
Charles L. Byrne
Department of Mathematical Sciences
University of Massachusetts Lowell

Iterative Optimization in
Inverse Problems





To Eileen,
my wife for forty-three years.





Contents

Preface xv

1 Background 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.1 Fourier-Transform Data . . . . . . . . . . . . . . . . 2
1.1.2 Transmission Tomography . . . . . . . . . . . . . . . 3
1.1.3 Emission Tomography . . . . . . . . . . . . . . . . . 3

1.2 An Urns Model for Remote Sensing . . . . . . . . . . . . . 4
1.3 Hidden Markov Models . . . . . . . . . . . . . . . . . . . . 5
1.4 Measuring the Fourier Transform . . . . . . . . . . . . . . 6

1.4.1 The Discrete Fourier Transform . . . . . . . . . . . . 7
1.4.2 The Unknown Amplitude Problem . . . . . . . . . . 7
1.4.3 Limited Data . . . . . . . . . . . . . . . . . . . . . . 8
1.4.4 Can We Get More Information? . . . . . . . . . . . 9
1.4.5 Over-Sampling . . . . . . . . . . . . . . . . . . . . . 9
1.4.6 A Projection-Based View . . . . . . . . . . . . . . . 12
1.4.7 Other Forms of Prior Knowledge . . . . . . . . . . . 12

1.5 Transmission Tomography . . . . . . . . . . . . . . . . . . 14
1.5.1 The ART and MART . . . . . . . . . . . . . . . . . 14
1.5.2 The ART in Tomography . . . . . . . . . . . . . . . 15
1.5.3 The ART in the General Case . . . . . . . . . . . . . 16

1.5.3.1 When Ax = b Has Solutions . . . . . . . . 17
1.5.3.2 When Ax = b Has No Solutions . . . . . . 17

1.5.4 The MART . . . . . . . . . . . . . . . . . . . . . . . 17
1.5.4.1 A Special Case of MART . . . . . . . . . . 17
1.5.4.2 The MART in the General Case . . . . . . 18
1.5.4.3 Cross-Entropy . . . . . . . . . . . . . . . . 19
1.5.4.4 Convergence of MART . . . . . . . . . . . 19

1.6 Emission Tomography . . . . . . . . . . . . . . . . . . . . . 20
1.6.1 The EMML Algorithm . . . . . . . . . . . . . . . . . 20
1.6.2 Relating the ART and the EMML . . . . . . . . . . 21

1.7 A Unifying Framework . . . . . . . . . . . . . . . . . . . . 22

v



vi Contents

2 Sequential Optimization 27

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 Examples of SUM . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.1 Barrier-Function Methods . . . . . . . . . . . . . . . 29
2.2.2 Penalty-Function Methods . . . . . . . . . . . . . . . 29

2.3 Auxiliary-Function Methods . . . . . . . . . . . . . . . . . 30
2.3.1 General AF Methods . . . . . . . . . . . . . . . . . . 30
2.3.2 AF Requirements . . . . . . . . . . . . . . . . . . . . 30
2.3.3 Majorization Minimization . . . . . . . . . . . . . . 31
2.3.4 The Method of Auslander and Teboulle . . . . . . . 31
2.3.5 The EM Algorithm . . . . . . . . . . . . . . . . . . . 32

2.4 The SUMMA Class of AF Methods . . . . . . . . . . . . . 33
2.4.1 The SUMMA Property . . . . . . . . . . . . . . . . 33
2.4.2 Auslander and Teboulle Revisited . . . . . . . . . . 34
2.4.3 Proximal Minimization . . . . . . . . . . . . . . . . . 35
2.4.4 The IPA . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 Barrier-Function and Penalty-Function Methods 37

3.1 Barrier Functions . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Examples of Barrier Functions . . . . . . . . . . . . . . . . 38

3.2.1 The Logarithmic Barrier Function . . . . . . . . . . 38
3.2.2 The Inverse Barrier Function . . . . . . . . . . . . . 38

3.3 Penalty Functions . . . . . . . . . . . . . . . . . . . . . . . 41
3.4 Examples of Penalty Functions . . . . . . . . . . . . . . . . 41

3.4.1 The Absolute-Value Penalty Function . . . . . . . . 41
3.4.2 The Courant-Beltrami Penalty Function . . . . . . . 42
3.4.3 The Quadratic-Loss Penalty Function . . . . . . . . 42
3.4.4 Regularized Least-Squares . . . . . . . . . . . . . . . 42
3.4.5 Minimizing Cross-Entropy . . . . . . . . . . . . . . . 43
3.4.6 The Lagrangian in Convex Programming . . . . . . 43
3.4.7 Infimal Convolution . . . . . . . . . . . . . . . . . . 44
3.4.8 Moreau’s Proximity-Function Method . . . . . . . . 44

3.5 Basic Facts . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Proximal Minimization 49

4.1 The Basic Problem . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Proximal Minimization Algorithms . . . . . . . . . . . . . . 50
4.3 Some Obstacles . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4 All PMA are SUMMA . . . . . . . . . . . . . . . . . . . . 51
4.5 Convergence of the PMA . . . . . . . . . . . . . . . . . . . 52
4.6 The Non-Differentiable Case . . . . . . . . . . . . . . . . . 53



Contents vii

4.7 The IPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.8 Projected Gradient Descent . . . . . . . . . . . . . . . . . . 54
4.9 Relaxed Gradient Descent . . . . . . . . . . . . . . . . . . 55
4.10 Regularized Gradient Descent . . . . . . . . . . . . . . . . 56
4.11 The Projected Landweber Algorithm . . . . . . . . . . . . 57
4.12 The Simultaneous MART . . . . . . . . . . . . . . . . . . . 57
4.13 A Convergence Theorem . . . . . . . . . . . . . . . . . . . 58
4.14 Another Job for the PMA . . . . . . . . . . . . . . . . . . 60
4.15 The Goldstein-Osher Algorithm . . . . . . . . . . . . . . . 61
4.16 A Question . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 The Forward-Backward Splitting Algorithm 67

5.1 Moreau’s Proximity Operators . . . . . . . . . . . . . . . . 68
5.2 The FBS Algorithm . . . . . . . . . . . . . . . . . . . . . . 68
5.3 Convergence of the FBS algorithm . . . . . . . . . . . . . . 69
5.4 Some Examples . . . . . . . . . . . . . . . . . . . . . . . . 71

5.4.1 Projected Gradient Descent . . . . . . . . . . . . . . 71
5.4.2 The CQ Algorithm . . . . . . . . . . . . . . . . . . . 71
5.4.3 The Projected Landweber Algorithm . . . . . . . . . 72

5.5 Minimizing f2 over a Linear Manifold . . . . . . . . . . . . 72
5.6 Feasible-Point Algorithms . . . . . . . . . . . . . . . . . . . 73

5.6.1 The Projected Gradient Algorithm . . . . . . . . . . 73
5.6.2 The Reduced Gradient Algorithm . . . . . . . . . . 74
5.6.3 The Reduced Newton-Raphson Method . . . . . . . 75

6 Operators 77

6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.2 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.3 Contraction Operators . . . . . . . . . . . . . . . . . . . . 78

6.3.1 Lipschitz Continuous Operators . . . . . . . . . . . . 78
6.3.2 Nonexpansive Operators . . . . . . . . . . . . . . . . 79
6.3.3 Strict Contractions . . . . . . . . . . . . . . . . . . . 80

6.3.3.1 The Banach-Picard Theorem: . . . . . . . . 80
6.3.4 Instability . . . . . . . . . . . . . . . . . . . . . . . . 81

6.4 Convex Sets in RJ . . . . . . . . . . . . . . . . . . . . . . . 81
6.5 Orthogonal Projection Operators . . . . . . . . . . . . . . . 83
6.6 Firmly Nonexpansive Gradients . . . . . . . . . . . . . . . 87

6.6.1 The Search for Other Properties of PC . . . . . . . . 90
6.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90



viii Contents

7 Averaged and Paracontractive Operators 93

7.1 Averaged Operators . . . . . . . . . . . . . . . . . . . . . . 93
7.2 Gradient Operators . . . . . . . . . . . . . . . . . . . . . . 96
7.3 Two Useful Identities . . . . . . . . . . . . . . . . . . . . . 96
7.4 The Krasnosel’skii-Mann-Opial Theorem . . . . . . . . . . 97
7.5 Affine Linear Operators . . . . . . . . . . . . . . . . . . . . 98

7.5.1 The Hermitian Case . . . . . . . . . . . . . . . . . . 98
7.6 Paracontractive Operators . . . . . . . . . . . . . . . . . . 98

7.6.1 Linear and Affine Paracontractions . . . . . . . . . . 99
7.6.2 The Elsner-Koltracht-Neumann Theorem . . . . . . 101

7.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

8 Convex Feasibility and Related Problems 105

8.1 Convex Constraint Sets . . . . . . . . . . . . . . . . . . . . 106
8.1.1 Convex Feasibility . . . . . . . . . . . . . . . . . . . 106
8.1.2 Constrained Optimization . . . . . . . . . . . . . . . 106
8.1.3 Proximity Function Minimization . . . . . . . . . . . 106
8.1.4 The Split-Feasibility Problem . . . . . . . . . . . . . 106
8.1.5 Differentiability . . . . . . . . . . . . . . . . . . . . . 107

8.2 Using Orthogonal Projections . . . . . . . . . . . . . . . . 110
8.2.1 Successive Orthogonal Projection . . . . . . . . . . . 110
8.2.2 Simultaneous Orthogonal Projection . . . . . . . . . 111
8.2.3 Estimating the Spectral Radius . . . . . . . . . . . . 112
8.2.4 The CQ Algorithm for the SFP . . . . . . . . . . . . 113
8.2.5 An Extension of the CQ Algorithm . . . . . . . . . . 113
8.2.6 Projecting onto the Intersection of Convex Sets . . . 114

8.2.6.1 Dykstra’s Algorithm . . . . . . . . . . . . . 114
8.2.6.2 The Halpern-Lions-Wittmann-Bauschke Al-

gorithm . . . . . . . . . . . . . . . . . . . . 115
8.3 The ART . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

8.3.1 Calculating the ART . . . . . . . . . . . . . . . . . . 116
8.3.2 Full-cycle ART . . . . . . . . . . . . . . . . . . . . . 116
8.3.3 The Basic Convergence Theorem . . . . . . . . . . . 117
8.3.4 Relaxed ART . . . . . . . . . . . . . . . . . . . . . . 118
8.3.5 Constrained ART . . . . . . . . . . . . . . . . . . . . 119
8.3.6 When Ax = b Has No Solutions . . . . . . . . . . . . 119

8.4 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . 120
8.4.1 Norm-Constrained Least-Squares . . . . . . . . . . . 120
8.4.2 Regularizing Landweber’s Algorithm . . . . . . . . . 120
8.4.3 Regularizing the ART . . . . . . . . . . . . . . . . . 121

8.5 Avoiding the Limit Cycle . . . . . . . . . . . . . . . . . . . 121
8.5.1 Double ART (DART) . . . . . . . . . . . . . . . . . 122



Contents ix

8.5.2 Strongly Under-relaxed ART . . . . . . . . . . . . . 122
8.5.3 Nonnegative Least Squares . . . . . . . . . . . . . . 122

8.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

9 Eigenvalue Bounds 125

9.1 Introduction and Notation . . . . . . . . . . . . . . . . . . 126
9.1.1 Eigenvalues and Singular Values . . . . . . . . . . . 126
9.1.2 Vector and Matrix Norms . . . . . . . . . . . . . . . 127
9.1.3 Some Examples of Induced Matrix Norms . . . . . . 128

9.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
9.3 Cimmino’s Algorithm . . . . . . . . . . . . . . . . . . . . . 132
9.4 The Landweber Algorithms . . . . . . . . . . . . . . . . . . 132

9.4.1 Finding the Optimum γ . . . . . . . . . . . . . . . . 133
9.4.2 The Projected Landweber Algorithm . . . . . . . . . 134

9.5 Some Upper Bounds for L . . . . . . . . . . . . . . . . . . 135
9.5.1 Earlier Work . . . . . . . . . . . . . . . . . . . . . . 135
9.5.2 Our Basic Eigenvalue Inequality . . . . . . . . . . . 137
9.5.3 Another Upper Bound for L . . . . . . . . . . . . . . 140

9.6 Simultaneous Iterative Algorithms . . . . . . . . . . . . . . 142
9.6.1 The General Simultaneous Iterative Scheme . . . . . 142
9.6.2 The SIRT Algorithm . . . . . . . . . . . . . . . . . . 143
9.6.3 The CAV Algorithm . . . . . . . . . . . . . . . . . . 144
9.6.4 The Landweber Algorithm . . . . . . . . . . . . . . . 144
9.6.5 The Simultaneous DROP Algorithm . . . . . . . . . 145

9.7 Block-iterative Algorithms . . . . . . . . . . . . . . . . . . 146
9.7.1 The Block-Iterative Landweber Algorithm . . . . . . 146
9.7.2 The BICAV Algorithm . . . . . . . . . . . . . . . . . 146
9.7.3 A Block-Iterative CARP1 . . . . . . . . . . . . . . . 147
9.7.4 Using Sparseness . . . . . . . . . . . . . . . . . . . . 148

9.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

10 Jacobi and Gauss-Seidel Methods 149

10.1 The Jacobi and Gauss-Seidel Methods: An Example . . . . 150
10.2 Splitting Methods . . . . . . . . . . . . . . . . . . . . . . . 150
10.3 Some Examples of Splitting Methods . . . . . . . . . . . . 152
10.4 Jacobi’s Algorithm and JOR . . . . . . . . . . . . . . . . . 153

10.4.1 The JOR in the Nonnegative-definite Case . . . . . 154
10.5 The Gauss-Seidel Algorithm and SOR . . . . . . . . . . . . 155

10.5.1 The Nonnegative-Definite Case . . . . . . . . . . . . 155
10.5.2 The GS Algorithm as ART . . . . . . . . . . . . . . 157
10.5.3 Successive Overrelaxation . . . . . . . . . . . . . . . 157
10.5.4 The SOR for Nonnegative-Definite Q . . . . . . . . . 158



x Contents

10.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

11 The SMART and EMML Algorithms 161

11.1 The SMART Iteration . . . . . . . . . . . . . . . . . . . . . 161
11.2 The EMML Iteration . . . . . . . . . . . . . . . . . . . . . 162
11.3 The EMML and the SMART as AM . . . . . . . . . . . . . 162
11.4 The SMART as SUMMA . . . . . . . . . . . . . . . . . . . 163
11.5 The SMART as PMA . . . . . . . . . . . . . . . . . . . . . 163
11.6 Using KL Projections . . . . . . . . . . . . . . . . . . . . . 165
11.7 The MART and EMART Algorithms . . . . . . . . . . . . 166
11.8 Extensions of MART and EMART . . . . . . . . . . . . . . 166
11.9 Convergence of the SMART and EMML . . . . . . . . . . 167

11.9.1 Pythagorean Identities for the KL Distance . . . . . 167
11.9.2 Convergence Proofs . . . . . . . . . . . . . . . . . . 168

11.10Regularization . . . . . . . . . . . . . . . . . . . . . . . . . 170
11.10.1 The “Night-Sky” Problem . . . . . . . . . . . . . . . 170

11.11Modifying the KL distance . . . . . . . . . . . . . . . . . . 170
11.12The ABMART Algorithm . . . . . . . . . . . . . . . . . . . 171
11.13The ABEMML Algorithm . . . . . . . . . . . . . . . . . . 172

12 Alternating Minimization 175

12.1 Alternating Minimization . . . . . . . . . . . . . . . . . . . 175
12.1.1 The AM Framework . . . . . . . . . . . . . . . . . . 176
12.1.2 The AM Iteration . . . . . . . . . . . . . . . . . . . 176
12.1.3 The Five-Point Property for AM . . . . . . . . . . . 177
12.1.4 The Main Theorem for AM . . . . . . . . . . . . . . 177
12.1.5 The Three- and Four-Point Properties . . . . . . . . 177
12.1.6 Alternating Bregman Distance Minimization . . . . 178
12.1.7 Bregman Distances . . . . . . . . . . . . . . . . . . . 178
12.1.8 The Eggermont-LaRiccia Lemma . . . . . . . . . . . 179
12.1.9 Minimizing a Proximity Function . . . . . . . . . . . 180
12.1.10 Right and Left Projections . . . . . . . . . . . . . . 181
12.1.11 More Proximity Function Minimization . . . . . . . 181
12.1.12 Cimmino’s Algorithm . . . . . . . . . . . . . . . . . 181
12.1.13 Simultaneous Projection for Convex Feasibility . . . 182
12.1.14 The Bauschke-Combettes-Noll Problem . . . . . . . 182
12.1.15 AM as SUMMA . . . . . . . . . . . . . . . . . . . . 184

12.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184



Contents xi

13 The EM Algorithm 185

13.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
13.2 A Non-Stochastic Formulation of EM . . . . . . . . . . . . 186

13.2.1 The Continuous Case . . . . . . . . . . . . . . . . . 187
13.2.2 The Discrete Case . . . . . . . . . . . . . . . . . . . 187

13.3 The Stochastic EM Algorithm . . . . . . . . . . . . . . . . 188
13.3.1 The E-step and M-step . . . . . . . . . . . . . . . . 188
13.3.2 Difficulties with the Conventional Formulation . . . 189
13.3.3 An Incorrect Proof . . . . . . . . . . . . . . . . . . . 190
13.3.4 Acceptable Data . . . . . . . . . . . . . . . . . . . . 191

13.4 The Discrete Case . . . . . . . . . . . . . . . . . . . . . . . 191
13.5 Missing Data . . . . . . . . . . . . . . . . . . . . . . . . . . 193
13.6 The Continuous Case . . . . . . . . . . . . . . . . . . . . . 194

13.6.1 Acceptable Preferred Data . . . . . . . . . . . . . . 194
13.6.2 Selecting Preferred Data . . . . . . . . . . . . . . . . 195
13.6.3 Preferred Data as Missing Data . . . . . . . . . . . . 196

13.7 EM and the KL Distance . . . . . . . . . . . . . . . . . . . 197
13.7.1 Using Acceptable Data . . . . . . . . . . . . . . . . . 197

13.8 Finite Mixture Problems . . . . . . . . . . . . . . . . . . . 198
13.8.1 Mixtures . . . . . . . . . . . . . . . . . . . . . . . . 199
13.8.2 The Likelihood Function . . . . . . . . . . . . . . . . 199
13.8.3 A Motivating Illustration . . . . . . . . . . . . . . . 199
13.8.4 The Acceptable Data . . . . . . . . . . . . . . . . . 200
13.8.5 The Mix-EM Algorithm . . . . . . . . . . . . . . . . 200
13.8.6 Convergence of the Mix-EM Algorithm . . . . . . . 201

14 Geometric Programming and the MART 203

14.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
14.2 An Example of a GP Problem . . . . . . . . . . . . . . . . 204
14.3 The Generalized AGM Inequality . . . . . . . . . . . . . . 204
14.4 Posynomials and the GP Problem . . . . . . . . . . . . . . 205
14.5 The Dual GP Problem . . . . . . . . . . . . . . . . . . . . 206
14.6 Solving the GP Problem . . . . . . . . . . . . . . . . . . . 208
14.7 Solving the DGP Problem . . . . . . . . . . . . . . . . . . 209

14.7.1 The MART . . . . . . . . . . . . . . . . . . . . . . . 209
14.7.1.1 MART I . . . . . . . . . . . . . . . . . . . 209
14.7.1.2 MART II . . . . . . . . . . . . . . . . . . . 209

14.7.2 Using the MART to Solve the DGP Problem . . . . 210
14.8 Constrained Geometric Programming . . . . . . . . . . . . 211
14.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213



xii Contents

15 Variational Inequality Problems and Algorithms 215

15.1 Monotone Functions . . . . . . . . . . . . . . . . . . . . . . 215
15.2 The Split-Feasibility Problem . . . . . . . . . . . . . . . . . 216
15.3 The Variational Inequality Problem . . . . . . . . . . . . . 217
15.4 Korpelevich’s Method for the VIP . . . . . . . . . . . . . . 218

15.4.1 The Special Case of C = RJ . . . . . . . . . . . . . . 218
15.4.2 The General Case . . . . . . . . . . . . . . . . . . . 220

15.5 On Some Algorithms of Noor . . . . . . . . . . . . . . . . . 222
15.5.1 A Conjecture . . . . . . . . . . . . . . . . . . . . . . 222

15.6 Split Variational Inequality Problems . . . . . . . . . . . . 223
15.7 Saddle Points . . . . . . . . . . . . . . . . . . . . . . . . . . 225

15.7.1 Notation and Basic Facts . . . . . . . . . . . . . . . 226
15.7.2 The Saddle-Point Problem as a VIP . . . . . . . . . 226
15.7.3 Example: Convex Programming . . . . . . . . . . . . 226
15.7.4 Example: Linear Programming . . . . . . . . . . . . 227
15.7.5 Example: Game Theory . . . . . . . . . . . . . . . . 227

15.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

16 Set-Valued Functions in Optimization 229

16.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
16.2 Notation and Definitions . . . . . . . . . . . . . . . . . . . 229
16.3 Basic Facts . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
16.4 Monotone Set-Valued Functions . . . . . . . . . . . . . . . 231
16.5 Resolvents . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
16.6 Split Monotone Variational Inclusion . . . . . . . . . . . . 232
16.7 Solving the SMVIP . . . . . . . . . . . . . . . . . . . . . . 233
16.8 Special Cases of the SMVIP . . . . . . . . . . . . . . . . . 233

16.8.1 The Split Minimization Problem . . . . . . . . . . . 233
16.9 The Split Common Null-Point Problem . . . . . . . . . . . 234
16.10Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

17 Fenchel Duality 235

17.1 The Legendre-Fenchel Transformation . . . . . . . . . . . . 235
17.1.1 The Fenchel Conjugate . . . . . . . . . . . . . . . . 235
17.1.2 The Conjugate of the Conjugate . . . . . . . . . . . 236
17.1.3 Some Examples of Conjugate Functions . . . . . . . 237
17.1.4 Infimal Convolution Again . . . . . . . . . . . . . . . 238
17.1.5 Conjugates and Sub-gradients . . . . . . . . . . . . . 239
17.1.6 The Conjugate of a Concave Function . . . . . . . . 239

17.2 Fenchel’s Duality Theorem . . . . . . . . . . . . . . . . . . 240
17.2.1 Fenchel’s Duality Theorem: Differentiable Case . . . 241



Contents xiii

17.2.2 Optimization over Convex Subsets . . . . . . . . . . 242
17.3 An Application to Game Theory . . . . . . . . . . . . . . . 242

17.3.1 Pure and Randomized Strategies . . . . . . . . . . . 243
17.3.2 The Min-Max Theorem . . . . . . . . . . . . . . . . 243

17.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

18 Compressed Sensing 247

18.1 Compressed Sensing . . . . . . . . . . . . . . . . . . . . . . 247
18.2 Sparse Solutions . . . . . . . . . . . . . . . . . . . . . . . . 249
18.3 Minimum One-Norm Solutions . . . . . . . . . . . . . . . . 249

18.3.1 Why the One-Norm? . . . . . . . . . . . . . . . . . . 250
18.3.2 Comparison with the PDFT . . . . . . . . . . . . . . 251
18.3.3 Iterative Reweighting . . . . . . . . . . . . . . . . . 252

18.4 Why Sparseness? . . . . . . . . . . . . . . . . . . . . . . . . 252
18.4.1 Signal Analysis . . . . . . . . . . . . . . . . . . . . . 253
18.4.2 Locally Constant Signals . . . . . . . . . . . . . . . . 254
18.4.3 Tomographic Imaging . . . . . . . . . . . . . . . . . 255

18.5 Compressed Sampling . . . . . . . . . . . . . . . . . . . . . 255

19 Appendix: Bregman-Legendre Functions 257

19.1 Essential Smoothness and Essential Strict Convexity . . . . 257
19.2 Bregman Projections onto Closed Convex Sets . . . . . . . 258
19.3 Bregman-Legendre Functions . . . . . . . . . . . . . . . . . 259

19.3.1 Useful Results about Bregman-Legendre Functions . 259

Bibliography 261

Index 279





Preface

It is not easy to give a precise definition of an inverse problem, but, as
they often say about other things, we know one when we see one. Loosely
speaking, direct problems involve determining the effects of known causes.
What will be the temperatures later at points within the room, given the
current temperatures? Indirect, or inverse, problems go the other way, as we
attempt to infer causes from observed effects. What was the temperature
distribution in the room initially, given that we have measured the tem-
peratures at several later times? Most remote-sensing problems are inverse
problems.

Magnetic resonance, acoustic, and optical remote-sensing problems typ-
ically involve measuring Fourier transform values of the function we wish to
estimate. Transmission and emission tomographic image reconstruction is
often described this way, as well. In Chapter 1 I describe a typical remote-
sensing problem of this type, to illustrate the ways in which the measured
data is often limited and to demonstrate how projection-based methods and
minimum-norm approximate solutions can be employed. The algorithms
used here are not usually iterative, although iterative techniques can be
used to avoid difficult computational steps.

My exposure to iterative algorithms began with the algebraic recon-
struction technique (ART) and the expectation maximization maximum
likelihood (EMML) approaches to medical imaging, both methods described
briefly in Chapter 1. Both the ART and the EMML algorithm are used for
medical image reconstruction, but there the resemblance seemed to end.
The ART is a sequential algorithm, using only one data value at a time,
while the EMML is simultaneous, using all the data at each step. The
EMML has its roots in statistical parameter estimation, while the ART is a
deterministic method for solving systems of linear equations. The ART can
be used to solve any system of linear equations, while the solutions sought
using the EMML method must be nonnegative vectors. The ART employs
orthogonal projection onto hyperplanes, while the EMML algorithm is best
studied using the Kullback-Leibler, or cross-entropy, measure of distance.
The ART converges relatively quickly, while the EMML is known to be
slow. If there has been any theme to my work over the past decade, it is
unification. I have tried to make connections among the various algorithms

xv



xvi Preface

and problems I have studied. Connecting the ART and the EMML seemed
like a good place to start.

The ART led me to its multiplicative cousin, the MART, while the
EMML brought me to the simultaneous MART (SMART), showing that
the statistical EMML could be viewed as an algorithm for solving certain
systems of linear equations, thus closing the loop. There are block-iterative
versions of all these algorithms, in which some, but not all, of the data is
used at each step of the iteration. These tend to converge more quickly than
their simultaneous relatives. Casting the EMML and SMART algorithms
in terms of cross-entropic projections led to a computationally simpler vari-
ant of the MART, called the EMART. The Landweber and Cimmino algo-
rithms are simultaneous versions of the ART. Replacing the cross-entropy
distance with distances based on Fermi-Dirac entropy provided iterative re-
construction algorithms that incorporated upper and lower bounds on the
pixel values. The next issue seemed to be how to connect these algorithms
with a broader group of iterative optimization methods.

My efforts to find unification among iterative methods has led me re-
cently to sequential optimization. A wide variety of iterative algorithms
used for continuous optimization can be unified within the framework of
sequential optimization. The objective in sequential optimization is to re-
place the original problem, which often is computationally difficult, with
a sequence of simpler optimization problems. The most common approach
is to optimize the sum of the objective function and an auxiliary function
that changes at each step of the iteration. The hope is that the sequence
of solutions of these simpler problems will converge to the solution of the
original problem.

Sequential unconstrained minimization (SUM) methods [126] for con-
strained optimization are perhaps the best known sequential optimization
methods. The auxiliary functions that are added are selected to enforce the
constraints, as in barrier-function methods, or to penalize violations of the
constraints, as in penalty-function methods.

We begin our discussion of iterative methods with auxiliary-function
(AF) algorithms, a particular class of sequential optimization methods. In
AF algorithms the auxiliary functions have special properties that serve to
control the behavior of the sequence of minimizers. As originally formu-
lated, barrier- and penalty-function methods are not AF algorithms, but
both can be reformulated so as to be included in the AF class. Many other
well known iterative methods can also be shown to be AF methods, such as
proximal minimization algorithms using Bregman distances, projected gra-
dient descent, the CQ algorithm, the forward-backward splitting method,
MART and SMART, EMART and the EMML algorithm, alternating mini-
mization (AM), and majorization minimization (MM), or optimality trans-
fer techniques, and the more general expectation maximization maximum
likelihood EM algorithms in statistics. Most of these methods enjoy addi-



Preface xvii

tional properties that serve to motivate the definition of the SUMMA class
of algorithms, a useful subclass of AF methods.

Some AF algorithms can be described as fixed-point algorithms, in
which the next vector in the sequence is obtained by applying a fixed oper-
ator to the previous vector and the solution is a fixed point of the operator.
This leads us to our second broad area for discussion, iterative fixed-point
methods. Operators that are nonexpansive in some norm provide the most
natural place to begin discussing convergence of such algorithms. Being
nonexpansive is not enough for convergence, generally, and we turn our
attention to more restrictive classes of operators, such as the averaged and
paracontractive operators.

Convexity plays an important role in optimization and a well developed
theory of iterative optimization is available when the objective function is
convex. The gradient of a differentiable convex function is a monotone oper-
ator, which suggests extending certain optimization problems to variational
inequality problems (VIP) and modifying iterative optimization methods
to solve these more general problems. Algorithms for VIP can then be used
to find saddle points.

Our discussion of iterative methods begins naturally within the context
of the Euclidean distance on finite-dimensional vectors, but is soon broad-
ened to include other useful distance measures, such as the l1 distance,
and cross-entropy and other Bregman distances. Within the context of
the Euclidean distance orthogonal projection onto closed convex sets play
an important role in constrained optimization. When we move to other
distances we shall attempt to discover the extent to which more general
notions of projection can be successfully employed.

Problems in remote sensing, such as radar and sonar, x-ray transmis-
sion tomography, PET and SPECT emission tomography, and magnetic
resonance imaging, involve solving large systems of linear equations, often
subject to constraints on the variables. Because the systems involve mea-
sured data as well as simplified models of the sensing process, finding exact
solutions, even when available, is usually not desirable. For that reason, it-
erative regularization algorithms that reduce sensitivity to noise and model
error and produce approximate solutions of the constrained linear system
are usually needed.

In a number of applications, such as medical diagnostics, the primary
goal is the production of useful images in a relatively short time; modify-
ing algorithms to accelerate convergence then becomes important. When
the problem involves large-scale systems of linear equations, block-iterative
methods that employ only some of the equations at each step often perform
as well as simultaneous methods that use all the equations at each step, in
a fraction of the time.

I have chosen to organize the topics from the general to the more spe-
cific. In recent years I have developed the class of iterative algorithms that I



xviii Preface

call the SUMMA class. These are related to sequential unconstrained min-
imization methods and, somewhat surprisingly, can be shown to include a
wide variety of iterative algorithms well known to researchers in different
fields. By unifying a variety of seemingly disparate algorithms, analogies
can be considered and new properties of algorithms can be derived by
analogy with known properties of other algorithms. The unification also
serves to draw the attention of researchers working in one field to related
algorithms in other fields, such as statisticians working on parameter es-
timation; image scientists processing scanning data, and mathematicians
involved in theoretical and applied optimization.

Chapter 2 gives an overview of sequential optimization and the sub-
classes of auxiliary-function methods and the SUMMA algorithms. The
next three chapters deal in greater detail with particular examples: barrier-
and penalty-function methods in Chapter 3, proximal minimization in
Chapter 4, and forward-backward splitting in chapter 5. Chapter 6 through
Chapter 9 focus on fixed-point algorithms for operators on Euclidean space.
After that, the discussion is broadened to include distance measures other
than the usual Euclidean distance. The final few chapters present specific
problems to illustrate the use of iterative methods discussed previously.

The book brings together, in one place, a number of important iterative
algorithms in medical imaging, optimization and statistical estimation. It
includes a good deal of recent workthat has not appeared in books previ-
ously. It provides a broad theoretical unification of many of these algorithms
in terms of auxiliary-function methods and, in particular, the recently de-
veloped class of SUMMA algorithms. The book is somewhat limited in
scope, rather than encyclopedic; the topics discussed are ones I have been
personally involved with over the past couple of decades. The treatment of
each topic is sufficiently detailed, without being exhaustive. Most chapters
contain exercises that introduce new ideas and contribute to making the
book appropriate for self study.

This book is not intended as an introduction to optimization or convex
analysis, for which there are numerous texts available, such as Kelley’s
book [150]. Several of the topics discussed here are also treated in the books
by Censor and Zenios [95], Bauschke and Combettes [18], Saad [194] and
Cegielski [77]. Most of my articles in the bibliography can be downloaded
from my website, http://faculty.uml.edu/cbyrne/cbyrne.html .



Chapter 1

Background

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.1 Fourier-Transform Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Transmission Tomography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 Emission Tomography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 An Urns Model for Remote Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Hidden Markov Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Measuring the Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.1 The Discrete Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4.2 The Unknown Amplitude Problem . . . . . . . . . . . . . . . . . . . . . . 7
1.4.3 Limited Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4.4 Can We Get More Information? . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4.5 Over-Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4.6 A Projection-Based View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4.7 Other Forms of Prior Knowledge . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5 Transmission Tomography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.5.1 The ART and MART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5.2 The ART in Tomography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.5.3 The ART in the General Case . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.5.3.1 When Ax = b Has Solutions . . . . . . . . . . . . . . . 17
1.5.3.2 When Ax = b Has No Solutions . . . . . . . . . . . 17

1.5.4 The MART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.5.4.1 A Special Case of MART . . . . . . . . . . . . . . . . . . 17
1.5.4.2 The MART in the General Case . . . . . . . . . . . 18
1.5.4.3 Cross-Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.5.4.4 Convergence of MART . . . . . . . . . . . . . . . . . . . . . 19

1.6 Emission Tomography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.6.1 The EMML Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.6.2 Relating the ART and the EMML . . . . . . . . . . . . . . . . . . . . . . 21

1.7 A Unifying Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1



2 Iterative Optimization in Inverse Problems

1.1 Overview

A fundamental inverse problem is the reconstruction of a function from
finitely many measurements pertaining to that function. This problem is
central to radar, sonar, optical imaging, transmission and emission tomog-
raphy, magnetic resonance imaging, and many other applications. Because
the measured data is limited, it cannot serve to determine one single correct
answer. In each of these applications some sort of prior information is incor-
porated in the reconstruction process in order to produce a usable solution.
Minimizing a cost function is a standard technique used to single out one
solution from the many possibilities. The reconstruction algorithms often
employ projection techniques to guarantee that the reconstructed func-
tion is consistent with the known constraints. Typical image reconstruc-
tion problems involve thousands of data values and iterative algorithms
are required to perform the desired optimization.

1.1.1 Fourier-Transform Data

We begin with an example of a common remote-sensing problem in
which the available data are values of the Fourier transform of the function
we wish to reconstruct. In our example the function we wish to reconstruct
is the amplitude function associated with a spatially extended object trans-
mitting or reflecting electromagnetic radiation. Problems of this sort arise
in a variety of applications, from mapping the sourses of sunspot activity to
synthetic-aperture radar and magnetic-resonance imaging. Our example is
a somewhat simplified version of what is encountered in the real world, but
it serves to illustrate several key aspects of most remote-sensing problems.
From this example we see why it is that the data is limited, apart, of course,
from the obvious need to limit ourselves to finitely many data values, and
come to understand how resolution depends on the relationship between
the size of the object being imaged and the frequency of the probing or
transmitted signal.

Because our data is limited and the reconstruction problems are under-
determined, we are led to consider constrained optimization methods, such
as constraint-consistent minimum-norm reconstructions. Once we have set-
tled on an appropriate ambient space, usually a Hilbert space, in which to
place the function to be reconstructed, it is reasonable to take as the re-
construction the data-consistent member of the space having the smallest
norm. If we have additional constraints that we wish to impose, we can
use orthogonal projection onto convex sets to satisfy the constraints. A
key step, and one that is too often overlooked, is the choice of the ambient
space. As we shall see, soft constraints coming from prior information, such



Background 3

as knowledge of the overall shape of the function being reconstructed, or of
some prominent features of that function, can often be incorporated in the
reconstruction process through the choice of the ambient space. Although
Hilbert space norms are the most convenient, other Banach space norms,
or distance measures not derived from norms, such as cross-entropy, can
also be helpful.

It is usually the case that the function we wish to reconstruct is a real-
or complex-valued function of one or more continuous variables. At some
stage of the reconstruction, we must discretize the function or its estimate,
if only to plot the estimate at the final step. It can be helpful to introduce
the discretization earlier in the process, and most of our discussion in this
book will focus on reconstructing a finite vector in RJ or CJ . Once we
have decided to base the reconstruction on the minimization of some cost
function, we need to find an appropriate algorithm; our focus here will be
on iterative minimization algorithms.

1.1.2 Transmission Tomography

Our second example is the problem of reconstructing an image from
transmission tomographic data. In transmission tomography x-rays are
transmitted through the object and the initial and final intensities of the
x-ray beams are measured. In the continuous-variable model, the data are
taken to be line integrals of the attenuation function to be reconstructed.
In theory, if we had available all the line integrals, Fourier transform meth-
ods would provide the solution. In practice, the attenuation function is
discretized. It is still possible to mimic the continuous-variable case and
obtain reconstructions using discrete Fourier transformation and filtered
back-projection. Alternatively, one can relate the line-integral data to a
large system of linear equations to be solved using iterative methods, such
as the algebraic reconstruction technique (ART) and its multiplicative ver-
sion, the MART [134].

1.1.3 Emission Tomography

Our third example is also taken from tomography. In emission tomog-
raphy, such as positron emission tomography (PET) or single-photon emis-
sion computed tomography (SPECT), a radionuclide is introduced into the
body of the living object, a human being or animal, the data are counts
of photons detected at gamma cameras positioned close to the body, and
the reconstructed image provides an indication of where the metabolic pro-
cesses have deposited the radionuclide. In the discrete model, each pixel or
voxel within the body is associated with an unknown nonnegative quantity,
the amount of radionuclide present at that location, which is assumed to
be proportional to the expected number of photons emitted at that site



4 Iterative Optimization in Inverse Problems

during the scanning time. The randomness involved here suggests the use
of statistical methods for parameter estimation, and approaches such as
iterative likelihood maximization have been used for the reconstruction
[193]. The expectation maximization maximum likelihood (EMML) algo-
rithm converges to a maximizer of likelihood for the model of independent
Poisson-distributed emitters [196, 155, 206, 156, 47].

1.2 An Urns Model for Remote Sensing

Many of the examples mentioned in the previous section are commonly
described as problems of “remote-sensing”. In such problems what we are
able to measure is not what we really want, but is related in some way to
what we really want. To get a feel for remote sensing problems without
the mathematical formulation of a particular application, we consider an
urns model involving urns or bowls of colored marbles. Urns models are
often used to illustrate aspects of thermodynamics. Our model may seem
overly simple, but, as we shall see, it accurately describes the problem we
face in single-photon and positron emission tomography, SPECT and PET,
respectively.

Suppose that there are J large bowls, numbered j = 1 through j = J .
Each bowl contains colored marbles. Marbles come in colors with numerical
codes i = 1 through i = I. For each j and i, I know the proportion of the
marbles in the j-th bowl that are of the i-th color; denote this proportion
by ai,j ≥ 0.

I am not interested in marbles in bowls. What I am interested in is the
contents of a certain box. This box contains many small pieces of paper.
On each piece of paper is written one of the j values. I want to know the
proportions xj ≥ 0 of pieces of paper in the box that have the number j
written on them. However, I have no direct access to the box.

I have an assistant, whose task it is to draw one piece of paper from the
box, read the number written on it, and, out of my sight and without saying
anything, go to the designated bowl, remove one marble, and announce to
me its color. I write down the color. This ritual is repeated many times,
after which I have a long list of colors, from which I must estimate the xj .

Our urns model can be modified to illustrate problems dealt with by
hidden Markov models [201].



Background 5

1.3 Hidden Markov Models

In the urns model we just discussed, the order of the colors in the
list is unimportant; we could randomly rearrange the colors on the list
without affecting the nature of the problem. The probability that a green
marble will be chosen next is the same, whether a blue or a red marble
was just chosen the previous time. This independence from one selection
to another is fine for modeling certain physical situations, such as emission
tomography. However, there are other situations in which this independence
does not conform to reality.

In written English, for example, knowing the current letter helps us,
sometimes more, sometimes less, to predict what the next letter will be.
We know that if the current letter is a “q”, then there is a high probability
that the next one will be a “u” . So what the current letter is affects the
probabilities associated with the selection of the next one.

Spoken English is even tougher. There are many examples in which
the pronunciation of a certain sound is affected, not only by the sound or
sounds that preceded it, but by the sound or sounds that will follow. For
example, the sound of the “e” in the word “bellow” is different from the
sound of the “e” in the word “below” ; the sound changes, depending on
whether there is a double “l” or a single “l” following the “e” . Here the
entire context of the letter affects its sound.

Hidden Markov models (HMM) are increasingly important in speech
processing, optical character recognition and DNA sequence analysis. They
allow us to incorporate dependence on the past into our model. In this
section we illustrate HMM using a modification of the urns model.

Suppose, once again, that we have J urns, indexed by j = 1, ..., J and
I colors of marbles, indexed by i = 1, ..., I. In addition to the original
box full of pieces of paper, now each of the J urns has its own box, and
each of these boxes contains a large number of pieces of paper, with the
number of one urn written on each piece. My assistant starts by drawing
one piece of paper from the original box. He reads the number written on
it, call it j1, goes to the urn with the number j1 and draws out a marble.
He then announces the color. He then draws a piece of paper from box
number j1, reads the next number, say j2, proceeds to urn number j2, etc.
After N marbles have been drawn, the only data I have is a list of colors,
i = {i1, i2, ..., iN}.

The transition probability that my assistant will proceed from the urn
numbered k to the urn numbered j is bj,k, with

∑J
j=1 bj,k = 1. The num-

ber of the current urn is the current state. In an ordinary Markov chain
model, we observe directly a sequence of states governed by the transition
probabilities. The Markov chain model provides a simple formalism for de-



6 Iterative Optimization in Inverse Problems

scribing a system that moves from one state into another, as time goes on.
In the hidden Markov model we are not able to observe the states directly;
they are hidden from us. Instead, we have indirect observations, such as
the colors of the marbles in our urns model.

The probability that the color numbered i will be drawn from the urn
numbered j is ai,j , with

∑I
i=1 a,ij = 1, for all j. The colors announced

are the visible states, while the unannounced urn numbers are the hidden
states.

There are several distinct objectives one can have, when using HMM.
We assume that the data is the list of colors, i.

• Evaluation: For given probabilities ai,j and bj,k, what is the proba-
bility that the list i was generated according to the HMM? Here, the
objective is to see if the model is a good description of the data.

• Decoding: Given the model, the probabilities and the list i, what
list j = {j1, j2, ..., jN} of urns is most likely to be the list of urns
actually visited? Now, we want to infer the hidden states from the
visible ones.

• Learning: We are told that there are J urns and I colors, but are not
told the probabilities ai,j and bj,k. We are given several data vectors
i generated by the HMM; these are the training sets. The objective
is to learn the probabilities.

Once again, the ML approach can play a role in solving these problems
[112]. The Viterbi algorithm is an important tool used for the decoding
phase (see [201]).

1.4 Measuring the Fourier Transform

Let f(x) : [−L,L]→ C have Fourier series representation

f(x) =

∞∑
n=−∞

cne
inπx/L, (1.1)

where the Fourier coefficient cn is given by

cn =
1

2L

∫ L

−L
f(x)e−inπx/Ldx. (1.2)

We shall see how Fourier coefficients can arise as data obtained through
measurements. However, we shall be able to measure only a finite number
of the Fourier coefficients. One issue that will concern us is the effect on the
approximation of f(x) if we use some, but not all, of its Fourier coefficients.



Background 7

1.4.1 The Discrete Fourier Transform

Suppose that we have cn for |n| ≤ N . It is not unreasonable to try
to estimate the function f(x) using the discrete Fourier transform (DFT)
estimate, which is

fDFT (x) =

N∑
n=−N

cne
inπx/L. (1.3)

In Figure 1.1 below, the function f(x) is the solid-line figure in both graphs.
In the bottom graph, we see the true f(x) and a DFT estimate. The top
graph is the result of band-limited extrapolation, a technique for predicting
missing Fourier coefficients that we shall discuss later.

FIGURE 1.1: The non-iterative band-limited extrapolation method
(MDFT) (top) and the DFT (bottom) for 30 times over-sampled data.
The solid line is the true object.

1.4.2 The Unknown Amplitude Problem

In this example, we imagine that each point x in the interval [−L,L]
is sending a signal at the frequency ω, each with its own amplitude f(x);



8 Iterative Optimization in Inverse Problems

that is, the signal sent by the point x is

f(x)eiωt; (1.4)

here the amplitude contains both magnitude and phase, so is complex.
We imagine that the amplitude function f(x) is unknown and we want to
determine it. It could be the case that the signals originate at the points
x, as with light or radio waves from the sun, or are simply reflected from
the points x, as is sunlight from the moon or radio waves in radar.

Now let us consider what is received by a point P on the circumference
of a circle centered at the origin and having large radius D. The point P
corresponds to the angle θ as shown in Figure 1.2. It takes a finite time for
the signal sent from x at time t to reach P , so there is a delay.

We assume that c is the speed at which the signal propagates. Because
D is large relative to L, we make the far-field assumption, which allows us
to approximate the distance from x to P by D− x cos(θ). Therefore, what
P receives at time t from x is approximately what was sent from x at time
t− 1

c (D − x cos(θ)).
At time t, the point P receives from x the signal

f(x)eiω(t−
1
c (D−x cos(θ))), (1.5)

or

eiω(t−
1
cD)f(x)eiωx cos(θ)/c. (1.6)

Therefore, from our measurement at P , we obtain

eiω(t−
1
cD)

∫ L

−L
f(x)eiωx cos(θ)/cdx. (1.7)

Consequently, from measurements in the farfield we obtain the values∫ L

−L
f(x)eiωx cos(θ)/cdx, (1.8)

where θ can be chosen as any angle between 0 and 2π. When we select θ
so that

ω cos(θ)

c
=
nπ

L
, (1.9)

we have c−n.

1.4.3 Limited Data

Note that we will be able to solve Equation (1.9) for θ only if we have

|n| ≤ Lω

πc
. (1.10)



Background 9

This tells us that we can measure only finitely many of the Fourier coeffi-
cients of f(x). It is common in signal processing to speak of the wavelength
of a sinusoidal signal; the wavelength associated with a given ω and c is

λ =
2πc

ω
. (1.11)

Therefore, we can measure cn for |n| not greater than 2L
λ , which is the

length of the interval [−L,L], measured in units of wavelength λ. We get
more Fourier coefficients when the product Lω is larger; this means that
when L is small, we want ω to be large, so that λ is small and we can
measure more Fourier coefficients. As we saw previously, using these finitely
many Fourier coefficients to calculate the DFT reconstruction of f(x) can
lead to a poor estimate of f(x), particularly when we don’t have many
Fourier coefficients.

