92.530 Applied Mathematics I: Solutions to Homework Problems in Chapter 7

- 7.26 (c) If you begin by subtracting 20 from the function, it becomes an odd function, leading to a sine series.
- 7.26(d) Since the period is given as $2 L=6$, we seek a Fourier series of the form

$$
\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi}{3} x\right)+\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi}{3} x\right)
$$

Using integration by parts once, we calculate

$$
a_{n}=\frac{1}{3} \int_{-3}^{3} f(x) \cos \left(\frac{n \pi}{3}\right) d x=\frac{1}{3} \int_{0}^{3} 2 x \cos \left(\frac{n \pi}{3}\right) d x
$$

and find that

$$
a_{n}=6 \frac{(\cos (n \pi)-1)}{(n \pi)^{2}} .
$$

Also

$$
a_{0}=\frac{1}{3} \int_{0}^{3} 2 x d x=3 .
$$

Similarly,

$$
b_{n}=\frac{1}{3} \int_{0}^{\infty} 2 x \sin \left(\frac{n \pi}{3} x\right)=-6 \frac{\cos (n \pi)}{n \pi} .
$$

- 7.27 In part (a), the discontinuities are at $x=2$, and again at every point having the form $x=2+2 m$, for any integer m. The Fourier series converges to 0 , the mean of 8 and -8 , at these discontinuity points. In part (b), $f(x)$ has no discontinuities. In part (c), $f(x)$ has a discontinuity at $x=0$, and again at every point of the form $x=10 m$, for any integer m. The Fourier series converges, at these points of discontinuity, to the value 20. Finally, in part (d), $f(x)$ has a discontinuity at $x=3$ and again at every point of the form $x=3+6 m$, for any integer m. The Fourier series converges, at these points of discontinuity, to the value 3 .
- 7.29 When we extend $f(x)$ periodically, with period $2 L=\pi$, we get an odd function. Therefore, its Fourier series is automatically a sine series,

$$
\sum_{n=1}^{\infty} b_{n} \sin (2 n x)
$$

with

$$
b_{n}=\frac{2}{\pi} \int_{0}^{\pi} \cos (x) \sin (2 n x)
$$

Using integration by parts twice, we find that

$$
\int_{0}^{\pi} \cos (x) \sin (2 n x) d x=\frac{4 n}{4 n^{2}-1}
$$

- 7.30 When we extend $f(x)$ so that the period is $2 L=\pi$, the resulting function is odd. Therefore, its Fourier series is just a sine series, and, in fact, is the same series we obtained in the previous exercise.
- 7.42 We need to find constants $a_{0}, a_{1}, a_{2}, a_{3}, a_{4}$, and a_{5} so that

$$
\begin{gathered}
\int_{-1}^{1} a_{0}\left(a_{1}+a_{2} x\right) d x=0 \\
\int_{-1}^{1} a_{0}\left(a_{3}+a_{4} x+a_{5} x^{2}\right) d x=0
\end{gathered}
$$

and

$$
\int_{-1}^{1}\left(a_{1}+a_{2} x\right)\left(a_{3}+a_{4} x+a_{5} x^{2}\right) d x=0 .
$$

Notice that we can assume, for simplicity, that $a_{0}=a_{2}=a_{5}=1$, and then normalize at the end. We want

$$
0=\int_{-1}^{1}\left(a_{1}+x\right) d x=\left.a_{1} x\right|_{-1} ^{1}+\left.x^{2}\right|_{-1} ^{1}=2 a_{1}+0
$$

so $a_{1}=0$. Also, we want

$$
0=\int_{-1}^{1}\left(a_{3}+a_{4} x+x^{2}\right) d x=2 a_{3}+\frac{2}{3},
$$

so $a_{3}=-\frac{1}{3}$. Finally, we want

$$
0=\int_{-1}^{1} x\left(\frac{-1}{3}+a_{4} x+x^{2}\right) d x=\frac{2}{3} a_{4},
$$

so $a_{4}=0$. The three orthogonal polynomials are then $1, x$, and $x^{2}-\frac{1}{3}$, or any scalar multiples of these. Now we normalize, to get an orthonormal set.

The first polynomial is a constant, $P_{1}(x)=c$, with

$$
\int_{-1}^{1} c^{2} d x=1
$$

It follows that $c=\frac{1}{\sqrt{2}}$, so that

$$
P_{1}(x)=\frac{1}{\sqrt{2}} .
$$

We have

$$
\int_{-1}^{1} x^{2} d x=\frac{2}{3},
$$

so the second polynomial is

$$
P_{2}(x)=\sqrt{\frac{3}{2}} x .
$$

Finally,

$$
\int_{-1}^{1}\left(x^{2}-\frac{1}{3}\right)^{2} d x=\frac{8}{45},
$$

so that the third polynomial in the orthonormal family is

$$
P_{3}(x)=\sqrt{\frac{45}{8}}\left(x^{2}-\frac{1}{3}\right) .
$$

- 7.46 Suppose that $r=(a, b, c)$. Then $a=r \cdot i$ and $b=r \cdot j$, so

$$
(r \cdot i)^{2}+(r \cdot j)^{2}=a^{2}+b^{2} \leq a^{2}+b^{2}+c^{2}=|r|^{2} .
$$

- 7.48 We multiply out

$$
F\left(c_{1}, \ldots, c_{M}\right)=\int_{a}^{b}\left[f(x)-\sum_{n=1}^{M} c_{n} \phi_{n}(x)\right]^{2} d x
$$

and use the fact that

$$
\int_{a}^{b} \phi_{n}(x) \phi_{m}(x) d x=0
$$

if m and n are not the same, and equals one if they are, to get

$$
F\left(c_{1}, \ldots, c_{M}\right)=\int_{a}^{b} f(x)^{2} d x-2 \sum_{n=1}^{M} c_{n} \int_{a}^{b} f(x) \phi_{n}(x) d x+\sum_{n=1}^{M} c_{n}^{2} .
$$

Since this is a function of the M variables c_{1}, \ldots, c_{M}, we set to zero the partial derivatives of this function with respect to each of the c_{n}. Then we have

$$
0=-2 \int_{a}^{b} f(x) \phi_{n}(x) d x+2 c_{n}
$$

so that

$$
c_{n}=\int_{a}^{b} f(x) \phi_{n}(x)
$$

- 7.49 Using integration by parts to obtain the recursion

$$
\int_{0}^{\infty} x^{n} e^{-x} d x=n \int_{0}^{\infty} x^{n-1} e^{-x} d x
$$

and use it to show that

$$
\int_{0}^{\infty} x^{n} e^{-x} d x=n!
$$

for $n=0,1, \ldots$. Now we show, for example, that

$$
0=\int_{0}^{\infty}(1-x)\left(2-4 x+x^{2}\right) e^{-x} d x
$$

This becomes

$$
0=\int_{0}^{\infty} 2 e^{-x}-6 x e^{-x}+5 x^{2} e^{-x}-x^{3} e^{-x} d x
$$

or

$$
0=2(0!)-6(1!)+5(2!)-1(3!)=2-6+10-6
$$

which is true. The other calculations are similar.

