of this function with respect to each of the cn. Then we have

0 = −2
∫ b

a
f(x)φn(x)dx + 2cn,

so that

cn =
∫ b

a
f(x)φn(x).

3



• 7.49 Using integration by parts to obtain the recursion∫ ∞
0

xne−xdx = n
∫ ∞
0

xn−1e−xdx,

and use it to show that ∫ ∞
0

xne−xdx = n!,

for n = 0, 1, .... Now we show, for example, that

0 =
∫ ∞
0

(1− x)(2− 4x + x2)e−xdx.

This becomes

0 =
∫ ∞
0

2e−x − 6xe−x + 5x2e−x − x3e−xdx,

or

0 = 2(0!)− 6(1!) + 5(2!)− 1(3!) = 2− 6 + 10− 6,

which is true. The other calculations are similar.
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