1.4.4 Can We Get More Information?

As we just saw, we can make measurements at any point P in the far-
field; perhaps we do not need to limit ourselves to just those angles that
lead to the limited number of Fourier coefficients cn.

We define the Fourier transform of the function f(x) to be the function

F (γ) =

∫ L

−L
f(x)eiγxdx. (1.12)

Therefore, when we measure the signals received at the point P in the
far-field, we obtain the value F (γ) for γ = ω cos(θ)/c. Therefore, in prin-
ciple, we have available to us all the values of F (γ) for γ in the interval
[−ω/c, ω/c]. These are not all of the non-zero values of F (γ), of course,
since F (γ) is band-limited, but not support-limited.

1.4.5 Over-Sampling

It is sometimes argued that once we have obtained all the values of cn
that are available to us, there is no more information about f(x) that we
can obtain through further measurements in the far-field; this is wrong.
It may come as somewhat of a surprise, but from the theory of complex
analytic functions, or from band-limited extrapolation [71, 72], we can prove
that there is enough data available to us here to reconstruct f(x) perfectly,
at least in principle. The drawback, in practice, is that the measurements
would have to be free of noise and impossibly accurate. All is not lost,
however.

Suppose, for the sake of illustration, that we measure the far-field signals



10 Iterative Optimization in Inverse Problems

at points P corresponding to angles θ that satisfy

ω cos(θ)

c
=
nπ

2L
, (1.13)

instead of
ω cos(θ)

c
=
nπ

L
.

Now we have twice as many data points and from our new measurements
we can obtain

am =
1

4L

∫ L

−L
f(x)e−ix

mπ
2L dx =

1

4L

∫ 2L

−2L
f(x)e−ix

mπ
2L dx, (1.14)

for |m| ≤M , which are Fourier coeffcients of f(x) when viewed as a func-
tion defined on the interval [−2L, 2L], but still zero outside [−L,L]. We
say now that our data is twice over-sampled. Note that we call it over-
sampled because the rate at which we are sampling is higher, even though
the distance between samples is lower.

For clarity, let us denote the function defined on the interval [−2L, 2L]
that equals f(x) for x in [−L,L] and is equal to zero elsewhere as g(x).
We have twice the number of Fourier coefficients that we had previously,
but for the function g(x). A DFT reconstruction using this larger set of
Fourier coefficients will reconstruct g(x) on the interval [−2L, 2L]; this
DFT estimate is

gDFT (x) =

M∑
m=−M

ame
imπx/2L, (1.15)

for |x| ≤ 2L. This will give us a reconstruction of f(x) itself over the
interval [−L,L], but will also give us a reconstruction of the rest of g(x),
which we already know to be zero. So we are wasting the additional data
by reconstructing g(x) instead of f(x). We need to use our prior knowledge
that g(x) = 0 for L < |x| ≤ 2L.

We want to use the prior knowledge that g(x) = 0 for L < |x| ≤ 2L
to improve our reconstruction. Suppose that we take as our reconstruction
the modified DFT (MDFT) [40]:

fMDFT (x) =

M∑
j=−M

bje
ijπx/2L, (1.16)

for |x| ≤ L, and zero elsewhere, with the bj chosen so that fMDFT (x)
is consistent with the measured data. Calculating this estimator involves
solving a system of linear equations for the bj .

The top graph in Figure (1.1) illustrates the improvement over the DFT



Background 11

that can be had using the MDFT. In that figure, we took data that was
thirty times over-sampled, not just twice over-sampled, as in our previous
discussion. Consequently, we had thirty times the number of Fourier coeffi-
cients we would have had otherwise, but for an interval thirty times longer.
To get the top graph, we used the MDFT, with the prior knowledge that
f(x) was non-zero only within the central thirtieth of the long interval. The
bottom graph shows the DFT reconstruction using the larger data set, but
only for the central thirtieth of the full period, which is where the original
f(x) is non-zero.

FIGURE 1.2: Farfield Measurements. The distance from x to P is ap-
proximately D − x cos θ.



12 Iterative Optimization in Inverse Problems

1.4.6 A Projection-Based View

When we view the function f(x) as a member of the Hilbert space
L2(−L,L), we find that the DFT estimate of f(x) is the orthogonal pro-
jection of the zero function onto the closed convex subset of all members
of L2(−L,L) that are consistent with the data; that is, the DFT esti-
mate is the member of L2(−L,L) that has minimum norm among all those
members consistent with the data. The MDFT estimate is the member
of L2(−2L, 2L) of minimum norm among all members that are both con-
sistent with the data and supported on the interval [−L,L]. The MDFT
estimate is also the member of L2(−L,L) of minimum norm consistent
with the over-sampled data. The MDFT is not the DFT in this case, since
the functions eijπx/2L are not orthogonal with respect to the usual inner
product on L2(−L,L).

1.4.7 Other Forms of Prior Knowledge

As we just showed, knowing that we have over-sampled in our mea-
surements can help us improve the resolution in our estimate of f(x). We
may have other forms of prior knowledge about f(x) that we can use. If
we know something about large-scale features of f(x), but not about finer
details, we can use the PDFT estimate, which is a generalization of the
MDFT [41, 42].

We can write the MDFT estimate above as

fMDFT (x) = χ[−L,L](x)

M∑
j=−M

bje
ijπx/2L; (1.17)

here χ[−L,L](x) is one for |x| ≤ L, and zero, otherwise. Written this way,
we see that the second factor has the algebraic form of the DFT estimate,
while the first factor incorporates our prior knowledge that f(x) is zero for
|x| > L.

Suppose that we have some prior knowledge of the function |f(x)| be-
yond simply support information. Let us select p(x) > 0 as a prior estimate
of |f(x)| and let our PDFT estimate of f(x) have the form

fPDFT (x) = p(x)

M∑
j=−M

dje
ijπx/2L, (1.18)

with the coefficients dj computed by forcing fPDFT (x) to be consistent
with the measured data. Again, this involves solving a system of linear
equations, although there are other ways to handle this. By discretizing the
problem, the PDFT can be calculated using the ART algorithm discussed
below [197, 198]. The PDFT approach extends to higher dimensions, as we
illustrate in the following example.



Background 13

The original image on the upper right of Figure 1.3 is a discrete rect-
angular array of intensity values simulating a slice of a head. The data was
obtained by taking the two-dimensional discrete Fourier transform of the
original image, and then discarding, that is, setting to zero, all these spatial
frequency values, except for those in a smaller rectangular region around
the origin. The problem then is under-determined. A minimum-norm solu-
tion would seem to be a reasonable reconstruction method.

The DFT reconstruction is the minimum-two-norm solution shown on
the lower right. It is calculated simply by performing an inverse discrete
Fourier transform on the array of retained discrete Fourier transform val-
ues. The original image has relatively large values where the skull is located,
but the minimum-norm reconstruction does not want such high values; the
norm involves the sum of squares of intensities, and high values contribute
disproportionately to the norm. Consequently, the minimum-norm recon-
struction chooses instead to conform to the measured data by spreading
what should be the skull intensities throughout the interior of the skull.
The minimum-norm reconstruction does tell us something about the orig-
inal; it tells us about the existence of the skull itself, which, of course, is
indeed a prominent feature of the original. However, in all likelihood, we
would already know about the skull; it would be the interior that we want
to know about.

Using our knowledge of the presence of a skull, which we might have
obtained from the minimum-norm reconstruction itself, we construct the
prior estimate shown in the upper left. Now we use the same data as be-
fore, and calculate a minimum-weighted-norm (PDFT) reconstruction, us-
ing as the weight vector the reciprocals of the values of the prior image.
This minimum-weighted-norm reconstruction is shown on the lower left;
it is clearly almost the same as the original image. The calculation of the
minimum-weighted norm solution can be done iteratively using the ART
algorithm [198].

When we weight the skull area with the inverse of the prior image,
we allow the reconstruction to place higher values there without having
much of an effect on the overall weighted norm. In addition, the reciprocal
weighting in the interior makes spreading intensity into that region costly,
so the interior remains relatively clear, allowing us to see what is really
present there.

When we try to reconstruct an image from limited data, it is easy to
assume that the information we seek has been lost, particularly when a
reasonable reconstruction method fails to reveal what we want to know. As
this example, and many others, show, the information we seek is often still
in the data, but needs to be brought out in a more subtle way.



14 Iterative Optimization in Inverse Problems

1.5 Transmission Tomography

The ART and the MART are two iterative algorithms that were de-
signed to address issues that arose in solving large-scale systems of linear
equations for medical imaging [134]. The EMART is a more recently discov-
ered method that combines useful features of both ART and MART [50].
In this chapter we give an overview of ART and MART; we shall revisit
them later in more detail.

1.5.1 The ART and MART

In many applications, such as in image processing, we need to solve a
system of linear equations that is quite large, often several tens of thousands
of equations in about the same number of unknowns. In these cases, issues
such as the costs of storage and retrieval of matrix entries, the computa-
tion involved in apparently trivial operations, such as matrix-vector prod-
ucts, and the speed of convergence of iterative methods demand greater
attention. At the same time, the systems to be solved are often under-
determined, and solutions satisfying certain additional constraints, such as
nonnegativity, are required.

Both the algebraic reconstruction technique (ART) and the multiplica-
tive algebraic reconstruction technique (MART) were introduced as two
iterative methods for discrete image reconstruction in transmission tomog-
raphy.

Both methods are what are called row-action methods, meaning that
each step of the iteration uses only a single equation from the system. The
MART is limited to nonnegative systems for which nonnegative solutions
are sought. In the under-determined case, both algorithms find the solution
closest to the starting vector, in the two-norm or weighted two-norm sense
for ART, and in the cross-entropy sense for MART, so both algorithms can
be viewed as solving optimization problems. In Chapter 14 we describe the
use of MART to solve the dual geometric programming problem. For both
algorithms, the starting vector can be chosen to incorporate prior infor-
mation about the desired solution. In addition, the ART can be employed
in several ways to obtain a least-squares solution, in the over-determined
case.

The simultaneous MART (SMART) algorithm is a simultaneous vari-
ant of the MART in which all the equations are employed at each step of
the iteration. Closely related to the SMART is the expectation maximiza-
tion maximum likelihood (EMML) method, which is also a simultaneous
algorithm.

The EM-MART is a row-action variant of the EMML algorithm. Like



Background 15

MART, it applies to nonnegative systems of equations and produces non-
negative solutions, but, like ART, does not require exponentiation, so is
computationally simpler than MART.

1.5.2 The ART in Tomography

In x-ray transmission tomography, as an x-ray beam passes through
the body, it encounters various types of matter, such as soft tissue, bone,
ligaments, air, each weakening the beam to a greater or lesser extent. If the
intensity of the beam upon entry is Iin and Iout is its lower intensity after
passing through the body, then, at least approximately,

Iout = Iine
−

∫
L
f ,

where f = f(x, y) ≥ 0 is the attenuation function describing the two-
dimensional distribution of matter within the slice of the body being
scanned and

∫
L
f is the integral of the function f over the line L along

which the x-ray beam has passed. This is the continuous model. In the
discrete model the slice of the body being scanned is viewed as consisting
of pixels, which we number j = 1, 2, ..., J . The x-rays are sent into the
body along I lines, which we number i = 1, 2, ..., I. The line integral of
f along the i-th line is measured, approximately, from the entering and
exiting strengths of the x-ray beams; these measurements are denoted bi.

For i = 1, ..., I, let Li be the set of pixel indices j for which the j-th
pixel intersects the i-th line segment, as shown in Figure 1.4, and let |Li| be
the cardinality of the set Li. Let Aij = 1 for j in Li, and Aij = 0 otherwise.
With i = k(mod I) + 1, the iterative step of the ART algorithm is

xk+1
j = xkj +

1

|Li|
(bi − (Axk)i), (1.19)

for j in Li, and

xk+1
j = xkj , (1.20)

if j is not in Li. In each step of ART, we take the error, bi − (Axk)i,
associated with the current xk and the i-th equation, and distribute it
equally over each of the pixels that intersects Li.

This model is too simple; we are assuming that if the line segment in-
tersects a pixel, then the entire amount of attenuating material within that
pixel affects the x-ray strength. A somewhat more sophisticated version
of ART allows Aij to include the length of the i-th line segment that lies
within the j-th pixel; Aij is taken to be the ratio of this length to the length
of the diagonal of the j-th pixel.

More generally, ART can be viewed as an iterative method for solving
an arbitrary system of linear equations, Ax = b.



16 Iterative Optimization in Inverse Problems

1.5.3 The ART in the General Case

Throughout this book we denote by RJ and CJ the vectors spaces of
J-dimensional column vectors whose entries are real or complex numbers,
respectively. For any vectors x and y in CJ the inner product is

〈x, y〉 = x · y = y†x =

J∑
j=1

xjyj , (1.21)

where y† is the conjugate transpose of the column vector y. The Euclidean
norm or two-norm of x is

‖x‖2 =
√
〈x, x〉, (1.22)

and the Euclidean distance between x and y is ‖x− y‖2.
The Euclidean norm is not the only norm on CJ that interests us. We

shall also make use of the one-norm, given by

‖x‖1 =

J∑
j=1

|xj |. (1.23)

Let A be a matrix with complex entries, having I rows and J columns,
and let b be a member of CI . We want to solve the system Ax = b. Note
that when we say that A is a complex matrix and b a complex vector, we
do not exclude the case in which the entries of both A and b are real.

Associated with each equation (Ax)i = bi in the system Ax = b there is
a hyperplane Hi defined to be the subset of J-dimensional column vectors
given by

Hi = {x|(Ax)i = bi}. (1.24)

Definition 1.1 The orthogonal projection operator onto the hyperplane
Hi is the function Pi : CJ → CJ defined for each z in CJ by Piz = x,
where x is the member of Hi closest to z, in the sense of the Euclidean
distance.

The ART algorithm can be expressed in terms of the operators Pi. Let x0

be arbitrary and, for each nonnegative integer k, let i(k) = k(mod I) + 1.
The iterative step of the ART is

xk+1 = Pi(k)x
k. (1.25)

We can write the iterative step of the ART explicitly, as follows:

Algorithm 1.1 (ART) Let αi =
∑J
j=1 |Aij |2. For k = 0, 1, ... and i =

i(k) = k(mod I) + 1, the entries of xk+1 are

xk+1
j = xkj + α−1i Aij(bi − (Axk)i). (1.26)

Because the ART uses only a single equation at each step, it has been called
a row-action [80] or sequential method.



Background 17

1.5.3.1 When Ax = b Has Solutions

For the consistent case we have the following result concerning the ART.

Theorem 1.1 Let Ax̂ = b and let x0 be arbitrary. Let {xk} be generated
by the ART. Then the sequence of Euclidean distances {||x̂− xk||2} is de-
creasing and {xk} converges to the solution of Ax = b closest to x0.

This theorem is a particular case of the more general Theorem 8.3.
So, when the system Ax = b has exact solutions, the ART converges to

the solution closest to x0, in the Euclidean distance. How fast the algorithm
converges will depend on the ordering of the equations and on whether or
not we use relaxation, which we shall discuss later. In selecting the equation
ordering, the important thing is to avoid particularly bad orderings, in
which the hyperplanes Hi and Hi+1 are nearly parallel [141].

1.5.3.2 When Ax = b Has No Solutions

When there are no exact solutions, the ART does not converge to a
single vector, but, for each fixed i, the subsequence {xnI+i, n = 0, 1, ...}
converges to a vector zi and the collection {zi |i = 1, ..., I} is called the limit
cycle [202]. The ART limit cycle will vary with the ordering of the equations,
and contains more than one vector unless an exact solution exists. Figures
1.5 and 1.6 illustrate the behavior of the ART in the two cases.

1.5.4 The MART

The multiplicative ART (MART) is an iterative algorithm closely re-
lated to the ART. It also was devised to obtain tomographic images, but,
like ART, applies more generally; MART applies to nonnegative systems
of linear equations Ax = b for which the bi are positive, the Aij are non-
negative, and the solution x we seek is to have nonnegative entries. It is
not so easy to see the relation between ART and MART if we look at the
most general formulation of MART. For that reason, we begin with a sim-
pler case, transmission tomographic imaging, in which the relation is most
clearly apparent.

1.5.4.1 A Special Case of MART

We begin by considering the application of MART to the transmission
tomography problem. Once again, for i = 1, ..., I, let Li be the set of pixel
indices j for which the j-th pixel intersects the i-th line segment, and let
|Li| be the cardinality of the set Li. Let Aij = 1 for j in Li, and Aij = 0
otherwise. In each step of ART, we take the error, bi − (Axk)i, associated
with the current xk and the i-th equation, and distribute it equally over
each of the pixels that intersects Li. Suppose, now, that each bi is positive,



18 Iterative Optimization in Inverse Problems

and we know in advance that the desired image we wish to reconstruct
must be nonnegative. We can begin with x0 > 0, but as we compute the
ART steps, we may lose nonnegativity. One way to avoid this loss is to
correct the current xk multiplicatively, rather than additively, as in ART.
This leads to the multiplicative ART (MART).

The MART, in this case, has the iterative step

xk+1
j = xkj

( bi
(Axk)i

)
, (1.27)

for those j in Li, and

xk+1
j = xkj , (1.28)

otherwise. Therefore, we can write the iterative step as

xk+1
j = xkj

( bi
(Axk)i

)Aij
. (1.29)

1.5.4.2 The MART in the General Case

Taking the entries of the matrix A to be either one or zero, depending
on whether or not the j-th pixel is in the set Li, is too crude. The line Li
may just clip a corner of one pixel, but pass through the center of another.
Surely, it makes more sense to let Aij be the length of the intersection of
line Li with the j-th pixel, or, perhaps, this length divided by the length
of the diagonal of the pixel. It may also be more realistic to consider a
strip, instead of a line. Other modifications to Aij may be made, in order
to better describe the physics of the situation. Finally, all we can be sure
of is that Aij will be nonnegative, for each i and j. In such cases, what is
the proper form for the MART?

The MART, which can be applied only to nonnegative systems, is a
sequential, or row-action, method that uses one equation only at each step
of the iteration.

Algorithm 1.2 (MART) Let x0 be a positive vector. For k = 0, 1, ...,
and i = k(mod I) + 1, having found xk define xk+1 by

xk+1
j = xkj

( bi
(Axk)i

)m−1
i Aij

, (1.30)

where mi = max {Aij |j = 1, 2, ..., J}.

Some treatments of MART leave out the mi, but require only that the
entries of A have been rescaled so that Aij ≤ 1 for all i and j. The mi is
important, however, in accelerating the convergence of MART.



Background 19

Notice that we can write xk+1
j as a weighted geometric mean of xkj and

xkj

(
bi

(Axk)i

)
:

xk+1
j =

(
xkj

)1−m−1
i Aij(

xkj

( bi
(Axk)i

))m−1
i Aij

. (1.31)

This will help to motivate the EM-MART.

1.5.4.3 Cross-Entropy

For a > 0 and b > 0, let the cross-entropy or Kullback-Leibler (KL)
distance [153] from a to b be

KL(a, b) = a log
a

b
+ b− a, (1.32)

with KL(a, 0) = +∞, and KL(0, b) = b. Extend to nonnegative vectors
coordinate-wise, so that

KL(x, z) =

J∑
j=1

KL(xj , zj). (1.33)

Then KL(x, z) ≥ 0 and KL(x, z) = 0 if and only if x = z.
Unlike the Euclidean distance, the KL distance is not symmetric;

KL(Ax, b) and KL(b, Ax) are distinct, and we can obtain different ap-
proximate solutions of Ax = b by minimizing these two distances with
respect to nonnegative x. We discuss this point further in Chapter 11.

1.5.4.4 Convergence of MART

In the consistent case, by which we mean that Ax = b has nonnegative
solutions, we have the following convergence theorem for MART.

Theorem 1.2 In the consistent case, the MART converges to the unique
nonnegative solution of b = Ax for which the distance KL(x, x0) is mini-
mized.

If the starting vector x0 is the vector whose entries are all one, then the
MART converges to the solution that maximizes the Shannon entropy,

SE(x) =

J∑
j=1

xj log xj − xj . (1.34)

This theorem is a particular case of more general results established in
Chapter 11. As with ART, the speed of convergence is greatly affected by



20 Iterative Optimization in Inverse Problems

the ordering of the equations, converging most slowly when consecutive
equations correspond to nearly parallel hyperplanes.

Open Question: When there are no nonnegative solutions, MART does
not converge to a single vector, but, like ART, is always observed to produce
a limit cycle of vectors. Unlike ART, there is no proof, so far, of the existence
of a limit cycle for MART.

1.6 Emission Tomography

In our third example we focus on SPECT, which is somewhat simpler
to describe than PET, although the reconstruction problems are essentially
the same. We take xj ≥ 0, j = 1, ..., J , to be the unknown concentrations
of radionuclide at the j-th pixel, and assume that xj is also the expected
number of photons emitted at the j-th pixel during the scanning time.
For i = 1, ..., I, the random variable Yi is the expected number of photons
detected at the i-th gamma camera during the scanning, the quantity yi > 0
is the actual photon count, and Pi,j is the probability that a photon emitted
from pixel j will be detected at detector i. The entries of the matrix P =
[Pi,j ] are nonnegative and we assume that sj =

∑I
i=1 Pi,j > 0, for all j.

It is assumed that the random variables Yi are independent, and each is
Poisson-distributed, with mean (Px)i, where x = (x1, ..., xJ)T is the vector
of unknown intensities. The entries of x are taken to be parameters to be
estimated by likelihood maximization.

As promised, we relate the SPECT problem to our bowls model of
remote sensing. The pixels correspond to the bowls, and the colors to the
detectors. For each j and i we assume that we know, or can approximate
reasonably well, the probability that a photon emitted from the j-th pixel
will be detected at the i-th detector. What we want is the probability
xj ≥ 0 that nature will select the j-th pixel to be the site of the next
photon emission. This probability we assume is proportional to the relative
intensity of the radionuclide within the j-th pixel, as compared with the
other pixels. What we are able to measure is the number of times each
detector records a photon arrival. We have a long list of detector numbers
now, in place of the long list of colors.

1.6.1 The EMML Algorithm

The expectation maximization (EM) approach to likelihood maximiza-
tion [108] is not a single algorithm, but a template for the design of algo-
rithms. For the SPECT case, the EM approach leads to the EMML algo-



Background 21

rithm. Having selected a positive starting vector x0, and having calculated
xk, the next iterate xk+1 is found using

xk+1
j = xkj s

−1
j

I∑
i=1

Pi,j
yi

(Pxk)i
, (1.35)

for each j. As we shall show in Chapter 11, for any x0 > 0, the sequence
{xk} converges to a maximizer of the likelihood. It is reasonable to ask if
there is any connection between the ART and the EMML.

1.6.2 Relating the ART and the EMML

Both the ART and the EMML algorithm are used for medical image
reconstruction, but there the resemblance seems to end. The ART is a se-
quential algorithm, using only one data value at a time, while the EMML
is simultaneous, using all the data at each step. The EMML has its roots in
statistical parameter estimation, while the ART is a deterministic method
for solving systems of linear equations. The ART can be used to solve any
system of linear equations, while the solutions sought using the EMML
method must be nonnegative vectors. The ART employs orthogonal pro-
jection onto hyperplanes, while the EMML algorithm is best studied using
the Kullback-Leibler, or cross-entropy, measure of distance. The ART con-
verges relatively quickly, while the EMML is known to be slow.

The first step in connecting the ART and the EMML algorithm is to
formulate the EMML as a method for solving a system of linear equations.
The Kullback-Leibler distance is essential here. Maximizing the likelihood
in the SPECT case is equivalent to minimizing KL(y, Px) over all nonnega-
tive vectors x, where y = (y1, ..., yI)

T . Therefore, the EMML algorithm can
be viewed as a general iterative method for finding an exact or approximate
nonnegative solution for a nonnegative system of linear equations. The ART
is a sequential algorithm, but it has simultaneous versions, Cimmino’s algo-
rithm and the more general Landweber and projected Landweber methods.

The MART provides a second link between the ART and the EMML al-
gorithm. Like the EMML, the MART can be viewed as a method for solving
nonnegative systems of linear equations. Like the EMML, the properties
of the MART are best revealed using the KL distance. Finally, while the
MART is a sequential algorithm, it has a simultaneous version, the SMART
[106, 195, 93, 47]. By developing the SMART and the EMML in tandem,
as in Chapter 11 (see also [49]), we can see just how closely related these
algorithms are. While the EMML minimizes KL(y, Px), the SMART can
be shown to minimize KL(Px, y).



22 Iterative Optimization in Inverse Problems

1.7 A Unifying Framework

The Landweber algorithm minimizes the function f(x) = 1
2‖Ax − b‖

2
2,

and converges to the least-squares solution of Ax = b closest to the start-
ing vector x0 in the Euclidean distance. The EMML minimizes f(x) =
KL(y, Px), while the SMART minimizes f(x) = KL(Px, y). All of these
algorithms are sequential optimization methods, in the sense that one dif-
ficult minimization problem is replaced by a sequence of simpler ones. At
each step of the iteration, we minimize a function of the form f(x) +gk(x),
where the gk(x) can be chosen to permit the next iterate to be calculated
in closed form, to impose constraints or penalize violations of the con-
straints, and to control the behavior of the sequence {f(xk)}. In Chapter 2
we give some examples of sequential optimization, define the subclasses of
auxiliary-function and SUMMA algorithms, and present brief discussions
of several topics to be considered in more detail in subsequent chapters.



Background 23

FIGURE 1.3: Extracting information in image reconstruction. The origi-
nal is on the upper right. The lower right is the minimum-two-norm (DFT)
solution, and the lower left is a minimum weighted-two-norm (PDFT) so-
lution. The prior estimate is on the upper left.



24 Iterative Optimization in Inverse Problems

FIGURE 1.4: Line integrals through a discretized object.



Background 25

FIGURE 1.5: The ART algorithm in the consistent case.



26 Iterative Optimization in Inverse Problems

FIGURE 1.6: The ART algorithm in the inconsistent case, illustrating
subsequential convergence to a limit cycle.



Chapter 2

Sequential Optimization

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 Examples of SUM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.1 Barrier-Function Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.2 Penalty-Function Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Auxiliary-Function Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.1 General AF Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.2 AF Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.3 Majorization Minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.4 The Method of Auslander and Teboulle . . . . . . . . . . . . . . . . 31
2.3.5 The EM Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4 The SUMMA Class of AF Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4.1 The SUMMA Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4.2 Auslander and Teboulle Revisited . . . . . . . . . . . . . . . . . . . . . . . 34
2.4.3 Proximal Minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4.4 The IPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

The Landweber and projected Landweber algorithms, the SMART and
the EMML are all examples of sequential optimization methods. Perhaps
the best known examples of sequential optimization are the sequential un-
constrained minimization (SUM) methods [126]. Auxiliary-function algo-
rithms, a broad subclass of sequential optimization methods, provide a
unifying framework for these and many other iterative algorithms. In this
chapter we consider examples of SUM methods, define the AF and SUMMA
classes of algorithms, and present brief discussions of several topics to be
considered in more detail in subsequent chapters.

2.1 Overview

Consider the problem of optimizing a real-valued function f over a
subset C of an arbitrary set X. There may well be no simple way to solve
this problem and iterative methods may be required. Many well known

27



28 Iterative Optimization in Inverse Problems

iterative optimization methods can be described as sequential optimization
methods. In such methods we replace the original problem with a sequence
of simpler optimization problems, obtaining a sequence {xk} of members of
the set X. Our hope is that this sequence {xk} will converge to a solution of
the original problem, which, of course, will require a topology onX. We may
lower our expectations and ask only that the sequence {f(xk)} converge to
d = infx∈C f(x). Failing that, we may ask only that the sequence {f(xk)}
be nonincreasing. One way to design a sequential optimization algorithm
is to use auxiliary functions. At the kth step of the iteration we minimize
a function

Gk(x) = f(x) + gk(x), (2.1)

to obtain xk.
In SUM methods the auxiliary functions gk(x) are selected to enforce

the constraint that x be in C, as in barrier-function methods, or to penalize
violations of that constraint, such as in penalty-function methods.

Auxiliary-function (AF) methods, which we shall discuss in some de-
tail, closely resemble SUM methods. In AF methods certain restrictions
are placed on the auxiliary functions gk(x) to control the behavior of the
sequence {f(xk)}. Even when there are no constraints, the problem of min-
imizing a real-valued function may require iteration; the formalism of AF
minimization can be useful in deriving such iterative algorithms, as well
as in proving convergence. As originally formulated, barrier- and penalty-
function algorithms are not in the AF class, but can be reformulated as AF
algorithms.

In AF methods the auxiliary functions satisfy additional properties that
guarantee that the sequence {f(xk)} is nonincreasing. To have the sequence
{f(xk)} converging to d we need to impose an additional condition on the
gk(x), the SUMMA condition. The SUMMA condition may seem quite re-
strictive and ad hoc, and the resulting SUMMA class of algorithms fairly
limited, but this is not the case. Many of the best known iterative opti-
mization methods either are in the SUMMA class, or, like the barrier- and
penalty-function methods, can be reformulated as SUMMA algorithms.

2.2 Examples of SUM

Barrier-function algorithms and penalty-function algorithms are two of
the best known examples of SUM.



Sequential Optimization 29

2.2.1 Barrier-Function Methods

Suppose that C ⊆ RJ and b : C → R is a barrier function for C, that
is, b has the property that b(x) → +∞ as x approaches the boundary of
C. At the kth step of the iteration we minimize

Bk(x) = f(x) +
1

k
b(x) (2.2)

to get xk. Then each xk is in C. We want the sequence {xk} to converge
to some x∗ in the closure of C that solves the original problem. Barrier-
function methods are interior-point methods because each xk satisfies the
constraints.

For example, suppose that we want to minimize the function f(x) =
f(x1, x2) = x21 + x22, subject to the constraint that x1 + x2 ≥ 1. The con-
straint is then written g(x1, x2) = 1−(x1+x2) ≤ 0. We use the logarithmic
barrier function b(x) = − log(x1 + x2 − 1). For each positive integer k, the
vector xk = (xk1 , x

k
2) minimizing the function

Bk(x) = x21 + x22 −
1

k
log(x1 + x2 − 1) = f(x) +

1

k
b(x)

has entries

xk1 = xk2 =
1

4
+

1

4

√
1 +

4

k
.

Notice that xk1 + xk2 > 1, so each xk satisfies the constraint. As k → +∞,
xk converges to ( 1

2 ,
1
2 ), which is the solution to the original problem. The

use of the logarithmic barrier function forces x1 + x2 − 1 to be positive,
thereby enforcing the constraint on x = (x1, x2).

2.2.2 Penalty-Function Methods

Again, our goal is to minimize a function f : RJ → R, subject to the
constraint that x ∈ C, where C is a nonempty closed subset of RJ . We
select a nonnegative function p : RJ → R with the property that p(x) = 0
if and only if x is in C and then, for each positive integer k, we minimize

Pk(x) = f(x) + kp(x), (2.3)

to get xk. We then want the sequence {xk} to converge to some x∗ ∈ C
that solves the original problem. In order for this iterative algorithm to be
useful, each xk should be relatively easy to calculate.

If, for example, we should select p(x) = +∞ for x not in C and p(x) = 0
for x in C, then minimizing Pk(x) is equivalent to the original problem and
we have achieved nothing.

As an example, suppose that we want to minimize the function f(x) =



30 Iterative Optimization in Inverse Problems

(x+ 1)2, subject to x ≥ 0. Let us select p(x) = x2, for x ≤ 0, and p(x) = 0
otherwise. Then xk = −1

k+1 , which converges to the right answer, x∗ = 0, as
k →∞.

2.3 Auxiliary-Function Methods

In this section we define auxiliary-function methods, establish their ba-
sic properties, and give several examples to be considered in more detail
later.

2.3.1 General AF Methods

Let C be a nonempty subset of an arbitrary set X, and f : X → R. We
want to minimize f(x) over x in C. At the kth step of an auxiliary-function
(AF) algorithm we minimize

Gk(x) = f(x) + gk(x) (2.4)

over x ∈ C to obtain xk. Our main objective is to select the gk(x) so that the
infinite sequence {xk} generated by our algorithm converges to a solution
of the problem; this, of course, requires some topology on the set X. Failing
that, we want the sequence {f(xk)} to converge to d = inf{f(x)|x ∈ C}
or, at the very least, for the sequence {f(xk)} to be nonincreasing.

2.3.2 AF Requirements

For AF methods we require that the auxiliary functions gk(x) be chosen
so that gk(x) ≥ 0 for all x ∈ C and gk(xk−1) = 0. We then have the
following proposition.

Proposition 2.1 Let the sequence {xk} be generated by an AF algorithm.
Then the sequence {f(xk)} is nonincreasing, and, if d is finite, the sequence
{gk(xk)} converges to zero.

Proof: We have

f(xk) + gk(xk) = Gk(xk) ≤ Gk(xk−1) = f(xk−1) + gk(xk−1) = f(xk−1).

Therefore,
f(xk−1)− f(xk) ≥ gk(xk) ≥ 0.

Since the sequence {f(xk)} is decreasing and bounded below by d, the dif-
ference sequence must converge to zero, if d is finite; therefore, the sequence
{gk(xk)} converges to zero in this case.



Sequential Optimization 31

The auxiliary functions used in Equation (2.2) do not have these prop-
erties but the barrier-function algorithm can be reformulated as an AF
method. The iterate xk obtained by minimizing Bk(x) in Equation (2.2)
also minimizes the function

Gk(x) = f(x) + [(k − 1)f(x) + b(x)]− [(k − 1)f(xk−1) + b(xk−1)]. (2.5)

The auxiliary functions

gk(x) = [(k − 1)f(x) + b(x)]− [(k − 1)f(xk−1) + b(xk−1)] (2.6)

now have the desired properties. In addition, we have Gk(x) − Gk(xk) =
gk+1(x) for all x ∈ C, which will become significant shortly.

As originally formulated, the penalty-function methods do not fit into
the class of AF methods we consider here. However, a reformulation of the
penalty-function approach, with p(x) and f(x) switching roles, permits the
penalty-function methods to be studied as barrier-function methods, and
therefore as acceptable AF methods.

2.3.3 Majorization Minimization

Majorization minimization (MM), also called optimization transfer, is a
technique used in statistics to convert a difficult optimization problem into
a sequence of simpler ones [183, 21, 157]. The MM method requires that we
majorize the objective function f(x) with g(x|y), such that g(x|y) ≥ f(x),
for all x, and g(y|y) = f(y). At the kth step of the iterative algorithm we
minimize the function g(x|xk−1) to get xk.

The MM methods are members of the AF class. At the kth step of an
MM iteration we minimize

Gk(x) = f(x) + [g(x|xk−1)− f(x)] = f(x) + d(x, xk−1), (2.7)

where d(x, z) is some distance function satisfying d(x, z) ≥ 0 and d(z, z) =
0. Since gk(x) = d(x, xk−1) ≥ 0 and gk(xk−1) = 0, MM methods are also
AF methods; it then follows that the sequence {f(xk)} is nonincreasing.

All MM algorithms have the form xk = Txk−1, where T is the operator
defined by

Tz = argminx {f(x) + d(x, z)}. (2.8)

If d(x, z) = 1
2‖x−z‖

2
2, then T is Moreau’s proximity operator Tz = proxf (z)

[169, 170, 171].

2.3.4 The Method of Auslander and Teboulle

The method of Auslander and Teboulle [7] is a particular example of an
MM algorithm. We take C to be a closed, nonempty, convex subset of RJ ,



32 Iterative Optimization in Inverse Problems

with interior U . At the kth step of their method one minimizes a function

Gk(x) = f(x) + d(x, xk−1) (2.9)

to get xk. Their distance d(x, y) is defined for x and y in U , and the gradient
with respect to the first variable, denoted ∇1d(x, y), is assumed to exist.
The distance d(x, y) is not assumed to be a Bregman distance. Instead, they
assume that the distance d has an associated induced proximal distance
H(a, b) ≥ 0, finite for a and b in U , with H(a, a) = 0 and

〈∇1d(b, a), c− b〉 ≤ H(c, a)−H(c, b), (2.10)

for all c in U .
If d = Dh, that is, if d is a Bregman distance, then from the equation

〈∇1d(b, a), c− b〉 = Dh(c, a)−Dh(c, b)−Dh(b, a) (2.11)

we see that Dh has H = Dh for its associated induced proximal distance,
so Dh is self-proximal, in the terminology of [7].

2.3.5 The EM Algorithm

The expectation maximization maximum likelihood (EM) “algorithm”
is not a single algorithm, but a framework, or, as the authors of [21] put it,
a “prescription” , for constructing algorithms. Nevertheless, we shall refer
to it as the EM algorithm.

The EM algorithm is always presented within the context of statistical
likelihood maximization, but the essence of this method is not stochastic;
the EM algorithms can be shown to form a subclass of AF methods. We
present now the essential aspects of the EM algorithm without relying on
statistical concepts.

The problem is to maximize a nonnegative function f : Z → R, where Z
is an arbitrary set; in the stochastic context f(z) is a likelihood function of
the parameter vector z. We assume that there is z∗ ∈ Z with f(z∗) ≥ f(z),
for all z ∈ Z.

We also assume that there is a nonnegative function b : RJ × Z → R
such that

f(z) =

∫
b(x, z)dx.

Having found zk−1, we maximize the function

H(zk−1, z) =

∫
b(x, zk−1) log b(x, z)dx (2.12)

to get zk. Adopting such an iterative approach presupposes that maximiz-
ing H(zk−1, z) is simpler than maximizing f(z) itself. This is the case with
the EM algorithms.



Sequential Optimization 33

One of the most useful and easily proved facts about the Kullback-
Leibler distance is contained in the following lemma.

Lemma 2.1 For nonnegative vectors x and z, with z+ =
∑J
j=1 zj > 0, we

have

KL(x, z) = KL(x+, z+) +KL(x,
x+
z+
z). (2.13)

This lemma can be extended to obtain the following useful identity; we
simplify the notation by setting b(z) = b(x, z).

Lemma 2.2 For f(z) and b(x, z) as above, and z and w in Z, with f(w) >
0, we have

KL(b(z), b(w)) = KL(f(z), f(w)) +KL(b(z), (f(z)/f(w))b(w)). (2.14)

Maximizing H(zk−1, z) is equivalent to minimizing

Gk(z) = G(zk−1, z) = −f(z) +KL(b(zk−1), b(z)), (2.15)

where

gk(z) = KL(b(zk−1), b(z)) =

∫
KL(b(x, zk−1), b(x, z))dx. (2.16)

Since gk(z) ≥ 0 for all z and gk(zk−1) = 0, we have an AF method. Without
additional restrictions, we cannot conclude that {f(zk)} converges to f(z∗).

We get zk by minimizing Gk(z) = G(zk−1, z). When we minimize
G(z, zk), we get zk again. Therefore, we can put the EM algorithm into the
alternating minimization (AM) framework of Csiszár and Tusnády [105],
to be discussed later.

2.4 The SUMMA Class of AF Methods

As we have seen, whenever the sequence {xk} is generated by an AF
algorithm, the sequence {f(xk)} is nonincreasing. We want more, however;
we want the sequence {f(xk)} to converge to d = infx∈C f(x). This happens
for those AF algorithms in the SUMMA class.

2.4.1 The SUMMA Property

An AF algorithm is said to be in the SUMMA class if the auxiliary
functions gk(x) are chosen so that the SUMMA property holds; that is,

Gk(x)−Gk(xk) ≥ gk+1(x) ≥ 0, (2.17)



34 Iterative Optimization in Inverse Problems

for all x ∈ C. As we saw previously, the reformulated barrier-function
method is in the SUMMA class. We have the following theorem.

Theorem 2.1 If the sequence {xk} is generated by an algorithm in the
SUMMA class, then the sequence {f(xk)} converges to d = infx∈C f(x).

Proof: Suppose that there is d∗ > d with f(xk) ≥ d∗, for all k. Then there
is z in C with

f(xk) ≥ d∗ > f(z) ≥ d,

for all k. Using the inequality (2.17) we have

gk(z)− gk+1(z) ≥ f(xk) + gk(xk)− f(z) ≥ f(xk)− f(z) ≥ d∗ − f(z) > 0.

This tells us that the nonnegative sequence {gk(z)} is decreasing, but that
successive differences remain bounded away from zero, which cannot hap-
pen.

2.4.2 Auslander and Teboulle Revisited

The method of Auslander and Teboulle described previously seems not
to be a particular case of SUMMA. However, we can adapt the proof of
Theorem 2.1 to prove the analogous result for their method. We assume
that f(x̂) ≤ f(x), for all x in C.

Theorem 2.2 For k = 2, 3, ..., let xk minimize the function

Gk(x) = f(x) + d(x, xk−1).

If the distance d has an induced proximal distance H, then {f(xk)} → f(x̂).

Proof: We know that the sequence {f(xk)} is decreasing and the sequence
{d(xk, xk−1)} converges to zero. Now suppose that

f(xk) ≥ f(x̂) + δ,

for some δ > 0 and all k. Since x̂ is in C, there is z in U with

f(xk) ≥ f(z) +
δ

2
,

for all k. Since xk minimizes Fk(x), it follows that

0 = ∇f(xk) +∇1d(xk, xk−1).

Using the convexity of the function f(x) and the fact that H is an induced
proximal distance, we have

0 <
δ

2
≤ f(xk)− f(z) ≤ 〈−∇f(xk), z − xk〉 =



Sequential Optimization 35

〈∇1d(xk, xk−1), z − xk〉 ≤ H(z, xk−1)−H(z, xk).

Therefore, the nonnegative sequence {H(z, xk)} is decreasing, but its suc-
cessive differences remain bounded below by δ

2 , which is a contradiction.

It is interesting to note that the Auslander-Teboulle approach places a
restriction on the function d(x, y), the existence of the induced proximal
distance H, that is unrelated to the objective function f(x), but this con-
dition is helpful only for convex f(x). In contrast, the SUMMA approach
requires that

0 ≤ gk+1(x) ≤ Gk(x)−Gk(xk),

which involves the f(x) being minimized, but does not require that this
f(x) be convex.

2.4.3 Proximal Minimization

Let f : RJ → (−∞,+∞] be a convex function. Let h be another convex
function, with effective domain D, that is differentiable on the nonempty
open convex set int D. Assume that f(x) is finite on C = D and attains
its minimum value on C at x̂. The corresponding Bregman distance [31]
Dh(x, z) is defined for x in D and z in int D by

Dh(x, z) = h(x)− h(z)− 〈∇h(z), x− z〉. (2.18)

Note that Dh(x, z) ≥ 0 always. If h is essentially strictly convex, then
Dh(x, z) = 0 implies that x = z. Our objective is to minimize f(x) over x
in C = D.

At the kth step of a proximal minimization algorithm (PMA) [95, 55],
we minimize the function

Gk(x) = f(x) +Dh(x, xk−1), (2.19)

to get xk. The function

gk(x) = Dh(x, xk−1) (2.20)

is nonnegative and gk(xk−1) = 0. We assume that each xk lies in int D. As
we shall see,

Gk(x)−Gk(xk) ≥ Dh(x, xk) = gk+1(x) ≥ 0, (2.21)

so the PMA is in the SUMMA class.
The PMA can present some computational obstacles. When we mini-

mize Gk(x) to get xk we find that we must solve the equation

∇h(xk−1)−∇h(xk) ∈ ∂f(xk), (2.22)



36 Iterative Optimization in Inverse Problems

where the set ∂f(x) is the sub-differential of f at x, given by

∂f(x) := {u|〈u, y − x〉 ≤ f(y)− f(x), for all y}. (2.23)

When f(x) is differentiable, we must solve

∇f(xk) +∇h(xk) = ∇h(xk−1). (2.24)

A modification of the PMA, called the IPA for interior-point algorithm
[55, 63], is designed to overcome these computational obstacles. We describe
the IPA in the next subsection. Another modification of the PMA that is
similar to the IPA is the forward-backward splitting (FBS) method to be
discussed in Chapter 5.

2.4.4 The IPA

In this subsection we describe a modification of the PMA, an interior-
point algorithm called the IPA, that helps us overcome the computational
obstacles encountered in the PMA. To simplify the discussion, we assume
in this subsection that f(x) is differentiable.

At the kth step of the PMA we minimize

Gk(x) = f(x) +Dh(x, xk−1), (2.25)

where h(x) is as in the previous subsection. Writing

a(x) = h(x) + f(x), (2.26)

we must solve the equation

∇a(xk) = ∇a(xk−1)−∇f(xk−1). (2.27)

In the IPA we select a(x) so that Equation (2.27) is easily solved and so that
h(x) = a(x) − f(x) is convex and differentiable. We shall present several
examples of the IPA in Chapter 4.



Chapter 3

Barrier-Function and
Penalty-Function Methods

3.1 Barrier Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Examples of Barrier Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.1 The Logarithmic Barrier Function . . . . . . . . . . . . . . . . . . . . . . 38
3.2.2 The Inverse Barrier Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Penalty Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4 Examples of Penalty Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4.1 The Absolute-Value Penalty Function . . . . . . . . . . . . . . . . . . 41
3.4.2 The Courant-Beltrami Penalty Function . . . . . . . . . . . . . . . . 42
3.4.3 The Quadratic-Loss Penalty Function . . . . . . . . . . . . . . . . . . 42
3.4.4 Regularized Least-Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4.5 Minimizing Cross-Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4.6 The Lagrangian in Convex Programming . . . . . . . . . . . . . . . 43
3.4.7 Infimal Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4.8 Moreau’s Proximity-Function Method . . . . . . . . . . . . . . . . . . 44

3.5 Basic Facts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Barrier-function and penalty-function methods are the best known exam-
ples of sequential optimization. In their usual formulations neither fits into
the AF class of algorithms. However, barrier-function algorithms can be
reformulated to fit into the SUMMA class, while penalty-function methods
can be converted to barrier-function methods by switching the roles of the
objective and penalty functions.

3.1 Barrier Functions

Let b(x) : RJ → (−∞,+∞] be continuous, with effective domain the
set

D = {x| b(x) < +∞}.

37



38 Iterative Optimization in Inverse Problems

The goal is to minimize the objective function f(x), over x in C, the closure
of D. We assume that there is x̂ ∈ C with f(x̂) ≤ f(x), for all x in C.

In the barrier-function method, we minimize

Bk(x) = f(x) +
1

k
b(x) (3.1)

over x in D to get xk. Each xk lies within D, so the method is an interior-
point algorithm. If the sequence {xk} converges, the limit vector x∗ will be
in C and f(x∗) = f(x̂).

Barrier functions typically have the property that b(x) → +∞ as x
approaches the boundary of D, so not only is xk prevented from leaving
D, it is discouraged from approaching the boundary.

3.2 Examples of Barrier Functions

Consider the convex programming (CP) problem of minimizing the con-
vex function f : RJ → R, subject to gi(x) ≤ 0, where each gi : RJ → R is
convex, for i = 1, ..., I. Let D = {x|gi(x) < 0, i = 1, ..., I}; then D is open.
We consider two barrier functions appropriate for this problem.

3.2.1 The Logarithmic Barrier Function

A suitable barrier function is the logarithmic barrier function

b(x) =
(
−

I∑
i=1

log(−gi(x))
)
. (3.2)

The function − log(−gi(x)) is defined only for those x in D, and is positive
for gi(x) > −1. If gi(x) is near zero, then so is −gi(x) and b(x) will be
large.

3.2.2 The Inverse Barrier Function

Another suitable barrier function is the inverse barrier function

b(x) =

I∑
i=1

−1

gi(x)
, (3.3)

defined for those x in D.
In both examples, when k is small, the minimization pays more atten-

tion to b(x), and less to f(x), forcing the gi(x) to be large negative numbers.



Barrier-Function and Penalty-Function Methods 39

But, as k grows larger, more attention is paid to minimizing f(x) and the
gi(x) are allowed to be smaller negative numbers. By letting k → ∞, we
obtain an iterative method for solving the constrained minimization prob-
lem.

Barrier-function methods are particular cases of the SUMMA. The it-
erative step of the barrier-function method can be formulated as follows:
minimize

f(x) + [(k − 1)f(x) + b(x)] (3.4)

to get xk. Since, for k = 2, 3, ..., the function

(k − 1)f(x) + b(x) (3.5)

is minimized by xk−1, the function

gk(x) = (k − 1)f(x) + b(x)− (k − 1)f(xk−1)− b(xk−1) (3.6)

is nonnegative, and xk minimizes the function

Gk(x) = f(x) + gk(x). (3.7)

From

Gk(x) = f(x) + (k − 1)f(x) + b(x)− (k − 1)f(xk−1)− b(xk−1),

it follows that

Gk(x)−Gk(xk) = kf(x) + b(x)− kf(xk)− b(xk) = gk+1(x),

so that gk+1(x) satisfies the condition in (2.17). This shows that the barrier-
function method is a particular case of SUMMA.

From the properties of SUMMA algorithms, we conclude that {f(xk)}
is decreasing to f(x̂), and that {gk(xk)} converges to zero. From the non-
negativity of gk(xk) we have that

(k − 1)(f(xk)− f(xk−1)) ≥ b(xk−1)− b(xk).

Since the sequence {f(xk)} is decreasing, the sequence {b(xk)} must be
increasing, but might not be bounded above.

If x̂ is unique, and f(x) has bounded level sets, then it follows, from our
discussion of SUMMA, that {xk} → x̂. Suppose now that x̂ is not known
to be unique, but can be chosen in D, so that Gk(x̂) is finite for each k.
From

f(x̂) +
1

k
b(x̂) ≥ f(xk) +

1

k
b(xk)

we have
1

k

(
b(x̂)− b(xk)

)
≥ f(xk)− f(x̂) ≥ 0,



40 Iterative Optimization in Inverse Problems

so that
b(x̂)− b(xk) ≥ 0,

for all k. If either f or b has bounded level sets, then the sequence {xk} is
bounded and has a cluster point, x∗ in C. It follows that b(x∗) ≤ b(x̂) <
+∞, so that x∗ is in D. If we assume that f(x) is convex and b(x) is strictly
convex on D, then we can show that x∗ is unique in D, so that x∗ = x̂ and
{xk} → x̂.

To see this, assume, to the contrary, that there are two distinct cluster
points x∗ and x∗∗ in D, with

{xkn} → x∗,

and
{xjn} → x∗∗.

Without loss of generality, we assume that

0 < kn < jn < kn+1,

for all n, so that
b(xkn) ≤ b(xjn) ≤ b(xkn+1).

Therefore,
b(x∗) = b(x∗∗) ≤ b(x̂).

From the strict convexity of b(x) on the set D, and the convexity of f(x), we
conclude that, for 0 < λ < 1 and y = (1−λ)x∗+λx∗∗, we have b(y) < b(x∗)
and f(y) ≤ f(x∗). But, we must then have f(y) = f(x∗). There must then
be some kn such that

Gkn(y) = f(y) +
1

kn
b(y) < f(xkn) +

1

kn
b(xkn) = Gkn(xkn).

But, this is a contradiction.

The following theorem summarizes what we have shown with regard to
the barrier-function method.

Theorem 3.1 Let f : RJ → (−∞,+∞] be a continuous function. Let
b(x) : RJ → (0,+∞] be a continuous function, with effective domain the
nonempty set D. Let x̂ minimize f(x) over all x in C = D. For each positive
integer k, let xk minimize the function f(x) + 1

k b(x). Then the sequence
{f(xk)} is monotonically decreasing to the limit f(x̂), and the sequence
{b(xk)} is increasing. If x̂ is unique, and f(x) has bounded level sets, then
the sequence {xk} converges to x̂. In particular, if x̂ can be chosen in D, if
either f(x) or b(x) has bounded level sets, if f(x) is convex and if b(x) is
strictly convex on D, then x̂ is unique in D and {xk} converges to x̂.



Barrier-Function and Penalty-Function Methods 41

At the kth step of the barrier method we must minimize the function
f(x) + 1

k b(x). In practice, this must also be performed iteratively, with,
say, the Newton-Raphson algorithm. It is important, therefore, that bar-
rier functions be selected so that relatively few Newton-Raphson steps are
needed to produce acceptable solutions to the main problem. For more on
these issues see Renegar [191] and Nesterov and Nemirovski [176].

3.3 Penalty Functions

When we add a barrier function to f(x) we restrict the domain. When
the barrier function is used in a sequential unconstrained minimization
algorithm, the vector xk that minimizes the function Bk(x) = f(x)+ 1

k b(x)
lies in the effective domain D of b(x), and we proved that, under certain
conditions, the sequence {xk} converges to a minimizer of the function f(x)
over the closure of D. The constraint of lying within the set D is satisfied
at every step of the algorithm; for that reason such algorithms are called
interior-point methods. Constraints may also be imposed using a penalty
function. In this case, violations of the constraints are discouraged, but not
forbidden. When a penalty function is used in a sequential unconstrained
minimization algorithm, the xk need not satisfy the constraints; only the
limit vector need be feasible.

3.4 Examples of Penalty Functions

Consider the convex programming problem. We wish to minimize the
convex function f(x) over all x for which the convex functions gi(x) ≤ 0,
for i = 1, ..., I.

3.4.1 The Absolute-Value Penalty Function

We let g+i (x) = max{gi(x), 0}, and

p(x) =

I∑
i=1

g+i (x). (3.8)

This is the Absolute-Value penalty function; it penalizes violations of the
constraints gi(x) ≤ 0, but does not forbid such violations. Then, for k =



42 Iterative Optimization in Inverse Problems

1, 2, ..., we minimize

Pk(x) = f(x) + kp(x), (3.9)

to get xk. As k → +∞, the penalty function becomes more heavily
weighted, so that, in the limit, the constraints gi(x) ≤ 0 should hold. Be-
cause only the limit vector satisfies the constraints, and the xk are allowed
to violate them, such a method is called an exterior-point method.

3.4.2 The Courant-Beltrami Penalty Function

The Courant-Beltrami penalty-function method is similar, but uses

p(x) =

I∑
i=1

[g+i (x)]2. (3.10)

3.4.3 The Quadratic-Loss Penalty Function

Penalty methods can also be used with equality constraints. Consider
the problem of minimizing the convex function f(x), subject to the con-
straints gi(x) = 0, i = 1, ..., I. The quadratic-loss penalty function is

p(x) =
1

2

I∑
i=1

(gi(x))2. (3.11)

The inclusion of a penalty term can serve purposes other than to impose
constraints on the location of the limit vector. In image processing, it is
often desirable to obtain a reconstructed image that is locally smooth, but
with well defined edges. Penalty functions that favor such images can then
be used in the iterative reconstruction [128]. We survey several instances
in which we would want to use a penalized objective function.

3.4.4 Regularized Least-Squares

Suppose we want to solve the system of equations Ax = b. The problem
may have no exact solution, precisely one solution, or there may be infinitely
many solutions. If we minimize the function

f(x) =
1

2
‖Ax− b‖22,

we get a least-squares solution, generally, and an exact solution, whenever
exact solutions exist. When the matrix A is ill-conditioned, small changes
in the vector b can lead to large changes in the solution. When the vector



Barrier-Function and Penalty-Function Methods 43

b comes from measured data, the entries of b may include measurement
errors, so that an exact solution of Ax = b may be undesirable, even when
such exact solutions exist; exact solutions may correspond to x with unac-
ceptably large norm, for example. In such cases, we may, instead, wish to
minimize a function such as

1

2
‖Ax− b‖22 +

ε

2
‖x− z‖22, (3.12)

for some vector z. If z = 0, the minimizing vector xε is then a norm-
constrained least-squares solution. We then say that the least-squares prob-
lem has been regularized. In the limit, as ε→ 0, these regularized solutions
xε converge to the least-squares solution closest to z.

Suppose the system Ax = b has infinitely many exact solutions. Our
problem is to select one. Let us select z that incorporates features of the
desired solution, to the extent that we know them a priori. Then, as ε→ 0,
the vectors xε converge to the exact solution closest to z. For example,
taking z = 0 leads to the minimum-norm solution.

3.4.5 Minimizing Cross-Entropy

In image processing, it is common to encounter systems Px = y in
which all the terms are nonnegative. In such cases, it may be desirable
to solve the system Px = y, approximately, perhaps, by minimizing the
cross-entropy or Kullback-Leibler distance

KL(y, Px) =

I∑
i=1

(
yi log

yi
(Px)i

+ (Px)i − yi
)
, (3.13)

over vectors x ≥ 0. When the vector y is noisy, the resulting solution,
viewed as an image, can be unacceptable. It is wise, therefore, to add a
penalty term, such as p(x) = εKL(z, x), where z > 0 is a prior estimate of
the desired x [155, 206, 156, 47].

A similar problem involves minimizing the function KL(Px, y). Once
again, noisy results can be avoided by including a penalty term, such as
p(x) = εKL(x, z) [47].

3.4.6 The Lagrangian in Convex Programming

When there is a sensitivity vector λ for the CP problem, minimizing
f(x) is equivalent to minimizing the Lagrangian,

f(x) +

I∑
i=1

λigi(x) = f(x) + p(x); (3.14)



44 Iterative Optimization in Inverse Problems

in this case, the addition of the second term, p(x), serves to incorporate
the constraints gi(x) ≤ 0 in the function to be minimized, turning a con-
strained minimization problem into an unconstrained one. The problem of
minimizing the Lagrangian still remains, though. We may have to solve
that problem using an iterative algorithm.

3.4.7 Infimal Convolution

The infimal convolution of the functions f and g is defined as

(f ⊕ g)(z) = inf
x

{
f(x) + g(z − x)

}
.

The infimal deconvolution of f and g is defined as

(f 	 g)(z) = sup
x

{
f(z − x)− g(x)

}
.

3.4.8 Moreau’s Proximity-Function Method

The Moreau envelope of the function f is the function

mf (z) = inf
x

{
f(x) +

1

2
‖x− z‖22

}
, (3.15)

which is also the infimal convolution of the functions f(x) and 1
2‖x‖

2
2. It

can be shown that the infimum is uniquely attained at the point denoted
x = proxfz (see [192]). In similar fashion, we can define mf∗z and proxf∗z,
where f∗(z) denotes the function conjugate to f .

Let z be fixed and x̂ minimize the function

f(x) +
1

2γ
‖x− z‖22. (3.16)

Then we have

0 ∈ ∂f(x̂) +
1

γ
(x̂− z),

or
z − x̂ ∈ ∂(γf)(x̂).

If z − x ∈ ∂f(x) and z − y ∈ ∂f(y), then x = y: we have

f(y)− f(x) ≥ 〈z − x, y − x〉,

and
f(x)− f(y) ≥ 〈z − y, x− y〉 = −〈z − y, y − x〉.



Barrier-Function and Penalty-Function Methods 45

Adding, we get
0 ≥ 〈y − x, y − x〉 = ‖x− y‖22.

We can then say that x = proxf (z) is characterized by the inequality

z − x ∈ ∂f(x). (3.17)

Consequently, we can write

x̂ = proxγf (z).

Proposition 3.1 The infimum of mf (z), over all z, is the same as the
infimum of f(x), over all x.

Proof: We have

inf
z
mf (z) = inf

z
inf
x
{f(x) +

1

2
‖x− z‖22}

= inf
x

inf
z
{f(x) +

1

2
‖x− z‖22} = inf

x
{f(x) +

1

2
inf
z
‖x− z‖22} = inf

x
f(x).

The minimizers of mf (z) and f(x) are the same, as well. Therefore,
one way to use Moreau’s method is to replace the original problem of
minimizing the possibly non-smooth function f(x) with the problem of
minimizing the smooth function mf (z). Another way is to convert Moreau’s
method into a sequential minimization algorithm, replacing z with xk−1

and minimizing with respect to x to get xk.This leads to the proximal
minimization algorithm.

3.5 Basic Facts

Once again, our objective is to find a sequence {xk} such that
{f(xk)} → d. We select a penalty function p(x) with p(x) ≥ 0 and p(x) = 0
if and only if x is in C. For k = 1, 2, ..., let xk be a minimizer of the func-
tion f(x) + kp(x). As we shall see, we can formulate this penalty-function
algorithm as a barrier-function iteration.

In order to relate penalty-function methods to barrier-function meth-
ods, we note that minimizing Pk(x) = f(x) + kp(x) is equivalent to mini-
mizing p(x)+ 1

kf(x). This is the form of the barrier-function iteration, with
p(x) now in the role previously played by f(x), and f(x) now in the role
previously played by b(x). We are not concerned here with the effective
domain of f(x). Therefore, we can now mimic most, but not all, of what
we did for barrier-function methods.

We assume that there is α ∈ R such that α ≤ f(x), for all x ∈ RJ .



46 Iterative Optimization in Inverse Problems

Lemma 3.1 The sequence {Pk(xk)} is increasing, bounded above by d and
converges to some γ ≤ d.

Proof: We have

Pk(xk) ≤ Pk(xk+1) ≤ Pk(xk+1) + p(xk+1) = Tk+1(xk+1).

Also, for any z ∈ C, and for each k, we have

f(z) = f(z) + kp(z) = Pk(z) ≥ Pk(xk);

therefore d ≥ γ.

Lemma 3.2 The sequence {p(xk)} is decreasing to zero, the sequence
{f(xk)} is increasing and converging to some β ≤ d.

Proof: Since xk minimizes Pk(x) and xk+1 minimizes Tk+1(x), we have

f(xk) + kp(xk) ≤ f(xk+1) + kp(xk+1),

and
f(xk+1) + (k + 1)p(xk+1) ≤ f(xk) + (k + 1)p(xk).

Consequently, we have

(k + 1)[p(xk)− p(xk+1)] ≥ f(xk+1)− f(xk) ≥ k[p(xk)− p(xk+1)].

Therefore,
p(xk)− p(xk+1) ≥ 0,

and
f(xk+1)− f(xk) ≥ 0.

From
f(xk) ≤ f(xk) + kp(xk) = Pk(xk) ≤ γ ≤ d,

it follows that the sequence {f(xk)} is increasing and converges to some
β ≤ γ. Since

α+ kp(xk) ≤ f(xk) + kp(xk) = Pk(xk) ≤ γ

for all k, we have 0 ≤ kp(xk) ≤ γ − α. Therefore, the sequence {p(xk)}
converges to zero.

We want β = d. To obtain this result, it appears that we need to make
more assumptions: we assume, therefore, that X is a complete metric space,
C is closed in X, the functions f and p are continuous and f has compact
level sets. From these assumptions, we are able to assert that the sequence



Barrier-Function and Penalty-Function Methods 47

{xk} is bounded, so that there is a convergent subsequence; let {xkn} → x∗.
It follows that p(x∗) = 0, so that x∗ is in C. Then

f(x∗) = f(x∗)+p(x∗) = lim
n→+∞

(f(xkn)+p(xkn)) ≤ lim
n→+∞

Tkn(xkn) = γ ≤ d.

But x∗ ∈ C, so f(x∗) ≥ d. Therefore, f(x∗) = d.
It may seem odd that we are trying to minimize f(x) over the set C

using a sequence {xk} with {f(xk)} increasing, but remember that these
xk are not in C.

Definition 3.1 Let X be a complete metric space. A real-valued function
p(x) on X has compact level sets if, for all real γ, the level set {x|p(x) ≤ γ}
is compact.

Theorem 3.2 Let X be a complete metric space, f(x) be a continuous
function, and the restriction of f(x) to x in C have compact level sets.
Then the sequence {xk} is bounded and has convergent subsequences. Fur-
thermore, f(x∗) = d, for any subsequential limit point x∗ ∈ X. If x̂ is the
unique minimizer of f(x) for x ∈ C, then x∗ = x̂ and {xk} → x̂.

Proof: From the previous theorem we have f(x∗) = d, for all subsequential
limit points x∗. But, by uniqueness, x∗ = x̂, and so {xk} → x̂.

Corollary 3.1 Let C ⊆ RJ be closed and convex. Let f(x) : RJ → R be
closed, proper and convex. If x̂ is the unique minimizer of f(x) over x ∈ C,
the sequence {xk} converges to x̂.

Proof: Let ιC(x) be the indicator function of the set C, that is, ιC(x) = 0,
for all x in C, and ιC(x) = +∞, otherwise. Then the function g(x) =
f(x) + ιC(x) is closed, proper and convex. If x̂ is unique, then we have

{x|f(x) + ιC(x) ≤ f(x̂)} = {x̂}.

Therefore, one of the level sets of g(x) is bounded and nonempty. It follows
from Corollary 8.7.1 of [192] that every level set of g(x) is bounded, so that
the sequence {xk} is bounded.

If x̂ is not unique, we can still prove convergence of the sequence {xk}
for particular cases of SUMMA.





Chapter 4

Proximal Minimization

4.1 The Basic Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Proximal Minimization Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3 Some Obstacles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4 All PMA are SUMMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.5 Convergence of the PMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.6 The Non-Differentiable Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.7 The IPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.8 Projected Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.9 Relaxed Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.10 Regularized Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.11 The Projected Landweber Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.12 The Simultaneous MART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.13 A Convergence Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.14 Another Job for the PMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.15 The Goldstein-Osher Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.16 A Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

In this chapter we consider the use of Bregman distances in constrained
optimization through the proximal minimization method. The proximal
minimization algorithm (PMA) is in the SUMMA class and this fact is
used to establish important properties of the PMA. A detailed discussion
of the PMA and its history is found in the book by Censor and Zenios [95].

4.1 The Basic Problem

We want to minimize a convex function f : RJ → R over a closed, non-
empty convex subset C ⊆ RJ . If the problem is ill-conditioned in some way,
perhaps because the function f(x) is not strictly convex, then regularization
is needed.

For example, the least-squares approximate solution of Ax = b is ob-
tained by minimizing the function f(x) = 1

2‖Ax − b‖
2
2 over all x. When

49



50 Iterative Optimization in Inverse Problems

the matrix A is ill-conditioned the least-squares solution may have a large
two-norm. To regularize the least-squares problem we can impose a norm
constraint and minimize

1

2
‖Ax− b‖22 +

ε

2
‖x‖22, (4.1)

where ε > 0 is small.
Returning to our original problem, we can impose strict convexity and

regularize by minimizing the function

f(x) +
1

2k
‖x− a‖22 (4.2)

to get xk, for some selected vector a and k = 1, 2, .... One difficulty with
this approach is that, for small k, there may be too much emphasis on
the second term in Equation (4.2), while the problem becomes increasingly
ill-conditioned as k increases. As pointed out in [95], one way out of this
difficulty is to obtain xk by minimizing

f(x) +
γ

2
‖x− xk−1‖22. (4.3)

This suggests a more general technique for constrained optimization, called
proximal minimization with D-functions in [95].

4.2 Proximal Minimization Algorithms

Let f : RJ → (−∞,+∞] be a convex function. Let h be another convex
function, with effective domain D, that is differentiable on the nonempty
open convex set int D. Assume that f(x) is finite on C = D and attains
its minimum value on C at x̂. Our objective is to minimize f(x) over x in
C = D.

At the kth step of a proximal minimization algorithm (PMA) [95, 55],
we minimize the function

Gk(x) = f(x) +Dh(x, xk−1), (4.4)

to get xk. The Bregman distance Dh is sometimes called a proximity func-
tion. The function

gk(x) = Dh(x, xk−1) (4.5)

is nonnegative and gk(xk−1) = 0. We assume that each xk lies in int D. As
we shall see,

Gk(x)−Gk(xk) ≥ Dh(x, xk) = gk+1(x) ≥ 0, (4.6)



Proximal Minimization 51

so the PMA is in the SUMMA class.
The Newton-Raphson algorithm for minimizing a twice differentiable

function f : RJ → R has the iterative step

xk = xk−1 −∇2f(xk−1)−1∇f(xk−1). (4.7)

Suppose now that f is also convex. It is interesting to note that, having
calculated xk−1, we can obtain xk by minimizing

Gk(x) = f(x) + (x− xk−1)T∇2f(xk−1)(x− xk−1)−Df (x, xk−1). (4.8)

4.3 Some Obstacles

The PMA can present some computational obstacles. When we mini-
mize Gk(x) to get xk we find that we must solve the equation

∇h(xk−1)−∇h(xk) ∈ ∂f(xk), (4.9)

where the set ∂f(x) is the sub-differential of f at x. When f(x) is differ-
entiable, we must solve

∇f(xk) +∇h(xk) = ∇h(xk−1). (4.10)

A modification of the PMA, called the IPA for interior-point algorithm
[55, 63], is designed to overcome these computational obstacles. We discuss
the IPA later in this chapter. Another modification of the PMA that is
similar to the IPA is the forward-backward splitting (FBS) method to be
discussed in a later chapter.

4.4 All PMA are SUMMA

We show now that all PMA are in the SUMMA class. We remind the
reader that f(x) is now assumed to be convex.

Lemma 4.1 For each k we have

Gk(x)−Gk(xk) ≥ Dh(x, xk) = gk+1(x). (4.11)



52 Iterative Optimization in Inverse Problems

Proof: Since xk minimizes Gk(x) within the set D, we have

0 ∈ ∂f(xk) +∇h(xk)−∇h(xk−1), (4.12)

so that

∇h(xk−1) = uk +∇h(xk), (4.13)

for some uk in ∂f(xk). Then

Gk(x)−Gk(xk) = f(x)− f(xk) + h(x)− h(xk)− 〈∇h(xk−1), x− xk〉.

Now substitute, using Equation (4.13), to get

Gk(x)−Gk(xk) = f(x)− f(xk)− 〈uk, x− xk〉+Dh(x, xk). (4.14)

Therefore,
Gk(x)−Gk(xk) ≥ Dh(x, xk),

since uk is in ∂f(xk).

4.5 Convergence of the PMA

From the discussion of the SUMMA we know that {f(xk)} is monoton-
ically decreasing to f(x̂). As we noted previously, if the sequence {xk} is
bounded, and x̂ is unique, we can conclude that {xk} → x̂.

Suppose that x̂ is not known to be unique, but can be chosen in D; this
will be the case, of course, whenever D is closed. Then Gk(x̂) is finite for
each k. From the definition of Gk(x) we have

Gk(x̂) = f(x̂) +Dh(x̂, xk−1). (4.15)

From Equation (4.14) we have

Gk(x̂) = Gk(xk) + f(x̂)− f(xk)− 〈uk, x̂− xk〉+Dh(x̂, xk). (4.16)

Therefore,
Dh(x̂, xk−1)−Dh(x̂, xk) =

f(xk)− f(x̂) +Dh(xk, xk−1) + f(x̂)− f(xk)− 〈uk, x̂− xk〉. (4.17)

It follows that the sequence {Dh(x̂, xk)} is decreasing and that {f(xk)}
converges to f(x̂). If either the function f(x) or the function Dh(x̂, ·) has
bounded level sets, then the sequence {xk} is bounded, has cluster points



Proximal Minimization 53

x∗ in C, and f(x∗) = f(x̂), for every x∗. We now show that x̂ in D implies
that x∗ is also in D, whenever h is a Bregman -Legendre function (see
Chapter 19).

Let x∗ be an arbitrary cluster point, with {xkn} → x∗. If x̂ is not in
the interior of D, then, by Property B2 of Bregman-Legendre functions, we
know that

Dh(x∗, xkn)→ 0,

so x∗ is in D. Then the sequence {Dh(x∗, xk)} is decreasing. Since a sub-
sequence converges to zero, we have {Dh(x∗, xk)} → 0. From Property R5,
we conclude that {xk} → x∗.

If x̂ is in int D, but x∗ is not, then {Dh(x̂, xk)} → +∞, by Property R2.
But, this is a contradiction; therefore x∗ is in D. Once again, we conclude
that {xk} → x∗.

Now we summarize our results for the PMA. Let f : RJ → (−∞,+∞]
be closed, proper, and convex. Let h be a closed proper convex function,
with effective domain D, that is differentiable on the nonempty open convex
set int D. Assume that f(x) is finite on C = D and attains its minimum
value on C at x̂. For each positive integer k, let xk minimize the function
f(x) +Dh(x, xk−1). Assume that each xk is in the interior of D.

Theorem 4.1 If the restriction of f(x) to x in C has bounded level sets
and x̂ is unique, and then the sequence {xk} converges to x̂.

Theorem 4.2 If h(x) is a Bregman-Legendre function and x̂ can be chosen
in D, then {xk} → x∗, x∗ in D, with f(x∗) = f(x̂).

4.6 The Non-Differentiable Case

In the discussion so far, we have assumed that the function h(x) is
differentiable; the gradient played a role in the definition of the Bregman
distance Dh(x, z). When h(x) is not differentiable, a PMA is still available.
In the non-differentiable case a Bregman distance is defined to be

Dh(x, z; p) = h(x)− h(z)− 〈p, x− z〉 , (4.18)

where p is a member of the sub-differential ∂h(z). We begin the PMA by
selecting initial vectors x0 and p0 ∈ ∂h(x0). Now the iterate xk minimizes

Gk(x) = f(x) +Dh(x, xk−1; pk−1), (4.19)



54 Iterative Optimization in Inverse Problems

where pk−1 is a member of ∂h(xk−1). Therefore,

0 ∈ ∂f(xk) + ∂h(xk)− pk−1. (4.20)

We assume that this equation can be solved and that there are uk ∈ ∂f(xk)
and vk ∈ ∂h(xk) so that

vk = pk−1 − uk. (4.21)

We then define pk = vk, so that

Gk(x)−Gk(xk) =

Df (x, xk;uk) +Dh(x, xk; pk) ≥ Dh(x, xk; pk) = gk+1(x). (4.22)

Therefore, the SUMMA condition holds and the sequence {f(xk)} con-
verges to f(x̂).

4.7 The IPA

The IPA is a modification of the PMA designed to overcome some of
the computational obstacles encountered in the PMA [55, 63]. At the kth
step of the PMA we must solve the equation

∇f(xk) +∇h(xk) = ∇h(xk−1) (4.23)

for xk, where, for notational convenience, we assume that both f and h
are differentiable. Solving Equation (4.23) is probably not a simple matter,
however. In the IPA approach we begin not with h(x), but with a con-
vex differentiable function a(x) such that h(x) = a(x) − f(x) is convex.
Equation (4.23) now reads

∇a(xk) = ∇a(xk−1)−∇f(xk−1), (4.24)

and we choose a(x) so that Equation (4.24) is easily solved. We turn now
to several examples of the IPA.

4.8 Projected Gradient Descent

The problem now is to minimize f : RJ → R, over the closed, non-empty
convex set C, where f is convex and differentiable on RJ . We assume now



Proximal Minimization 55

that the gradient operator ∇f is L-Lipschitz continuous; that is, for all x
and y, we have

‖∇f(x)−∇f(y)‖2 ≤ L‖x− y‖2. (4.25)

To employ the IPA approach, we let 0 < γ < 1
L and select the function

a(x) =
1

2γ
‖x‖22; (4.26)

the upper bound on γ guarantees that the function h(x) = a(x) − f(x) is
convex. At the kth step we minimize

Gk(x) = f(x) +Dh(x, xk−1) =

f(x) +
1

2γ
‖x− xk−1‖22 −Df (x, xk−1), (4.27)

over x ∈ C. The solution xk is in C and satisfies the inequality

〈xk − (xk−1 − γ∇f(xk−1)), c− xk〉 ≥ 0, (4.28)

for all c ∈ C. It follows then that

xk = PC(xk−1 − γ∇f(xk−1)); (4.29)

here PC denotes the orthogonal projection onto C. This is the projected
gradient descent algorithm. For convergence we must require that f have
certain additional properties needed for convergence of a PMA algorithm.
Note that the auxiliary function

gk(x) =
1

2γ
‖x− xk−1‖22 −Df (x, xk−1) (4.30)

is unrelated to the set C, so is not used here to incorporate the constraint;
it is used to provide a closed-form iterative scheme.

When C = RJ we have no constraint and the problem is simply to
minimize f . Then the iterative algorithm becomes

xk = xk−1 − γ∇f(xk−1); (4.31)

this is the gradient descent algorithm.

4.9 Relaxed Gradient Descent

In the gradient descent method we move away from the current xk−1

by the vector γ∇f(xk−1). In relaxed gradient descent, the magnitude of



56 Iterative Optimization in Inverse Problems

the movement is reduced by α, where α ∈ (0, 1). Such relaxation methods
are sometimes used to accelerate convergence. The relaxed gradient descent
method can also be formulated as an AF method.

At the kth step we minimize

Gk(x) = f(x) +
1

2γα
‖x− xk−1‖22 −Df (x, xk−1), (4.32)

obtaining

xk = xk−1 − αγ∇f(xk−1). (4.33)

4.10 Regularized Gradient Descent

In many applications the function to be minimized involves measured
data, which is typically noisy, as well as some less than perfect model of
how the measured data was obtained. In such cases, we may not want to
minimize f(x) exactly. In regularization methods we add to f(x) another
function that is designed to reduce sensitivity to noise and model error.

For example, suppose that we want to minimize

αf(x) +
1− α

2
‖x− p‖2, (4.34)

where p is chosen a priori. The regularized gradient descent algorithm for
this problem can be put in the framework of a sequential unconstrained
minimization problem.

At the kth step we minimize

Gk(x) = f(x) +
1

2γα
‖x− xk−1‖22 −

1

α
(x, xk−1)] +

1− α
2γα

‖x− p‖22, (4.35)

obtaining

xk = α(xk−1 − γ∇f(xk−1)) + (1− α)p. (4.36)

If we select p = 0 the iterative step becomes

xk = α(xk−1 − γ∇f(xk−1)). (4.37)



Proximal Minimization 57

4.11 The Projected Landweber Algorithm

The Landweber (LW) and projected Landweber (PLW) algorithms are
special cases of projected gradient descent. The objective now is to minimize
the function

f(x) =
1

2
‖Ax− b‖22, (4.38)

over x ∈ RJ or x ∈ C, where A is a real I by J matrix. The gradient of
f(x) is

∇f(x) = AT (Ax− b) (4.39)

and is L-Lipschitz continuous for L = ρ(ATA), the largest eiqenvalue of
ATA. The Bregman distance associated with f(x) is

Df (x, z) =
1

2
‖Ax−Az‖22. (4.40)

We let

a(x) =
1

2γ
‖x‖22, (4.41)

where 0 < γ < 1
L , so that the function h(x) = a(x)− f(x) is convex.

At the kth step of the PLW we minimize

Gk(x) = f(x) +Dh(x, xk−1) (4.42)

over x ∈ C to get

xk = PC(xk−1 − γAT (Axk−1 − b)); (4.43)

in the case of C = RJ we get the Landweber algorithm.

4.12 The Simultaneous MART

The simultaneous MART (SMART) minimizes the Kullback-Leibler dis-
tance f(x) = KL(Px, y), where y is a positive vector, P is an I by J matrix

with nonnegative entries Pij for which sj =
∑I
i=1 Pij = 1, for all j, and we

seek a nonnegative solution of the system y = Px.



58 Iterative Optimization in Inverse Problems

The Bregman distance associated with the function f(x) = KL(Px, y)
is

Df (x, z) = KL(Px, Pz). (4.44)

We select a(x) to be

a(x) =

J∑
j=1

xj log(xj)− xj . (4.45)

It follows from the inequality in (2.13) that h(x) is convex and

Dh(x, z) = KL(x, z)−KL(Px, Pz) ≥ 0. (4.46)

At the kth step of the SMART we minimize

Gk(x) = f(x) +Dh(x, xk−1) =

KL(Px, y) +KL(x, xk−1)−KL(Px, Pxk−1) (4.47)

to get

xkj = xk−1j exp
( I∑
i=1

Pij log
yi

(Pxk−1)i

)
. (4.48)

4.13 A Convergence Theorem

So far, we haven’t discussed the restrictions necessary to prove conver-
gence of these iterative algorithms. The IPA framework can be helpful in
this regard, as we illustrate now.

The following theorem concerns convergence of the projected gradient
descent algorithm with iterative step given by Equation (4.29).

Theorem 4.3 Let f : RJ → R be differentiable, with L-Lipschitz con-
tinuous gradient. For γ in the interval (0, 1

L ) the sequence {xk} given by
Equation (4.29) converges to a minimizer of f , over x ∈ C, whenever min-
imizers exist.

Proof: The auxiliary function

gk(x) =
1

2γ
‖x− xk−1‖22 −Df (x, xk−1) (4.49)



Proximal Minimization 59

can be rewritten as

gk(x) = Dh(x, xk−1), (4.50)

where

h(x) =
1

2γ
‖x‖22 − f(x). (4.51)

Therefore, gk(x) ≥ 0 whenever h(x) is a convex function.
We know that h(x) is convex if and only if

〈∇h(x)−∇h(y), x− y〉 ≥ 0, (4.52)

for all x and y. This is equivalent to

1

γ
‖x− y‖22 − 〈∇f(x)−∇f(y), x− y〉 ≥ 0. (4.53)

Since ∇f is L-Lipschitz, the inequality (4.53) holds whenever 0 < γ < 1
L .

A relatively simple calculation shows that

Gk(x)−Gk(xk) =

1

2γ
‖x− xk‖22 +

1

γ
〈xk − (xk−1 − γ∇f(xk−1)), x− xk〉. (4.54)

From Equation (4.29) it follows that

Gk(x)−Gk(xk) ≥ 1

2γ
‖x− xk‖22, (4.55)

for all x ∈ C, so that, for all x ∈ C, we have

Gk(x)−Gk(xk) ≥ 1

2γ
‖x− xk‖22 −Df (x, xk) = gk+1(x). (4.56)

Now let x̂ minimize f(x) over all x ∈ C. Then

Gk(x̂)−Gk(xk) = f(x̂) + gk(x̂)− f(xk)− gk(xk)

≤ f(x̂) +Gk−1(x̂)−Gk−1(xk−1)− f(xk)− gk(xk),

so that(
Gk−1(x̂)−Gk−1(xk−1)

)
−
(
Gk(x̂)−Gk(xk)

)
≥ f(xk)−f(x̂)+gk(xk) ≥ 0.

Therefore, the sequence {Gk(x̂)−Gk(xk)} is decreasing and the sequences
{gk(xk)} and {f(xk)− f(x̂)} converge to zero.



60 Iterative Optimization in Inverse Problems

From

Gk(x̂)−Gk(xk) ≥ 1

2γ
‖x̂− xk‖22,

it follows that the sequence {xk} is bounded. Let {xkn} converge to x∗

with {xkn+1} converging to x∗∗; we then have f(x∗) = f(x∗∗) = f(x̂).
Replacing the generic x̂ with x∗∗, we find that {Gkn+1(x∗∗) −

Gkn+1(xkn+1)} is decreasing. By Equation (4.54), this subsequence con-
verges to zero; therefore, the entire sequence {Gk(x∗∗) − Gk(xk)} con-
verges to zero. From the inequality in (4.55), we conclude that the sequence
{‖x∗∗ − xk‖22} converges to zero, and so {xk} converges to x∗∗. This com-
pletes the proof of the theorem.

Using Theorem 6.3 it can be shown that convergence holds whenever γ
is in the interval (0, 2

L ).

4.14 Another Job for the PMA

As we have seen, the original goal of the PMA is to minimize a convex
function f(x) over the closure of the domain of h(x). Since the PMA is a
SUMMA algorithm, we know that, whenever the sequence converges, the
limit x∗ satisfies f(x∗) = d, where d is the finite infimum of f(x) over x in
the interior of the domain of h. This suggests another job for the PMA.

Consider the problem of minimizing a differentiable convex function
h : RJ → R over all x for which Ax = b, where A is an M by N matrix
with rank M and b is arbitrary. With

f(x) =
1

2
‖Ax− b‖22, (4.57)

and x0 arbitrary we minimize

f(x) +Dh(x, xk−1) (4.58)

to get xk. Whenever the sequence {xk} converges to some x∗ we have Ax∗ =
b. If ∇h(x0) is in the range of AT , then so is ∇h(x∗) and x∗ minimizes h(x)
over all x with Ax = b.



Proximal Minimization 61

4.15 The Goldstein-Osher Algorithm

In [132] the authors consider the problem of minimizing the function

‖Φ(u)‖1 +H(u), (4.59)

where both ‖Φ(u)‖1 and H(u) are convex. They reformulate the problem
as a constrained minimization problem as follows: minimize

‖d‖1 +H(u), (4.60)

subject to Φ(u) − d = 0. They note that one penalty-function approach
would be to minimize

‖d‖1 +H(u) +
k

2
‖Φ(u)− d‖22, (4.61)

to get (uk, dk). As k → +∞ the second term becomes increasingly im-
portant and the limit (u∗, d∗) of such a sequence would surely have
Φ(u∗) − d∗ = 0. As k grows larger, however, the minimization problem
becomes increasingly unstable. To avoid this, they propose an alternative
algorithm, which we shall call here the Goldstein-Osher, or GO, algorithm.

The GO algorithm begins with an arbitrary choice of the vector b−1.
Having found uk−1, dk−1, and bk−1, the next iterate (uk, dk) minimizes

‖d‖1 +H(u) +
1

2
‖Φ(u)− d− bk−1‖22. (4.62)

The next bk is

bk = bk−1 − (Φ(uk)− dk). (4.63)

It is clear how the penalty-function approach in Equation (4.61) forces
Φ(u∗) = d∗, but it is not obvious how changing bk−1 to bk would have the
same effect. Essentially what happens is that, as k → +∞, an increasingly
large vector is added to Φ(u)− d prior to taking the Euclidean norm. This
has an effect similar to taking k increasingly large in the penalty-function
approach.

The following theorem is essentially their Theorem 2.2.

Theorem 4.4 If, for some k, we have Φ(uk) = dk, then (uk, dk) minimizes
‖d‖1 +H(u), subject to Φ(u)− d = 0.

Proof: Let (û, d̂) satisfy Φ(û)− d̂ = 0, and minimize ‖d‖1 +H(u) over all
(u, d) with Φ(u)− d = 0. Then

H(uk, dk) +
1

2
‖Φ(uk)− dk − bk−1‖22 ≤ H(û, d̂) +

1

2
‖Φ(û)− d̂− bk−1)‖22,



62 Iterative Optimization in Inverse Problems

so that H(uk, dk) ≤ H(û, d̂).

It is certainly restrictive to assume that Φ(uk) − dk = 0 for finite k,
although this can sometimes happen [184]. Clearly, a better result would
assert that the sequence {(uk, dk)} converges to some (u∗, d∗) with Φ(u∗)−
d∗ = 0. Then (u∗, d∗) would solve their original problem.

In order to strengthen their conclusions regarding the GO algorithm,
they attempt to relate the GO algorithm to the proximal minimization
algorithm (PMA) [94, 95]. They claim that, for any sequence {(uk, dk)}
generated by the GO algorithm, there is a PMA that produces the same
sequence. Such a PMA would employ a Bregman distance DE derived from
the convex function

E(u, d) = ‖d‖1 +H(u).

If this claim were true generally, then the theory of the PMA would say
that, if {(uk, dk)} converges to some (u∗, d∗), then Φ(u∗)− d∗ = 0.

On the face of it, this claim seems problematic. The reason is that
the PMA does not directly involve the function E(u, d), but only DE ,
and DE does not uniquely determine E. How would the PMA know to
provide a constrained minimizer for E and not for one of the infinitely
many alternatives that give the same DE? The answer would have to lie
with the selection of the starting point for the PMA; unfortunately, this
aspect of the problem is ignored in [132].

As we shall see, their claim appears to be valid only when Φ(u) is affine
linear. In addition, as we shall prove later, with certain requirements placed
on the functions Φ(u) and H(u), if the sequence (uk, dk) does converge to
some (u∗, d∗), then the sequence {bk} converges and Φ(u∗)−d∗ = 0. Conse-
quently, in such cases an equivalent PMA iteration seems to be unnecessary.

In the affine linear case, the problem is to minimize

E(u, d) = ‖d‖1 +H(u), (4.64)

over all (u, d) with Au − d = 0, where A is a matrix. We know that a
necessary and sufficient condition for (u∗, d∗) with Au∗ − d∗ = 0 to solve
the minimization problem is for there to be a vector v∗ = (r∗, s∗) in the
sub-differential ∂E(u∗, d∗) such that r∗ is in the range of AT . Since, for
each k, we have

vk = (rk, sk) ∈ ∂E(uk, dk), (4.65)

with

rk + +AT (Auk − dk − bk−1) = 0, (4.66)

it follows that, whenever the sequence {(uk, dk)} converges to some (u∗, d∗)
with Au∗ − d∗ = 0, the vector (u∗, d∗) solves the constrained minimization
problem.



Proximal Minimization 63

For the remainder of this section we shall adopt different notation and
formulate the original problem as follows. Let T : RJ → RI be a (possibly)
nonlinear operator, and h : RJ → R a convex function. Let S = {x|T (x) =
0} 6= ∅. Then we want to minimize the function h(x) over x ∈ S. We shall
obtain some new results concerning the GO algorithm, discuss the PMA,
and investigate the claim in [132] that each sequence generated by the GO
algorithm is also a PMA sequence.

Let h : RJ → R be a convex function, and T : RJ → RI a (possibly)
non-linear operator. Let x̂ ∈ S minimize h(x) over all x in S. For each
x ∈ RJ let T ′(x) ∈ RJ×I be the Jacobian matrix for T at x. We assume
that the operators T and T ′ are continuous, that for each x there is an
I by J matrix B(x) such that B(x)T ′(x) = I, the identity matrix, and
that the operator B : RJ → RI×J is continuous. For example, suppose
that T (x) is affine linear, so that there are matrix A and vector b with
T (x) = Ax− b. Assuming that AAT is invertible, we have T ′(x) = AT and
B(x) = (AAT )−1A.

Now the GO algorithm takes the following form. For arbitrary vector
b−1, and having found xk−1 and bk−1, take xk to be the minimizer of the
function

h(x) +
1

2
‖T (x)− bk−1‖22. (4.67)

Then there is vk ∈ ∂h(xk) such that

vk = T ′(xk)(T (xk)− bk−1), (4.68)

and

bk−1 = B(xk)vk + T (xk). (4.69)

If the sequences {xk} and {vk} converge, then so does the sequence {bk}.
Note that we have not yet said how the next bk is to be defined.

If h is differentiable, then we have

∇h(xk) = T ′(xk)(T (xk)− bk−1), (4.70)

so that

bk−1 = B(xk)∇h(xk) + T (xk). (4.71)

We have the following theorem.

Theorem 4.5 If h is continuously differentiable, and the sequence {xk}
converges to some x∗, then the sequence {bk} converges to some b∗. If
T (x∗) = 0, then x∗ minimizes h(x) over x in S.



64 Iterative Optimization in Inverse Problems

Proof: The first assertion follows from Equation (4.71) and continuity. We
have

h(xk) +
1

2
‖T (xk)− bk−1‖22 ≤ h(x̂) +

1

2
‖T (x̂)− bk−1‖22,

so that, by taking limits, we have

h(x∗) +
1

2
‖b∗‖22 ≤ h(x̂) +

1

2
‖b∗‖22.

This theorem is similar to Theorem 2.2 of [132]; the latter does not
require that h be differentiable.

In the Goldstein-Osher algorithm we have

bk = bk−1 − T (xk). (4.72)

Now we can strengthen Theorem 4.5.

Theorem 4.6 Let h be differentiable. Let bk be defined as in Equation
(4.72). If the sequence {xk} converges to some x∗, then T (x∗) = 0. Conse-
quently, x∗ minimizes h(x) over x in S. If h is not differentiable, but the
sequence {vk} converges, then the same result holds.

Proof: We know that the sequence {bk} converges, according to Theorem
4.5 or the convergence of the sequence {vk}. Therefore, by taking limits in
Equation (4.72), we have T (x∗) = 0.

In [132] the authors claim that, for each sequence generated by their
algorithm, there is a proximal minimization algorithm that generates the
same sequence. If true, this would allow them to make additional assertions
about their algorithm. As we shall show, however, this equivalence appears
to be true only when T (x) is affine linear, that is, T (x) = Ax− b, so that
T ′(x) = AT . For simplicity, we consider the case of differentiable h. Let
b−1 be arbitrary. Let z0 minimize the function

h(x) +
1

2
‖T (x)− b−1‖22, (4.73)

and

b0 = b−1 − T (z0). (4.74)

Then

∇h(z0) + T ′(z0)(T (z0)− b−1) = ∇h(z0)− T ′(z0)b0 = 0. (4.75)

or

∇h(z0) = T ′(z0)b0. (4.76)



Proximal Minimization 65

Similarly,

∇h(z1) + T ′(z1)(T (z1)− b0) = h(z1)− T ′(z1)b1 = 0, (4.77)

so

∇h(z1) = T ′(z1)b1, (4.78)

and

∇h(z2) + T ′(z2)T (z2) = T ′(z2)b1. (4.79)

Now consider the PMA.
Let x1 minimize

1

2
‖T (x)‖22 +Dh(x, x0), (4.80)

for some x0. Then

∇h(x0) = ∇h(x1) + T ′(x1)T (x1). (4.81)

Similarly,

∇h(x1) = ∇h(x2) + T ′(x2)T (x2). (4.82)

If x1 = z1 and x2 = z2 then

∇h(x2) + T ′(x2)T (x2) = T ′(x2)b1, (4.83)

or

∇h(x1) = T ′(x2)b1. (4.84)

But we also have

∇h(x1) = T ′(x1)b1. (4.85)

This suggests that there will be an equivalent PMA only when T ′(x) is
constant, or T (x) = Ax− b; that is, only when T (x) is affine linear.

4.16 A Question

Suppose that xk minimizes

f(x) +Dh(x, xk−1),



66 Iterative Optimization in Inverse Problems

and {xk} converges to x∗. We know that x∗ minimizes f(x) over all x in the
closure of the essential domain of h. Let M be the set of all such minimizers.
Does x∗ also minimize h(z) over all z in M? In general, the answer is no;
Dh does not determine h uniquely. What if h(x) = Dh(x, x0)? There are
several examples, using both Euclidean and Kullback-Leibler distances, in
which the answer is yes.



Chapter 5

The Forward-Backward Splitting
Algorithm

5.1 Moreau’s Proximity Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2 The FBS Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3 Convergence of the FBS algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.4 Some Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.4.1 Projected Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.4.2 The CQ Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.4.3 The Projected Landweber Algorithm . . . . . . . . . . . . . . . . . . . 72

5.5 Minimizing f2 over a Linear Manifold . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.6 Feasible-Point Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.6.1 The Projected Gradient Algorithm . . . . . . . . . . . . . . . . . . . . . 73
5.6.2 The Reduced Gradient Algorithm . . . . . . . . . . . . . . . . . . . . . . . 74
5.6.3 The Reduced Newton-Raphson Method . . . . . . . . . . . . . . . . 75

The forward-backward splitting (FBS) methods [101, 67] form a broad class
of SUMMA algorithms closely related the IPA. Note that minimizing Gk(x)
in Equation (4.4) over x ∈ C is equivalent to minimizing

Gk(x) = ιC(x) + f(x) +Dh(x, xk−1) (5.1)

over all x ∈ RJ , where ιC(x) = 0 for x ∈ C and ιC(x) = +∞ otherwise.
This suggests a more general iterative algorithm, the FBS.

Suppose that we want to minimize the function f1(x) + f2(x), where
both functions are convex and f2(x) is differentiable with its gradient L-
Lipschitz continuous in the Euclidean norm, by which we mean that

‖∇f2(x)−∇f2(y)‖2 ≤ L‖x− y‖2, (5.2)

for all x and y. At the kth step of the FBS algorithm we obtain xk by
minimizing

Gk(x) = f1(x) + f2(x) +
1

2γ
‖x− xk−1‖22 −Df2(x, xk−1), (5.3)

over all x ∈ RJ , where 0 < γ < 1
2γ .

67



68 Iterative Optimization in Inverse Problems

5.1 Moreau’s Proximity Operators

Following Combettes and Wajs [101], we say that the Moreau envelope
of index γ > 0 of the closed, proper convex function f(x) is the continuous
convex function

g(x) = inf{f(y) +
1

2γ
||x− y||22}, (5.4)

with the infimum taken over all y in RJ [169, 170, 171]. In Rockafellar’s book
[192] and elsewhere, it is shown that the infimum is attained at a unique
y, usually denoted proxγf (x). The proximity operators proxγf (·) are firmly
nonexpansive [101]; indeed, the proximity operator proxf is the resolvent
of the maximal monotone operator B(x) = ∂f(x) and all such resolvent
operators are firmly nonexpansive [35]. Proximity operators also generalize
the orthogonal projections onto closed, convex sets: consider the function
f(x) = ιC(x), the indicator function of the closed, convex set C, taking
the value zero for x in C, and +∞ otherwise. Then proxγf (x) = PC(x),
the orthogonal projection of x onto C. The following characterization of
x = proxf (z) is quite useful: x = proxf (z) if and only if z − x ∈ ∂f(x).

5.2 The FBS Algorithm

Our objective here is to provide an elementary proof of convergence for
the forward-backward splitting (FBS) algorithm; a detailed discussion of
this algorithm and its history is given by Combettes and Wajs in [101].

Let f : RJ → R be convex, with f = f1 + f2, both convex, f2 differ-
entiable, and ∇f2 L-Lipschitz continuous. The iterative step of the FBS
algorithm is

xk = proxγf1

(
xk−1 − γ∇f2(xk−1)

)
. (5.5)

As we shall show, convergence of the sequence {xk} to a solution can be
established, if γ is chosen to lie within the interval (0, 1/L].



The Forward-Backward Splitting Algorithm 69

5.3 Convergence of the FBS algorithm

Let f : RJ → R be convex, with f = f1 + f2, both convex, f2 differen-
tiable, and ∇f2 L-Lipschitz continuous. Let {xk} be defined by Equation
(5.5) and let 0 < γ ≤ 1/L.

For each k = 1, 2, ... let

Gk(x) = f(x) +
1

2γ
‖x− xk−1‖22 −Df2(x, xk−1), (5.6)

where

Df2(x, xk−1) = f2(x)− f2(xk−1)− 〈∇f2(xk−1), x− xk−1〉. (5.7)

Since f2(x) is convex, Df2(x, y) ≥ 0 for all x and y and is the Bregman
distance formed from the function f2.

The auxiliary function

gk(x) =
1

2γ
‖x− xk−1‖22 −Df2(x, xk−1) (5.8)

can be rewritten as

gk(x) = Dh(x, xk−1), (5.9)

where

h(x) =
1

2γ
‖x‖22 − f2(x). (5.10)

Therefore, gk(x) ≥ 0 whenever h(x) is a convex function.
We know that h(x) is convex if and only if

〈∇h(x)−∇h(y), x− y〉 ≥ 0, (5.11)

for all x and y. This is equivalent to

1

γ
‖x− y‖22 − 〈∇f2(x)−∇f2(y), x− y〉 ≥ 0. (5.12)

Since ∇f2 is L-Lipschitz, the inequality (5.12) holds for 0 < γ ≤ 1/L.

Lemma 5.1 The xk that minimizes Gk(x) over x is given by Equation
(5.5).



70 Iterative Optimization in Inverse Problems

Proof: We know that xk minimizes Gk(x) if and only if

0 ∈ ∇f2(xk) +
1

γ
(xk − xk−1)−∇f2(xk) +∇f2(xk−1) + ∂f1(xk),

or, equivalently,(
xk−1 − γ∇f2(xk−1)

)
− xk ∈ ∂(γf1)(xk).

Consequently,
xk = proxγf1(xk−1 − γ∇f2(xk−1)).

Theorem 5.1 The sequence {xk} converges to a minimizer of the function
f(x), whenever minimizers exist.

Proof: A relatively simple calculation shows that

Gk(x)−Gk(xk) =
1

2γ
‖x− xk‖22 +

(
f1(x)− f1(xk)− 1

γ
〈(xk−1 − γ∇f2(xk−1))− xk, x− xk〉

)
. (5.13)

Since
(xk−1 − γ∇f2(xk−1))− xk ∈ ∂(γf1)(xk),

it follows that(
f1(x)− f1(xk)− 1

γ
〈(xk−1 − γ∇f2(xk−1))− xk, x− xk〉

)
≥ 0.

Therefore,

Gk(x)−Gk(xk) ≥ 1

2γ
‖x− xk‖22 ≥ gk+1(x). (5.14)

Therefore, the inequality in (2.17) holds and the iteration fits into the
SUMMA class.

Now let x̂ minimize f(x) over all x. Then

Gk(x̂)−Gk(xk) = f(x̂) + gk(x̂)− f(xk)− gk(xk)

≤ f(x̂) +Gk−1(x̂)−Gk−1(xk−1)− f(xk)− gk(xk),

so that(
Gk−1(x̂)−Gk−1(xk−1)

)
−
(
Gk(x̂)−Gk(xk)

)
≥ f(xk)−f(x̂)+gk(xk) ≥ 0.



The Forward-Backward Splitting Algorithm 71

Therefore, the sequence {Gk(x̂)−Gk(xk)} is decreasing and the sequences
{gk(xk)} and {f(xk)− f(x̂)} converge to zero.

From

Gk(x̂)−Gk(xk) ≥ 1

2γ
‖x̂− xk‖22,

it follows that the sequence {xk} is bounded. Therefore, we may select a
subsequence {xkn} converging to some x∗∗, with {xkn−1} converging to
some x∗, and therefore f(x∗) = f(x∗∗) = f(x̂).

Replacing the generic x̂ with x∗∗, we find that {Gk(x∗∗) − Gk(xk)} is
decreasing to zero. From the inequality in (5.14), we conclude that the
sequence {‖x∗−xk‖22} converges to zero, and so {xk} converges to x∗. This
completes the proof of the theorem.

5.4 Some Examples

We present some examples to illustrate the application of the conver-
gence theorem.

5.4.1 Projected Gradient Descent

Let C be a nonempty, closed convex subset of RJ and f1(x) = ιC(x),
the function that is +∞ for x not in C and zero for x in C. Then ιC(x)
is convex, but not differentiable. We have proxγf1 = PC , the orthogonal
projection onto C. The iteration in Equation (5.5) becomes

xk = PC

(
xk−1 − γ∇f2(xk−1)

)
. (5.15)

The sequence {xk} converges to a minimizer of f2 over x ∈ C, whenever
such minimizers exist, for 0 < γ ≤ 1/L.

5.4.2 The CQ Algorithm

Let A be a real I by J matrix, C ⊆ RJ , and Q ⊆ RI , both closed convex
sets. The split feasibility problem (SFP) is to find x in C such that Ax is
in Q. The function

f2(x) =
1

2
‖PQAx−Ax‖22 (5.16)

is convex, differentiable and ∇f2 is L-Lipschitz for L = ρ(ATA), the spec-
tral radius of ATA. The gradient of f2 is

∇f2(x) = AT (I − PQ)Ax. (5.17)



72 Iterative Optimization in Inverse Problems

We want to minimize the function f2(x) over x in C, or, equivalently, to
minimize the function f(x) = ιC(x)+f2(x). The projected gradient descent
algorithm has the iterative step

xk = PC

(
xk−1 − γAT (I − PQ)Axk−1

)
; (5.18)

this iterative method was called the CQ-algorithm in [58, 59]. The sequence
{xk} converges to a solution whenever f2 has a minimum on the set C, for
0 < γ ≤ 1/L.

In [85, 81] the CQ algorithm was extended to a multiple-sets algorithm
and applied to the design of protocols for intensity-modulated radiation
therapy.

5.4.3 The Projected Landweber Algorithm

The problem is to minimize the function

f2(x) =
1

2
‖Ax− b‖22,

over x ∈ C. This is a special case of the SFP and we can use the CQ-
algorithm, with Q = {b}. The resulting iteration is the projected Landwe-
ber algorithm [23]; when C = RJ it becomes the Landweber algorithm
[154].

5.5 Minimizing f2 over a Linear Manifold

Suppose that we want to minimize f2 over x in the linear manifold
M = S + p, where S is a subspace of RJ of dimension I < J and p is a
fixed vector. Let A be an I by J matrix such that the I columns of AT

form a basis for S. For each z ∈ RI let

d(z) = f2(AT z + p),

so that d is convex, differentiable, and its gradient,

∇d(z) = A∇f2(AT z + p),

is K-Lipschitz continuous, for K = ρ(ATA)L. The sequence {zk} defined
by

zk = zk−1 − γ∇d(zk−1) (5.19)



The Forward-Backward Splitting Algorithm 73

converges to a minimizer of d over all z in RI , whenever minimizers exist,
for 0 < γ ≤ 1/K.

From Equation (5.19) we get

xk = xk−1 − γATA∇f2(xk−1), (5.20)

with xk = AT zk + p. The sequence {xk} converges to a minimizer of f2
over all x in M .

Suppose now that we begin with an algorithm having the iterative step

xk = xk−1 − γATA∇f2(xk−1), (5.21)

where A is any real I by J matrix having rank I. Let x0 be in the range of
AT , so that x0 = AT z0, for some z0 ∈ RI . Then each xk = AT zk is again
in the range of AT , and we have

AT zk = AT zk−1 − γATA∇f2(AT zk−1). (5.22)

With d(z) = f2(AT z), we can write Equation (5.22) as

AT
(
zk − (zk−1 − γ∇d(zk−1))

)
= 0. (5.23)

Since A has rank I, AT is one-to-one, so that

zk − zk−1 − γ∇d(zk−1) = 0. (5.24)

The sequence {zk} converges to a minimizer of d, over all z ∈ RI , whenever
such minimizers exist, for 0 < γ ≤ 1/K. Therefore, the sequence {xk}
converges to a minimizer of f2 over all x in the range of AT .

5.6 Feasible-Point Algorithms

Suppose that we want to minimize a convex differentiable function f(x)
over x such that Ax = b, where A is an I by J full-rank matrix, with I < J .
If Axk = b for each of the vectors {xk} generated by the iterative algorithm,
we say that the algorithm is a feasible-point method.

5.6.1 The Projected Gradient Algorithm

Let C be the feasible set of all x in RJ such that Ax = b. For every z
in RJ , we have

PCz = PNS(A)z +AT (AAT )−1b, (5.25)



74 Iterative Optimization in Inverse Problems

where NS(A) is the null space of A. Using

PNS(A)z = z −AT (AAT )−1Az, (5.26)

we have

PCz = z +AT (AAT )−1(b−Az). (5.27)

Using Equation (5.5), we get the iteration step for the projected gradient
algorithm:

xk = xk−1 − γPC∇f(xk−1), (5.28)

which converges to a solution for 0 < γ ≤ 1/L, whenever solutions exist.
Next we present a somewhat simpler approach.

5.6.2 The Reduced Gradient Algorithm

Let x0 be a feasible point, that is, Ax0 = b. Then x = x0 + p is also
feasible if p is in the null space of A, that is, Ap = 0. Let Z be a J by
J − I matrix whose columns form a basis for the null space of A. We want
p = Zv for some v. The best v will be the one for which the function

φ(v) = f(x0 + Zv)

is minimized. We can apply to the function φ(v) the steepest descent
method, or the Newton-Raphson method, or any other minimization tech-
nique.

The steepest descent method, applied to φ(v), is called the reduced
steepest descent algorithm [174]. The gradient of φ(v), also called the re-
duced gradient, is

∇φ(v) = ZT∇f(x),

where x = x0 + Zv; the gradient operator ∇φ is then K-Lipschitz, for
K = ρ(ATA)L.

Let x0 be feasible. The iteration in Equation (5.5) now becomes

vk = vk−1 − γ∇φ(vk−1), (5.29)

so that the iteration for xk = x0 + Zvk is

xk = xk−1 − γZZT∇f(xk−1). (5.30)

The vectors xk are feasible and the sequence {xk} converges to a solution,
whenever solutions exist, for any 0 < γ < 1

K .



The Forward-Backward Splitting Algorithm 75

5.6.3 The Reduced Newton-Raphson Method

The same idea can be applied to the Newton-Raphson method. The
Newton-Raphson method, applied to φ(v), is called the reduced Newton-
Raphson method [174]. The Hessian matrix of φ(v), also called the reduced
Hessian matrix, is

∇2φ(v) = ZT∇2f(c)Z,

so that the reduced Newton-Raphson iteration becomes

xk = xk−1 − Z
(
ZT∇2f(xk−1)Z

)−1
ZT∇f(xk−1). (5.31)

Let c0 be feasible. Then each xk is feasible. The sequence {xk} is not
guaranteed to converge.





Chapter 6

Operators

6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.2 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.3 Contraction Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.3.1 Lipschitz Continuous Operators . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.3.2 Nonexpansive Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.3.3 Strict Contractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.3.3.1 The Banach-Picard Theorem: . . . . . . . . . . . . . 80
6.3.4 Instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.4 Convex Sets in RJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.5 Orthogonal Projection Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.6 Firmly Nonexpansive Gradients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.6.1 The Search for Other Properties of PC . . . . . . . . . . . . . . . . . 90
6.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.1 Overview

In a broad sense, all iterative algorithms generate a sequence {xk} of
vectors that describe the current state of the iterative process. The sequence
may converge for any starting vector x0, or may converge only if the x0 is
sufficiently close to a solution. The limit, when it exists, may depend on x0,
and may, or may not, solve the original problem. Convergence to the limit
may be slow and the algorithm may need to be accelerated. The algorithm
may involve measured data. The limit may be sensitive to noise in the data
and the algorithm may need to be regularized to lessen this sensitivity. The
algorithm may be quite general, applying to all problems in a broad class,
or it may be tailored to the problem at hand. Each step of the algorithm
may be costly, but only a few steps generally needed to produce a suitable
approximate answer, or, each step may be easily performed, but many
such steps needed. Although convergence of an algorithm is important,
theoretically, sometimes in practice only a few iterative steps are used. In
this chapter we consider several classes of operators that play important
roles in optimization.

77



78 Iterative Optimization in Inverse Problems

6.2 Operators

A function T : RJ → RJ is called an operator on RJ . For our pur-
poses, the most important examples of operators on RJ are the orthogonal
projections PC onto closed convex sets, and gradient operators, that is,
T (x) = ∇g(x), for some differentiable function g(x) : RJ → R. As we shall
see later, the operators PC are also gradient operators.

For many of the iterative algorithms we consider in this book, the iter-
ative step is

xk+1 = Txk, (6.1)

for some fixed operator T . If T is a continuous operator (and it usually
is), and the sequence {T kx0} converges to x̂, then T x̂ = x̂, that is, x̂ is a
fixed point of the operator T . We denote by Fix(T ) the set of fixed points
of T . The convergence of the iterative sequence {T kx0} will depend on the
properties of the operator T .

Our approach here will be to identify several classes of operators for
which the iterative sequence is known to converge, to examine the conver-
gence theorems that apply to each class, to describe several applied prob-
lems that can be solved by iterative means, to present iterative algorithms
for solving these problems, and to establish that the operator involved in
each of these algorithms is a member of one of the designated classes.

6.3 Contraction Operators

Contraction operators are perhaps the best known class of operators
associated with iterative algorithms.

6.3.1 Lipschitz Continuous Operators

Definition 6.1 An operator T on RJ is Lipschitz continuous, with respect
to a vector norm || · ||, or L-Lipschitz, if there is a positive constant L such
that

||Tx− Ty|| ≤ L||x− y||, (6.2)

for all x and y in RJ .



Operators 79

For example, if f : R→ R, and g(x) = f ′(x) is differentiable, the Mean
Value Theorem tells us that

g(b) = g(a) + g′(c)(b− a),

for some c between a and b. Therefore,

|f ′(b)− f ′(a)| ≤ |f ′′(c)||b− a|.

If |f ′′(x)| ≤ L, for all x, then g(x) = f ′(x) is L-Lipschitz. More generally, if
f : RJ → R is twice differentiable and ‖∇2f(x)‖2 ≤ L, for all x, then T =
∇f is L-Lipschitz, with respect to the 2-norm. The 2-norm of the Hessian
matrix ∇2f(x) is the largest of the absolute values of its eigenvalues.

6.3.2 Nonexpansive Operators

An important special class of Lipschitz continuous operators are the
nonexpansive, or contractive, operators.

Definition 6.2 If L = 1, then T is said to be nonexpansive (ne), or a
contraction, with respect to the given norm. In other words, T is ne for a
given norm if, for every x and y, we have

‖Tx− Ty‖ ≤ ‖x− y‖.

Lemma 6.1 Let T : RJ → RJ be a nonexpansive operator, with respect to
the 2-norm. Then the set F of fixed points of T is a convex set.

Proof: Select two distinct points a and b in F , a scalar α in the open
interval (0, 1), and let c = αa+ (1− α)b. We show that Tc = c. Note that

a− c =
1− α
α

(c− b).

We have

‖a−b‖ = ‖a−Tc+Tc−b‖ ≤ ‖a−Tc‖+‖Tc−b‖ = ‖Ta−Tc‖+‖Tc−Tb‖

≤ ‖a− c‖+ ‖c− b‖ = ‖a− b‖;

the last equality follows since a − c is a multiple of (c − b). From this, we
conclude that

‖a− Tc‖ = ‖a− c‖,

‖Tc− b‖ = ‖c− b‖,



80 Iterative Optimization in Inverse Problems

and that a − Tc and Tc− b are positive multiples of one another, that is,
there is β > 0 such that

a− Tc = β(Tc− b),

or

Tc =
1

1 + β
a+

β

1 + β
b = γa+ (1− γ)b.

Then inserting c = αa+ (1− α)b and Tc = γa+ (1− γ)b into

‖Tc− b‖ = ‖c− b‖,

we find that γ = α and so Tc = c.

The reader should note that the proof of the previous lemma depends
heavily on the fact that the norm is the two-norm. If x and y are any
nonnegative vectors then ‖x + y‖1 = ‖x‖1 + ‖y‖1, so the proof would not
hold, if, for example, we used the one-norm instead.

We want to find properties of an operator T that guarantee that the
sequence of iterates {T kx0} will converge to a fixed point of T , for any
x0, whenever fixed points exist. Being nonexpansive is not enough; the
nonexpansive operator T = −I, where Ix = x is the identity operator, has
the fixed point x = 0, but the sequence {T kx0} converges only if x0 = 0.

6.3.3 Strict Contractions

One property that guarantees not only that the iterates converge, but
that there is a fixed point is the property of being a strict contraction.

Definition 6.3 An operator T on RJ is a strict contraction (sc), with
respect to a vector norm || · ||, if there is r ∈ (0, 1) such that

||Tx− Ty|| ≤ r||x− y||, (6.3)

for all vectors x and y.

For strict contractions, we have the Banach-Picard Theorem [114].

6.3.3.1 The Banach-Picard Theorem:

Theorem 6.1 Let T be sc. Then, there is a unique fixed point of T and,
for any starting vector x0, the sequence {T kx0} converges to the fixed point.

The key step in the proof is to show that {xk} is a Cauchy sequence,
therefore, it has a limit.

Corollary 6.1 If Tn is a strict contraction, for some positive integer n,
then T has a fixed point.



Operators 81

Proof: The proof is left as Exercise 6.14.
In many of the applications of interest to us, there will be multiple

fixed points of T . Therefore, T will not be sc for any vector norm, and
the Banach-Picard fixed-point theorem will not apply. We need to consider
other classes of operators. These classes of operators will emerge as we
investigate the properties of orthogonal projection operators.

6.3.4 Instability

Suppose we rewrite the equation e−x = x as x = − log x, and define
Tx = − log x, for x > 0. Now our iterative scheme becomes xk+1 = Txk =
− log xk. A few calculations will convince us that the sequence {xk} is
diverging away from the correct answer, not converging to it. The lesson
here is that we cannot casually reformulate our problem as a fixed-point
problem and expect the iterates to converge to the answer. What matters
is the behavior of the operator T .

6.4 Convex Sets in RJ

We begin with the basic definitions.

Definition 6.4 A vector z is said to be a convex combination of the vectors
x and y if there is α in the interval [0, 1] such that z = (1−α)x+αy. More
generally, a vector z is a convex combination of the vectors xn, n = 1, ..., N ,
if there are numbers αn ≥ 0 with

α1 + ...+ αN = 1

and
z = α1x

1 + ...+ αNx
N .

Definition 6.5 A nonempty set C in RJ is said to be convex if, for any
distinct points x and y in C, and for any real number α in the interval
(0, 1), the point (1 − α)x + αy is also in C; that is, C is closed to convex
combinations of any two members of C.

In Exercise 6.1 the reader is asked to show that if C is convex then the
convex combination of any number of members of C is again in C. We say
then that C is closed to convex combinations.

For example, the two-norm unit ball B in RJ , consisting of all x with
||x||2 ≤ 1, is convex, while the surface of the ball, the set of all x with
||x||2 = 1, is not convex. More generally, the unit ball of RJ in any norm
is a convex set, as a consequence of the triangle inequality for norms.



82 Iterative Optimization in Inverse Problems

Definition 6.6 The convex hull of a set S, denoted conv(S), is the small-
est convex set containing S, by which we mean that if K is any convex set
containing S, then K must also contain conv(S).

One weakness of this definition is that it does not tell us explicitly what the
members of conv(S) look like, nor precisely how the individual members
of conv(S) are related to the members of S itself. In fact, it is not obvious
that a smallest such set exists at all. The following proposition remedies
this; the reader is asked to supply a proof in Exercise 6.2 later.

Proposition 6.1 The convex hull of a set S is the set C of all convex
combinations of members of S.

Definition 6.7 A subset S of RJ is a subspace if, for every x and y in S
and scalars α and β, the linear combination αx+ βy is again in S.

A subspace is necessarily a convex set.

Definition 6.8 Let C be a nonempty convex subset of CJ . A point x in C
is said to be an extreme point of C if

x = αy + (1− α)z,

for some α in the interval (0, 1) and y and z in C implies that y = z = x.

Said differently, x is an extreme point of C if x is not a member of any line
segment between two other members of C.

A function f : RJ → (−∞,∞] is convex if and only if its epigraph is a
convex set in RJ+1. At the same time, every closed convex set C ⊆ RJ has
the form

C = {x|f(x) ≤ 0}, (6.4)

for some convex function f : RJ → R. We are tempted to assume that the
smoothness of the function f will be reflected in the geometry of the set
C. In particular, we may well expect that, if x is on the boundary of C
and f is differentiable at x, then there is a unique hyperplane supporting
C at x and ∇f(x) is a non-zero normal vector; but this is wrong. Any
closed convex nonempty set C can be written as in Equation (6.4), for the
differentiable function

f(x) =
1

2
‖x− PCx‖2.

As we shall see later, the gradient of f(x) is ∇f(x) = x − PCx, so that
∇f(x) = 0 for every x in C. Nevertheless, the set C may have a unique



Operators 83

supporting hyperplane at each boundary point, or it may have multiple
such hyperplanes, regardless of the properties of the f used to define C.

When we first encounter gradients, usually in Calculus III, they are
almost always described geometrically as a vector that is a normal for the
hyperplane that is tangent to the level surface of f at that point, and as
indicating the direction of greatest increase of f . However, this is not always
the case.

Consider the function f : R2 → R given by

f(x1, x2) =
1

2
(
√
x21 + x22 − 1)2,

for x21 + x22 ≥ 1, and zero, otherwise. This function is differentiable and

∇f(x) =
‖x‖2 − 1

‖x‖2
x,

for ‖x‖2 ≥ 1, and ∇f(x) = 0, otherwise. The level surface in R2 of all x
such that f(x) ≤ 0 is the closed unit ball; it is not a simple closed curve. At
every point of its boundary the gradient is zero, and yet, at each boundary
point, there is a unique supporting tangent line.

Consider the function f : R2 → R given by f(x) = f(x1, x2) = x21. The
level curve C = {x|f(x) = 0} is the x2 axis. For any x such that x1 = 0
the hyperplane supporting C at x is C itself, and any vector of the form
(γ, 0) is a normal to C. But the gradient of f(x) is zero at all points of C.
So the gradient of f is not a normal vector to the supporting hyperplane.

6.5 Orthogonal Projection Operators

The following proposition is fundamental in the study of convexity and
can be found in most books on the subject; see, for example, the text by
Goebel and Reich [131].

Proposition 6.2 Given any nonempty closed convex set C and an arbi-
trary vector x in RJ , there is a unique member PCx of C closest, in the
sense of the two-norm, to x. The vector PCx is called the orthogonal (or
metric) projection of x onto C and the operator PC the orthogonal projec-
tion onto C.

Proof: If x is in C, then PCx = x, so assume that x is not in C. Then
d > 0, where d is the distance from x to C. For each positive integer n,
select cn in C with ||x− cn||2 < d+ 1

n . Then, since for all n we have

‖cn‖2 = ‖cn − x+ x‖2 ≤ ‖cn − x‖2 + ‖x‖2 ≤ d+
1

n
+ ‖x‖2 < d+ 1 + ‖x‖2,



84 Iterative Optimization in Inverse Problems

the sequence {cn} is bounded; let c∗ be any cluster point. It follows easily
that ||x − c∗||2 = d and that c∗ is in C. If there is any other member c
of C with ||x − c||2 = d, then, by the Parallelogram Law, we would have
||x− (c∗ + c)/2||2 < d, which is a contradiction. Therefore, c∗ is PCx.

The proof just given relies on the Bolzano-Weierstrass Theorem. There
is another proof, which avoids this theorem and so is valid for infinite-
dimensional Hilbert space. The idea is to use the Parallelogram Law to
show that the sequence {cn} is Cauchy and then to use completeness to
get c∗. We leave the details to the reader.

If C is a subspace, then we can get an explicit description of PCx in
terms of x; for general convex sets C, however, we will not be able to express
PCx explicitly, and certain approximations will be needed. Orthogonal pro-
jection operators are central to our discussion, and, in this overview, we
focus on problems involving convex sets, algorithms involving orthogonal
projection onto convex sets, and classes of operators derived from proper-
ties of orthogonal projection operators.

For an arbitrary nonempty closed convex set C in RJ , the orthogonal
projection T = PC is a nonlinear operator, unless, of course, C is a sub-
space. We may not be able to describe PCx explicitly, but we do know a
useful property of PCx.

Proposition 6.3 For a given x, a vector z in C is PCx if and only if

〈c− z, z − x〉 ≥ 0, (6.5)

for all c in the set C.

Proof: Let c be arbitrary in C and α in (0, 1). Then

||x− PCx||22 ≤ ||x− (1− α)PCx− αc||22 = ||x− PCx+ α(PCx− c)||22

= ||x− PCx||22 − 2α〈x− PCx, c− PCx〉+ α2||PCx− c||22. (6.6)

Therefore,

−2α〈x− PCx, c− PCx〉+ α2||PCx− c||22 ≥ 0, (6.7)

so that

2〈x− PCx, c− PCx〉 ≤ α||PCx− c||22. (6.8)

Taking the limit, as α→ 0, we conclude that

〈c− PCx, PCx− x〉 ≥ 0. (6.9)

If z is a member of C that also has the property

〈c− z, z − x〉 ≥ 0, (6.10)



Operators 85

for all c in C, then we have both

〈z − PCx, PCx− x〉 ≥ 0, (6.11)

and

〈z − PCx, x− z〉 ≥ 0. (6.12)

Adding on both sides of these two inequalities lead to

〈z − PCx, PCx− z〉 ≥ 0. (6.13)

But,

〈z − PCx, PCx− z〉 = −||z − PCx||22, (6.14)

so it must be the case that z = PCx. This completes the proof.

Corollary 6.2 For any x and y in RJ we have

〈PCx− PCy, x− y〉 ≥ ‖PCx− PCy‖22. (6.15)

Proof: The proof is left as Exercise 6.15.
The operators PC have the property that

〈x− PCx, x〉 ≥ 〈x− PCx, PCx〉 ≥ 〈x− PCx, c〉, (6.16)

for all c ∈ C. This property suggests the following definition:

Definition 6.9 An operator T on CJ is called a cutter operator if T has
a fixed point and

〈x− Tx, x〉 ≥ 〈x− Tx, z〉, (6.17)

for all fixed points z of T .

The term cutter was used in [78]; such operators were called separating
operators in [76] and have had other names in the literature (see [77]).

Definition 6.10 An operator U on CJ is quasi-nonexpansive (qne), with
respect to some norm, if U has a fixed point and if

‖x− z‖ ≥ ‖Ux− z‖, (6.18)

for all x and for all fixed points z of U .

Proposition 6.4 (Corollary 2.1.33 of [77]) If an operator U on CJ has
fixed points, then U is qne, with respect to the two-norm, if and only if
T = 1

2 (I + U) is a cutter operator.



86 Iterative Optimization in Inverse Problems

In Exercise 6.16 the reader is asked to prove Proposition 6.4.
It follows from Corollary 6.2 and Cauchy’s Inequality that the orthog-

onal projection operator T = PC is nonexpansive, with respect to the
Euclidean norm, that is,

||PCx− PCy||2 ≤ ||x− y||2, (6.19)

for all x and y. Because the operator PC has multiple fixed points, PC
cannot be a strict contraction, unless the set C is a singleton set.

Corollary 6.2 tells us that the operators PC are more than simply non-
expansive; they are firmly nonexpansive. A good source for more material
on these topics are the books by Goebel and Reich [131] and by Bauschke
and Combettes [18].

Definition 6.11 An operator T is said to be firmly nonexpansive (fne) if

〈Tx− Ty, x− y〉 ≥ ||Tx− Ty||22, (6.20)

for all x and y in RJ .

Lemma 6.2 An operator F : RJ → RJ is fne if and only if F = 1
2 (I+N),

for some operator N that is ne with respect to the two-norm.

Proof: Suppose that F = 1
2 (I +N). We show that F is fne if and only if

N is ne in the two-norm. First, we have

〈Fx− Fy, x− y〉 =
1

2
‖x− y‖22 +

1

2
〈Nx−Ny, x− y〉.

Also,

‖1

2
(I+N)x− 1

2
(I+N)y‖22 =

1

4
‖x−y‖22+

1

4
‖Nx−Ny‖22+

1

2
〈Nx−Ny, x−y〉.

Therefore,
〈Fx− Fy, x− y〉 ≥ ‖Fx− Fy‖22

if and only if
‖Nx−Ny‖22 ≤ ‖x− y‖22.

Corollary 6.3 For m = 1, 2, ...,M , let αm > 0, with
∑M
m=1 αm = 1, and

let Fm : RJ → RJ be fne. Then the operator

F =

M∑
m=1

αmFm

is also fne. In particular, the arithmetic mean of the Fm is fne.

Corollary 6.4 An operator F is fne if and only if I − F is fne.



Operators 87

6.6 Firmly Nonexpansive Gradients

In this section we consider some useful properties of the gradient oper-
ator of a differentiable convex function.

It is convenient for us to consider functions on RJ whose values may be
infinite. For example, we define the indicator function ιC of a set C ⊆ RJ
to have the value zero for x in C, and the value +∞ for x outside the set
C.

Definition 6.12 A function f : RJ → [−∞,∞] is proper if there is no x
for which f(x) = −∞ and some x for which f(x) < +∞.

All the functions we shall consider in this text will be proper.

Definition 6.13 Let f be a proper function defined on RJ . The subset of
RJ+1 defined by

epi(f) = {(x, γ)|f(x) ≤ γ}

is the epi-graph of f . Then we say that f is convex if its epi-graph is a
convex set.

Alternative definitions of convex function are presented in the exercises.

Definition 6.14 The effective domain of a proper function f : RJ →
(−∞,∞] is the set

domf = {x| f(x) < +∞}.

It is also the projection onto RJ of its epi-graph.

It is easily shown that the effective domain of a convex function is a convex
set.

Let g : RJ → R be differentiable. We have several equivalent notions of
convexity for such functions of several variables.

Theorem 6.2 Let g : RJ → R be differentiable. The following are equiva-
lent:

• 1) g(x) is convex;

• 2) for all a and b we have

g(b) ≥ g(a) + 〈∇g(a), b− a〉 ; (6.21)

• 3) for all a and b we have

〈∇g(b)−∇g(a), b− a〉 ≥ 0. (6.22)



88 Iterative Optimization in Inverse Problems

Corollary 6.5 The function g(x) = 1
2

(
‖x‖22 − ‖x− PCx‖22

)
is convex.

Proof: We show later in Corollary 8.1 that the gradient of g(x) is ∇g(x) =
PCx. From the inequality (6.15) we know that

〈PCx− PCy, x− y〉 ≥ 0,

for all x and y. Therefore, g(x) is convex, by Theorem 6.2.

The following theorem is a consequence of the somewhat more general
Baillon-Haddad Theorem (see Corollary 18.16 in [18]).

Theorem 6.3 Let h(x) be convex and differentiable and its derivative,
∇h(x), nonexpansive in the two-norm, that is,

||∇h(b)−∇h(a)||2 ≤ ||b− a||2, (6.23)

for all a and b. Then ∇h(x) is firmly nonexpansive. which means that

〈∇h(b)−∇h(a), b− a〉 ≥ ||∇h(b)−∇h(a)||22. (6.24)

Suppose that g(x) : RJ → R is convex and the operator ∇g is L-Lipschitz.
Let h(x) = 1

Lg(x), so that ∇h is a nonexpansive operator. According to
Theorem 6.3, the operator ∇h = 1

L∇g is firmly nonexpansive.
In [133] Golshtein and Tretyakov prove the following theorem, from

which Theorem 6.3 follows immediately. The proof given here is different
from that given in [133].

Theorem 6.4 Let g : RJ → R be convex and differentiable. The following
are equivalent:

• 1)

||∇g(x)−∇g(y)||2 ≤ ||x− y||2; (6.25)

• 2)

g(x) ≥ g(y) + 〈∇g(y), x− y〉+
1

2
||∇g(x)−∇g(y)||22; (6.26)

and

• 3)

〈∇g(x)−∇g(y), x− y〉 ≥ ||∇g(x)−∇g(y)||22. (6.27)



Operators 89

Proof: The only non-trivial step in the proof is showing that Inequality
(6.25) implies Inequality (6.26). From Theorem 6.2 we see that Inequality
(6.25) implies that the function h(x) = 1

2‖x‖
2 − g(x) is convex, and that

1

2
‖x− y‖2 ≥ g(x)− g(y)− 〈∇g(y), x− y〉 ,

for all x and y. Now fix y and define

d(z) = Dg(z, y) = g(z)− g(y)− 〈∇g(y), z − y〉,

for all z. Since the function g(z) is convex, so is d(z). Since

∇d(z) = ∇g(z)−∇g(y),

it follows from Inequality (6.25) that

‖∇d(z)−∇d(x)‖ ≤ ‖z − x‖,

for all x and z. Then, from our previous calculations, we may conclude that

1

2
‖z − x‖2 ≥ d(z)− d(x)− 〈∇d(x), z − x〉 ,

for all z and x.
Now let x be arbitrary and

z = x−∇g(x) +∇g(y).

Then

0 ≤ d(z) ≤ d(x)− 1

2
‖∇g(x)−∇g(y)‖2.

This completes the proof.

We know from Corollary 6.5 that the function

g(x) =
1

2

(
‖x‖22 − ‖x− PCx‖22

)
is convex. As Corollary 8.1 tells us, its gradient is∇g(x) = PCx. We showed
in Corollary 6.2 that the operator PC is nonexpansive by showing that it
is actually firmly nonexpansive. Therefore, Theorem 6.3 can be viewed as
a generalization of Corollary 6.2.

If g(x) is convex and ∇g is L-Lipschitz, then 1
L∇g is nonexpansive, so,

by Theorem 6.3, it is firmly nonexpansive. It follows that, for γ > 0, the
operator

T = I − γ∇g (6.28)

is averaged, whenever 0 < γ < 2
L . By the Krasnosel’skii-Mann-Opial The-

orem 7.1, the iterative sequence xk+1 = Txk = xk − γ∇g(xk) converges to
a minimizer of g(x), whenever minimizers exist.



90 Iterative Optimization in Inverse Problems

6.6.1 The Search for Other Properties of PC

The class of nonexpansive operators is too large for our purposes; the
operator T = −I is nonexpansive, but the sequence {T kx0} does not con-
verge, in general, even though a fixed point, x = 0, exists. The class of
firmly nonexpansive operators is too small for our purposes. Although the
convergence of the iterative sequence {T kx0} to a fixed point does hold for
firmly nonexpansive T , whenever fixed points exist, the product of two or
more fne operators need not be fne; that is, the class of fne operators is not
closed to finite products. This poses a problem, since, as we shall see, prod-
ucts of orthogonal projection operators arise in several of the algorithms
we wish to consider. We need a class of operators smaller than the ne ones,
but larger than the fne ones, closed to finite products, and for which the
sequence of iterates {T kx0} will converge, for any x0, whenever fixed points
exist. The class we shall consider is the class of averaged operators. In all
discussion of averaged operators the norm will be the two-norm.

6.7 Exercises

Ex. 6.1 Let C ⊆ RJ , and let xn, n = 1, ..., N be members of C. For
n = 1, ..., N , let αn > 0, with α1 + ...+ αN = 1. Show that, if C is convex,
then the convex combination

α1x
1 + α2x

2 + ...+ αNx
N

is in C.

Ex. 6.2 Prove Proposition 6.1. Hint: show that the set C is convex.

Ex. 6.3 Show that the subset of RJ consisting of all vectors x with ||x||2 =
1 is not convex.

Ex. 6.4 Let ‖x‖2 = ‖y‖2 = 1 and z = 1
2 (x+ y) in RJ . Show that ‖z‖2 < 1

unless x = y. Show that this conclusion does not hold if the two-norm ‖ · ‖2
is replaced by the one-norm.

Ex. 6.5 Show that x is an extreme point of a convex set C if and only if
the subset of C obtained by removing x remains convex.

Ex. 6.6 Let C be the set of all vectors x in RJ with ‖x‖2 ≤ 1. Let K be a
subset of C obtained by removing from C any number of its members for
which ‖x‖2 = 1. Show that K is convex. Consequently, every x in C with
‖x‖2 = 1 is an extreme point of C.



Operators 91

Ex. 6.7 Let A and B be nonempty, closed convex subsets of RJ . Define the
set B−A to be all x in RJ such that x = b− a for some a ∈ A and b ∈ B.
Show that B−A is closed if one of the two sets is bounded. Find an example
of two disjoint unbounded closed convex sets in R2 that get arbitrarily close
to each other. Show that, for this example, B −A is not closed.

Ex. 6.8 Let C be a convex set and f : C ⊆ RJ → (−∞,∞]. Prove that
f(x) is a convex function, according to Definition 6.13, if and only if, for
all x and y in C, and for all 0 < α < 1, we have

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y).

Ex. 6.9 Let f : RJ → [−∞,∞]. Prove that f(x) is a convex function if
and only if, for all 0 < α < 1, we have

f(αx+ (1− α)y) < αb+ (1− α)c,

whenever f(x) < b and f(y) < c.

Ex. 6.10 Given a point s in a convex set C, where are the points x for
which s = PCx?

Ex. 6.11 Show that it is possible to have a vector z ∈ RJ such that
〈z − x, c− z〉 ≥ 0 for all c ∈ C, but z is not PCx.

Ex. 6.12 (R̊adström Cancellation [27])

• (a) Show that, for any subset S of RN , we have 2S ⊆ S + S, and
2S = S + S if S is convex.

• (b) Find three finite subsets of R, say A, B, and C, with A not con-
tained in B, but with the property that A+ C ⊆ B + C. Hint: try to
find an example where the set C is C = {−1, 0, 1}.

• (c) Show that, if A and B are convex in RN , B is closed, and C is
bounded in RN , then A+C ⊆ B+C implies that A ⊆ B. Hint: Note
that, under these assumptions, 2A+ C = A+ (A+ C) ⊆ 2B + C.

Ex. 6.13 [11] Let A and B be nonempty closed convex subsets of RN . For
each a ∈ A define

d(a,B) = inf
b∈B
‖a− b‖2,

and then define
d(A,B) = inf

a∈A
d(a,B).

Let
E = {a ∈ A|d(a,B) = d(A,B)},



92 Iterative Optimization in Inverse Problems

and
F = {b ∈ B|d(b, A) = d(B,A)};

assume that both E and F are not empty. The displacement vector is v =
PK(0), where K is the closure of the set B − A. For any transformation
T : RN → RN , denote by Fix(T ) the set of all x ∈ RN such that Tx = x.
Prove the following:

• (a) ‖v‖2 = d(A,B);

• (b) E + v = F ;

• (c) E = Fix(PAPB) = A ∩ (B − v);

• (d) F = Fix(PBPA) = B ∩ (A+ v);

• (e) PBe = PF e = e+ v, for all e ∈ E;

• (f) PAf = PEf = f − v, for all f ∈ F .

Ex. 6.14 Prove Corollary 6.1.

Ex. 6.15 Prove Corollary 6.2.

Ex. 6.16 Prove Corollary 6.4.



Chapter 7

Averaged and Paracontractive
Operators

7.1 Averaged Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.2 Gradient Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.3 Two Useful Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.4 The Krasnosel’skii-Mann-Opial Theorem . . . . . . . . . . . . . . . . . . . . . . . . 97
7.5 Affine Linear Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.5.1 The Hermitian Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.6 Paracontractive Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.6.1 Linear and Affine Paracontractions . . . . . . . . . . . . . . . . . . . . . 99
7.6.2 The Elsner-Koltracht-Neumann Theorem . . . . . . . . . . . . . . . 101

7.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

In this chapter we discuss two classes of operators important for iterative
algorithms, the averaged operators and the paracontractive operators.

7.1 Averaged Operators

The term ‘averaged operator’ appears in the work of Baillon, Bruck
and Reich [35, 9]. There are several ways to define averaged operators. One
way is suggested by Lemma 6.2.

Definition 7.1 An operator T : RJ → RJ is averaged (av) if there is
an operator N that is ne in the two-norm and α ∈ (0, 1) such that T =
(1− α)I + αN . Then we say that T is α-averaged.

It follows from Lemma 6.2 that T is fne if and only if T is α-averaged for
α = 1

2 . Every averaged operator is ne, with respect to the two-norm, and
every fne operator is av.

We can also describe averaged operators T is terms of the complement
operator, G = I − T .

Definition 7.2 An operator G on RJ is called ν-inverse strongly monotone

93



94 Iterative Optimization in Inverse Problems

(ν-ism)[133] (also called co-coercive in [99]) if there is ν > 0 such that

〈Gx−Gy, x− y〉 ≥ ν||Gx−Gy||22. (7.1)

Lemma 7.1 An operator T is ne, with respect to the two-norm, if and
only if its complement G = I −T is 1

2 -ism, and T is fne if and only if G is
1-ism, and if and only if G is fne. Also, T is ne if and only if F = (I+T )/2
is fne. If G is ν-ism and γ > 0 then the operator γG is ν

γ -ism.

Lemma 7.2 An operator T is averaged if and only if G = I − T is ν-ism
for some ν > 1

2 . If G is 1
2α -ism, for some α ∈ (0, 1), then T is α-av.

Proof: We assume first that there is α ∈ (0, 1) and ne operator N such
that T = (1 − α)I + αN , and so G = I − T = α(I − N). Since N is ne,
I − N is 1

2 -ism and G = α(I − N) is 1
2α -ism. Conversely, assume that G

is ν-ism for some ν > 1
2 . Let α = 1

2ν and write T = (1 − α)I + αN for
N = I − 1

αG. Since I −N = 1
αG, I −N is αν-ism. Consequently I −N is

1
2 -ism and N is ne.

An averaged operator is easily constructed from a given operator N
that is ne in the two-norm by taking a convex combination of N and the
identity I. The beauty of the class of av operators is that it contains many
operators, such as PC , that are not originally defined in this way. As we
shall see shortly, finite products of averaged operators are again averaged,
so the product of finitely many orthogonal projections is av.

We present now the fundamental properties of averaged operators, in
preparation for the proof that the class of averaged operators is closed to
finite products.

Note that we can establish that a given operator is av by showing that
there is an α in the interval (0, 1) such that the operator

1

α
(A− (1− α)I) (7.2)

is ne. Using this approach, we can easily show that if T is sc, then T is av.

Lemma 7.3 Let T = (1−α)A+αN for some α ∈ (0, 1). If A is averaged
and N is nonexpansive then T is averaged.

Proof: Let A = (1 − β)I + βM for some β ∈ (0, 1) and ne operator M .
Let 1− γ = (1− α)(1− β). Then we have

T = (1− γ)I + γ[(1− α)βγ−1M + αγ−1N ]. (7.3)

Since the operator K = (1− α)βγ−1M + αγ−1N is easily shown to be ne
and the convex combination of two ne operators is again ne, T is averaged.



Averaged and Paracontractive Operators 95

Corollary 7.1 If A and B are av and α is in the interval [0, 1], then the
operator T = (1 − α)A + αB formed by taking the convex combination of
A and B is av.

Corollary 7.2 Let T = (1 − α)F + αN for some α ∈ (0, 1). If F is fne
and N is ne then T is averaged.

The orthogonal projection operators PH onto hyperplanes H = H(a, γ)
are sometimes used with relaxation, which means that PH is replaced by
the operator

T = (1− ω)I + ωPH , (7.4)

for some ω in the interval (0, 2). Clearly, if ω is in the interval (0, 1), then T
is av, by definition, since PH is ne. We want to show that, even for ω in the
interval [1, 2), T is av. To do this, we consider the operator RH = 2PH − I,
which is reflection through H; that is,

PHx =
1

2
(x+RHx), (7.5)

for each x.

Lemma 7.4 The operator RH = 2PH − I is an isometry; that is,

||RHx−RHy||2 = ||x− y||2, (7.6)

for all x and y, so that RH is ne.

Lemma 7.5 For ω = 1 + γ in the interval [1, 2), we have

(1− ω)I + ωPH = αI + (1− α)RH , (7.7)

for α = 1−γ
2 ; therefore, T = (1− ω)I + ωPH is av.

This lemma is also true when the hyperplane H is replaced by a nonempty
closed convex set.

The product of finitely many ne operators is again ne, while the product
of finitely many fne operators, even orthogonal projections, need not be fne.
It is a helpful fact that the product of finitely many av operators is again
av.

If A = (1− α)I + αN is averaged and B is averaged then T = AB has
the form T = (1−α)B+αNB. Since B is av and NB is ne, it follows from
Lemma 7.3 that T is averaged. Summarizing, we have

Proposition 7.1 If A and B are averaged, then T = AB is averaged.



96 Iterative Optimization in Inverse Problems

7.2 Gradient Operators

Another type of operator that is averaged can be derived from gradi-
ent operators. Let g(x) : RJ → R be a differentiable convex function and
f(x) = ∇g(x) its gradient. If ∇g is nonexpansive, then, according to Theo-
rem 6.3, ∇g is fne. If, for some L > 0, ∇g is L-Lipschitz, for the two-norm,
that is,

||∇g(x)−∇g(y)||2 ≤ L||x− y||2, (7.8)

for all x and y, then 1
L∇g is ne, therefore fne, and the operator T = I−γ∇g

is av, for 0 < γ < 2
L . From Corollary 8.1 we know that the operators PC

are actually gradient operators; PCx = ∇g(x) for

g(x) =
1

2
(‖x‖22 − ‖x− PCx‖22).

7.3 Two Useful Identities

The identities in the next two lemmas relate an arbitrary operator T to
its complement, G = I − T , where I denotes the identity operator. These
identities will allow us to transform properties of T into properties of G
that may be easier to work with. A simple calculation is all that is needed
to establish the following lemma.

Lemma 7.6 Let T be an arbitrary operator T on RJ and G = I−T . Then

||x− y||22 − ||Tx− Ty||22 = 2(〈Gx−Gy, x− y〉) − ||Gx−Gy||22. (7.9)

Lemma 7.7 Let T be an arbitrary operator T on RJ and G = I−T . Then

〈Tx− Ty, x− y〉 − ||Tx− Ty||22 =

〈Gx−Gy, x− y〉 − ||Gx−Gy||22. (7.10)

Proof: Use the previous lemma.



Averaged and Paracontractive Operators 97

7.4 The Krasnosel’skii-Mann-Opial Theorem

For any operator T that is averaged, convergence of the sequence
{T kx0} to a fixed point of T , whenever fixed points of T exist, is guar-
anteed by the Krasnosel’skii-Mann-Opial (KMO) Theorem [152, 164, 182]:

Theorem 7.1 Let T be α-averaged, for some α ∈ (0, 1). Then, for any x0,
the sequence {T kx0} converges to a fixed point of T , whenever Fix(T ) is
nonempty.

Proof: Let z be a fixed point of T . The identity in Equation (7.9) is the
key to proving Theorem 7.1.

Using Tz = z and (I − T )z = 0 and setting G = I − T we have

||z − xk||22 − ||Tz − xk+1||22 = 2〈Gz −Gxk, z − xk〉 − ||Gz −Gxk||22.
(7.11)

Since, by Lemma 7.2, G is 1
2α -ism, we have

||z − xk||22 − ||z − xk+1||22 ≥ (
1

α
− 1)||xk − xk+1||22. (7.12)

Consequently the sequence {xk} is bounded, the sequence {||z − xk||2} is
decreasing and the sequence {||xk−xk+1||2} converges to zero. Let x∗ be a
cluster point of {xk}. Then we have Tx∗ = x∗, so we may use x∗ in place of
the arbitrary fixed point z. It follows then that the sequence {||x∗ − xk||2}
is decreasing; since a subsequence converges to zero, the entire sequence
converges to zero. The proof is complete.

A version of the KMO Theorem 7.1, with variable coefficients, appears
in Reich’s paper [188].

An operator T is said to be asymptotically regular if, for any x, the se-
quence {‖T kx−T k+1x‖} converges to zero. The proof of the KMO Theorem
7.1 involves showing that any averaged operator is asymptotically regular.
In [182] Opial generalizes the KMO Theorem, proving that, if T is nonex-
pansive and asymptotically regular, then the sequence {T kx} converges to
a fixed point of T , whenever fixed points exist, for any x.

Note that, in the KMO Theorem, we assumed that T is α-averaged, so
that G = I−T is ν-ism, for some ν > 1

2 . But we actually used a somewhat
weaker condition on G; we required only that

〈Gz −Gx, z − x〉 ≥ ν‖Gz −Gx‖2

for z such that Gz = 0. This weaker property is called weakly ν-ism.



98 Iterative Optimization in Inverse Problems

7.5 Affine Linear Operators

It may not always be easy to decide if a given operator is averaged.
The class of affine linear operators provides an interesting illustration of
the problem.

Definition 7.3 An operator T : RJ → RI is affine linear or just affine if
there is an I by J matrix B and a fixed vector d so that Tx = Bx+ d for
all x.

The affine operator Tx = Bx+d will be ne, sc, fne, or av precisely when
the linear operator given by multiplication by the matrix B is the same.

7.5.1 The Hermitian Case

When B is Hermitian, we can determine if B belongs to these classes
by examining its eigenvalues λ. We have the following theorem.

Theorem 7.2 Let B be Hermitian. Then

• B is nonexpansive if and only if −1 ≤ λ ≤ 1, for all λ;

• B is averaged if and only if −1 < λ ≤ 1, for all λ;

• B is a strict contraction if and only if −1 < λ < 1, for all λ;

• B is firmly nonexpansive if and only if 0 ≤ λ ≤ 1, for all λ.

Proof: The proof is left as an exercise for the reader.
Affine linear operators T that arise, for instance, in splitting methods

for solving systems of linear equations, generally have non-Hermitian linear
part B. Deciding if such operators belong to these classes is more difficult.
Instead, we can ask if the operator is paracontractive, with respect to some
norm.

7.6 Paracontractive Operators

By examining the properties of the orthogonal projection operators PC ,
we were led to the useful class of averaged operators. The orthogonal pro-
jections also belong to another useful class, the paracontractions.



Averaged and Paracontractive Operators 99

Definition 7.4 An operator T is called paracontractive (pc), with respect
to a given norm, if, for every fixed point y of T , we have

||Tx− y|| < ||x− y||, (7.13)

unless Tx = x.

Paracontractive operators are studied by Censor and Reich in [91].

Proposition 7.2 The operators T = PC are paracontractive, with respect
to the Euclidean norm.

Proof: It follows from Cauchy’s Inequality that

||PCx− PCy||2 ≤ ||x− y||2,

with equality if and only if

PCx− PCy = α(x− y),

for some scalar α with |α| = 1. But, because

0 ≤ 〈PCx− PCy, x− y〉 = α||x− y||22,

it follows that α = 1, and so

PCx− x = PCy − y.

When we ask if a given operator T is pc, we must specify the norm.
We often construct the norm specifically for the operator involved, as in
Equation (7.20). To illustrate, we consider the case of affine operators whose
associated matrix is diagonalizable.

7.6.1 Linear and Affine Paracontractions

Definition 7.5 A J by J matrix B is diagonalizable if CJ has a basis of
eigenvectors of B.

Let the matrix B be diagonalizable and let the columns of V be an eigen-
vector basis. Then we have V −1BV = D, where D is the diagonal matrix
having the eigenvalues of B along its diagonal.

Lemma 7.8 A square matrix B is diagonalizable if all its eigenvalues are
distinct.



100 Iterative Optimization in Inverse Problems

Proof: Let B be J by J . Let λj be the eigenvalues of B, Bxj = λjx
j , and

xj 6= 0, for j = 1, ..., J . Let xm be the first eigenvector that is in the span
of {xj |j = 1, ...,m− 1}. Then

xm = a1x
1 + ...am−1x

m−1, (7.14)

for some constants aj that are not all zero. Multiply both sides by λm to
get

λmx
m = a1λmx

1 + ...am−1λmx
m−1. (7.15)

From

λmx
m = Axm = a1λ1x

1 + ...am−1λm−1x
m−1, (7.16)

it follows that

a1(λm − λ1)x1 + ...+ am−1(λm − λm−1)xm−1 = 0, (7.17)

from which we can conclude that some xn in {x1, ..., xm−1} is in the span
of the others. This is a contradiction.

We see from this Lemma that almost all square matrices B are diago-
nalizable, in the sense that, if the entries of B are chosen randomly in C
and independently of one another, then the probability that the matrix B
will have distinct eigenvalues is one. Indeed, all Hermitian B are diagonal-
izable. If B has real entries, but is not symmetric, then the eigenvalues of
B need not be real, and the eigenvectors of B can have non-real entries.
Consequently, we must consider B as a linear operator on CJ , if we are to
talk about diagonalizability. For example, consider the real matrix

B =

[
0 1
−1 0

]
. (7.18)

Its eigenvalues are λ = i and λ = −i. The corresponding eigenvectors are
(1, i)T and (1,−i)T . The matrix B is then diagonalizable as an operator
on C2, but not as an operator on R2.

When B is not Hermitian, it is not as easy to determine if the affine
operator T is sc with respect to a given norm. Instead, we often tailor the
norm to the operator T . Suppose that B is a diagonalizable matrix, that is,
there is a basis for CJ consisting of eigenvectors of B. Let A = {u1, ..., uJ}
be such a basis, and let Buj = λju

j , for each j = 1, ..., J . For each x in
CJ , there are unique coefficients aj so that

x =

J∑
j=1

aju
j . (7.19)



Averaged and Paracontractive Operators 101

Then let

||x|| =
J∑
j=1

|aj |. (7.20)

The expression || · || in Equation (7.20) defines a norm on CJ . If ρ(B) < 1,
then the affine operator T is sc, with respect to this norm.

Proposition 7.3 Let T be an affine linear operator whose linear part B is
diagonalizable, and |λ| < 1 for all eigenvalues λ of B that are not equal to
one. Then the operator T is pc, with respect to the norm given by Equation
(7.20).

Proof: This is Exercise 7.3.

We see from Proposition 7.3 that, for the case of affine operators T
whose linear part is not Hermitian, instead of asking if T is av, we can ask
if T is pc; since B will almost certainly be diagonalizable, we can answer
this question by examining the eigenvalues of B.

Unlike the class of averaged operators, the class of paracontractive op-
erators is not necessarily closed to finite products, unless those factor op-
erators have a common fixed point.

7.6.2 The Elsner-Koltracht-Neumann Theorem

Our interest in paracontractions is due to the Elsner-Koltracht-
Neumann (EKN) Theorem [118]:

Theorem 7.3 Let T be pc with respect to some vector norm. If T has a
fixed point, then the sequence {T kx0} converges to a fixed point of T , for
all starting vectors x0.

We follow the development in [118].

Theorem 7.4 Suppose that there is a vector norm on CJ , with respect to
which each Ti is a pc operator, for i = 1, ..., I, and that F = ∩Ii=1Fix(Ti)
is not empty. For k = 0, 1, ..., let i(k) = k(mod I) + 1, and xk+1 = Ti(k)x

k.

The sequence {xk} converges to a member of F , for every starting vector
x0.

Proof: Let y ∈ F . Then, for k = 0, 1, ...,

||xk+1 − y|| = ||Ti(k)xk − y|| ≤ ||xk − y||, (7.21)

so that the sequence {||xk − y||} is decreasing; let d ≥ 0 be its limit. Since
the sequence {xk} is bounded, we select an arbitrary cluster point, x∗.
Then d = ||x∗ − y||, from which we can conclude that

||Tix∗ − y|| = ||x∗ − y||, (7.22)



102 Iterative Optimization in Inverse Problems

and Tix
∗ = x∗, for i = 1, ..., I; therefore, x∗ ∈ F . Replacing y, an arbitrary

member of F , with x∗, we have that ||xk − x∗|| is decreasing. But, a sub-
sequence converges to zero, so the whole sequence must converge to zero.
This completes the proof.

Corollary 7.3 If there is a vector norm on CJ , with respect to which
each Ti is a pc operator, for i = 1, ..., I, T = TITI−1 · · · T2T1, and
F = ∩Ii=1Fix (Ti) is not empty, then F = Fix (T ).

Proof: The sequence xk+1 = Ti(k)x
k converges to a member of Fix (T ), for

every x0. Select x0 in F .

Corollary 7.4 The product T of two or more pc operators Ti, i = 1, ..., I
is again a pc operator, if F = ∩Ii=1Fix (Ti) is not empty.

Proof: Suppose that for T = TITI−1 · · · T2T1, and y ∈ F = Fix (T ), we
have

||Tx− y|| = ||x− y||. (7.23)

Then, since

||TI(TI−1 · · · T1)x− y|| ≤ ||TI−1 · · · T1x− y|| ≤ ...

≤ ||T1x− y|| ≤ ||x− y||, (7.24)

it follows that

||Tix− y|| = ||x− y||, (7.25)

and Tix = x, for each i. Therefore, Tx = x.

7.7 Exercises

Ex. 7.1 Show that, if the operator T is α-av and 1 > β > α, then T is
β-av.

Ex. 7.2 Prove Lemma 7.1.

Ex. 7.3 Prove Proposition 7.3.

Ex. 7.4 Show that, if B is a linear av operator, then |λ| < 1 for all eigen-
values λ of B that are not equal to one.



Averaged and Paracontractive Operators 103

Ex. 7.5 We say that an operator R : CJ → CJ is quasi-averaged if, for
some operator Q that is qne, with respect to the two-norm, and for some α
in the interval (0, 1), we have

R = (1− α)I + αQ.

Show that the Krasnosel’skii-Mann-Opial Theorem 7.1 holds when averaged
operators are replaced by quasi-averaged operators.





Chapter 8

Convex Feasibility and Related
Problems

8.1 Convex Constraint Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
8.1.1 Convex Feasibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
8.1.2 Constrained Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
8.1.3 Proximity Function Minimization . . . . . . . . . . . . . . . . . . . . . . . 106
8.1.4 The Split-Feasibility Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
8.1.5 Differentiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

8.2 Using Orthogonal Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
8.2.1 Successive Orthogonal Projection . . . . . . . . . . . . . . . . . . . . . . . 110
8.2.2 Simultaneous Orthogonal Projection . . . . . . . . . . . . . . . . . . . . 111
8.2.3 Estimating the Spectral Radius . . . . . . . . . . . . . . . . . . . . . . . . . 112
8.2.4 The CQ Algorithm for the SFP . . . . . . . . . . . . . . . . . . . . . . . . . 113
8.2.5 An Extension of the CQ Algorithm . . . . . . . . . . . . . . . . . . . . . 113
8.2.6 Projecting onto the Intersection of Convex Sets . . . . . . . . 114

8.2.6.1 Dykstra’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . 114
8.2.6.2 The Halpern-Lions-Wittmann-Bauschke

Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
8.3 The ART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

8.3.1 Calculating the ART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
8.3.2 Full-cycle ART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
8.3.3 The Basic Convergence Theorem . . . . . . . . . . . . . . . . . . . . . . . . 117
8.3.4 Relaxed ART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
8.3.5 Constrained ART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
8.3.6 When Ax = b Has No Solutions . . . . . . . . . . . . . . . . . . . . . . . . . 119

8.4 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
8.4.1 Norm-Constrained Least-Squares . . . . . . . . . . . . . . . . . . . . . . . 120
8.4.2 Regularizing Landweber’s Algorithm . . . . . . . . . . . . . . . . . . . . 120
8.4.3 Regularizing the ART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

8.5 Avoiding the Limit Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
8.5.1 Double ART (DART) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
8.5.2 Strongly Under-relaxed ART . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
8.5.3 Nonnegative Least Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

8.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

105



106 Iterative Optimization in Inverse Problems

8.1 Convex Constraint Sets

When we minimize a real-valued function f(x), constraints on x often
take the form of inclusion in certain convex sets. These sets may be related
to the measured data, or incorporate other aspects of x known a priori.
There are several related problems that then arise. Iterative algorithms
based on orthogonal projection onto convex sets are then employed to solve
these problems. Such constraints can often be formulated as requiring that
the desired x lie within the intersection C of a finite collection {C1, ..., CI}
of convex sets.

8.1.1 Convex Feasibility

When the number of convex sets is large and the intersection C small,
any member of C may be sufficient for our purposes. Finding such x is the
convex feasibility problem (CFP).

8.1.2 Constrained Optimization

When the intersection C is large, simply obtaining an arbitrary member
of C may not be enough; we may require, in addition, that the chosen x
optimize some cost function. For example, we may seek the x in C that
minimizes ||x− x0||22. This is constrained optimization.

8.1.3 Proximity Function Minimization

When the collection of convex sets has empty intersection, we may
minimize a proximity function, such as

f(x) =
1

2I

I∑
i=1

||PCix− x||22. (8.1)

When the set C is non-empty, the smallest value of f(x) is zero, and is
attained at any member of C. When C is empty, the minimizers of f(x),
when they exist, provide a reasonable approximate solution to the CFP.

8.1.4 The Split-Feasibility Problem

An interesting variant of the CFP is the split-feasibility problem (SFP)
[83]. Let A be an I by J real matrix. The SFP is to find a member of a
closed, convex set C in RJ for which Ax is a member of a second closed,



Convex Feasibility and Related Problems 107

convex set Q in RI . When there is no such x, we can obtain an approximate
solution by minimizing the proximity function

f(x) =
1

2
||PQAx−Ax||22, (8.2)

over all x in C, whenever such minimizers exist.

8.1.5 Differentiability

The following theorem describes the gradient of the function f(x) in
Equation (8.2).

Theorem 8.1 Let f(x) = 1
2 ||PQAx − Ax||22 and t ∈ ∂f(x). Then t =

AT (I − PQ)Ax, so that t = ∇f(x).

Proof: First, we show that t = AT z∗ for some z∗. Let s = x + w, where
w is an arbitrary member of the null space of A. Then As = Ax and
f(s) = f(x). From

0 = f(s)− f(x) ≥ 〈t, s− x〉 = 〈t, w〉,

it follows that
〈t, w〉 = 0,

for all w in the null space of A, from which we conclude that t is in the
range of AT . Therefore, we can write t = AT z∗.

Let u be chosen so that ‖A(u− x)‖ = 1, and let ε > 0. We then have

‖PQAx−A(x+ ε(u− x))‖2 − ‖PQAx−Ax‖2 ≥

‖PQ(Ax+ ε(u− x))−A(x+ ε(u− x))‖2 − ‖PQAx−Ax‖2 ≥ 2ε〈t, u− x〉.

Therefore, since

‖PQAx−A(x+ε(u−x))‖2 = ‖PQAx−Ax‖2−2ε〈PQAx−Ax,A(u−x)〉+ε2,

it follows that

ε

2
≥ 〈PQAx−Ax+ z∗, A(u− x)〉 = −〈AT (I − PQ)Ax− t, u− x〉.

Since ε is arbitrary, it follows that

〈AT (I − PQ)Ax− t, u− x〉 ≥ 0,

for all appropriate u. But this is also true if we replace u with v = 2x− u.
Consequently, we have

〈AT (I − PQ)Ax− t, u− x〉 = 0.



108 Iterative Optimization in Inverse Problems

Now we select

u− x = (AT (I − PQ)Ax− t)/‖AAT (I − PQ)Ax−At‖,

from which it follows that

AT (I − PQ)Ax = t.

Corollary 8.1 The gradient of the function

f(x) =
1

2
‖x− PCx‖2

is ∇f(x) = x− PCx, and the gradient of the function

g(x) =
1

2

(
‖x‖22 − ‖x− PCx‖22

)
is ∇g(x) = PCx.

Just as the function h(t) = t2 is differentiable for all real t, but the
function f(t) = |t| is not differentiable at t = 0, the function

h0(x) = ‖x‖2

is not differentiable at x = 0 and the function

h(x) = ‖x− PCx‖2

is not differentiable at boundary points of the set C.
If C is a nonempty closed convex subset of RJ , then NC(x), the normal

cone to C at x, is the empty set, if x is not a member of C, and if x ∈ C,
then

NC(x) = {u|〈u, c− x〉 ≤ 0, for all c ∈ C}. (8.3)

We have the following theorem.

Theorem 8.2 For any x in the interior of C, the gradient of the function
h(x) = ‖x− PCx‖2 is ∇h(x) = 0. For any x outside C the gradient is

∇h(x) =
x− PCx
‖x− PCx‖2

.

For x on the boundary of C, however, the function h(x) is not differentiable;
any vector u in the normal cone NC(x) with ‖u‖2 ≤ 1 is in ∂h(x).



Convex Feasibility and Related Problems 109

Proof: The function g(t) =
√
t is differentiable for all positive values of t,

so the function

h(x) =
(
‖x− PCx‖22

)1/2
is differentiable whenever x is not in C. Using the Chain Rule, we get

∇h(x) =
x− PCx
‖x− PCx‖2

.

For x in the interior of C, the function h(x) is identically zero in a neigh-
borhood of x, so that the gradient is zero there. The only difficult case is
when x is on the boundary of C.

First, we assume that u ∈ NC(x) and ‖u‖2 = 1. Then we must show
that

〈u, y − x〉 ≤ ‖y − PCy‖2.

If y is such that the inner product is non-positive, then the inequality is
clearly true. So we focus on those y for which the inner product is positive,
which means that y lies in the half-space bounded by the hyperplane H,
where

H = {z|〈u, z〉 ≥ 〈u, x〉}.

The vector y − PHy is the orthogonal projection of the vector y − x onto
the line containing y and PHy, which also contains the vector u. Therefore,

y − PHy = 〈u, y − x〉u,

and
‖y − PCy‖2 ≥ ‖y − PHy‖2 = 〈u, y − x〉.

Now we prove the converse.
We assume now that

〈u, y − x〉 ≤ ‖y − PCy‖2,

for all y, and show that ‖u‖2 ≤ 1 and u ∈ NC(x). If u is not in NC(x),
then there is a y ∈ C with

〈u, y − x〉 > 0,

but ‖y − PCy‖2 = 0. Finally, we must show that ‖u‖2 ≤ 1.
Let y = x+ u, so that PCy = x. Then

〈u, y − x〉 = 〈u, u〉 = ‖u‖22,

while
‖y − PCy‖2 = ‖y − x‖2 = ‖u‖2.



110 Iterative Optimization in Inverse Problems

It follows that ‖u‖2 ≤ 1.

We are used to thinking of functions that are not differentiable as lacking
something. From the point of view of subgradients, not being differentiable
means having too many of something.

The gradient of the function f(x) in Equation (8.1) is

∇f(x) = x− 1

I

I∑
i=1

PCix. (8.4)

Therefore, a gradient descent approach to minimizing f(x) has the iterative
step

xk+1 = xk − γk
(
xk − 1

I

I∑
i=1

PCix
k
)

=

(1− γk)xk + γk

(1

I

I∑
i=1

PCix
k
)
. (8.5)

This is sometimes called the relaxed averaged projections algorithm. As we
shall see shortly, the choice of γk = 1 is sufficient for convergence.

8.2 Using Orthogonal Projections

When the convex sets are half-spaces in two or three dimensional space,
we may be able to find a member of their intersection by drawing a picture
or just by thinking; in general, however, solving the CFP must be left up
to the computer and we need an algorithm.

8.2.1 Successive Orthogonal Projection

The CFP can be solved using the successive orthogonal projections
(SOP) method.

Algorithm 8.1 (SOP) For arbitrary x0, let

xk+1 = PIPI−1 · · · P2P1x
k, (8.6)

where Pi = PCi is the orthogonal projection onto Ci.

For non-empty C, convergence of the SOP to a solution of the CFP will
follow, once we have established that, for any x0, the iterative sequence
{T kx0} converges to a fixed point of T , where

T = PIPI−1 · · · P2P1. (8.7)



Convex Feasibility and Related Problems 111

Lemma 8.1 The fixed points of T are the members of the set C.

Proof: Clearly every member of C is a fixed point of T . Suppose that
Tx = x. Let c be a member of C. Then

‖x− c‖2 = ‖Tx− c‖2 ≤ ‖P1x− c‖ − 2 ≤ ‖x− c‖2.

Therefore, P1x = x, since P1 is paracontractive in the two-norm. Similar
arguments show that Pix = x for each i.

Since T is an averaged operator, the convergence of the SOP to a mem-
ber of C follows from the KMO Theorem 7.1, provided C is non-empty.

The SOP is useful when the sets Ci are easily described and the Pi are
easily calculated, but PC is not. The SOP converges to the member of C
closest to x0 when the Ci are hyperplanes, but not in general.

A good illustration of the SOP method is the algebraic reconstruction
technique (ART) [134], also known as Kaczmarz’s algorithm [148]. Asso-
ciated with the system of linear equations Ax = b are the hyperplanes
Hi ⊆ RJ defined by

Hi = {x|(Ax)i = bi},
for i = 1, ..., I. At the kth step of the ART we get xk+1 by projecting the
current vector xk orthogonally onto Hi, for i = k (mod I). We discuss the
ART in more detail in a subsequent section.

8.2.2 Simultaneous Orthogonal Projection

When C = ∩Ii=1Ci is empty and we seek to minimize the proximity
function f(x) in Equation (8.1), we can use the simultaneous orthogonal
projections (SIMOP) approach:

Algorithm 8.2 (SIMOP) For arbitrary x0, let

xk+1 =
1

I

I∑
i=1

Pix
k. (8.8)

The operator

T =
1

I

I∑
i=1

Pi (8.9)

is also averaged, so this iteration converges, by Theorem 7.1, whenever f(x)
has a minimizer.

When the convex sets are the hyperplanes Ci = Hi the iteration in
Equation (8.8) becomes Cimmino’s algorithm, which can be written as

xk+1 = xk − 1

I
AT (Axk − b), (8.10)



112 Iterative Optimization in Inverse Problems

if the rows of A are first rescaled to have Euclidean length one. The more
general Landweber algorithm has the iterative step

xk+1 = xk − γAT (Axk − b), (8.11)

for γ in the interval (0, 2/ρ(ATA)).

8.2.3 Estimating the Spectral Radius

As we just saw, the step-length parameter γ in the Landweber algorithm
is bounded above by a quantity that involves the spectral radius of the
matrix ATA. This is also true of the CQ algorithm. This poses certain
difficulties. We usually resort to using iterative methods because the matrix
A is too large to use anything else. In such cases, even calculating the matrix
ATA is out of the question. We need to obtain decent estimates of ρ(ATA)
that are based solely on A itself. In many remote-sensing applications, such
as transmission and emission tomography, the matrix A is sparse, meaning
that most of its entries are zero. When we form ATA we lose the sparseness.
We would like estimates of ρ(ATA) that employ only A and are particularly
useful when A is sparse.

The 1-norm of a matrix A is

‖A‖1 = max {
I∑
i=1

|Aij | , j = 1, 2, ..., J}. (8.12)

The infinity norm of a matrix A is

‖A‖∞ = max {
J∑
j=1

|Aij | , i = 1, 2, ..., I}. (8.13)

It is easily shown that

ρ(ATA) ≤ ‖A‖1‖A‖∞,

so that, when |Aij | ≤ 1 for all i and j, we can say

ρ(ATA) ≤ IJ.

But we can do better than this. Suppose that ‖A‖∞ ≤ 1. Then

ρ(ATA) ≤ I.

Suppose, in addition, that A is sparse and s is the maximum number of
non-zero entries in any column of A. Then

ρ(ATA) ≤ s.

In Chapter 9 we improve this upper bound on ρ(ATA) by showing that,
when the rows of A are normalized to have Euclidean length one, we again
have ρ(ATA) ≤ s.



Convex Feasibility and Related Problems 113

8.2.4 The CQ Algorithm for the SFP

The CQ algorithm is an iterative method for solving the SFP [58, 59].

Algorithm 8.3 (CQ) For arbitrary x0, let

xk+1 = PC(xk − γAT (I − PQ)Axk). (8.14)

The operator

T = PC(I − γAT (I − PQ)A) (8.15)

is averaged whenever γ is in the interval (0, 2/L), where L is the largest
eigenvalue of ATA, and so the CQ algorithm converges to a fixed point
of T , whenever such fixed points exist. When the SFP has a solution,
the CQ algorithm converges to a solution; when it does not, the CQ
algorithm converges to a minimizer, over C, of the proximity function
f(x) = 1

2 ||PQAx − Ax||22, whenever such minimizers exist. The function
f(x) is convex and, according to Theorem 8.1, its gradient is

∇f(x) = AT (I − PQ)Ax. (8.16)

The convergence of the CQ algorithm then follows from Theorem 7.1. In
[101] Combettes and Wars use proximity operators to generalize the CQ
algorithm.

Multi-set generalizations of the CQ algorithm have been applied re-
cently to problems in intensity-modulated radiation therapy [81, 85].

8.2.5 An Extension of the CQ Algorithm

Let C ∈ RN and Q ∈ RM be closed, non-empty convex sets, and let A
and B be J by N and J by M real matrices, respectively. The problem is
to find x ∈ C and y ∈ Q such that Ax = By. When there are no such x
and y, we consider the problem of minimizing

f(x, y) =
1

2
‖Ax−By‖22,

over x ∈ C and y ∈ Q.
Let K = C ×Q in RN × RM . Define

G =
[
A −B

]
,

and

w =

[
x
y

]
,

so that

GTG =

[
ATA −ATB
−BTA BTB

]
.



114 Iterative Optimization in Inverse Problems

The original problem can now be reformulated as finding w ∈ K with
Gw = 0. We shall consider the more general problem of minimizing the
function ‖Gw‖ over w ∈ K. The projected Landweber algorithm (PLW)
solves this more general problem.

The iterative step of the PLW algorithm is the following:

wk+1 = PK(wk − γGT (Gwk)). (8.17)

Expressing this in terms of x and y, we obtain

xk+1 = PC(xk − γAT (Axk −Byk)); (8.18)

and

yk+1 = PQ(yk + γBT (Axk −Byk)). (8.19)

The PLW converges, in this case, to a minimizer of ‖Gw‖ over w ∈ K,
whenever such minimizers exist, for 0 < γ < 2

ρ(GTG)
.

8.2.6 Projecting onto the Intersection of Convex Sets

When the intersection C = ∩Ii=1Ci is large, and just finding any mem-
ber of C is not sufficient for our purposes, we may want to calculate the
orthogonal projection of x0 onto C using the operators PCi . We cannot
use the SOP unless the Ci are hyperplanes; instead we can use Dykstra’s
algorithm [115] or the Halpern-Lions-Wittmann-Bauschke (HLWB) algo-
rithm; see below. There are other more general results along these lines;
see [79, 144, 212, 213].

Dykstra’s algorithm employs the projections PCi , but not directly on
xk, but on translations of xk. It is motivated by the following lemma:

Lemma 8.2 If x = c +
∑I
i=1 pi, where, for each i, c = PCi(c + pi), then

c = PCx.

Proof: The proof is left as Exercise 8.1.

8.2.6.1 Dykstra’s Algorithm

Dykstra’s algorithm, for the simplest case of two convex sets A and B,
is the following:

Algorithm 8.4 (Dykstra) Let b0 = x, and p0 = q0 = 0. Then let

an = PA(bn−1 + pn−1), (8.20)

bn = PB(an + qn−1), (8.21)

and define pn and qn by

x = an + pn + qn−1 = bn + pn + qn. (8.22)



Convex Feasibility and Related Problems 115

Using the algorithm, we construct two sequences, {an} and {bn}, both
converging to c = PCx, along with two other sequences, {pn} and {qn}.
Usually, but not always, {pn} converges to p and {qn} converges to q, so
that

x = c+ p+ q, (8.23)

with

c = PA(c+ p) = PB(c+ q). (8.24)

Generally, however, {pn + qn} converges to x− c.

8.2.6.2 The Halpern-Lions-Wittmann-Bauschke Algorithm

There is yet another approach to finding the orthogonal projection of
the vector x onto the nonempty intersection C of finitely many closed,
convex sets Ci, i = 1, ..., I.

Algorithm 8.5 (HLWB) Let x0 be arbitrary. Then let

xk+1 = tkx+ (1− tk)PCix
k, (8.25)

where PCi denotes the orthogonal projection onto Ci, tk is in the interval
(0, 1), and i = k(mod I) + 1.

Several authors have proved convergence of the sequence {xk} to PCx,
with various conditions imposed on the parameters {tk}. As a result, the
algorithm is known as the Halpern-Lions-Wittmann-Bauschke (HLWB) al-
gorithm, after the names of several who have contributed to the evolution of
the theorem; see also Corollary 2 in Reich’s paper [189]. The conditions im-
posed by Bauschke [10] are {tk} → 0,

∑
tk =∞, and

∑
|tk− tk+I | < +∞.

The HLWB algorithm has been extended by Deutsch and Yamada [110] to
minimize certain (possibly non-quadratic) functions over the intersection
of fixed point sets of operators more general than PCi . Bregman discovered
an iterative algorithm for minimizing a more general convex function f(x)
over x with Ax = b and also x with Ax ≥ b [31]. These algorithms are
based on his extension of the SOP to include projections with respect to
generalized distances, such as entropic distances.

8.3 The ART

Let A be a complex matrix with I rows and J columns, and let b be a
member of CI . We want to solve the system Ax = b. For each index value



116 Iterative Optimization in Inverse Problems

i, let Hi be the hyperplane of J-dimensional vectors given by

Hi = {x|(Ax)i = bi}, (8.26)

and Pi the orthogonal projection operator onto Hi. Let x0 be arbitrary
and, for each nonnegative integer k, let i(k) = k(mod I) + 1. The iterative
step of the ART is

xk+1 = Pi(k)x
k. (8.27)

Because the ART uses only a single equation at each step, it has been called
a row-action method .

8.3.1 Calculating the ART

Given any vector z the vector in Hi closest to z, in the sense of the
Euclidean distance, has the entries

xj = zj +Aij(bi − (Az)i)/

J∑
m=1

|Aim|2. (8.28)

To simplify our calculations, we shall assume, throughout this chapter, that
the rows of A have been rescaled to have Euclidean length one; that is

J∑
j=1

|Aij |2 = 1, (8.29)

for each i = 1, ..., I, and that the entries of b have been rescaled accordingly,
to preserve the equations Ax = b. The ART is then the following: begin
with an arbitrary vector x0; for each nonnegative integer k, having found
xk, the next iterate xk+1 has entries

xk+1
j = xkj +Aij(bi − (Axk)i). (8.30)

As we shall show, when the system Ax = b has exact solutions the
ART converges to the solution closest to x0, in the 2-norm. How fast the
algorithm converges will depend on the ordering of the equations and on
whether or not we use relaxation. In selecting the equation ordering, the
important thing is to avoid particularly bad orderings, in which the hyper-
planes Hi and Hi+1 are nearly parallel.

8.3.2 Full-cycle ART

We again consider the full-cycle ART, with iterative step zm+1 = Tzm,
for

T = PIPI−1 · · · P2P1. (8.31)



Convex Feasibility and Related Problems 117

When the system Ax = b has solutions, the fixed points of T are solutions.
When there are no solutions of Ax = b, the operator T will still have fixed
points, but they will no longer be exact solutions.

8.3.3 The Basic Convergence Theorem

For a positive integer N with 1 ≤ N ≤ I, we let B1, ..., BN be not
necessarily disjoint subsets of the set {i = 1, ..., I}; the subsets Bn are
called blocks. We then let An be the matrix and bn the vector obtained
from A and b, respectively, by removing all the rows except for those whose
index i is in the set Bn. For each n, we let snt be the number of non-zero
entries in the tth column of the matrix An, sn the maximum of the snt,
s the maximum of the sn, and Ln = ρ(A†nAn) be the spectral radius, or
largest eigenvalue, of the matrix A†nAn, with L = ρ(A†A). We denote by
Ai the ith row of the matrix A, and by νi the length of Ai, so that

ν2i =

J∑
j=1

|Aij |2.

The following theorem is a basic convergence result concerning block-
iterative ART algorithms.

Theorem 8.3 Let Ln ≤ 1, for n = 1, 2, ..., N . If the system Ax = b is
consistent, then, for any starting vector x0, and with n = n(k) = k(modN)
and λk ∈ [ε, 2− ε] for all k, the sequence {xk} with iterative step

xk = xk−1 + λkA
†
n(bn −Anxk−1) (8.32)

converges to the solution of Ax = b for which ‖x− x0‖2 is minimized.

Proof: Let Az = b. Applying Equation (7.9) to the operator

Tx = x+ λkA
†
n(bn −Anx),

we obtain

‖z − xk−1‖22 − ‖z − xk‖22 = 2λk‖bn −Anxk−1‖22 − λ2k‖A†nbn −A†nAnxk−1‖22.
(8.33)

Since Ln ≤ 1, it follows that

‖A†nbn −A†nAnxk−1‖22 ≤ ‖bn −Anxk−1‖22.

Therefore,

‖z − xk−1‖22 − ‖z − xk‖22 ≥ (2λk − λ2k)‖bn −Anxk−1‖22,

from which we draw several conclusions:



118 Iterative Optimization in Inverse Problems

• the sequence {‖z − xk‖2} is decreasing;

• the sequence {‖bn −Anxk−1‖2} converges to zero.

In addition, for fixed n = 1, ..., N and m→∞,

• the sequence {‖bn −AnxmN+n−1‖2} converges to zero;

• the sequence {xmN+n} is bounded.

Let x∗,1 be a cluster point of the sequence {xmN+1}; then there is sub-
sequence {xmrN+1} converging to x∗,1. The sequence {xmrN+2} is also
bounded, and we select a cluster point x∗,2. Continuing in this fashion, we
obtain cluster points x∗,n, for n = 1, ..., N . From the conclusions reached
previously, we can show that x∗,n = x∗,n+1 = x∗, for n = 1, 2, ..., N − 1,
and Ax∗ = b. Replacing the generic solution x̂ with the solution x∗, we
see that the sequence {‖x∗−xk‖2} is decreasing. But, subsequences of this
sequence converge to zero, so the entire sequence converges to zero, and so
xk → x∗.

Now we show that x∗ is the solution of Ax = b that minimizes ‖x−x0‖2.
Since xk − xk−1 is in the range of A† for all k, so is x∗ − x0, from which it
follows that x∗ is the solution minimizing ‖x − x0‖2. Another way to get
this result is to use Equation (8.33). Since the right side of Equation (8.33)
is independent of the choice of solution, so is the left side. Summing both
sides over the index k reveals that the difference

‖x− x0‖22 − ‖x− x∗‖22

is independent of the choice of solution. Consequently, minimizing ‖x−x0‖2
over all solutions x is equivalent to minimizing ‖x− x∗‖2 over all solutions
x; the solution to the latter problem is clearly x = x∗.

8.3.4 Relaxed ART

The ART employs orthogonal projections onto the individual hyper-
planes. If we permit the next iterate to fall short of the hyperplane, or
somewhat beyond it, we get a relaxed version of ART.The relaxed ART
algorithm is as follows:

Algorithm 8.6 (Relaxed ART) With ω ∈ (0, 2), x0 arbitrary, and i =
k(mod I) + 1, let

xk+1
j = xkj + ωAij(bi − (Axk)i)). (8.34)

The relaxed ART converges to the solution closest to x0, in the consis-
tent case. In the inconsistent case, it does not converge, but subsequences
associated with the same i converge to distinct vectors, forming a limit
cycle.



Convex Feasibility and Related Problems 119

8.3.5 Constrained ART

Let C be a closed, nonempty convex subset of CJ and PCx the orthog-
onal projection of x onto C. If there are solutions of Ax = b that lie within
C, we can find them using the constrained ART algorithm:

Algorithm 8.7 (Constrained ART) With x0 arbitrary and i =
k(mod I) + 1, let

zk+1
j = xkj +Aij(bi − (Axk)i), (8.35)

and xk+1 = PCz
k+1.

For example, if A and b are real and we seek a nonnegative solution to
Ax = b, we can use

Algorithm 8.8 (nonnegative ART) With A a real matrix, i =
k(mod I) + 1, and x0 arbitrary, let

xk+1
j = (xkj +Aij(bi − (Axk)i))+, (8.36)

where, for any real number a, a+ = max{a, 0}.

The constrained ART converges to a solution of Ax = b within C, whenever
such solutions exist.

8.3.6 When Ax = b Has No Solutions

When there are no exact solutions, the ART does not converge to a
single vector, but, for each fixed i, the subsequence {xnI+i, n = 0, 1, ...}
converges to a vector zi and the collection {zi |i = 1, ..., I} is called the limit
cycle. This was shown by Tanabe [202] and also follows from the results of
De Pierro and Iusem [109]. Proofs of subsequential convergence are given in
[61, 62]. The ART limit cycle will vary with the ordering of the equations,
and contains more than one vector unless an exact solution exists.

Open Question: If there is a unique geometric least-squares solution,
where is it, in relation to the vectors of the limit cycle? Can it be calculated
easily, from the vectors of the limit cycle?

There is a partial answer to the second question. In [51] (see also [61])
it was shown that if the system Ax = b has no exact solution, and if
I = J+1, then the vectors of the limit cycle lie on a sphere in J-dimensional
space having the least-squares solution at its center. This is not true more
generally, however.

A Question: In both the consistent and inconsistent cases, the sequence
{xk} of ART iterates is bounded, as Tanabe [202], and De Pierro and Iusem
[109] have shown. The proof is easy in the consistent case. Is there an easy
proof for the inconsistent case?



120 Iterative Optimization in Inverse Problems

8.4 Regularization

In many remote-sensing applications the entries of the vector b are mea-
sured data and therefore noisy. At the same time, the matrix A describing
the sensing process may be a simplification of the actual situation. Com-
bined, the description Ax = b may not be precisely true. In such cases,
finding an exact solution, even when they exist, may not be desireable, and
regularization is adopted. Imposing constraints on the vector x may also
result in there not being a solution.

8.4.1 Norm-Constrained Least-Squares

To regularize the least-squares problem we can minimize not ‖b−Ax‖2,
but, say,

f(x) = ‖b−Ax‖22 + ε2‖x‖22, (8.37)

for some small ε > 0. Now we are still trying to make ‖b−Ax‖2 small, but
managing to keep ‖x‖2 from becoming too large in the process. This leads
to a norm-constrained least-squares solution.

The minimizer of f(x) is the unique solution x̂ε of the system

(A†A+ ε2I)x = A†b. (8.38)

When I and J are large, we need ways to solve this system without hav-
ing to deal with the matrix A†A + ε2I. The Landweber method allows us
to avoid A†A in calculating the least-squares solution. Is there a similar
method to use now? Yes, there is.

8.4.2 Regularizing Landweber’s Algorithm

Our goal is to minimize the function f(x) in Equation (8.37). Notice
that this is equivalent to minimizing the function

F (x) = ||Bx− c||22, (8.39)

for

B =

[
A
εI

]
, (8.40)

and

c =

[
b
0

]
, (8.41)



Convex Feasibility and Related Problems 121

where 0 denotes a column vector with all entries equal to zero. The Landwe-
ber iteration for the problem Bx = c is

xk+1 = xk + αB†(c−Bxk), (8.42)

for 0 < α < 2/ρ(B†B), where ρ(B†B) is the largest eigenvalue, or the
spectral radius, of B†B. Equation (8.42) can be written as

xk+1 = (1− αε2)xk + αA†(b−Axk). (8.43)

8.4.3 Regularizing the ART

We would like to get the regularized solution x̂ε by taking advantage of
the faster convergence of the ART. Fortunately, there are ways to find x̂ε,
using only the matrix A and the ART algorithm. We discuss two methods
for using ART to obtain regularized solutions of Ax = b. The first one is
presented in [61], while the second one is due to Eggermont, Herman, and
Lent [116].

In our first method we use ART to solve the system of equations given
in matrix form by [

A† εI
] [u
v

]
= 0. (8.44)

We begin with u0 = b and v0 = 0. Then, the lower component of the limit
vector is v∞ = −εx̂ε, while the upper limit is u∞ = b−Ax̂ε.

The method of Eggermont et al. is similar. In their method we use ART
to solve the system of equations given in matrix form by[

A εI
] [x
v

]
= b. (8.45)

We begin at x0 = 0 and v0 = 0. Then, the limit vector has for its upper
component x∞ = x̂ε, and εv∞ = b−Ax̂ε.

However, we do not want to calculate A†A+ ε2I when the matrix A is
large. Fortunately, there are ways to find x̂ε, using only the matrix A and
the ART algorithm.

8.5 Avoiding the Limit Cycle

Generally, the greater the minimum value of ||Ax − b||22 the more the
vectors of the LC are distinct from one another. There are several ways to
avoid the LC in ART and to obtain a least-squares solution. One way is
the double ART (DART) [54]:



122 Iterative Optimization in Inverse Problems

8.5.1 Double ART (DART)

We know that any b can be written as b = Ax̂+ ŵ, where A†ŵ = 0 and
x̂ is a minimizer of ||Ax − b||22. The vector ŵ is the orthogonal projection
of b onto the null space of the matrix transformation A†. Therefore, in
Step 1 of DART we apply the ART algorithm to the consistent system of
linear equations A†w = 0, beginning with w0 = b. The limit is w∞ = ŵ,
the member of the null space of A† closest to b. In Step 2, apply ART
to the consistent system of linear equations Ax = b − w∞ = Ax̂. The
limit is then the minimizer of ||Ax − b||2 closest to x0. Notice that we
could also obtain the least-squares solution by applying ART to the system
A†y = A†b, starting with y0 = 0, to obtain the minimum-norm solution,
which is y = Ax̂, and then applying ART to the system Ax = y.

8.5.2 Strongly Under-relaxed ART

Another method for avoiding the LC is strong under-relaxation, due to
Censor, Eggermont and Gordon [82]. Let t > 0. Replace the iterative step
in ART with

xk+1
j = xkj + tAij(bi − (Axk)i). (8.46)

In [82] it is shown that, as t→ 0, the vectors of the LC approach the geo-
metric least squares solution closest to x0; a short proof is in [51]. Bertsekas
[24] uses strong under-relaxation to obtain convergence of more general in-
cremental methods.

8.5.3 Nonnegative Least Squares

If there is no solution to a system of linear equations Ax = b, then we
may seek a least-squares “solution” , which is a minimizer of the function

f(x) =
1

2

I∑
i=1

∣∣∣( J∑
m=1

Aimxm)− bi
∣∣∣2 = ||Ax− b||2. (8.47)

The partial derivative of f(x) with respect to the variable xj is

∂f

∂xj
(x) =

I∑
i=1

Aij

(
(

J∑
m=1

Aimxm)− bi
)
. (8.48)

Setting the gradient equal to zero, we find that to get a least-squares solu-
tion we must solve the system of equations

A†(Ax− b) = 0. (8.49)



Convex Feasibility and Related Problems 123

Now we consider what happens when the additional constraints xj ≥ 0 are
imposed.

This problem becomes a convex programming problem. Let x̂ be a solu-
tion of the nonnegatively constrained least-squares problem. According to
the Karush-Kuhn-Tucker Theorem [126], for those values of j for which x̂j
is not zero the corresponding Lagrange multiplier is λ∗j = 0 and ∂f

∂xj
(x̂) = 0.

Therefore, if x̂j 6= 0,

0 =

I∑
i=1

Aij

(
(

J∑
m=1

Aimx̂m)− bi
)
. (8.50)

Let Q be the I by K matrix obtained from A by deleting rows j for which
x̂j = 0. Then we can write

Q†(Ax̂− b) = 0. (8.51)

If Q has K ≥ I columns and has full rank, then Q† is a one-to-one linear
transformation, which implies that Ax̂ = b. Therefore, when there is no
nonnegative solution of Ax = b, and Q has full rank, which is the typical
case, the Q must have fewer than I columns, which means that x̂ has fewer
than I non-zero entries.

This result has some practical implications in medical image reconstruc-
tion. In the hope of improving the resolution of the reconstructed image, we
may be tempted to take J , the number of pixels, larger than I, the number
of equations arising from photon counts or line integrals. Since the vector b
consists of measured data, it is noisy and there may well not be a nonneg-
ative solution of Ax = b. As a result, the image obtained by nonnegatively
constrained least-squares will have at most I − 1 non-zero entries; many
of the pixels will be zero and they will be scattered throughout the image,
making it unusable for diagnosis. The reconstructed images resemble stars
in a night sky, and, as a result, the theorem is sometimes described as the
“night sky” theorem.

This “night sky” phenomenon is not restricted to least squares. The
same thing happens with methods based on the Kullback-Leibler distance,
such as MART, EMML and SMART.

8.6 Exercises

Ex. 8.1 Prove Lemma 8.2.

Ex. 8.2 In R2 let C1 be the closed lower half-space, and C2 the epi-graph



124 Iterative Optimization in Inverse Problems

of the function g : (0,+∞) → (0,+∞) given by g(t) = 1/t. Show that the
proximity function

f(x) =

2∑
i=1

||PCix− x||22, (8.52)

has no minimizer.

Ex. 8.3 Let f(x) = 1
2γ ‖x− PCx‖

2
2, for some γ > 0. Show that

x = proxf (z) = (1− α)z + αPCz,

where α = 1
γ+1 . This tells us that relaxed orthogonal projections are also

prox operators. Hint: Use Theorem 8.1 to show that x must satisfy the
equation

z = x+
1

γ
(x− PCx).

Then show that PCz = PCx.



Chapter 9

Eigenvalue Bounds

9.1 Introduction and Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
9.1.1 Eigenvalues and Singular Values . . . . . . . . . . . . . . . . . . . . . . . . 126
9.1.2 Vector and Matrix Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
9.1.3 Some Examples of Induced Matrix Norms . . . . . . . . . . . . . . 128

9.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
9.3 Cimmino’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
9.4 The Landweber Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

9.4.1 Finding the Optimum γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
9.4.2 The Projected Landweber Algorithm . . . . . . . . . . . . . . . . . . . 134

9.5 Some Upper Bounds for L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
9.5.1 Earlier Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
9.5.2 Our Basic Eigenvalue Inequality . . . . . . . . . . . . . . . . . . . . . . . . 137
9.5.3 Another Upper Bound for L . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

9.6 Simultaneous Iterative Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
9.6.1 The General Simultaneous Iterative Scheme . . . . . . . . . . . . 142
9.6.2 The SIRT Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
9.6.3 The CAV Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
9.6.4 The Landweber Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
9.6.5 The Simultaneous DROP Algorithm . . . . . . . . . . . . . . . . . . . . 145

9.7 Block-iterative Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
9.7.1 The Block-Iterative Landweber Algorithm . . . . . . . . . . . . . . 146
9.7.2 The BICAV Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
9.7.3 A Block-Iterative CARP1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
9.7.4 Using Sparseness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

9.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

As we discussed previously, a number of iterative methods that involve a
matrix A place upper bounds on the step-length parameter in terms of
the spectral radius of the matrix A†A. Since A is often quite large, finding
decent estimates of ρ(A†A) without having to calculate A†A becomes im-
portant. In this chapter we obtain upper bounds on the spectral radius of
positive-definite matrices and use these bounds in the selection of param-
eters in several iterative methods.

125



126 Iterative Optimization in Inverse Problems

9.1 Introduction and Notation

In this section we review basic definitions and properties of eigenvalues
and matrix norms.

9.1.1 Eigenvalues and Singular Values

Let A be a complex M by N matrix. It is often helpful to know how
large the two-norm ‖Ax‖2 can be, relative to ‖x‖2; that is, we want to find
a constant a so that

‖Ax‖2/‖x‖2 ≤ a,

for all x 6= 0. We can reformulate the problem by asking how large ‖Au‖22
can be, subject to ‖u‖2 = 1. Using Lagrange multipliers, we discover that
a unit vector u that maximizes ‖Au‖22 has the property that

A†Au = λu,

for some constant λ. This leads to the more general problem discussed in
this section.

Definition 9.1 Given an N by N complex matrix S, we say that a complex
number λ is an eigenvalue of S if there is a nonzero vector u with Su = λu.
The column vector u is then called an eigenvector of S associated with
eigenvalue λ.

Clearly, if u is an eigenvector of S, then so is cu, for any constant c 6= 0;
therefore, it is common to choose eigenvectors to have norm equal to one.

Definition 9.2 The spectral radius of S, denoted ρ(S), is the largest value
of |λ|, where λ denotes an eigenvalue of S.

Definition 9.3 A Hermitian matrix Q is said to be nonnegative-definite
if all the eigenvalues of Q are nonnegative, and positive-definite if all the
eigenvalues are positive.

Definition 9.4 Let A be an arbitrary matrix. A nonnegative number γ is
a singular value for A if γ2 is an eigenvalue of both A†A and AA†.

We present now a number of assertions without proof. Details can be
found in almost any text on applied or computational linear algebra; see,
for example, [174].

• For any square matrix S, the trace of S is the sum of its eigenvalues.



Eigenvalue Bounds 127

• For any square matrix S we have ρ(S)2 = ρ(S2).

• The eigenvalues of a Hermitian matrix H are real.

• A Hermitian matrix Q is a nonnegative-definite matrix if and only if
there is another matrix C, not necessarily square, such that Q = C†C.

9.1.2 Vector and Matrix Norms

We consider now the most common norms on the space CJ . These
notions apply equally to RJ .

The 1-norm on CJ is defined by

‖x‖1 =

J∑
j=1

|xj |. (9.1)

The ∞-norm on CJ is defined by

‖x‖∞ = max{|xj | |j = 1, ..., J}. (9.2)

For any p ≥ 1, the p-norm is defined by

‖x‖p =
( J∑
j=1

|xj |p
)1/p

. (9.3)

The 2-norm, also called the Euclidean norm, is the most commonly used
norm on CJ . It is the p-norm for p = 2 and is the one that comes from the
inner product:

‖x‖2 =

√√√√ J∑
j=1

|xj |2 =
√
〈x, x〉 =

√
x†x. (9.4)

Any matrix can be turned into a vector by vectorization. Therefore,
we can define a norm for any matrix by simply vectorizing the matrix
and taking a norm of the resulting vector; the 2-norm of the vectorized
matrix is the Frobenius norm of the matrix itself. Such norms for matrices
may not be compatible with the role of a matrix as representing a linear
transformation. For that reason, we consider norms on matrices that are
induced by the norms of the vectors on which the matrices operate.

Definition 9.5 Let A be an M by N complex matrix. A norm on A, de-
noted ‖A‖, is said to be compatible with given norms on CN and CM if
‖Ax‖ ≤ ‖A‖‖x‖, for every x in CN .



128 Iterative Optimization in Inverse Problems

One way to obtain a compatible norm for matrices is through the use
of an induced matrix norm.

Definition 9.6 Let ‖x‖ be any norm on CJ , not necessarily the Euclidean
norm, ‖b‖ any norm on CI , and A a rectangular I by J matrix. The in-
duced matrix norm of A, simply denoted ‖A‖, derived from these two vector
norms, is the smallest positive constant c such that

‖Ax‖ ≤ c‖x‖, (9.5)

for all x in CJ . This induced norm can be written as

‖A‖ = max
x 6=0
{‖Ax‖/‖x‖}. (9.6)

When A is square we always assume that it is the same norm being used
on x and Ax.

9.1.3 Some Examples of Induced Matrix Norms

If we choose the two vector norms carefully, then we can get an explicit
description of ‖A‖, but, in general, we cannot.

For example, let ‖x‖ = ‖x‖1 and ‖Ax‖ = ‖Ax‖1 be the 1-norms of the
vectors x and Ax. Then the 1-norm of A, induced by the 1-norms of vectors
in CJ and CI , is

‖A‖1 = max {
I∑
i=1

|Aij | , j = 1, 2, ..., J}. (9.7)

The infinity norm of the matrix A, induced by the infinity norms of vectors
in CJ and CI , is

‖A‖∞ = max {
J∑
j=1

|Aij | , i = 1, 2, ..., I}. (9.8)

Consequently,
‖A†‖1 = ‖A‖∞,

and
‖A†‖∞ = ‖A‖1.

We shall be particularly interested in the two-norm (or 2-norm) of a
matrix A, denoted by ‖A‖2, which is the induced matrix norm derived
from the Euclidean vector norms.

From the definition of the two-norm of A, we know that

‖A‖2 = max{‖Ax‖2/‖x‖2}, (9.9)



Eigenvalue Bounds 129

with the maximum over all nonzero vectors x. Since

‖Ax‖22 = x†A†Ax, (9.10)

we have

‖A‖2 =

√
max {x

†A†Ax

x†x
}, (9.11)

over all nonzero vectors x. The two-norm of a matrix A is

‖A‖2 =
√
ρ(A†A); (9.12)

that is, the term inside the square-root in Equation (9.11) is the largest
eigenvalue of the matrix A†A. Therefore, ‖A‖2 = ‖A†‖2 for any matrix A.

Let H be an Hermitian matrix. The two-norm of H is ‖H‖2 = ρ(H).
We can use this to show that, for any matrix A, we have the inequality

‖A‖22 ≤ ‖A‖1‖A‖∞. (9.13)

The inequality (9.13) also follows, as a particular case, from the more gen-
eral Theorem 9.5 concerning upper bounds for the singular values of a
matrix A. If the rows of the matrix A are rescaled so that, for each i, we
have

∑J
j=1 |Aij | ≤ 1, then no eigenvalue of A†A is larger than the maxi-

mum number of non-zero entries in any column of A. Later in this chapter
we shall see that the same conclusion holds if the rows of A are rescaled to
have Euclidean length not greater than one.

If S is not Hermitian, then the two-norm of S cannot be calculated
directly from the eigenvalues of S. Take, for example, the square, non-
Hermitian matrix

S =

[
i 2
0 i

]
, (9.14)

having eigenvalues λ = i and λ = i. The eigenvalues of the Hermitian
matrix

S†S =

[
1 −2i
2i 5

]
(9.15)

are λ = 3 + 2
√

2 and λ = 3− 2
√

2. Therefore, the two-norm of S is

‖S‖2 =

√
3 + 2

√
2. (9.16)



130 Iterative Optimization in Inverse Problems

9.2 Overview

We are concerned here with iterative methods for solving, at least ap-
proximately, the system of I linear equations in J unknowns symbolized
by Ax = b. In the applications of interest to us, such as medical imaging,
both I and J are quite large, making the use of iterative methods the only
feasible approach. It is also typical of such applications that the matrix
A is sparse, that is, has relatively few non-zero entries. Therefore, itera-
tive methods that exploit this sparseness to accelerate convergence are of
special interest to us.

Cimmino’s method [98] is a simultaneous method, in which all the equa-
tions are used at each step. The current vector xk−1 is projected orthog-
onally onto each of the hyperplanes and these projections are averaged to
obtain the next iterate xk. The iterative step of Cimmino’s method is

xkj =
1

I

I∑
i=1

(
xk−1j +Aij

(
bi − (Axk−1)i∑J

t=1 |Ait|2

))
,

which can also be written as

xkj = xk−1j +

I∑
i=1

Aij

(
bi − (Axk−1)i

I
∑J
t=1 |Ait|2

)
. (9.17)

Landweber’s iterative scheme [154] with

xk = xk−1 +B†(d−Bxk−1), (9.18)

converges to the least-squares solution of Bx = d closest to x0, provided
that the largest singular value of B does not exceed one. If we let B be the
matrix with entries

Bij = Aij/

√√√√I

J∑
t=1

|Ait|2,

and define

di = bi/

√√√√I

J∑
t=1

|Ait|2,

then, since the trace of the matrix BB† is one, convergence of Cimmino’s
method follows. However, using the trace in this way to estimate the largest
singular value of a matrix usually results in an estimate that is far too
large, particularly when A is large and sparse, and therefore in an iterative
algorithm with unnecessarily small step sizes.



Eigenvalue Bounds 131

The appearance of the term

I

J∑
t=1

|Ait|2

in the denominator of Cimmino’s method suggested to Censor et al. [88]
that, when A is sparse, this denominator might be replaced with

J∑
t=1

st|Ait|2,

where st denotes the number of non-zero entries in the tth column of A.
The resulting iterative method is the component-averaging (CAV) itera-
tion. Convergence of the CAV method was established by showing that no
singular value of the matrix B exceeds one, where B has the entries

Bij = Aij/

√√√√ J∑
t=1

st|Ait|2.

In [65] we extended this result, to show that no eigenvalue of A†A exceeds
the maximum of the numbers

pi =

J∑
t=1

st|Ait|2.

Convergence of CAV then follows, as does convergence of several other
methods, including the ART, Landweber’s method, the SART [1], the
block-iterative CAV (BICAV) [89], the CARP1 method of Gordon and
Gordon [135], a block-iterative variant of CARP1 obtained from the DROP
method of Censor et al. [84], and the SIRT method [205].

For a positive integer N with 1 ≤ N ≤ I, we let B1, ..., BN be not
necessarily disjoint subsets of the set {i = 1, ..., I}; the subsets Bn are
called blocks. We then let An be the matrix and bn the vector obtained
from A and b, respectively, by removing all the rows except for those whose
index i is in the set Bn. For each n, we let snt be the number of non-zero
entries in the tth column of the matrix An, sn the maximum of the snt,
s the maximum of the st, and Ln = ρ(A†nAn) be the spectral radius, or
largest eigenvalue, of the matrix A†nAn, with L = ρ(A†A). We denote by
Ai the ith row of the matrix A, and by νi the length of Ai, so that

ν2i =

J∑
j=1

|Aij |2.



132 Iterative Optimization in Inverse Problems

9.3 Cimmino’s Algorithm

The ART seeks a solution of Ax = b by projecting the current vector
xk−1 orthogonally onto the next hyperplane H(ai(k), bi(k)) to get xk; here
i(k) = k(mod )I. In Cimmino’s algorithm, we project the current vector
xk−1 onto each of the hyperplanes and then average the result to get xk.
The algorithm begins at k = 1, with an arbitrary x0; the iterative step is
then

xk =
1

I

I∑
i=1

Pix
k−1, (9.19)

where Pi is the orthogonal projection onto H(ai, bi). The iterative step can
then be written as

xkj = xk−1j +
1

I

I∑
i=1

(
Aij(bi − (Axk−1)i)

ν2i

)
. (9.20)

As we saw in our discussion of the ART, when the system Ax = b has
no solutions, the ART does not converge to a single vector, but to a limit
cycle. One advantage of many simultaneous algorithms, such as Cimmino’s,
is that they do converge to the least squares solution in the inconsistent
case.

When νi = 1 for all i, Cimmino’s algorithm has the form xk+1 = Txk,
for the operator T given by

Tx = (I − 1

I
A†A)x+

1

I
A†b.

Experience with Cimmino’s algorithm shows that it is slow to converge.
In the next section we consider how we might accelerate the algorithm.

9.4 The Landweber Algorithms

For simplicity, we assume, in this section, that νi = 1 for all i. The
Landweber algorithm [154, 23], with the iterative step

xk = xk−1 + γA†(b−Axk−1), (9.21)

converges to the least squares solution closest to the starting vector x0,
provided that 0 < γ < 2/λmax, where λmax is the largest eigenvalue of



Eigenvalue Bounds 133

the nonnegative-definite matrix A†A. Loosely speaking, the larger γ is, the
faster the convergence. However, precisely because A is large, calculating
the matrix A†A, not to mention finding its largest eigenvalue, can be pro-
hibitively expensive. The matrix A is said to be sparse if most of its entries
are zero. Useful upper bounds for λmax are then given by Theorems 9.1
and 9.6.

9.4.1 Finding the Optimum γ

The operator

Tx = x+ γA†(b−Ax) = (I − γA†A)x+ γA†b

is affine linear and is av if and only if its linear part, the Hermitian matrix

B = I − γA†A,

is av. To guarantee this we need 0 ≤ γ < 2/λmax. Should we always try to
take γ near its upper bound, or is there an optimum value of γ? To answer
this question we consider the eigenvalues of B for various values of γ.

Lemma 9.1 If γ < 0, then none of the eigenvalues of B is less than one.

Lemma 9.2 For

0 ≤ γ ≤ 2

λmax + λmin
, (9.22)

we have

ρ(B) = 1− γλmin; (9.23)

the smallest value of ρ(B) occurs when

γ =
2

λmax + λmin
, (9.24)

and equals

λmax − λmin
λmax + λmin

. (9.25)

Similarly, for

γ ≥ 2

λmax + λmin
, (9.26)

we have

ρ(B) = γλmax − 1; (9.27)



134 Iterative Optimization in Inverse Problems

the smallest value of ρ(B) occurs when

γ =
2

λmax + λmin
, (9.28)

and equals

λmax − λmin
λmax + λmin

. (9.29)

We see from this lemma that, if 0 ≤ γ < 2/λmax, and λmin > 0, then
‖B‖2 = ρ(B) < 1, so that B is a strict contraction. We minimize ‖B‖2 by
taking

γ =
2

λmax + λmin
, (9.30)

in which case we have

‖B‖2 =
λmax − λmin
λmax + λmin

=
c− 1

c+ 1
, (9.31)

for c = λmax/λmin, the condition number of the positive-definite matrix
A†A. The closer c is to one, the smaller the norm ‖B‖2, and the faster the
convergence.

On the other hand, if λmin = 0, then ρ(B) = 1 for all γ in the interval
(0, 2/λmax). The matrix B is still averaged, but it is no longer a strict
contraction. For example, consider the orthogonal projection P0 onto the
hyperplane H0 = H(a, 0), where ‖a‖2 = 1. This operator can be written

P0 = I − aa†. (9.32)

The largest eigenvalue of aa† is λmax = 1; the remaining ones are zero. The
relaxed projection operator

B = I − γaa† (9.33)

has ρ(B) = 1 − γ > 1, if γ < 0, and for γ ≥ 0, we have ρ(B) = 1. The
operator B is averaged, in fact, it is firmly nonexpansive, but it is not a
strict contraction.

9.4.2 The Projected Landweber Algorithm

When we require a nonnegative approximate solution x for the real sys-
tem Ax = b we can use a modified version of the Landweber algorithm,
called the projected Landweber algorithm [23], in this case having the it-
erative step

xk+1 = (xk + γAT (b−Axk))+, (9.34)



Eigenvalue Bounds 135

where, for any real vector a, we denote by (a)+ the nonnegative vector
whose entries are those of a, for those that are nonnegative, and are zero
otherwise. The projected Landweber algorithm converges to a vector that
minimizes ‖Ax− b‖2 over all nonnegative vectors x, for the same values of
γ.

The projected Landweber algorithm is actually more general. For any
closed, nonempty convex set C in CJ , define the iterative sequence

xk+1 = PC(xk + γA†(b−Axk)). (9.35)

This sequence converges to a minimizer of the function ‖Ax− b‖2 over all
x in C, whenever such minimizers exist.

Both the Landweber and projected Landweber algorithms are special
cases of the CQ algorithm [58], which, in turn, is a special case of the more
general iterative fixed point algorithm, with convergence governed by the
Krasnosel’skii-Mann-Opial Theorem 7.1.

9.5 Some Upper Bounds for L

For the iterative algorithms we shall consider here, having a good upper
bound for the largest eigenvalue of the matrix A†A is important. In the
applications of interest, principally medical image processing, the matrix
A is large; even calculating A†A, not to mention computing eigenvalues,
is prohibitively expensive. In addition, the matrix A is typically sparse,
but A†A will not be, in general. In this section we present upper bounds
for L that are particularly useful when A is sparse and do not require the
calculation of A†A.

9.5.1 Earlier Work

Many of the concepts we study in computational linear algebra were
added to the mathematical toolbox relatively recently, as this area blos-
somed with the growth of electronic computers. Based on my brief inves-
tigations into the history of matrix theory, I believe that the concept of
a norm of a matrix was not widely used prior to about 1945. This was
recently confirmed when I read the paper [136]; as pointed out there, the
use of matrix norms became an important part of numerical linear algebra
only after the publication of [207]. Prior to the late 1940’s a number of
papers were published that established upper bounds on ρ(A), for general
square matrix A. As we now can see, several of these results are immediate



136 Iterative Optimization in Inverse Problems

consequences of the fact that ρ(A) ≤ ‖A‖, for any induced matrix norm.
We give two examples.

For a given N by N matrix A, let

Cn =

N∑
m=1

|Amn|,

Rm =

N∑
n=1

|Amn|,

and C and R the maxima of Cn and Rm, respectively. We now know that
C = ‖A‖1, and R = ‖A‖∞, but the earlier authors did not.

In 1930 Browne [33] proved the following theorem.

Theorem 9.1 (Browne) Let λ be any eigenvalue of A. Then

|λ| ≤ 1

2
(C +R).

In 1944 Farnell [124] published the following theorems.

Theorem 9.2 (Farnell I) For any eigenvalue λ of A we have

|λ| ≤
√
CR.

Theorem 9.3 (Farnell II) Let

rm =

N∑
n=1

|Amn|2,

and

cm =

N∑
n=1

|Anm|2.

Then, for any eigenvalue λ of A, we have

|λ| ≤

√√√√ N∑
m=1

√
rmcm.

In 1946 Brauer [30] proved the following theorem.

Theorem 9.4 (Brauer) For any eigenvalue λ of A, we have

|λ| ≤ min{C,R}.



Eigenvalue Bounds 137

Let A be an arbitrary rectangular complex matrix. Since the largest
singular value of A is the square root of the maximum eigenvalue of the
square matrix S = A†A, we could use the inequality

ρ(A†A) = ‖A†A‖2 ≤ ‖A†A‖,

for any induced matrix norm, to establish an upper bound for the singular
values of A. However, that bound would be in terms of the entries of A†A,
not of A itself. In what follows we obtain upper bounds on the singular
values of A in terms of the entries of A itself.

We see from Exercise 9.3 that Farnell (I) does generalize to arbitrary
rectangular matrices and singular values. Brauer’s Theorem 9.4 may sug-
gest that no singular value of a rectangular matrix A exceeds the minimum
of ‖A‖1 and ‖A‖∞, but this is not true. Consider the matrix A whose SVD
is given by

A =

4 3
8 6
8 6

 =

1/3 2/3 2/3
2/3 −2/3 1/3
2/3 1/3 −2/3

15 0
0 0
0 0

[4/5 3/5
3/5 −4/5

]
.

The largest singular value of A is 15, ‖A‖1 = 20, ‖A‖∞ = 14, and we do
have

15 ≤
√

(20)(14),

but we do not have
15 ≤ min{20, 14} = 14.

9.5.2 Our Basic Eigenvalue Inequality

In [205] van der Sluis and van der Vorst show that certain rescaling of
the matrix A results in none of the eigenvalues of A†A exceeding one. A
modification of their proof leads to upper bounds on the eigenvalues of the
original A†A ([65]). For any a in the interval [0, 2] let

caj = caj(A) =

I∑
i=1

|Aij |a,

rai = rai(A) =

J∑
j=1

|Aij |2−a,

and ca and ra the maxima of the caj and rai, respectively. We prove the
following theorem.



138 Iterative Optimization in Inverse Problems

Theorem 9.5 For any a in the interval [0, 2], no eigenvalue of the matrix
A†A exceeds the maximum of

J∑
j=1

caj |Aij |2−a,

over all i, nor the maximum of

I∑
i=1

rai|Aij |a,

over all j. Therefore, no eigenvalue of A†A exceeds cara.

Proof: Let A†Av = λv, and let w = Av. Then we have

‖A†w‖22 = λ‖w‖22.

Applying Cauchy’s Inequality, we obtain

∣∣∣ I∑
i=1

Aijwi

∣∣∣2 ≤ ( I∑
i=1

|Aij |a/2|Aij |1−a/2|wi|
)2

≤
( I∑
i=1

|Aij |a
)( I∑

i=1

|Aij |2−a|wi|2
)
.

Therefore,

‖A†w‖22 ≤
J∑
j=1

(
caj(

I∑
i=1

|Aij |2−a|wi|2)
)

=

I∑
i=1

( J∑
j=1

caj |Aij |2−a
)
|wi|2

≤ max
i

( J∑
j=1

caj |Aij |2−a
)
‖w‖2.

The second assertion follows in similar fashion.

As a corollary, we obtain the following eigenvalue inequality, which is
central to our discussion.

Corollary 9.1 For each i = 1, 2, ..., I, let

pi =

J∑
j=1

sj |Aij |2,

and let p be the maximum of the pi. Then L ≤ p.



Eigenvalue Bounds 139

Proof: Take a = 0. Then, using the convention that 00 = 0, we have
c0j = sj .

Corollary 9.2 ([58]; [204], Th. 4.2) If
∑J
j=1 |Aij |2 ≤ 1 for each i, then

L ≤ s.

Proof: For all i we have

pi =

J∑
j=1

sj |Aij |2 ≤ s
J∑
j=1

|Aij |2 ≤ s.

Therefore,
L ≤ p ≤ s.

Corollary 9.3 Selecting a = 1, we have

L = ‖A‖22 ≤ ‖A‖1‖A‖∞ = c1r1.

Therefore, the largest singular value of A does not exceed
√
‖A‖1‖A‖∞.

Corollary 9.4 Selecting a = 2, we have

L = ‖A‖22 ≤ ‖A‖2F ,

where ‖A‖F denotes the Frobenius norm of A.

Corollary 9.5 Let G be the matrix with entries

Gij = Aij
√
αi
√
βj ,

where

αi ≤
( J∑
j=1

sjβj |Aij |2
)−1

,

for all i. Then ρ(G†G) ≤ 1.

Proof: We have

J∑
j=1

sj |Gij |2 = αi

J∑
j=1

sjβj |Aij |2 ≤ 1,

for all i. The result follows from Corollary 9.1.

Corollary 9.6 If
∑J
j=1 sj |Aij |2 ≤ 1 for all i, then L ≤ 1.



140 Iterative Optimization in Inverse Problems

Corollary 9.7 If 0 < γi ≤ p−1i for all i, then the matrix B with entries
Bij =

√
γiAij has ρ(B†B) ≤ 1.

Proof: We have

J∑
j=1

sj |Bij |2 = γi

J∑
j=1

sj |Aij |2 = γipi ≤ 1.

Therefore, ρ(B†B) ≤ 1, according to the theorem.

Corollary 9.8 If, for some a in the interval [0, 2], we have

αi ≤ r−1ai , (9.36)

for each i, and

βj ≤ c−1aj , (9.37)

for each j, then, for the matrix G with entries

Gij = Aij
√
αi
√
βj ,

no eigenvalue of G†G exceeds one.

Proof: We calculate caj(G) and rai(G) and find that

caj(G) ≤
(

max
i
α
a/2
i

)
β
a/2
j

I∑
i=1

|Aij |a =
(

max
i
α
a/2
i

)
β
a/2
j caj(A),

and
rai(G) ≤

(
max
j
β
1−a/2
j

)
α
1−a/2
i rai(A).

Therefore, applying the inequalities (9.36) and (9.37), we have

caj(G)rai(G) ≤ 1,

for all i and j. Consequently, ρ(G†G) ≤ 1.

9.5.3 Another Upper Bound for L

The next theorem ([58]) provides another upper bound for L that is
useful when A is sparse. As previously, for each i and j, we let eij = 1,

if Aij is not zero, and eij = 0, if Aij = 0. Let 0 < νi =
√∑J

j=1 |Aij |2,

σj =
∑I
i=1 eijν

2
i , and σ be the maximum of the σj .



Eigenvalue Bounds 141

Theorem 9.6 ([58]) No eigenvalue of A†A exceeds σ.

Proof: Let A†Av = cv, for some non-zero vector v and scalar c. With
w = Av, we have

w†AA†w = cw†w.

Then∣∣∣ I∑
i=1

Aijwi

∣∣∣2 =
∣∣∣ I∑
i=1

Aijeijνi
wi
νi

∣∣∣2 ≤ ( I∑
i=1

|Aij |2
|wi|2

ν2i

)( I∑
i=1

ν2i eij

)

=
( I∑
i=1

|Aij |2
|wi|2

ν2i

)
σj ≤ σ

( I∑
i=1

|Aij |2
|wi|2

ν2i

)
.

Therefore, we have

cw†w = w†AA†w =

J∑
j=1

∣∣∣ I∑
i=1

Aijwi

∣∣∣2

≤ σ
J∑
j=1

( I∑
i=1

|Aij |2
|wi|2

ν2i

)
= σ

I∑
i=1

|wi|2 = σw†w.

We conclude that c ≤ σ.

Corollary 9.9 Let the rows of A have Euclidean length one. Then no
eigenvalue of A†A exceeds the maximum number of non-zero entries in
any column of A.

Proof: We have ν2i =
∑J
j=1 |Aij |2 = 1, for each i, so that σj = sj is

the number of non-zero entries in the jth column of A, and σ = s is the
maximum of the σj .

Corollary 9.10 Let ν be the maximum Euclidean length of any row of A
and s the maximum number of non-zero entries in any column of A. Then
L ≤ ν2s.

When the rows of A have length one, it is easy to see that L ≤ I, so
the choice of γ = 1

I in the Landweber algorithm, which gives Cimmino’s
algorithm [98], is acceptable, although perhaps much too small.

The proof of Theorem 9.6 was suggested by results presented by Arnold
Lent in informal discussions with Gabor Herman, Yair Censor, Rob Lewitt
and me at MIPG in Philadelphia in the late 1990’s.



142 Iterative Optimization in Inverse Problems

9.6 Simultaneous Iterative Algorithms

In this section we apply the previous theorems to obtain convergence
of several simultaneous iterative algorithms for linear systems.

9.6.1 The General Simultaneous Iterative Scheme

In this section we are concerned with simultaneous iterative algorithms
having the following iterative step:

xkj = xk−1j + λk

I∑
i=1

γijAij(bi − (Axk−1)i), (9.38)

with λk ∈ [ε, 1] and the choices of the parameters γij that guarantee conver-
gence. Although we cannot prove convergence for this most general iterative
scheme, we are able to prove the following theorems for the separable case
of γij = αiβj .

Theorem 9.7 If, for some a in the interval [0, 2], we have

αi ≤ r−1ai , (9.39)

for each i, and

βj ≤ c−1aj , (9.40)

for each j, then the sequence {xk} given by Equation (9.38) converges to
the minimizer of the proximity function

I∑
i=1

αi|bi − (Ax)i|2

for which
J∑
j=1

β−1j |xj − x
0
j |2

is minimized.

Proof: For each i and j, let

Gij =
√
αi
√
βjAij ,

zj = xj/
√
βj ,



Eigenvalue Bounds 143

and
di =

√
αibi.

Then Ax = b if and only if Gz = d. From Corollary 9.8 we have that
ρ(G†G) ≤ 1. Convergence then follows from Theorem 8.3.

Corollary 9.11 Let γij = αiβj, for positive αi and βj. If

αi ≤
( J∑
j=1

sjβj |Aij |2
)−1

, (9.41)

for each i, then the sequence {xk} in (9.38) converges to the minimizer of
the proximity function

I∑
i=1

αi|bi − (Ax)i|2

for which
J∑
j=1

β−1j |xj − x
0
j |2

is minimized.

Proof: We know from Corollary 9.5 that ρ(G†G) ≤ 1.

We now obtain convergence for several known algorithms as corollaries
to the previous theorems.

9.6.2 The SIRT Algorithm

Corollary 9.12 ([205]) For some a in the interval [0, 2] let αi = r−1ai and
βj = c−1aj . Then the sequence {xk} in (9.38) converges to the minimizer of
the proximity function

I∑
i=1

αi|bi − (Ax)i|2

for which
J∑
j=1

β−1j |xj − x
0
j |2

is minimized.

For the case of a = 1, the iterative step becomes

xkj = xk−1j +

I∑
i=1

(
Aij(bi − (Axk−1)i)

(
∑J
t=1 |Ait|)(

∑I
m=1 |Amj |)

)
,

which was considered in [139]. The SART algorithm [1] is a special case, in
which it is assumed that Aij ≥ 0, for all i and j.



144 Iterative Optimization in Inverse Problems

9.6.3 The CAV Algorithm

Corollary 9.13 If βj = 1 and αi satisfies

0 < αi ≤
( J∑
j=1

sj |Aij |2
)−1

,

for each i, then the algorithm with the iterative step

xk = xk−1 + λk

I∑
i=1

αi(bi − (Axk−1)i)A
†
i (9.42)

converges to the minimizer of

I∑
i=1

αi|bi − (Axk−1)i|2

for which ‖x− x0‖ is minimized.

When

αi =
( J∑
j=1

sj |Aij |2
)−1

,

for each i, this is the relaxed component-averaging (CAV) method of Censor
et al. [88].

9.6.4 The Landweber Algorithm

When βj = 1 and αi = α for all i and j, we have the relaxed Landweber
algorithm. The convergence condition in Equation (9.36) becomes

α ≤
( J∑
j=1

sj |Aij |2
)−1

= p−1i

for all i, so α ≤ p−1 suffices for convergence. Actually, the sequence {xk}
converges to the minimizer of ‖Ax− b‖2 for which the distance ‖x−x0‖2 is
minimized, for any starting vector x0, when 0 < α < 1/L. Easily obtained
estimates of L are usually over-estimates, resulting in overly conservative
choices of α. For example, if A is first normalized so that

∑J
j=1 |Aij |2 = 1

for each i, then the trace of A†A equals I, which tells us that L ≤ I. But
this estimate, which is the one used in Cimmino’s method [98], is far too
large when A is sparse.



Eigenvalue Bounds 145

9.6.5 The Simultaneous DROP Algorithm

Corollary 9.14 Let 0 < wi ≤ 1,

αi = wiν
−2
i = wi

( J∑
j=1

|Aij |2
)−1

and βj = s−1j , for each i and j. Then the simultaneous algorithm with the
iterative step

xkj = xk−1j + λk

I∑
i=1

(
wiAij(bi − (Axk−1)i)

sjν2i

)
, (9.43)

converges to the minimizer of the function

I∑
i=1

∣∣∣∣∣wi(bi − (Ax)i)

νi

∣∣∣∣∣
2

for which the function
J∑
j=1

sj |xj − x0j |2

is minimized.

For wi = 1, this is the CARP1 algorithm of [135] (see also [88, 89]). The
simultaneous DROP algorithm of [84] requires only that the weights wi be
positive, but dividing each wi by their maximum, maxi{wi}, while multiply-
ing each λk by the same maximum, gives weights in the interval (0, 1]. For
convergence of their algorithm, we need to replace the condition λk ≤ 2− ε
with λk ≤ 2−ε

maxi{wi} .

The denominator in CAV is

J∑
t=1

st|Ait|2,

while that in CARP1 is

sj

J∑
t=1

|Ait|2.

It was reported in [135] that the two methods differed only slightly in the
simulated cases studied.



146 Iterative Optimization in Inverse Problems

9.7 Block-iterative Algorithms

The methods discussed in the previous section are simultaneous, that
is, all the equations are employed at each step of the iteration. We turn
now to block-iterative methods, which employ only some of the equations at
each step. When the parameters are appropriately chosen, block-iterative
methods can be significantly faster than simultaneous ones.

9.7.1 The Block-Iterative Landweber Algorithm

For a given set of blocks, the block-iterative Landweber algorithm has
the following iterative step: with n = k(modN),

xk = xk−1 + γnA
†
n(bn −Anxk−1). (9.44)

The sequence {xk} converges to the solution of Ax = b that minimizes
‖x − x0‖2, whenever the system Ax = b has solutions, provided that the
parameters γn satisfy the inequalities 0 < γn < 1/Ln. This follows from
Theorem 8.3 by replacing the matrices An with

√
γnAn and the vectors bn

with
√
γnb

n.
If the rows of the matrices An are normalized to have length one, then

we know that Ln ≤ sn. Therefore, we can use parameters γn that satisfy

0 < γn ≤
(
sn

J∑
j=1

|Aij |2
)−1

, (9.45)

for each i ∈ Bn.

9.7.2 The BICAV Algorithm

We can extend the block-iterative Landweber algorithm as follows: let
n = k(modN) and

xk = xk−1 + λk
∑
i∈Bn

γi(bi − (Axk−1)i)A
†
i . (9.46)

It follows from Theorem 9.1 that, in the consistent case, the sequence {xk}
converges to the solution of Ax = b that minimizes ‖x−x0‖, provided that,
for each n and each i ∈ Bn, we have

γi ≤
( J∑
j=1

snj |Aij |2
)−1

.



Eigenvalue Bounds 147

The BICAV algorithm [89] uses

γi =
( J∑
j=1

snj |Aij |2
)−1

.

The iterative step of BICAV is

xk = xk−1 + λk
∑
i∈Bn

(
bi − (Axk−1)i∑J
t=1 snt|Ait|2

)
A†i . (9.47)

9.7.3 A Block-Iterative CARP1

The obvious way to obtain a block-iterative version of CARP1 would
be to replace the denominator term

sj

J∑
t=1

|Ait|2

with

snj

J∑
t=1

|Ait|2.

However, this is problematic, since we cannot redefine the vector of un-
knowns using zj = xj

√
snj , since this varies with n. In [84], this issue is

resolved by taking τj to be not less than the maximum of the snj , and
using the denominator

τj

J∑
t=1

|Ait|2 = τjν
2
i .

A similar device is used in [147] to obtain a convergent block-iterative
version of SART. The iterative step of DROP is

xkj = xk−1j + λk
∑
i∈Bn

(
Aij

(bi − (Axk−1)i)

τjν2i

)
. (9.48)

Convergence of the DROP (diagonally-relaxed orthogonal projection) it-
eration follows from their Theorem 11. We obtain convergence as a corollary
of our previous results.

The change of variables is zj = xj
√
τj , for each j. Using our eigenvalue

bounds, it is easy to show that the matrices Cn with entries

(Cn)ij =

(
Aij√
τjνi

)
,



148 Iterative Optimization in Inverse Problems

for all i ∈ Bn and all j, have ρ(C†nCn) ≤ 1. The resulting iterative scheme,
which is equivalent to Equation (9.48), then converges, whenever Ax = b
is consistent, to the solution minimizing the proximity function

I∑
i=1

∣∣∣∣∣bi − (Ax)i
νi

∣∣∣∣∣
2

for which the function
J∑
j=1

τj |xj − x0j |2

is minimized.

9.7.4 Using Sparseness

Suppose, for the sake of illustration, that each column of A has s non-
zero elements, for some s < I, and we let r = s/I. Suppose also that the
number of members of Bn is In = I/N for each n, and that N is not too
large. Then sn is approximately equal to rIn = s/N . On the other hand,
unless An has only zero entries, we know that sn ≥ 1. Therefore, it is no
help to select N for which s/N < 1. For a given degree of sparseness s we
need not select N greater than s. The more sparse the matrix A, the fewer
blocks we need to gain the maximum advantage from the rescaling, and the
more we can benefit from parallelization in the calculations at each step of
the algorithm in Equation (8.32).

9.8 Exercises

Ex. 9.1 Prove Theorems 9.1, 9.2, and 9.4 using properties of matrix
norms. Can you also prove Theorem 9.3 this way?

Ex. 9.2 Prove Lemma 9.1.

Ex. 9.3 Let A be an arbitrary rectangular matrix. Prove that no singular
value of A exceeds

√
‖A‖1‖A‖∞.

Ex. 9.4 (Computer Problem) Compare the speed of convergence of the
ART and Cimmino algorithms.

Ex. 9.5 (Computer Problem) By generating sparse matrices of various
sizes, test the accuracy of the estimates of the largest singular-value given
above.



Chapter 10

Jacobi and Gauss-Seidel Methods

10.1 The Jacobi and Gauss-Seidel Methods: An Example . . . . . . . . . . . . 149
10.2 Splitting Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
10.3 Some Examples of Splitting Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
10.4 Jacobi’s Algorithm and JOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

10.4.1 The JOR in the Nonnegative-definite Case . . . . . . . . . . . . . 154
10.5 The Gauss-Seidel Algorithm and SOR . . . . . . . . . . . . . . . . . . . . . . . . . . 155

10.5.1 The Nonnegative-Definite Case . . . . . . . . . . . . . . . . . . . . . . . . . 155
10.5.2 The GS Algorithm as ART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
10.5.3 Successive Overrelaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
10.5.4 The SOR for Nonnegative-Definite Q . . . . . . . . . . . . . . . . . . . 158

10.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

In this chapter we examine two well known iterative algorithms for solving
square systems of linear equations, the Jacobi method and the Gauss-Seidel
method, in terms of averaged and paracontractive operators. Both these
algorithms are easy to describe and to motivate. They both require not
only that the system be square, that is, have the same number of unknowns
as equations, but satisfy additional constraints needed for convergence.

Linear systems Ax = b need not be square but can be associated with
two square systems, A†Ax = A†b, the so-called normal equations, and
AA†z = b, sometimes called the Björck-Elfving equations [107]. Both the
Jacobi and the Gauss-Seidel algorithms can be modified to apply to any
square system of linear equations, Sz = h. The resulting algorithms, the
Jacobi overrelaxation (JOR) and successive overrelaxation (SOR) methods,
involve the choice of a parameter. The JOR and SOR will converge for more
general classes of matrices, provided that the parameter is appropriately
chosen. Particular cases of the Jacobi and the Gauss-Seidel methods are
equivalent to the Landweber algorithm and the ART, respectively.

When we say that an iterative method is convergent, or converges, under
certain conditions, we mean that it converges for any consistent system of
the appropriate type, and for any starting vector; any iterative method
will converge if we begin at the right answer. We assume throughout this
chapter that A is an I by J matrix.

149



150 Iterative Optimization in Inverse Problems

10.1 The Jacobi and Gauss-Seidel Methods: An Ex-
ample

Suppose we wish to solve the 3 by 3 system

S11z1 + S12z2 + S13z3 = h1

S21z1 + S22z2 + S23z3 = h2

S31z1 + S32z2 + S33z3 = h3, (10.1)

which we can rewrite as

z1 = S−111 [h1 − S12z2 − S13z3]

z2 = S−122 [h2 − S21z1 − S23z3]

z3 = S−133 [h3 − S31z1 − S32z2], (10.2)

assuming that the diagonal terms Smm are not zero. Let z0 = (z01 , z
0
2 , z

0
3)T

be an initial guess for the solution. We then insert the entries of z0 on the
right sides and use the left sides to define the entries of the next guess z1.
This is one full cycle of Jacobi’s method.

The Gauss-Seidel method is similar. Let z0 = (z01 , z
0
2 , z

0
3)T be an initial

guess for the solution. We then insert z02 and z03 on the right side of the
first equation, obtaining a new value z11 on the left side. We then insert
z03 and z11 on the right side of the second equation, obtaining a new value
z12 on the left. Finally, we insert z11 and z12 into the right side of the third
equation, obtaining a new z13 on the left side. This is one full cycle of the
Gauss-Seidel (GS) method.

10.2 Splitting Methods

The Jacobi and the Gauss-Seidel methods are particular cases of a more
general approach known as splitting methods. Splitting methods apply to
square systems of linear equations. Let S be an arbitrary N by N square
matrix, written as S = M−K. Then the linear system of equations Sz = h
is equivalent to Mz = Kz+h. If M is invertible, then we can also write z =
M−1Kz +M−1h. This last equation suggests a class of iterative methods



Jacobi and Gauss-Seidel Methods 151

for solving Sz = h known as splitting methods. The idea is to select a matrix
M so that the equation

Mzk+1 = Kzk + h (10.3)

can be easily solved to get zk+1; in the Jacobi method M is diagonal, and
in the Gauss-Seidel method, M is triangular. Then we write

zk+1 = M−1Kzk +M−1h. (10.4)

From K = M − S, we can write Equation (10.4) as

zk+1 = zk +M−1(h− Szk). (10.5)

Suppose that S is invertible and ẑ is the unique solution of Sz = h. The
error we make at the k-th step is ek = ẑ − zk, so that

ek+1 = M−1Kek.

We want the error to decrease with each step, which means that we should
seek M and K so that ||M−1K|| < 1. If S is not invertible and there are
multiple solutions of Sz = h, then we do not want M−1K to be a strict
contraction, but only av or pc. The operator T defined by

Tz = M−1Kz +M−1h = Bz + d (10.6)

is an affine linear operator and will be a pc or av operator whenever B =
M−1K is.

It follows from our previous discussion concerning linear av operators
that, if B = B† is Hermitian, then B is av if and only if

−1 < λ ≤ 1, (10.7)

for all (necessarily real) eigenvalues λ of B.
In general, though, the matrix B = M−1K will not be Hermitian, and

deciding if such a non-Hermitian matrix is av is not a simple matter. We
do know that, if B is av, so is B†; the matrix B is a convex combination of
the identity and a nonexpansive matrix N , so B† is a convex combination
of the identity and N†, which is also nonexpansive, since ‖N†‖ = ‖N‖ ≤ 1.
Consequently, the Hermitian matrix Q = 1

2 (B +B†) is also av. Therefore,
I − Q = 1

2 (M−1S + (M−1S)†) is ism, and so is nonnegative definite. We
have −1 < λ ≤ 1, for any eigenvalue λ of Q.

Alternatively, we can use the EKN Theorem 7.3. According to that
theorem, if B has a basis of eigenvectors, and |λ| < 1 for all eigenvalues
λ of B that are not equal to one, then {zk} will converge to a solution of
Sz = h, whenever solutions exist.



152 Iterative Optimization in Inverse Problems

In what follows we shall write an arbitrary square matrix S as

S = L+D + U, (10.8)

where L is the strictly lower triangular part of S, D the diagonal part, and
U the strictly upper triangular part. When S = H is Hermitian, we have

H = L+D + L†. (10.9)

We list now several examples of iterative algorithms obtained by the split-
ting method. In the remainder of the chapter we discuss these methods in
more detail.

10.3 Some Examples of Splitting Methods

As we shall now see, the Jacobi and Gauss-Seidel methods, as well as
their overrelaxed versions, JOR and SOR, are splitting methods.

Jacobi’s Method: Jacobi’s method uses M = D and K = −L−U , under
the assumption that D is invertible. The matrix B is

B = M−1K = −D−1(L+ U). (10.10)

The Gauss-Seidel Method: The Gauss-Seidel (GS) method uses the
splitting M = D + L, so that the matrix B is

B = I − (D + L)−1S. (10.11)

The Jacobi Overrelaxation Method (JOR): The JOR uses the split-
ting

M =
1

ω
D (10.12)

and

K = M − S = (
1

ω
− 1)D − L− U. (10.13)

The matrix B is

B = M−1K = (I − ωD−1S). (10.14)

The Successive Overrelaxation Method (SOR): The SOR uses the
splitting M = ( 1

ωD + L), so that

B = M−1K = (D + ωL)−1[(1− ω)D − ωU ] (10.15)



Jacobi and Gauss-Seidel Methods 153

or

B = I − ω(D + ωL)−1S, (10.16)

or

B = (I + ωD−1L)−1[(1− ω)I − ωD−1U ]. (10.17)

10.4 Jacobi’s Algorithm and JOR

Let A be an invertible J by J matrix. For all x in CJ , let‖x‖A = ‖Ax‖.
For all J by J matrices B define

‖B‖A = ‖ABA−1‖; (10.18)

this is the induced matrix norm determined by the vector norm ‖x‖A. We
have the following lemma [8].

Lemma 10.1 Given B and ε > 0, there is invertible A such that

‖B‖A ≤ ρ(B) + ε.

Corollary 10.1 If ρ(B) < 1, then there is a vector norm for which the
induced matrix norm of B is less than one.

The matrix B in Equation (10.10) is not generally av and the Jacobi
iterative scheme will not converge, in general. Additional conditions need
to be imposed on S in order to guarantee convergence. One such condition
is that S be strictly diagonally dominant. In that case, all the eigenvalues
of B = M−1K can be shown to lie inside the unit circle of the complex
plane, so that ρ(B) < 1.

It follows from Lemma 10.1 that B is sc with respect to some vector
norm, and the Jacobi iteration converges. If, in addition, S is Hermitian,
the eigenvalues of B are in the interval (−1, 1), and so B is sc with respect
to the Euclidean norm.

Alternatively, one has the Jacobi overrelaxation (JOR) method, which
is essentially a special case of the Landweber algorithm and involves an
arbitrary parameter.

For S an N by N matrix, Jacobi’s method can be written as

znewm = S−1mm[hm −
∑
j 6=m

Smjz
old
j ], (10.19)



154 Iterative Optimization in Inverse Problems

form = 1, ..., N . WithD the invertible diagonal matrix with entriesDmm =
Smm we can write one cycle of Jacobi’s method as

znew = zold +D−1(h− Szold). (10.20)

The Jacobi overrelaxation (JOR) method has the following full-cycle iter-
ative step:

znew = zold + ωD−1(h− Szold); (10.21)

choosing ω = 1 we get the Jacobi method. Convergence of the JOR iteration
will depend, of course, on properties of S and on the choice of ω. When S =
Q, where Q is Hermitian and nonnegative-definite, for example, S = A†A
or S = AA†, we can say more. Note that such Q can always be written in
the form Q = AA† or Q = A†A, for appropriately chosen A.

10.4.1 The JOR in the Nonnegative-definite Case

When S = Q is nonnegative-definite and the system Qz = h is consis-
tent the JOR converges to a solution for any ω ∈ (0, 2/ρ(D−1/2QD−1/2)),
where ρ(Q) denotes the largest eigenvalue of the nonnegative-definite ma-
trix Q. For nonnegative-definite Q, the convergence of the JOR method is
implied by the KMO Theorem 7.1, since the JOR is equivalent to Landwe-
ber’s algorithm in these cases. To see this, we rewrite Equation (10.21)
as

vnew = vold + ωG†(f −Gvold),

where v = D1/2z,
G†G = D−1/2QD−1/2,

and
G†f = D−1/2h.

The JOR method, as applied to Qz = AA†z = b, is equivalent to the
Landweber iterative method for Ax = b.

Ex. 10.1 Show that the system AA†z = b has solutions whenever the sys-
tem Ax = b has solutions.

Lemma 10.2 If {zk} is the sequence obtained from the JOR, then the
sequence {A†zk} is the sequence obtained by applying the Landweber algo-
rithm to the system D−1/2Ax = D−1/2b, where D is the diagonal part of
the matrix Q = AA†.



Jacobi and Gauss-Seidel Methods 155

If we select ω = 1/I we obtain the Cimmino method. Since the trace of
the matrix D−1/2QD−1/2 equals I, which then is the sum of its eigenvalues,
all of which are nonnegative, we know that ω = 1/I is less than two over
the largest eigenvalue of the matrix D−1/2QD−1/2 and so this choice of
ω is acceptable and the Cimmino algorithm converges whenever there are
solutions of Ax = b. In fact, it can be shown that Cimmino’s method
converges to a least squares approximate solution generally.

Similarly, the JOR method applied to the system A†Ax = A†b is equiv-
alent to the Landweber algorithm, applied to the system Ax = b.

Ex. 10.2 Show that, if {zk} is the sequence obtained from the JOR, then
the sequence {D1/2zk} is the sequence obtained by applying the Landweber
algorithm to the system AD−1/2x = b, where D is the diagonal part of the
matrix S = A†A.

10.5 The Gauss-Seidel Algorithm and SOR

In general, the full-cycle iterative step of the Gauss-Seidel method is
the following:

znew = zold + (D + L)−1(h− Szold), (10.22)

where S = D + L + U is the decomposition of the square matrix S into
its diagonal, lower triangular and upper triangular diagonal parts. The GS
method does not converge without restrictions on the matrix S. As with
the Jacobi method, strict diagonal dominance is a sufficient condition.

10.5.1 The Nonnegative-Definite Case

Now we consider the square system Qz = h, assuming that Q = L +
D + L† is Hermitian and nonnegative-definite, so that x†Qx ≥ 0, for all
x. It is easily shown that all the entries of D are nonnegative. We assume
that all the diagonal entries of D are positive, so that D + L is invertible.
The Gauss-Seidel iterative step is zk+1 = Tzk, where T is the affine linear
operator given by Tz = Bz+d, for B = −(D+L)−1L† and d = (D+L)−1h.

Proposition 10.1 Let λ be an eigenvalue of B that is not equal to one.
Then |λ| < 1.

If B is diagonalizable, then, by Proposition 7.3, there is a norm with re-
spect to which T is paracontractive, so, by the EKN Theorem 7.3, the GS
iteration converges to a solution of Qz = h, whenever solutions exist.



156 Iterative Optimization in Inverse Problems

Proof of Proposition (10.1): Let Bv = λv, for v nonzero. Then −Bv =
(D + L)−1L†v = −λv, so that

L†v = −λ(D + L)v, (10.23)

and

Lv = −λ(D + L)†v. (10.24)

Therefore,

v†L†v = −λv†(D + L)v. (10.25)

Adding v†(D + L)v to both sides, we get

v†Qv = (1− λ)v†(D + L)v. (10.26)

Since the left side of the equation is real, so is the right side. Therefore

(1− λ)(D + L)†v = (1− λ)v†(D + L)v

= (1− λ)v†Dv + (1− λ)v†Lv

= (1− λ)v†Dv − (1− λ)λv†(D + L)†v. (10.27)

So we have

[(1− λ) + (1− λ)λ]v†(D + L)†v = (1− λ)v†Dv, (10.28)

or

(1− |λ|2)v†(D + L)†v = (1− λ)v†Dv. (10.29)

Multiplying by (1− λ) on both sides, we get, on the left side,

(1− |λ|2)v†(D + L)†v − (1− |λ|2)λv†(D + L)†v, (10.30)

which is equal to

(1− |λ|2)v†(D + L)†v + (1− |λ|2)v†Lv, (10.31)

and, on the right side, we get

|1− λ|2v†Dv. (10.32)

Consequently, we have

(1− |λ|2)v†Qv = |1− λ|2v†Dv. (10.33)

Since v†Qv ≥ 0 and v†Dv > 0, it follows that 1− |λ|2 ≥ 0. If |λ| = 1, then
|1− λ|2 = 0, so that λ = 1. This completes the proof.

Note that λ = 1 if and only if Qv = 0. Therefore, if Q is invertible,
the affine linear operator T is a strict contraction, and the GS iteration
converges to the unique solution of Qz = h.



Jacobi and Gauss-Seidel Methods 157

10.5.2 The GS Algorithm as ART

We show now that the GS algorithm, when applied to the system Qz =
AA†z = b, is equivalent to the ART algorithm, applied to Ax = b. Let
AA† = Q = L+D + L†.

It is convenient now to consider separately each sub-iteration step of
the GS algorithm. For m = 0, 1, ... and i = m(mod I) + 1, we denote by
zm+1 the vector whose entries are

zm+1
i = D−1ii

(
bi − (Qzm)i +Qiiz

m
i

)
,

and zm+1
n = zmn , for n 6= i. Therefore, we can write

zm+1
i − zmi = D−1ii (bi − (AA†zm)i).

Now let xm = A†zm for each m. Then we have

xm+1
j = (A†zm+1)j = (A†zm)j +AijD

−1
ii (bi − (Axm)i),

which is one step of the ART algorithm, applied to the system Ax = b.
Note that

Dii =

J∑
j=1

|Aij |2.

From this, we can conclude that if {zk} is the sequence produced by
one step of the GS algorithm, applied to the system AA†z = b, then
{xk = A†zk} is the sequence produced by one full cycle of the ART al-
gorithm, applied to the system Ax = b. Since we know that the ART
algorithm converges whenever Ax = b is consistent, we know now that
the GS algorithm, applied to the system AA†z = b, converges whenever
Ax = b is consistent. So once again we have shown that when S = Q is
Hermitian and nonnegative definite, the GS method converges whenever
there are solutions of Qz = h.

10.5.3 Successive Overrelaxation

The successive overrelaxation (SOR) method has the following full-cycle
iterative step:

znew = zold + (ω−1D + L)−1(h− Szold); (10.34)

the choice of ω = 1 gives the GS method. Convergence of the SOR iteration
will depend, of course, on properties of S and on the choice of ω.

Using the form

B = (D + ωL)−1[(1− ω)D − ωU ] (10.35)



158 Iterative Optimization in Inverse Problems

we can show that

|det(B)| = |1− ω|N . (10.36)

From this and the fact that the determinant of B is the product of its
eigenvalues, we conclude that ρ(B) > 1 if ω < 0 or ω > 2. When S = Q is
Hermitian and nonnegative-definite, we can say more.

10.5.4 The SOR for Nonnegative-Definite Q

When Q is nonnegative-definite and the system Qz = h is consistent
the SOR converges to a solution for any ω ∈ (0, 2). This follows from the
convergence of the ART algorithm, since, for such Q, the SOR is equivalent
to the ART, as we now show.

Now we write Q = AA† and consider the SOR method applied to the
Björck-Elfving equations AA†z = b. Rather than count a full cycle as one
iteration, we now count as a single step the calculation of a single new
entry. Therefore, for k = 0, 1, ... the k+1-st step replaces the value zki only,
where i = k(mod I) + 1. We have

zk+1
i = (1− ω)zki + ωD−1ii (bi −

i−1∑
n=1

Qinz
k
n −

I∑
n=i+1

Qinz
k
n) (10.37)

and zk+1
n = zkn for n 6= i. Now we calculate xk+1 = A†zk+1:

xk+1
j = xkj + ωD−1ii Aij(bi − (Axk)i). (10.38)

This is one step of the relaxed algebraic reconstruction technique (ART)
applied to the original system of equations Ax = b. The relaxed ART
converges to a solution, when solutions exist, for any ω ∈ (0, 2).

When Ax = b is consistent, so is AA†z = b. We consider now the
case in which Q = AA† is invertible. Since the relaxed ART sequence
{xk = A†zk} converges to a solution x∞, for any ω ∈ (0, 2), the sequence
{AA†zk} converges to b. Since Q = AA† is invertible, the SOR sequence
{zk} then converges to Q−1b.

10.6 Summary

We summarize the basic points of this chapter:

• 1. Splitting methods for solving Sz = h, for square matrix S =
M−K, involve affine linear operators Tx = Bx+d, whereB = M−1K
and d = M−1h;



Jacobi and Gauss-Seidel Methods 159

• 2. T is av if and only if B is av; if B is Hermitian, then B is av if
and only if −1 < λ ≤ 1 for all eigenvalues λ of B;

• 3. if B is not Hermitian, but is diagonalizable, and |λ| < 1 unless
λ = 1, then there is a norm for which T is pc;

• 4. If S is strictly diagonally dominant, then the Jacobi and Gauss-
Seidel iterations converge;

• 5. When S = Q is Hermitian and nonnegative definite, Q can be
written as either AA† or as A†A, for appropriately chosen A, and
the JOR method is equivalent to Landweber’s algorithm for either
D−1/2Ax = D−1/2b or AD−1/2x = b;

• 6. When S = Q is Hermitian and nonnegative definite, and we write
Q = AA†, the SOR method is equivalent to the relaxed ART algo-
rithm for Ax = b, and so converges whenever there are solutions, for
0 < ω < 2.





Chapter 11

The SMART and EMML
Algorithms

11.1 The SMART Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
11.2 The EMML Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
11.3 The EMML and the SMART as AM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
11.4 The SMART as SUMMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
11.5 The SMART as PMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
11.6 Using KL Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
11.7 The MART and EMART Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
11.8 Extensions of MART and EMART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
11.9 Convergence of the SMART and EMML . . . . . . . . . . . . . . . . . . . . . . . . 167

11.9.1 Pythagorean Identities for the KL Distance . . . . . . . . . . . . 167
11.9.2 Convergence Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

11.10 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
11.10.1 The “Night-Sky” Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

11.11 Modifying the KL distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
11.12 The ABMART Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
11.13 The ABEMML Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

We turn now to iterative algorithms involving nonnegative vectors and
matrices. For such algorithms the two-norm will not play a major role. In-
stead, the Kullback-Leibler, or cross-entropy, distance will be our primary
tool. Our main examples are the simultaneous multiplicative algebraic re-
construction technique (SMART), the expectation maximization maximum
likelihood (EMML) algorithms, and various related methods.

11.1 The SMART Iteration

The SMART minimizes the function f(x) = KL(Px, y), over nonnega-
tive vectors x. Here y is a vector with positive entries, and P is a matrix

161



162 Iterative Optimization in Inverse Problems

with nonnegative entries, such that sj =
∑I
i=1 Pij > 0. Denote by X the

set of all nonnegative x for which the vector Px has only positive entries.
Having found the vector xk−1, the next vector in the SMART sequence

is xk, with entries given by

xkj = xk−1j exp s−1j

( I∑
i=1

Pij log(yi/(Px
k−1)i)

)
. (11.1)

11.2 The EMML Iteration

The EMML algorithm minimizes the function f(x) = KL(y, Px), over
nonnegative vectors x. Having found the vector xk−1, the next vector in
the EMML sequence is xk, with entries given by

xkj = xk−1j s−1j

( I∑
i=1

Pij(yi/(Px
k−1)i)

)
. (11.2)

11.3 The EMML and the SMART as AM

In [47] the SMART was derived using the following alternating mini-
mization (AM) approach.

For each x ∈ X , let r(x) and q(x) be the I by J arrays with entries

r(x)ij = xjPijyi/(Px)i, (11.3)

and

q(x)ij = xjPij . (11.4)

In the iterative step of the SMART we get xk by minimizing the function

KL(q(x), r(xk−1)) =

I∑
i=1

J∑
j=1

KL(q(x)ij , r(x
k−1)ij)

over x ≥ 0. Note that KL(Px, y) = KL(q(x), r(x)).
Similarly, the iterative step of the EMML is to minimize the function

KL(r(xk−1), q(x)) to get x = xk. Note that KL(y, Px) = KL(r(x), q(x)).
It follows from the identities established in [47] that the SMART can also
be formulated as a particular case of the SUMMA.



The SMART and EMML Algorithms 163

11.4 The SMART as SUMMA

We show now that the SMART is a particular case of the SUMMA.
Lemma 2.1 is helpful in that regard. For notational convenience, we assume,
for the remainder of this section, that sj = 1 for all j. From the identities
established for the SMART in [47], we know that the iterative step of
SMART can be expressed as follows: minimize the function

Gk(x) = KL(Px, y) +KL(x, xk−1)−KL(Px, Pxk−1) (11.5)

to get xk. According to Lemma 2.1, the quantity

gk(x) = KL(x, xk−1)−KL(Px, Pxk−1)

is nonnegative, since sj = 1. The gk(x) are defined for all nonnegative x;
that is, the set D is the closed nonnegative orthant in RJ . Each xk is a
positive vector.

It was shown in [47] that

Gk(x) = Gk(xk) +KL(x, xk), (11.6)

from which it follows immediately that the SMART is in the SUMMA class.
Because the SMART is a particular case of the SUMMA, we know that

the sequence {f(xk)} is monotonically decreasing to f(x̂). It was shown
in [47] that if y = Px has no nonnegative solution and the matrix P and
every submatrix obtained from P by removing columns has full rank, then
x̂ is unique; in that case, the sequence {xk} converges to x̂. As we shall
see, the SMART sequence always converges to a nonnegative minimizer of
f(x). To establish this, we reformulate the SMART as a particular case of
the PMA.

11.5 The SMART as PMA

We take F (x) to be the function

F (x) =

J∑
j=1

xj log xj . (11.7)

Then

DF (x, z) = KL(x, z). (11.8)



164 Iterative Optimization in Inverse Problems

For nonnegative x and z in X , we have

Df (x, z) = KL(Px, Pz). (11.9)

Lemma 11.1 DF (x, z) ≥ Df (x, z).

Proof: We have

DF (x, z) ≥
J∑
j=1

KL(xj , zj) ≥
J∑
j=1

I∑
i=1

KL(Pijxj , Pijzj)

≥
I∑
i=1

KL((Px)i, (Pz)i) = KL(Px, Pz). (11.10)

We let h(x) = F (x)− f(x); then Dh(x, z) ≥ 0 for nonnegative x and z
in X . The iterative step of the SMART is to minimize the function

f(x) +Dh(x, xk−1). (11.11)

So the SMART is a particular case of the PMA.
The function h(x) = F (x)−f(x) is finite on D the nonnegative orthant

of RJ , and differentiable on the interior, so C = D is closed in this example.
Consequently, x̂ is necessarily in D. From our earlier discussion of the
PMA, we can conclude that the sequence {Dh(x̂, xk)} is decreasing and
the sequence {Df (x̂, xk)} → 0. Since the function KL(x̂, ·) has bounded
level sets, the sequence {xk} is bounded, and f(x∗) = f(x̂), for every
cluster point. Therefore, the sequence {Dh(x∗, xk)} is decreasing. Since a
subsequence converges to zero, the entire sequence converges to zero. The
convergence of {xk} to x∗ follows from basic properties of the KL distance.

From the fact that {Df (x̂, xk)} → 0, we conclude that Px̂ = Px∗.
Equation (4.17) now tells us that the difference Dh(x̂, xk−1) − Dh(x̂, xk)
depends on only on Px̂, and not directly on x̂. Therefore, the difference
Dh(x̂, x0) − Dh(x̂, x∗) also depends only on Px̂ and not directly on x̂.
Minimizing Dh(x̂, x0) over nonnegative minimizers x̂ of f(x) is therefore
equivalent to minimizing Dh(x̂, x∗) over the same vectors. But the solution
to the latter problem is obviously x̂ = x∗. Thus we have shown that the
limit of the SMART is the nonnegative minimizer of KL(Px, y) for which
the distance KL(x, x0) is minimized.

The following theorem summarizes the situation with regard to the
SMART.

Theorem 11.1 In the consistent case the SMART converges to the unique
nonnegative solution of y = Px for which the distance

∑J
j=1 sjKL(xj , x

0
j )

is minimized. In the inconsistent case it converges to the unique nonnega-
tive minimizer of the distance KL(Px, y) for which

∑J
j=1 sjKL(xj , x

0
j ) is



The SMART and EMML Algorithms 165

minimized; if P and every matrix derived from P by deleting columns has
full rank then there is a unique nonnegative minimizer of KL(Px, y) and
at most I − 1 of its entries are nonzero.

11.6 Using KL Projections

For each i = 1, 2, ..., I, let Hi be the hyperplane

Hi = {z|(Pz)i = yi}. (11.12)

The KL projection of a given positive x onto Hi is the z in Hi that min-
imizes the KL distance KL(z, x). Generally, the KL projection onto Hi

cannot be expressed in closed form. However, the z in Hi that minimizes
the weighted KL distance

J∑
j=1

PijKL(zj , xj) (11.13)

is Ti(x) given by

Ti(x)j = xjyi/(Px)i. (11.14)

Both the SMART and the EMML can be described in terms of the Ti.
The iterative step of the SMART algorithm can be expressed as

xkj =

I∏
i=1

(Ti(x
k−1)j)

Pij . (11.15)

We see that xkj is a weighted geometric mean of the terms Ti(x
k−1)j .

The iterative step of the EMML algorithm can be expressed as

xkj =

I∑
i=1

PijTi(x
k−1)j . (11.16)

We see that xkj is a weighted arithmetic mean of the terms Ti(x
k−1)j , using

the same weights as in the case of SMART.



166 Iterative Optimization in Inverse Problems

11.7 The MART and EMART Algorithms

The MART algorithm has the iterative step

xkj = xk−1j (yi/(Px
k−1)i)

Pijm
−1
i , (11.17)

where i = (k − 1)(mod I) + 1 and

mi = max{Pij |j = 1, 2, ..., J}. (11.18)

When there are nonnegative solutions of the system y = Px, the sequence
{xk} converges to the solution x that minimizes KL(x, x0) [50, 51, 52]. We
can express the MART in terms of the weighted KL projections Ti(x

k−1);

xkj = (xk−1j )1−Pijm
−1
i (Ti(x

k−1)j)
Pijm

−1
i . (11.19)

We see then that the iterative step of the MART is a relaxed weighted KL
projection onto Hi, and a weighted geometric mean of the current xkj and

Ti(x
k−1)j . The expression for the MART in Equation (11.19) suggests a

somewhat simpler iterative algorithm involving a weighted arithmetic mean
of the current xk−1j and Ti(x

k−1)j ; this is the EMART algorithm.
The iterative step of the EMART algorithm is

xkj = (1− Pijm−1i )xk−1j + Pijm
−1
i Ti(x

k−1)j . (11.20)

Whenever the system y = Px has nonnegative solutions, the EMART
sequence {xk} converges to a nonnegative solution, but nothing further is
known about this solution. One advantage that the EMART has over the
MART is the substitution of multiplication for exponentiation.

Block-iterative versions of SMART and EMML have also been investi-
gated; see [50, 51, 52] and the references therein.

11.8 Extensions of MART and EMART

As we have seen, the iterative steps of the MART and the EMART are
relaxed weighted KL projections onto the hyperplane Hi, resulting in vec-
tors that are not within Hi. This suggests variants of MART and EMART
in which, at the end of each iterative step, a further weighted KL projec-
tion onto Hi is performed. In other words, for MART and EMART the new
vector would be Ti(x

k), instead of xk as given by Equations (11.17) and
(11.20), respectively. Research into the properties of these new algorithms
is ongoing.



The SMART and EMML Algorithms 167

11.9 Convergence of the SMART and EMML

In this section we prove convergence of the SMART and EMML algo-
rithms through a series of exercises. For both algorithms we begin with an
arbitrary positive vector x0. The iterative step for the EMML method is

xkj = (xk−1)′j = xk−1j

I∑
i=1

Pij
yi

(Pxk−1)i
. (11.21)

The iterative step for the SMART is

xmj = (xm−1)′′j = xm−1j exp
( I∑
i=1

Pij log
yi

(Pxm−1)i

)
. (11.22)

Note that, to avoid confusion, we use k for the iteration number of the
EMML and m for the SMART.

11.9.1 Pythagorean Identities for the KL Distance

The SMART and EMML iterative algorithms are best derived using
the principle of alternating minimization, according to which the distances
KL(r(x), q(z)) and KL(q(x), r(z)) are minimized, first with respect to the
variable x and then with respect to the variable z. Although the KL dis-
tance is not Euclidean, and, in particular, not even symmetric, there are
analogues of Pythagoras’ theorem that play important roles in the conver-
gence proofs.

Ex. 11.1 Establish the following Pythagorean identities:

KL(r(x), q(z)) = KL(r(z), q(z)) +KL(r(x), r(z)); (11.23)

KL(r(x), q(z)) = KL(r(x), q(x′)) +KL(x′, z), (11.24)

for

x′j = xj

I∑
i=1

Pij
yi

(Px)i
; (11.25)

KL(q(x), r(z)) = KL(q(x), r(x)) +KL(x, z)−KL(Px, Pz); (11.26)



168 Iterative Optimization in Inverse Problems

KL(q(x), r(z)) = KL(q(z′′), r(z)) +KL(x, z′′), (11.27)

for

z′′j = zj exp(

I∑
i=1

Pij log
yi

(Pz)i
). (11.28)

Note that it follows from Equation (2.13) that KL(x, z)−KL(Px, Pz) ≥ 0.

11.9.2 Convergence Proofs

We shall prove convergence of the SMART and EMML algorithms
through a series of exercises.

Ex. 11.2 Show that, for {xk} given by Equation (11.21), {KL(y, Pxk)} is
decreasing and {KL(xk+1, xk)} → 0. Show that, for {xm} given by Equa-
tion (11.22), {KL(Pxm, y)} is decreasing and {KL(xm, xm+1)} → 0. Hint:
Use KL(r(x), q(x)) = KL(y, Px), KL(q(x), r(x)) = KL(Px, y), and the
Pythagorean identities.

Ex. 11.3 Show that the EMML sequence {xk} is bounded by showing

J∑
j=1

xk+1
j =

I∑
i=1

yi.

Show that the SMART sequence {xm} is bounded by showing that

J∑
j=1

xm+1
j ≤

I∑
i=1

yi.

Ex. 11.4 Show that (x∗)′ = x∗ for any cluster point x∗ of the EMML
sequence {xk} and that (x∗)′′ = x∗ for any cluster point x∗ of the SMART
sequence {xm}. Hint: Use {KL(xk+1, xk)} → 0 and {KL(xm, xm+1)} → 0.

Ex. 11.5 Let x̂ and x̃ minimize KL(y, Px) and KL(Px, y), respectively,
over all x ≥ 0. Then, (x̂)′ = x̂ and (x̃)′′ = x̃. Hint: Apply Pythagorean
identities to KL(r(x̂), q(x̂)) and KL(q(x̃), r(x̃)).



The SMART and EMML Algorithms 169

Note that, because of convexity properties of the KL distance, even if
the minimizers x̂ and x̃ are not unique, the vectors Px̂ and Px̃ are unique.

Ex. 11.6 For the EMML sequence {xk} with cluster point x∗ and x̂ as
defined previously, we have the double inequality

KL(x̂, xk) ≥ KL(r(x̂), r(xk)) ≥ KL(x̂, xk+1), (11.29)

from which we conclude that the sequence {KL(x̂, xk)} is decreasing and
KL(x̂, x∗) < +∞. Hint: For the first inequality calculate KL(r(x̂), q(xk))

in two ways. For the second one, use (x)′j =
∑I
i=1 r(x)ij and Lemma 2.1.

Ex. 11.7 Show that, for the SMART sequence {xm} with cluster point x∗

and x̃ as defined previously, we have

KL(x̃, xm)−KL(x̃, xm+1) = KL(Pxm+1, y)−KL(Px̃, y)+

KL(Px̃, Pxm) +KL(xm+1, xm)−KL(Pxm+1, Pxm), (11.30)

and so KL(Px̃, Px∗) = 0, the sequence {KL(x̃, xm)} is decreasing and
KL(x̃, x∗) < +∞. Hint: Expand KL(q(x̃), r(xm)) using the Pythagorean
identities.

Ex. 11.8 For x∗ a cluster point of the EMML sequence {xk} we have
KL(y, Px∗) = KL(y, P x̂). Therefore, x∗ is a nonnegative minimizer of
KL(y, Px). Consequently, the sequence {KL(x∗, xk)} converges to zero,
and so {xk} → x∗. Hint: Use the double inequality of Equation (11.29) and
KL(r(x̂), q(x∗)).

Ex. 11.9 For x∗ a cluster point of the SMART sequence {xm} we have
KL(Px∗, y) = KL(Px̃, y). Therefore, x∗ is a nonnegative minimizer of
KL(Px, y). Consequently, the sequence {KL(x∗, xm)} converges to zero,
and so {xm} → x∗. Moreover,

KL(x̃, x0) ≥ KL(x∗, x0)

for all x̃ as before. Hints: Use Exercise 11.7. For the final assertion use
the fact that the difference KL(x̃, xm)−KL(x̃, xm+1) is independent of the
choice of x̃, since it depends only on Px∗ = Px̃. Now sum over the index
m.



170 Iterative Optimization in Inverse Problems

11.10 Regularization

The “night sky” phenomenon that occurs in nonnegatively constrained
least-squares also happens with methods based on the Kullback-Leibler
distance, such as MART, EMML and SMART, requiring some sort of reg-
ularization.

11.10.1 The “Night-Sky” Problem

As we saw previously, the sequence {xk} generated by the EMML it-
erative step in Equation (11.2) converges to a nonnegative minimizer x̂ of
f(x) = KL(y, Px), and we have

x̂j = x̂js
−1
j

I∑
i=1

Pij
yi

(Px̂)i
, (11.31)

for all j. We consider what happens when there is no nonnegative solution
of the system y = Px.

For those values of j for which x̂j > 0, we have

sj =

I∑
i=1

Pij =

I∑
i=1

Pij
yi

(Px̂)i
. (11.32)

Now let Q be the I by K matrix obtained from P by deleting rows j for
which x̂j = 0. If Q has full rank and K ≥ I, then QT is one-to-one, so
that 1 = yi

(Px̂)i
for all i, or y = Px̂. But we are assuming that there is no

nonnegative solution of y = Px. Consequently, we must have K < I and
I −K of the entries of x̂ are zero.

11.11 Modifying the KL distance

The SMART, EMML and their block-iterative versions are based on
the Kullback-Leibler distance between nonnegative vectors and require that
the solution sought be a nonnegative vector. To impose more general con-
straints on the entries of x we derive algorithms based on shifted KL dis-
tances, also called Fermi-Dirac generalized entropies.

For a fixed real vector u, the shifted KL distance KL(x − u, z − u) is
defined for vectors x and z having xj ≥ uj and zj ≥ uj . Similarly, the



The SMART and EMML Algorithms 171

shifted distance KL(v − x, v − z) applies only to those vectors x and z for
which xj ≤ vj and zj ≤ vj . For uj ≤ vj , the combined distance

KL(x− u, z − u) +KL(v − x, v − z)

is restricted to those x and z whose entries xj and zj lie in the interval
[uj , vj ]. Our objective is to mimic the derivation of the SMART, EMML
and RBI methods, replacing KL distances with shifted KL distances, to
obtain algorithms that enforce the constraints uj ≤ xj ≤ vj , for each
j. The algorithms that result are the ABMART and ABEMML block-
iterative methods. These algorithms were originally presented in [53], in
which the vectors u and v were called a and b, hence the names of the
algorithms. As previously, we shall assume that the entries of the matrix
P are nonnegative. We shall denote by Bn, n = 1, ..., N a partition of the
index set {i = 1, ..., I} into blocks. For k = 0, 1, ... let n(k) = k(modN)+1.

The projected Landweber algorithm can also be used to impose the
restrictions uj ≤ xj ≤ vj ; however, the projection step in that algorithm
is implemented by clipping, or setting equal to uj or vj values of xj that
would otherwise fall outside the desired range. The result is that the values
uj and vj can occur more frequently than may be desired. One advantage
of the AB methods is that the values uj and vj represent barriers that
can only be reached in the limit and are never taken on at any step of the
iteration.

11.12 The ABMART Algorithm

We assume that (Pu)i ≤ yi ≤ (Pv)i and seek a solution of Px = y with
uj ≤ xj ≤ vj , for each j. The algorithm begins with an initial vector x0

satisfying uj ≤ x0j ≤ vj , for each j. Having calculated xk, we take

xk+1
j = αkj vj + (1− αkj )uj , (11.33)

with n = n(k),

αkj =
ckj
∏n

(dki )Pij

1 + ckj
∏n

(dki )Pij
, (11.34)

ckj =
(xkj − uj)
(vj − xkj )

, (11.35)

and

dkj =
(yi − (Pu)i)((Pv)i − (Pxk)i)

((Pv)i − yi)((Pxk)i − (Pu)i)
, (11.36)



172 Iterative Optimization in Inverse Problems

where
∏n

denotes the product over those indices i in Bn(k). Notice that,

at each step of the iteration, xkj is a convex combination of the endpoints

uj and vj , so that xkj lies in the interval [uj , vj ].
We have the following theorem concerning the convergence of the AB-

MART algorithm:

Theorem 11.2 If there is a solution of the system Px = y that satisfies the
constraints uj ≤ xj ≤ vj for each j, then, for any N and any choice of the
blocks Bn, the ABMART sequence converges to that constrained solution
of Px = y for which the Fermi-Dirac generalized entropic distance from x
to x0,

KL(x− u, x0 − u) +KL(v − x, v − x0),

is minimized. If there is no constrained solution of Px = y, then, for N = 1,
the ABMART sequence converges to the minimizer of

KL(Px− Pu, y − Pu) +KL(Pv − Px, Pv − y)

for which
KL(x− u, x0 − u) +KL(v − x, v − x0)

is minimized.

The proof is similar to that for RBI-SMART and is found in [53].

11.13 The ABEMML Algorithm

We make the same assumptions as in the previous section. The iterative
step of the ABEMML algorithm is

xk+1
j = αkj vj + (1− αkj )uj , (11.37)

where

αkj = γkj /d
k
j , (11.38)

γkj = (xkj − uj)ekj , (11.39)

βkj = (vj − xkj )fkj , (11.40)

dkj = γkj + βkj , (11.41)



The SMART and EMML Algorithms 173

ekj =

(
1−

∑
i∈Bn

Pij

)
+
∑
i∈Bn

Pij

(
yi − (Pu)i

(Pxk)i − (Pu)i

)
, (11.42)

and

fkj =

(
1−

∑
i∈Bn

Pij

)
+
∑
i∈Bn

Pij

(
(Pv)i − yi

(Pv)i − (Pxk)i

)
. (11.43)

We have the following theorem concerning the convergence of the ABE-
MML algorithm:

Theorem 11.3 If there is a solution of the system Px = y that satisfies
the constraints uj ≤ xj ≤ vj for each j, then, for any N and any choice
of the blocks Bn, the ABEMML sequence converges to such a constrained
solution of Px = y. If there is no constrained solution of Px = y, then, for
N = 1, the ABEMML sequence converges to a constrained minimizer of

KL(y − Pu, Px− Pu) +KL(Pv − y, Pv − Px).

The proof is similar to that for RBI-EMML and is to be found in [53]. In
contrast to the ABMART theorem, this is all we can say about the limits
of the ABEMML sequences.

Open Question: How does the limit of the ABEMML iterative sequence
depend, in the consistent case, on the choice of blocks, and, in general, on
the choice of x0?





Chapter 12

Alternating Minimization

12.1 Alternating Minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
12.1.1 The AM Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
12.1.2 The AM Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
12.1.3 The Five-Point Property for AM . . . . . . . . . . . . . . . . . . . . . . . . 177
12.1.4 The Main Theorem for AM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
12.1.5 The Three- and Four-Point Properties . . . . . . . . . . . . . . . . . . 177
12.1.6 Alternating Bregman Distance Minimization . . . . . . . . . . . 178
12.1.7 Bregman Distances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
12.1.8 The Eggermont-LaRiccia Lemma . . . . . . . . . . . . . . . . . . . . . . . 179
12.1.9 Minimizing a Proximity Function . . . . . . . . . . . . . . . . . . . . . . . 180
12.1.10 Right and Left Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
12.1.11 More Proximity Function Minimization . . . . . . . . . . . . . . . . . 181
12.1.12 Cimmino’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
12.1.13 Simultaneous Projection for Convex Feasibility . . . . . . . . . 182
12.1.14 The Bauschke-Combettes-Noll Problem . . . . . . . . . . . . . . . . . 182
12.1.15 AM as SUMMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

12.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

12.1 Alternating Minimization

As we have seen, the SMART is best derived as an alternating mini-
mization (AM) algorithm. The main reference for alternating minimization
is the paper [105] of Csiszár and Tusnády. As the authors of [206] remark,
the geometric argument in [105] is “deep, though hard to follow”. As we
shall see, all AM methods for which the five-point property of [105] holds
fall into the SUMMA class (see [66]).

The alternating minimization (AM) approach provides a useful frame-
work for the derivation of iterative optimization algorithms. In this section
we discuss the five-point property of [105] and use it to obtain a somewhat
simpler proof of convergence for their AM algorithm. We then show that
all AM algorithms with the five-point property are in the SUMMA class.

175



176 Iterative Optimization in Inverse Problems

12.1.1 The AM Framework

Suppose that P and Q are arbitrary non-empty sets and the function
Θ(p, q) satisfies −∞ < Θ(p, q) ≤ +∞, for each p ∈ P and q ∈ Q. We
assume that, for each p ∈ P , there is q ∈ Q with Θ(p, q) < +∞. There-
fore, b = infp∈P, q∈Q Θ(p, q) < +∞. We assume also that b > −∞; in many
applications, the function Θ(p, q) is nonnegative, so this additional assump-
tion is unnecessary. We do not always assume there are p̂ ∈ P and q̂ ∈ Q
such that Θ(p̂, q̂) = b; when we do assume that such a p̂ and q̂ exist, we
will not assume that p̂ and q̂ are unique with that property. The objective
is to generate a sequence {(pn, qn)} such that Θ(pn, qn)→ b.

12.1.2 The AM Iteration

The general AM method proceeds in two steps: we begin with some q0,
and, having found qn, we

• 1. minimize Θ(p, qn) over p ∈ P to get p = pn+1, and then

• 2. minimize Θ(pn+1, q) over q ∈ Q to get q = qn+1.

In certain applications we consider the special case of alternating cross-
entropy minimization. In that case, the vectors p and q are nonnegative,
and the function Θ(p, q) will have the value +∞ whenever there is an
index j such that pj > 0, but qj = 0. It is important for those particular
applications that we select q0 with all positive entries. We therefore assume,
for the general case, that we have selected q0 so that Θ(p, q0) is finite for
all p.

The sequence {Θ(pn, qn)} is decreasing and bounded below by b, since
we have

Θ(pn, qn) ≥ Θ(pn+1, qn) ≥ Θ(pn+1, qn+1). (12.1)

Therefore, the sequence {Θ(pn, qn)} converges to some B ≥ b. Without
additional assumptions, we can say little more.

We know two things:

Θ(pn+1, qn)−Θ(pn+1, qn+1) ≥ 0, (12.2)

and

Θ(pn, qn)−Θ(pn+1, qn) ≥ 0. (12.3)

Equation 12.3 can be strengthened to

Θ(p, qn)−Θ(pn+1, qn) ≥ 0. (12.4)

We need to make these inequalities more precise.



Alternating Minimization 177

12.1.3 The Five-Point Property for AM

The five-point property is the following: for all p ∈ P and q ∈ Q and
n = 1, 2, ...

The Five-Point Property

Θ(p, q) + Θ(p, qn−1) ≥ Θ(p, qn) + Θ(pn, qn−1). (12.5)

12.1.4 The Main Theorem for AM

We want to find sufficient conditions for the sequence {Θ(pn, qn)} to
converge to b, that is, for B = b. The following is the main result of [105].

Theorem 12.1 If the five-point property holds then B = b.

Proof: Suppose that B > b. Then there are p′ and q′ such that B >
Θ(p′, q′) ≥ b. From the five-point property we have

Θ(p′, qn−1)−Θ(pn, qn−1) ≥ Θ(p′, qn)−Θ(p′, q′), (12.6)

so that

Θ(p′, qn−1)−Θ(p′, qn) ≥ Θ(pn, qn−1)−Θ(p′, q′) ≥ 0. (12.7)

All the terms being subtracted can be shown to be finite. It follows that
the sequence {Θ(p′, qn−1)} is decreasing, bounded below, and therefore
convergent. The right side of Equation (12.7) must therefore converge to
zero, which is a contradiction. We conclude that B = b whenever the five-
point property holds in AM.

12.1.5 The Three- and Four-Point Properties

In [105] the five-point property is related to two other properties, the
three- and four-point properties. This is a bit peculiar for two reasons:
first, as we have just seen, the five-point property is sufficient to prove
the main theorem; and second, these other properties involve a second
function, ∆ : P × P → [0,+∞], with ∆(p, p) = 0 for all p ∈ P . The three-
and four-point properties jointly imply the five-point property, but to get
the converse, we need to use the five-point property to define this second
function; it can be done, however.

The three-point property is the following:

The Three-Point Property

Θ(p, qn)−Θ(pn+1, qn) ≥ ∆(p, pn+1), (12.8)



178 Iterative Optimization in Inverse Problems

for all p. The four-point property is the following:

The Four-Point Property

∆(p, pn+1) + Θ(p, q) ≥ Θ(p, qn+1), (12.9)

for all p and q.
It is clear that the three- and four-point properties together imply the

five-point property. We show now that the three-point property and the
four-point property are implied by the five-point property. For that purpose
we need to define a suitable ∆(p, p̃). For any p and p̃ in P define

∆(p, p̃) = Θ(p, q(p̃))−Θ(p, q(p)), (12.10)

where q(p) denotes a member of Q satisfying Θ(p, q(p)) ≤ Θ(p, q), for all q
in Q. Clearly, ∆(p, p̃) ≥ 0 and ∆(p, p) = 0. The four-point property holds
automatically from this definition, while the three-point property follows
from the five-point property. Therefore, it is sufficient to discuss only the
five-point property when speaking of the AM method.

12.1.6 Alternating Bregman Distance Minimization

The general problem of minimizing Θ(p, q) is simply a minimization of
a real-valued function of two variables, p ∈ P and q ∈ Q. In many cases the
function Θ(p, q) is a distance between p and q, either ‖p− q‖22 or KL(p, q).
In the case of Θ(p, q) = ‖p− q‖22, each step of the alternating minimization
algorithm involves an orthogonal projection onto a closed convex set; both
projections are with respect to the same Euclidean distance function. In
the case of cross-entropy minimization, we first project qn onto the set
P by minimizing the distance KL(p, qn) over all p ∈ P , and then project
pn+1 onto the set Q by minimizing the distance function KL(pn+1, q). This
suggests the possibility of using alternating minimization with respect to
more general distance functions. We shall focus on Bregman distances.

12.1.7 Bregman Distances

Let f : RJ → R be a Bregman function [31, 95, 39], and so f(x) is
convex on its domain and differentiable in the interior of its domain. Then,
for x in the domain and z in the interior, we define the Bregman distance
Df (x, z) by

Df (x, z) = f(x)− f(z)− 〈∇f(z), x− z〉. (12.11)

For example, the KL distance is a Bregman distance with associated Breg-
man function

f(x) =

J∑
j=1

xj log xj − xj . (12.12)



Alternating Minimization 179

Suppose now that f(x) is a Bregman function and P and Q are closed
convex subsets of the interior of the domain of f(x). Let pn+1 minimize
Df (p, qn) over all p ∈ P . It follows then that

〈∇f(pn+1)−∇f(qn), p− pn+1〉 ≥ 0, (12.13)

for all p ∈ P . Since

Df (p, qn)−Df (pn+1, qn) =

Df (p, pn+1) + 〈∇f(pn+1)−∇f(qn), p− pn+1〉, (12.14)

it follows that the three-point property holds, with

Θ(p, q) = Df (p, q), (12.15)

and

∆(p, p̂) = Df (p, p̃). (12.16)

To get the four-point property we need to restrict Df somewhat; we assume
from now on that Df (p, q) is jointly convex, that is, it is convex in the
combined vector variable (p, q) (see [14]). Now we can invoke a lemma due
to Eggermont and LaRiccia [117].

12.1.8 The Eggermont-LaRiccia Lemma

Lemma 12.1 Suppose that the Bregman distance Df (p, q) is jointly con-
vex. Then it has the four-point property.

Proof: By joint convexity we have

Df (p, q)−Df (pn, qn) ≥

〈∇1Df (pn, qn), p− pn〉+ 〈∇2Df (pn, qn), q − qn〉,

where ∇1 denotes the gradient with respect to the first vector variable.
Since qn minimizes Df (pn, q) over all q ∈ Q, we have

〈∇2Df (pn, qn), q − qn〉 ≥ 0,

for all q. Also,

〈∇1Df (pn, qn), p− pn〉 = 〈∇f(pn)−∇f(qn), p− pn〉.

It follows that

Df (p, qn)−Df (p, pn) = Df (pn, qn) + 〈∇1Df (pn, qn), p− pn〉



180 Iterative Optimization in Inverse Problems

≤ Df (p, q)− 〈∇2Df (pn, qn), q − qn〉 ≤ Df (p, q).

Therefore, we have

Df (p, pn) +Df (p, q) ≥ Df (p, qn).

This is the four-point property.

We now know that the alternating minimization method works for any
Bregman distance that is jointly convex. This includes the Euclidean and
the KL distances.

12.1.9 Minimizing a Proximity Function

We present now an example of alternating Bregman distance minimiza-
tion taken from [57]. The problem is the convex feasibility problem (CFP),
to find a member of the intersection C ⊆ RJ of finitely many closed convex
sets Ci, i = 1, ..., I, or, failing that, to minimize the proximity function

F (x) =

I∑
i=1

Di(
←−
P ix, x), (12.17)

where fi are Bregman functions for which Di, the associated Bregman

distance, is jointly convex, and
←−
P ix are the left Bregman projection of x

onto the set Ci, that is,
←−
P ix ∈ Ci and Di(

←−
P ix, x) ≤ Di(z, x), for all z ∈ Ci.

Because each Di is jointly convex, the function F (x) is convex.
The problem can be formulated as an alternating minimization, where

P ⊆ RIJ is the product set P = C1×C2× ...×CI . A typical member of P
has the form p = (c1, c2, ..., cI), where ci ∈ Ci, and Q ⊆ RIJ is the diagonal
subset, meaning that the elements of Q are the I-fold product of a single
x; that is Q = {d(x) = (x, x, ..., x) ∈ RIJ}. We then take

Θ(p, q) =

I∑
i=1

Di(c
i, x), (12.18)

and ∆(p, p̃) = Θ(p, p̃).
In [83] a similar iterative algorithm was developed for solving the CFP,

using the same sets P and Q, but using alternating projection, rather than
alternating minimization. Now it is not necessary that the Bregman dis-
tances be jointly convex. Each iteration of their algorithm involves two
steps:

• 1. minimize
∑I
i=1Di(c

i, xn) over ci ∈ Ci, obtaining ci =
←−
P ix

n, and
then

• 2. minimize
∑I
i=1Di(x,

←−
P ix

n).



Alternating Minimization 181

Because this method is an alternating projection approach, it converges
only when the CFP has a solution, whereas the previous alternating mini-
mization method minimizes F (x), even when the CFP has no solution.

12.1.10 Right and Left Projections

Because Bregman distances Df are not generally symmetric, we can
speak of right and left Bregman projections onto a closed convex set. For
any allowable vector x, the left Bregman projection of x onto C, if it exists,

is the vector
←−
P Cx ∈ C satisfying the inequality Df (

←−
P Cx, x) ≤ Df (c, x),

for all c ∈ C. Similarly, the right Bregman projection is the vector
−→
P Cx ∈ C

satisfying the inequality Df (x,
−→
P Cx) ≤ Df (x, c), for any c ∈ C.

The alternating minimization approach described above to minimize
the proximity function

F (x) =

I∑
i=1

Di(
←−
P ix, x) (12.19)

can be viewed as an alternating projection method, but employing both
right and left Bregman projections.

Consider the problem of finding a member of the intersection of two
closed convex sets C and D. We could proceed as follows: having found

xn, minimize Df (xn, d) over all d ∈ D, obtaining d =
−→
P Dx

n, and then

minimize Df (c,
−→
P Dx

n) over all c ∈ C, obtaining c = xn+1 =
←−
P C
−→
P Dx

n.
The objective of this algorithm is to minimize Df (c, d) over all c ∈ C and
d ∈ D; such a minimum may not exist, of course.

In [16] the authors note that the alternating minimization algorithm of
[57] involves right and left Bregman projections, which suggests to them
iterative methods involving a wider class of operators that they call “Breg-
man retractions”.

12.1.11 More Proximity Function Minimization

Proximity function minimization and right and left Bregman projec-
tions play a role in a variety of iterative algorithms. We survey several of
them in this section.

12.1.12 Cimmino’s Algorithm

Our objective here is to find an exact or approximate solution of the
system of I linear equations in J unknowns, written Ax = b. For each i let

Ci = {z|(Az)i = bi}, (12.20)



182 Iterative Optimization in Inverse Problems

and Pix be the orthogonal projection of x onto Ci. Then

(Pix)j = xj + αiAij(bi − (Ax)i), (12.21)

where

(αi)
−1 =

J∑
j=1

A2
ij . (12.22)

Let

F (x) =

I∑
i=1

‖Pix− x‖22. (12.23)

Using alternating minimization on this proximity function gives Cimmino’s
algorithm, with the iterative step

xkj = xk−1j +
1

I

I∑
i=1

αiAij(bi − (Axk−1)i). (12.24)

12.1.13 Simultaneous Projection for Convex Feasibility

Now we let Ci be any closed convex subsets of RJ and define F (x)
as in the previous section. Again, we apply alternating minimization. The
iterative step of the resulting algorithm is

xk =
1

I

I∑
i=1

Pix
k−1. (12.25)

The objective here is to minimize F (x), if there is a minimum.

12.1.14 The Bauschke-Combettes-Noll Problem

In [17] Bauschke, Combettes and Noll consider the following problem:
minimize the function

Θ(p, q) = Λ(p, q) = φ(p) + ψ(q) +Df (p, q), (12.26)

where φ and ψ are convex on RJ , D = Df is a Bregman distance, and
P = Q is the interior of the domain of f . They assume that

b = inf
(p,q)

Λ(p, q) > −∞, (12.27)

and seek a sequence {(pn, qn)} such that {Λ(pn, qn)} converges to b. The
sequence is obtained by the AM method, as in our previous discussion. They



Alternating Minimization 183

prove that, if the Bregman distance is jointly convex, then {Λ(pn, qn)} ↓ b.
In this subsection we obtain this result by showing that Λ(p, q) has the five-
point property whenever D = Df is jointly convex. Our proof is loosely
based on the proof of the Eggermont-LaRiccia lemma.

The five-point property for Λ(p, q) is

Λ(p, qn−1)− Λ(pn, qn−1) ≥ Λ(p, qn)− Λ(p, q). (12.28)

Lemma 12.2 The inequality in (12.28) is equivalent to

Λ(p, q)− Λ(pn, qn) ≥

D(p, qn) +D(pn, qn−1)−D(p, qn−1)−D(pn, qn). (12.29)

Proof: The proof is Exercise 12.1.
By the joint convexity of D(p, q) and the convexity of φ and ψ we have

Λ(p, q)− Λ(pn, qn) ≥

〈∇pΛ(pn, qn), p− pn〉+ 〈∇qΛ(pn, qn), q − qn〉, (12.30)

where ∇pΛ(pn, qn) denotes the gradient of Λ(p, q), with respect to p, eval-
uated at (pn, qn).

Since qn minimizes Λ(pn, q), it follows that

〈∇qΛ(pn, qn), q − qn〉 = 0, (12.31)

for all q. Therefore,

Λ(p, q)− Λ(pn, qn) ≥ 〈∇pΛ(pn, qn), p− pn〉 . (12.32)

We have
〈∇pΛ(pn, qn), p− pn〉 =

〈∇f(pn)−∇f(qn), p− pn〉+ 〈∇φ(pn), p− pn〉. (12.33)

Since pn minimizes Λ(p, qn−1), we have

∇pΛ(pn, qn−1) = 0, (12.34)

or

∇φ(pn) = ∇f(qn−1)−∇f(pn), (12.35)

so that

〈∇pΛ(pn, qn), p− pn〉 = 〈∇f(qn−1)−∇f(qn), p− pn〉



184 Iterative Optimization in Inverse Problems

= D(p, qn) +D(pn, qn−1)−D(p, qn−1)−D(pn, qn). (12.36)

Using (12.32) we obtain the inequality in (12.29). This shows that Λ(p, q)
has the five-point property whenever the Bregman distance D = Df is
jointly convex. From our previous discussion of AM, we conclude that the
sequence {Λ(pn, qn)} converges to b; this is Corollary 4.3 of [17].

As we shall see in the next chapter, the expectation maximization max-
imum likelihood (EM) method involves alternating minimization of a func-
tion of the form Λ(p, q).

If ψ = 0, then {Λ(pn, qn)} converges to b, even without the assumption
that the distance Df is jointly convex. In such cases, Λ(p, q) has the form of
the objective function in proximal minimization and therefore the problem
falls into the SUMMA class (see Lemma 4.1).

12.1.15 AM as SUMMA

We show now that the SUMMA class of sequential unconstrained min-
imization methods includes all the AM methods for which the five-point
property holds.

For each p in the set P , define q(p) in Q as a member of Q for which
Θ(p, q(p)) ≤ Θ(p, q), for all q ∈ Q. Let f(p) = Θ(p, q(p)).

At the nth step of AM we minimize

Gn(p) = Θ(p, qn−1) = Θ(p, q(p)) +
(

Θ(p, qn−1)−Θ(p, q(p))
)

(12.37)

to get pn. With

gn(p) =
(

Θ(p, qn−1)−Θ(p, q(p))
)
≥ 0, (12.38)

we can write

Gn(p) = f(p) + gn(p). (12.39)

According to the five-point property, we have

Gn(p)−Gn(pn) ≥ Θ(p, qn)−Θ(p, q(p)) = gn+1(p). (12.40)

It follows that AM is a member of the SUMMA class.

12.2 Exercises

Ex. 12.1 Prove Lemma 12.2.



Chapter 13

The EM Algorithm

13.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
13.2 A Non-Stochastic Formulation of EM . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

13.2.1 The Continuous Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
13.2.2 The Discrete Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

13.3 The Stochastic EM Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
13.3.1 The E-step and M-step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
13.3.2 Difficulties with the Conventional Formulation . . . . . . . . . 189
13.3.3 An Incorrect Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
13.3.4 Acceptable Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

13.4 The Discrete Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
13.5 Missing Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
13.6 The Continuous Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

13.6.1 Acceptable Preferred Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
13.6.2 Selecting Preferred Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
13.6.3 Preferred Data as Missing Data . . . . . . . . . . . . . . . . . . . . . . . . . 196

13.7 EM and the KL Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
13.7.1 Using Acceptable Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

13.8 Finite Mixture Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
13.8.1 Mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
13.8.2 The Likelihood Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
13.8.3 A Motivating Illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
13.8.4 The Acceptable Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
13.8.5 The Mix-EM Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
13.8.6 Convergence of the Mix-EM Algorithm . . . . . . . . . . . . . . . . . 201

13.1 Overview

The “expectation maximization” (EM) algorithm is a general frame-
work for maximizing the likelihood function in statistical parameter esti-
mation [167]. The EM algorithm is not really a single algorithm, but a
framework for the design of iterative likelihood maximization methods, or,
as the authors of [21] put it, a “prescription for constructing an algorithm”;
nevertheless, we shall continue to refer to the EM algorithm. We show in

185



186 Iterative Optimization in Inverse Problems

this chapter that EM algorithms are AF algorithms. The EM algorithms
are always presented in probabilistic terms, involving the maximization of a
conditional expected value. As we shall demonstrate, the essence of the EM
algorithm is not stochastic. Our non-stochastic EM (NSEM) is a general
approach for function maximization that has the stochastic EM methods
as particular cases.

Maximizing the likelihood function is a well studied procedure for es-
timating parameters from observed data. When a maximizer cannot be
obtained in closed form, iterative maximization algorithms, such as the ex-
pectation maximization (EM) maximum likelihood algorithms, are needed.
The standard formulation of the EM algorithms postulates that finding a
maximizer of the likelihood is complicated because the observed data is
somehow incomplete or deficient, and the maximization would have been
simpler had we observed the complete data. The EM algorithm involves re-
peated calculations involving complete data that has been estimated using
the current parameter value and conditional expectation.

The standard formulation is adequate for the most common discrete
case, in which the random variables involved are governed by finite or
infinite probability functions, but unsatisfactory in general, particularly in
the continuous case, in which probability density functions and integrals
are needed.

We adopt the view that the observed data is not necessarily incom-
plete, but just difficult to work with, while different data, which we call
the preferred data, leads to simpler calculations. To relate the preferred
data to the observed data, we assume that the preferred data is acceptable,
which means that the conditional distribution of the preferred data, given
the observed data, is independent of the parameter. This extension of the
EM algorithms contains the usual formulation for the discrete case, while
removing the difficulties associated with the continuous case. Examples are
given to illustrate this new approach.

13.2 A Non-Stochastic Formulation of EM

The essence of the EM algorithm is not stochastic, and leads to a general
approach for function maximization, which we call the “non-stochastic”
EM algorithm (NSEM)[67]. In addition to being more general, this new
approach also simplifies much of the development of the EM algorithm
itself. We present now the essential aspects of the EM algorithm without
relying on statistical concepts. We shall use these results later to establish
important facts about the statistical EM algorithm.



The EM Algorithm 187

13.2.1 The Continuous Case

The problem is to maximize a nonnegative function f : Z → R, where Z
is an arbitrary set. We assume that there is z∗ ∈ Z with f(z∗) ≥ f(z), for all
z ∈ Z. We also assume that there is a nonnegative function b : RJ ×Z → R
such that

f(z) =

∫
b(x, z)dx.

Having found zk, we maximize the function

H(zk, z) =

∫
b(x, zk) log b(x, z)dx (13.1)

to get zk+1. Adopting such an iterative approach presupposes that max-
imizing H(zk, z) is simpler than maximizing f(z) itself. This is the case
with the EM algorithm.

The cross-entropy or Kullback-Leibler distance [153] is a useful tool for
analyzing the EM algorithm. We simplify the notation by setting b(z) =
b(x, z). Maximizing H(zk, z) is equivalent to minimizing

G(zk, z) = KL(b(zk), b(z))− f(z), (13.2)

where

KL(b(zk), b(z)) =

∫
KL(b(x, zk), b(x, z))dx. (13.3)

Therefore,

−f(zk) = KL(b(zk), b(zk))− f(zk) ≥ KL(b(zk), b(zk+1))− f(zk+1),

or

f(zk+1)− f(zk) ≥ KL(b(zk), b(zk+1)) ≥ KL(f(zk), f(zk+1)).

Consequently, the sequence {f(zk)} is increasing and bounded above, so
that the sequence {KL(b(zk), b(zk+1))} converges to zero. Without addi-
tional restrictions, we cannot conclude that {f(zk)} converges to f(z∗).

We get zk+1 by minimizing G(zk, z). When we minimize G(z, zk+1),
we get zk+1 again. Therefore, we can put the NSEM algorithm into the
alternating minimization (AM) framework of Csiszár and Tusnády [105],
as discussed in Chapter 12.

13.2.2 The Discrete Case

Again, the problem is to maximize a nonnegative function f : Z → R,
where Z is an arbitrary set. As previously, we assume that there is z∗ ∈ Z



188 Iterative Optimization in Inverse Problems

with f(z∗) ≥ f(z), for all z ∈ Z. We also assume that there is a finite or
countably infinite set B and a nonnegative function b : B × Z → R such
that

f(z) =
∑
x∈B

b(x, z).

Having found zk, we maximize the function

H(zk, z) =
∑
x∈B

b(x, zk) log b(x, z) (13.4)

to get zk+1.
We set b(z) = b(x, z) again. Maximizing H(zk, z) is equivalent to mini-

mizing

G(zk, z) = KL(b(zk), b(z))− f(z), (13.5)

where

KL(b(zk), b(z)) =
∑
x∈B

KL(b(x, zk), b(x, z)). (13.6)

As previously, we find that {f(zk)} is increasing, and {KL(b(zk), b(zk+1))}
converges to zero. Without additional restrictions, we cannot conclude that
{f(zk)} converges to f(z∗).

13.3 The Stochastic EM Algorithm

In this section we present the standard stochastic formulation of the
EM algorithm.

13.3.1 The E-step and M-step

In statistical parameter estimation one typically has an observable ran-
dom vector Y taking values in RN that is governed by a probability den-
sity function (pdf) or probability function (pf) of the form fY (y|θ), for
some value of the parameter vector θ ∈ Θ, where Θ is the set of all le-
gitimate values of θ. Our observed data consists of one realization y of Y ;
we do not exclude the possibility that the entries of y are independently
obtained samples of a common real-valued random variable. The true vec-
tor of parameters is to be estimated by maximizing the likelihood function
Ly(θ) = fY (y|θ) over all θ ∈ Θ to obtain a maximum likelihood estimate,
θML.



The EM Algorithm 189

To employ the EM algorithmic approach, it is assumed that there is
another related random vector X, which we shall call the preferred data,
such that, had we been able to obtain one realization x of X, maximizing
the likelihood function Lx(θ) = fX(x|θ) would have been simpler than
maximizing the likelihood function Ly(θ) = fY (y|θ). Of course, we do not
have a realization x of X. The basic idea of the EM approach is to estimate
x using conditional expectations and the current estimate of θ, denoted θk,
and to use each estimate xk of x to get the next estimate θk+1.

The EM algorithm proceeds in two steps. Having selected the preferred
data X, and having found θk, we form the function of θ given by the
conditional expected value

Q(θ|θk) = E(log fX(x|θ)|y, θk); (13.7)

this is the E-step of the EM algorithm. Then we maximize Q(θ|θk) over all
θ to get θk+1; this is the M-step of the EM algorithm. In this way, the EM
algorithm based on X generates a sequence {θk} of parameter vectors.

For the discrete case of probability functions, we have

Q(θ|θk) =
∑
x

fX|Y (x|y, θk) log fX(x|θ), (13.8)

and for the continuous case of probability density functions we have

Q(θ|θk) =

∫
fX|Y (x|y, θk) log fX(x|θ)dx. (13.9)

In decreasing order of importance and difficulty, the goals are these:

• 1. to have the sequence of parameters {θk} converging to θML;

• 2. to have the sequence of functions {fX(x|θk)} converging to
fX(x|θML);

• 3. to have the sequence of numbers {Ly(θk)} converging to Ly(θML);

• 4. to have the sequence of numbers {Ly(θk)} non-decreasing.

Our focus here is mainly on the fourth goal, with some discussion of the
third goal. We do present some examples for which all four goals are at-
tained. Clearly, the first goal requires a topology on the set Θ.

13.3.2 Difficulties with the Conventional Formulation

In [167] we are told that

fX|Y (x|y, θ) = fX(x|θ)/fY (y|θ). (13.10)



190 Iterative Optimization in Inverse Problems

This is false; integrating with respect to x gives one on the left side and
1/fY (y|θ) on the right side. Perhaps the equation is not meant to hold for all
x, but just for some x. In fact, if there is a function h such that Y = h(X),
then Equation (13.10) might hold for those x such that h(x) = y. In fact,
this is what happens in the discrete case of probabilities; in that case we
do have

fY (y|θ) =
∑

x∈h−1{y}

fX(x|θ), (13.11)

where
h−1{y} = {x|h(x) = y}.

Consequently,

fX|Y (x|y, θ) = fX(x|θ)/fY (y|θ), if x ∈ h−1{y}, (13.12)

and zero, otherwise. However, this modification of Equation (13.10) fails in
the continuous case of probability density functions, since h−1{y} is often
a subset of zero measure. Even if the set h−1{y} has positive measure,
integrating both sides of Equation (13.10) over x ∈ h−1{y} tells us that
fY (y|θ) ≤ 1, which need not hold for probability density functions.

13.3.3 An Incorrect Proof

Everyone who works with the EM algorithm will say that the likelihood
is non-decreasing for the EM algorithm. The proof of this fact usually
proceeds as follows; we use the notation for the continuous case, but the
proof for the discrete case is essentially the same. Use Equation (13.10) to
get

log fX(x|θ) = log fX|Y (x|y, θ)− log fY (y|θ). (13.13)

Then replace the term log fX(x|θ) in Equation (13.9) with the right side
of Equation (13.13), obtaining

log fY (y|θ)−Q(θ|θk) = −
∫
fX|Y (x|y, θk) log fX|Y (x|y, θ)dx. (13.14)

Jensen’s Inequality tells us that∫
u(x) log u(x)dx ≥

∫
u(x) log v(x)dx, (13.15)

for any probability density functions u(x) and v(x). Since fX|Y (x|y, θ) is a
probability density function, we have∫

fX|Y (x|y, θk) log fX|Y (x|y, θ)dx ≤
∫
fX|Y (x|y, θk) log fX|Y (x|y, θk)dx.



The EM Algorithm 191

We conclude, therefore, that log fY (y|θ) − Q(θ|θk) attains its minimum
value at θ = θk. Then we have

log fY (y|θk+1)− log fY (y|θk) ≥ Q(θk+1|θk)−Q(θk|θk) ≥ 0. (13.16)

This proof is incorrect; clearly it rests on the validity of Equation (13.10),
which is generally false. For the discrete case, with Y = h(X), this proof
is valid, when we use Equation (13.12), instead of Equation (13.10). In all
other cases, however, the proof is incorrect.

13.3.4 Acceptable Data

We turn now to the question of how to repair the incorrect proof. Equa-
tion (13.10) should read

fX|Y (x|y, θ) = fX,Y (x, y|θ)/fY (y|θ), (13.17)

for all x. In order to replace log fX(x|θ) in Equation (13.9) we write

fX,Y (x, y|θ) = fX|Y (x|y, θ)fY (y|θ), (13.18)

and

fX,Y (x, y|θ) = fY |X(y|x, θ)fX(x|θ), (13.19)

so that

log fX(x|θ) = log fX|Y (x|y, θ) + log fY (y|θ)− log fY |X(y|x, θ). (13.20)

We say that the preferred data is acceptable if

fY |X(y|x, θ) = fY |X(y|x); (13.21)

that is, the dependence of Y on X is unrelated to the value of the parameter
θ. This definition provides our generalization of the relationship Y = h(X).

When X is acceptable, we have that log fY (y|θ) − Q(θ|θk) again at-
tains its minimum value at θ = θk. The assertion that the likelihood is
non-decreasing then follows, using the same argument as in the previous
incorrect proof.

13.4 The Discrete Case

In the discrete case, we assume that Y is a discrete random vector taking
values in a finite or countably infinite set A, and governed by probability



192 Iterative Optimization in Inverse Problems

fY (y|θ). We assume, in addition, that there is a second discrete random
vector X, taking values in a finite or countably infinite set B, and a function
h : B → A such that Y = h(X). We define the set

h−1{y} = {x ∈ B|h(x) = y}. (13.22)

Then we have

fY (y|θ) =
∑

x∈h−1{y}

fX(x|θ). (13.23)

The conditional probability function for X, given Y = y, is

fX|Y (x|y, θ) =
fX(x|θ)
fY (y|θ)

, (13.24)

for x ∈ h−1{y}, and zero, otherwise. The so-called E-step of the EM algo-
rithm is then to calculate Q(θ|θk) = E((log fX(X|θ)|y, θk) where

E((log fX(X|θ)|y, θk) =
∑

x∈h−1{y}

fX|Y (x|y, θk) log fX(x|θ), (13.25)

and the M-step is to maximize Q(θ|θk) as a function of θ to obtain θk+1.
Using Equation (13.24), we can write

Q(θ|θk) =
∑

x∈h−1{y}

fX|Y (x|y, θk) log fX|Y (x|y, θ) + log fY (y|θ). (13.26)

Therefore,

log fY (y|θ)−Q(θ|θk) = −
∑

x∈h−1{y}

fX|Y (x|y, θk) log fX|Y (x|y, θ).

Since ∑
x∈h−1{y}

fX|Y (x|y, θk) =
∑

x∈h−1{y}

fX|Y (x|y, θ) = 1,

that

−
∑

x∈h−1{y}

fX|Y (x|y, θk) log fX|Y (x|y, θ) ≥ −
∑

x∈h−1{y}

fX|Y (x|y, θk) log fX|Y (x|y, θk)

follows from Jensen’s Inequality. Therefore, log fY (y|θ) − Q(θ|θk) attains
its minimum at θ = θk. We have the following result.

Proposition 13.1 The sequence {fY (y|θk)} is non-decreasing.



The EM Algorithm 193

Proof: We have

log fY (y|θk+1)−Q(θk+1|θk) ≥ log fY (y|θk)−Q(θk|θk),

or
log fY (y|θk+1)− log fY (y|θk) ≥ Q(θk+1|θk)−Q(θk|θk) ≥ 0.

Let χh−1{y}(x) be the characteristic function of the set h−1{y}, that is,

χh−1{y}(x) = 1,

for x ∈ h−1{y}, and zero, otherwise. With the choices z = θ, f(z) =
fY (y|θ), and b(z) = fX(x|θ)χh−1{y}(x), the discrete EM algorithm fits into
the framework of the non-stochastic EM algorithm. Consequently, we see
once again that the sequence {fY (y|θk)} is non-decreasing, and also that
the sequence

{KL(b(zk), b(zk+1)} = {
∑

x∈h−1{y}

KL(fX(x|θk), fX(x|θk+1))}

converges to zero.

13.5 Missing Data

We say that there is missing data if the preferred data X has the form
X = (Y,W ), so that Y = h(X) = h(Y,W ), where h is the orthogonal pro-
jection onto the first component. The case of missing data for the discrete
case is covered by the discussion in Section 13.4, so we consider here the
continuous case in which probability density functions are involved.

Once again, the E-step is to calculate Q(θ|θk) given by

Q(θ|θk) = E((log fX(X|θ)|y, θk). (13.27)

Since X = (Y,W ), we have

fX(x|θ) = fY,W (y, w|θ). (13.28)

Since the set h−1{y} has measure zero, we cannot write

Q(θ|θk) =

∫
h−1{y}

fX|Y (x|y, θk) log fX(x|θ)dx.



194 Iterative Optimization in Inverse Problems

Instead, we write

Q(θ|θk) =

∫
fY,W (y, w|θk) log fY,W (y, w|θ)dw/fY (y|θk). (13.29)

Consequently, maximizing Q(θ|θk) is equivalent to maximizing∫
fY,W (y, w|θk) log fY,W (y, w|θ)dw.

With b(θ) = b(θ, w) = fY,W (y, w|θ) and

fY (y|θ) = f(θ) =

∫
fY,W (y, w|θ)dw =

∫
b(θ)dw,

we find that maximizingQ(θ|θk) is equivalent to minimizingKL(b(θk), b(θ))−
f(θ). Therefore, the EM algorithm for the case of missing data falls
into the framework of the non-stochastic EM algorithm. We conclude
that the sequence {f(θk)} is non-decreasing, and that the sequence
{KL(b(θk), b(θk+1))} converges to zero.

Most other instances of the continuous case in which we have Y = h(X)
can be handled using the missing-data model. For example, suppose that Z1

and Z2 are uniformly distributed on the interval [0, θ], for some positive θ,
and that Y = Z1+Z2. We may, for example, then takeW to beW = Z1−Z2

and X = (Y,W ) as the preferred data.

13.6 The Continuous Case

We turn now to the general continuous case. We have a random vector
Y taking values in RJ and governed by the probability density function
fY (y|θ). The objective, once again, is to maximize the likelihood function
Ly(θ) = fY (y|θ) to obtain the maximum likelihood estimate of θ.

13.6.1 Acceptable Preferred Data

For the continuous case, the vector θk+1 is obtained from θk by maxi-
mizing the conditional expected value

Q(θ|θk) = E(log fX(X|θ)|y, θk) =

∫
fX|Y (x|y, θk) log fX(x|θ)dx.(13.30)

Assuming the acceptability condition and using

fX,Y (x, y|θk) = fX|Y (x|y, θk)fY (y|θk),



The EM Algorithm 195

and
log fX(x|θ) = log fX,Y (x, y|θ)− log fY |X(y|x),

we find that maximizing E(log fX(x|θ)|y, θk) is equivalent to minimizing

H(θk, θ) =

∫
fX,Y (x, y|θk) log fX,Y (x, y|θ)dx. (13.31)

With f(θ) = fY (y|θ), and b(θ) = fX,Y (x, y|θ), this problem fits the frame-
work of the non-stochastic EM algorithm and is equivalent to minimizing

G(θk, θ) = KL(b(θk), b(θ))− f(θ).

Once again, we may conclude that the likelihood function is non-decreasing
and that the sequence {KL(b(θk), b(θk+1))} converges to zero.

In the discrete case in which Y = h(X) the conditional probability
fY |X(y|x, θ) is δ(y − h(x)), as a function of y, for given x, and is the char-
acteristic function of the set X (y), as a function of x, for given y. Therefore,
we can write fX|Y (x|y, θ) using Equation (13.12). For the continuous case
in which Y = h(X), the pdf fY |X(y|x, θ) is again a delta function of y, for
given x; the difficulty arises when we need to view this as a function of x,
for given y. The acceptability property helps us avoid this difficulty.

When X is acceptable, we have

fX|Y (x|y, θ) = fY |X(y|x)fX(x|θ)/fY (y|θ), (13.32)

whenever fY (y|θ) 6= 0, and is zero otherwise. Consequently, when X is
acceptable, we have a kernel model for fY (y|θ) in terms of the fX(x|θ):

fY (y|θ) =

∫
fY |X(y|x)fX(x|θ)dx; (13.33)

for the continuous case we view this as a corrected version of Equation
(13.11). In the discrete case the integral is replaced by a summation, of
course, but when we are speaking generally about either case, we shall use
the integral sign.

The acceptability of the missing data W is used in [68], but more for
computational convenience and to involve the Kullback-Leibler distance
in the formulation of the EM algorithm. It is not necessary that W be
acceptable in order for likelihood to be non-decreasing, as we have seen.

13.6.2 Selecting Preferred Data

The popular example of multinomial data given below illustrates well
the point that one can often choose to view the observed data as “in-
complete” simply in order to introduce “complete” data that makes the



196 Iterative Optimization in Inverse Problems

calculations simpler, even when there is no suggestion, in the original prob-
lem, that the observed data is in any way inadequate or “incomplete” . It
is in order to emphasize this desire for simplification that we refer to X as
the preferred data, not the complete data.

In some applications, the preferred data X arises naturally from the
problem, while in other cases the user must imagine preferred data. This
choice in selecting the preferred data can be helpful in speeding up the
algorithm (see [125]).

If, instead of maximizing∫
fX|Y (x|y, θk) log fX(x|θ)dx,

at each M-step, we simply select θk+1 so that∫
fX|Y (x|y, θk) log fX,Y (x, y|θk+1)dx−

∫
fX|Y (x|y, θk) log fX,Y (x, y|θk)dx > 0,

we say that we are using a generalized EM (GEM) algorithm. It is clear from
the discussion in the previous subsection that, whenever X is acceptable,
a GEM also guarantees that likelihood is non-decreasing.

13.6.3 Preferred Data as Missing Data

As we have seen, when the EM algorithm is applied to the missing-
data model, the likelihood is non-decreasing, which suggests that, for an
arbitrary preferred dataX, we could imagineX asW , the missing data, and
imagine applying the EM algorithm to Z = (Y,X). This approach would
produce an EM sequence of parameter vectors for which likelihood is non-
decreasing, but it need not be the same sequence as obtained by applying
the EM algorithm to X directly. It is the same sequence, provided that X
is acceptable. We are not suggesting that applying the EM algorithm to
Z = (Y,X) would simplify calculations.

We know that, when the missing-data model is used and the M-step
is defined as maximizing the function in (13.29), the likelihood is not de-
creasing. It would seem then that, for any choice of preferred data X, we
could view this data as missing and take as our complete data the pair
Z = (Y,X), with X now playing the role of W . Maximizing the function
in (13.29) is then equivalent to maximizing∫

fX|Y (x|y, θk) log fX,Y (x, y|θ)dx; (13.34)

to get θk+1. It then follows that Ly(θk+1) ≥ Ly(θk). The obvious question
is whether or not these two functions given in (13.7) and (13.34) have the
same maximizers.



The EM Algorithm 197

For acceptable X we have

log fX,Y (x, y|θ) = log fX(x|θ) + log fY |X(y|x), (13.35)

so the two functions given in (13.7) and (13.34) do have the same maximiz-
ers. It follows once again that, whenever the preferred data is acceptable,
we have Ly(θk+1) ≥ Ly(θk). Without additional assumptions, however, we
cannot conclude that {θk} converges to θML, nor that {fY (y|θk)} converges
to fY (y|θML).

13.7 EM and the KL Distance

We illustrate the usefulness of acceptability and reformulate the M-step
in terms of cross-entropy or Kullback-Leibler distance minimization.

13.7.1 Using Acceptable Data

The assumption that the data X is acceptable helps simplify the theo-
retical discussion of the EM algorithm.

For any preferred X the M-step of the EM algorithm, in the continuous
case, is to maximize the function∫

fX|Y (x|y, θk) log fX(x|θ)dx, (13.36)

over θ ∈ Θ; the integral is replaced by a sum in the discrete case. For
notational convenience we let

b(θk) = fX|Y (x|y, θk), (13.37)

and

f(θ) = fX(x|θ); (13.38)

both functions are functions of the vector variable x. Then the M-step is
equivalent to minimizing the Kullback-Leibler or cross-entropy distance

KL(b(θk), f(θ)) =

∫
fX|Y (x|y, θk) log

(fX|Y (x|y, θk)

fX(x|θ)

)
dx

=

∫
fX|Y (x|y, θk) log

(fX|Y (x|y, θk)

fX(x|θ)

)
+ fX(x|θ)− fX|Y (x|y, θk)dx.



198 Iterative Optimization in Inverse Problems

(13.39)

This holds since both fX(x|θ) and fX|Y (x|y, θk) are probability density
functions or probabilities.

For acceptable X we have

log fX,Y (x, y|θ) = log fX|Y (x|y, θ) + log fY (y|θ) =

log fY |X(y|x) + log fX(x|θ). (13.40)

Therefore,
log fY (y|θk+1)− log fY (y|θ) =

KL(b(θk), f(θ))−KL(b(θk), f(θk+1))

+KL(b(θk), b(θk+1))−KL(b(θk), b(θ)). (13.41)

Since θ = θk+1 minimizes KL(b(θk), f(θ)), we have that

log fY (y|θk+1)− log fY (y|θk) =

KL(b(θk), f(θk))−KL(b(θk), f(θk+1)) +KL(b(θk), b(θk+1)) ≥ 0.(13.42)

This tells us, again, that the sequence of likelihood values {log fY (y|θk)} is
increasing, and that the sequence of its negatives, {− log fY (y|θk)}, is de-
creasing. Since we assume that there is a maximizer θML of the likelihood,
the sequence {− log fY (y|θk)} is also bounded below and the sequences
{KL(b(θk), b(θk+1))} and {KL(b(θk), f(θk)) − KL(b(θk), f(θk+1))} con-
verge to zero.

Without some notion of convergence in the parameter space Θ, we can-
not conclude that {θk} converges to a maximum likelihood estimate θML.
Without some additional assumptions, we cannot even conclude that the
functions f(θk) converge to f(θML).

13.8 Finite Mixture Problems

Estimating the combining proportions in probabilistic mixture problems
shows that there are meaningful examples of our acceptable-data model,
and provides important applications of likelihood maximization.



The EM Algorithm 199

13.8.1 Mixtures

We say that a random vector V taking values in RD is a finite mixture
(see [119, 187]) if there are probability density functions or probabilities
fj and numbers θj ≥ 0, for j = 1, ..., J , such that the probability density
function or probability function for V has the form

fV (v|θ) =

J∑
j=1

θjfj(v), (13.43)

for some choice of the θj ≥ 0 with
∑J
j=1 θj = 1. As previously, we shall

assume, without loss of generality, that D = 1.

13.8.2 The Likelihood Function

The data are N realizations of the random variable V , denoted vn,
for n = 1, ..., N , and the given data is the vector y = (v1, ..., vN ). The
column vector θ = (θ1, ..., θJ)T is the generic parameter vector of mixture
combining proportions. The likelihood function is

Ly(θ) =

N∏
n=1

(
θ1f1(vn) + ...+ θJfJ(vn)

)
. (13.44)

Then the log likelihood function is

LLy(θ) =

N∑
n=1

log
(
θ1f1(vn) + ...+ θJfJ(vn)

)
.

With u the column vector with entries un = 1/N , and P the matrix with
entries Pnj = fj(vn), we define

sj =
N∑
n=1

Pnj =
N∑
n=1

fj(vn).

Maximizing LLy(θ) is equivalent to minimizing

F (θ) = KL(u, Pθ) +

J∑
j=1

(1− sj)θj . (13.45)

13.8.3 A Motivating Illustration

To motivate such mixture problems, we imagine that each data value
is generated by first selecting one value of j, with probability θj , and then



200 Iterative Optimization in Inverse Problems

selecting a realization of a random variable governed by fj(v). For example,
there could be J bowls of colored marbles, and we randomly select a bowl,
and then randomly select a marble within the selected bowl. For each n
the number vn is the numerical code for the color of the nth marble drawn.
In this illustration we are using a mixture of probability functions, but we
could have used probability density functions.

13.8.4 The Acceptable Data

We approach the mixture problem by creating acceptable data. We
imagine that we could have obtained xn = jn, for n = 1, ..., N , where the
selection of vn is governed by the function fjn(v). In the bowls example,
jn is the number of the bowl from which the nth marble is drawn. The
acceptable-data random vector is X = (X1, ..., XN ), where the Xn are
independent random variables taking values in the set {j = 1, ..., J}. The
value jn is one realization of Xn. Since our objective is to estimate the
true θj , the values vn are now irrelevant. Our ML estimate of the true θj
is simply the proportion of times j = jn. Given a realization x of X, the
conditional pdf or pf of Y does not involve the mixing proportions, so X
is acceptable. Notice also that it is not possible to calculate the entries of
y from those of x; the model Y = h(X) does not hold.

13.8.5 The Mix-EM Algorithm

Using this acceptable data, we derive the EM algorithm, which we call
the Mix-EM algorithm.

With Nj denoting the number of times the value j occurs as an entry
of x, the likelihood function for X is

Lx(θ) = fX(x|θ) =

J∏
j=1

θ
Nj
j , (13.46)

and the log likelihood is

LLx(θ) = logLx(θ) =

J∑
j=1

Nj log θj . (13.47)

Then

E(logLx(θ)|y, θk) =

J∑
j=1

E(Nj |y, θk) log θj . (13.48)



The EM Algorithm 201

To simplify the calculations in the E-step we rewrite LLx(θ) as

LLx(θ) =

N∑
n=1

J∑
j=1

Xnj log θj , (13.49)

where Xnj = 1 if j = jn and zero otherwise. Then we have

E(Xnj |y, θk) = prob (Xnj = 1|y, θk) =
θkj fj(vn)

f(vn|θk)
. (13.50)

The function E(LLx(θ)|y, θk) becomes

E(LLx(θ)|y, θk) =
N∑
n=1

J∑
j=1

θkj fj(vn)

f(vn|θk)
log θj . (13.51)

Maximizing with respect to θ, we get the iterative step of the Mix-EM
algorithm:

θk+1
j =

1

N
θkj

N∑
n=1

fj(vn)

f(vn|θk)
. (13.52)

We know from our previous discussions that, since the preferred data
X is acceptable, likelihood is non-decreasing for this algorithm. We shall
go further now, and show that the sequence of probability vectors {θk}
converges to a maximizer of the likelihood.

13.8.6 Convergence of the Mix-EM Algorithm

As we noted earlier, maximizing the likelihood in the mixture case is
equivalent to minimizing

F (θ) = KL(u, Pθ) +

J∑
j=1

(1− sj)θj ,

over probability vectors θ. It is easily shown that, if θ̂ minimizes F (θ) over

all nonnegative vectors θ, then θ̂ is a probability vector. Therefore, we
can obtain the maximum likelihood estimate of θ by minimizing F (θ) over
nonnegative vectors θ.

The following theorem is found in [56].

Theorem 13.1 Let u be any positive vector, P any nonnegative matrix
with sj > 0 for each j, and

F (θ) = KL(u, Pθ) +

J∑
j=1

βjKL(γj , θj).



202 Iterative Optimization in Inverse Problems

If sj +βj > 0, αj = sj/(sj +βj), and βjγj ≥ 0, for all j, then the iterative
sequence given by

θk+1
j = αjs

−1
j θkj

( N∑
n=1

Pn,j
un

(Pθk)n

)
+ (1− αj)γj (13.53)

converges to a nonnegative minimizer of F (θ).

With the choices un = 1/N , γj = 0, and βj = 1 − sj , the iteration in
Equation (13.53) becomes that of the Mix-EM algorithm. Therefore, the
sequence {θk} converges to the maximum likelihood estimate of the mixing
proportions.



Chapter 14

Geometric Programming and the
MART

14.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
14.2 An Example of a GP Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
14.3 The Generalized AGM Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
14.4 Posynomials and the GP Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
14.5 The Dual GP Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
14.6 Solving the GP Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
14.7 Solving the DGP Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

14.7.1 The MART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
14.7.1.1 MART I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
14.7.1.2 MART II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

14.7.2 Using the MART to Solve the DGP Problem . . . . . . . . . . . 210
14.8 Constrained Geometric Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
14.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

14.1 Overview

Geometric Programming (GP) involves the minimization of functions
of a special type, known as posynomials. The first systematic treatment of
geometric programming appeared in the book [113], by Duffin, Peterson
and Zener, the founders of geometric programming. As we shall see, the
Generalized Arithmetic-Geometric Mean Inequality plays an important role
in the theoretical treatment of geometric programming, particularly in the
development of the dual GP (DGP) problem. The MART is then used to
solve the DGP.

Although geometric programming is a fairly specialized topic, a detailed
discussion of the GP problem is quite helpful in revealing new uses of
familiar topics such as the Arithmetic-Geometric Mean Inequality, while
introducing new themes, such as duality, primal and dual problems, and
iterative computation, that play important roles in iterative optimization.

203



204 Iterative Optimization in Inverse Problems

14.2 An Example of a GP Problem

The following optimization problem was presented originally by Duffin,
et al. [113] and discussed by Peressini et al. in [186]. It illustrates well the
type of problem considered in geometric programming. Suppose that 400
cubic yards of gravel must be ferried across a river in an open box of length
t1, width t2 and height t3. Each round-trip cost ten cents. The sides and
the bottom of the box cost 10 dollars per square yard to build, while the
ends of the box cost twenty dollars per square yard. The box will have no
salvage value after it has been used. Determine the dimensions of the box
that minimize the total cost.

With t = (t1, t2, t3), the cost function is

g(t) =
40

t1t2t3
+ 20t1t3 + 10t1t2 + 40t2t3, (14.1)

which is to be minimized over tj > 0, for j = 1, 2, 3. The function g(t) is
an example of a posynomial.

14.3 The Generalized AGM Inequality

The generalized arithmetic-geometric mean inequality will play a promi-
nent role in solving the GP problem.

Suppose that x1, ..., xN are positive numbers. Let a1, ..., aN be positive
numbers that sum to one. Then the Generalized AGM Inequality (GAGM
Inequality) is

xa11 x
a2
2 · · · x

aN
N ≤ a1x1 + a2x2 + ...+ aNxN , (14.2)

with equality if and only if x1 = x2 = ... = xN . We can prove this using
the convexity of the function − log x.

A function f(x) is said to be convex over an interval (a, b) if

f(a1t1 + a2t2 + ...+ aN tN ) ≤ a1f(t1) + a2f(t2) + ...+ aNf(tN ),

for all positive integers N , all an as above, and all real numbers tn in (a, b).
If the function f(x) is twice differentiable on (a, b), then f(x) is convex over
(a, b) if and only if the second derivative of f(x) is nonnegative on (a, b).
For example, the function f(x) = − log x is convex on the positive x-axis.
The GAGM Inequality follows immediately.



Geometric Programming and the MART 205

14.4 Posynomials and the GP Problem

Functions g(t) of the form

g(t) =

n∑
i=1

ci

( m∏
j=1

t
aij
j

)
, (14.3)

with t = (t1, ..., tm), the tj > 0, ci > 0 and aij real, are called posynomials.
The geometric programming problem, denoted (GP), is to minimize a given
posynomial over positive t. In order for the minimum to be greater than
zero, we need some of the aij to be negative.

We denote by ui(t) the function

ui(t) = ci

m∏
j=1

t
aij
j , (14.4)

so that

g(t) =

n∑
i=1

ui(t). (14.5)

For any choice of δi > 0, i = 1, ..., n, with

n∑
i=1

δi = 1,

we have

g(t) =

n∑
i=1

δi

(ui(t)
δi

)
. (14.6)

Applying the Generalized Arithmetic-Geometric Mean (GAGM) Inequal-
ity, we have

g(t) ≥
n∏
i=1

(ui(t)
δi

)δi
. (14.7)

Therefore,

g(t) ≥
n∏
i=1

(ci
δi

)δi( n∏
i=1

m∏
j=1

t
aijδi
j

)
, (14.8)



206 Iterative Optimization in Inverse Problems

or

g(t) ≥
n∏
i=1

(ci
δi

)δi( m∏
j=1

t
∑n
i=1 aijδi

j

)
, (14.9)

Suppose that we can find δi > 0 with

n∑
i=1

aijδi = 0, (14.10)

for each j. Then the inequality in (14.9) becomes

g(t) ≥ v(δ), (14.11)

for

v(δ) =

n∏
i=1

(ci
δi

)δi
. (14.12)

14.5 The Dual GP Problem

The dual geometric programming problem, denoted (DGP), is to maxi-
mize the function v(δ), over all feasible δ = (δ1, ..., δn), that is, all positive
δ for which

n∑
i=1

δi = 1, (14.13)

and

n∑
i=1

aijδi = 0, (14.14)

for each j = 1, ...,m. Clearly, we have

g(t) ≥ v(δ), (14.15)

for any positive t and feasible δ. Of course, there may be no feasible δ, in
which case (DGP) is said to be inconsistent.

As we have seen, the inequality in (14.15) is based on the GAGM In-
equality. We have equality in the GAGM Inequality if and only if the terms



Geometric Programming and the MART 207

in the arithmetic mean are all equal. In this case, this says that there is a
constant λ such that

ui(t)

δi
= λ, (14.16)

for each i = 1, ..., n. Using the fact that the δi sum to one, it follows that

λ =

n∑
i=1

ui(t) = g(t), (14.17)

and

δi =
ui(t)

g(t)
, (14.18)

for each i = 1, ..., n. As the theorem below asserts, if t∗ is positive and
minimizes g(t), then δ∗, the associated δ from Equation (14.18), is feasible
and solves (DGP). Since we have equality in the GAGM Inequality now,
we have

g(t∗) = v(δ∗).

The main theorem in geometric programming is the following.

Theorem 14.1 If t∗ > 0 minimizes g(t), then (DGP) is consistent. In
addition, the choice

δ∗i =
ui(t

∗)

g(t∗)
(14.19)

is feasible and solves (DGP). Finally,

g(t∗) = v(δ∗); (14.20)

that is, there is no duality gap.

Proof: We have

∂ui
∂tj

(t∗) =
aijui(t

∗)

t∗j
, (14.21)

so that

t∗j
∂ui
∂tj

(t∗) = aijui(t
∗), (14.22)

for each j = 1, ...,m. Since t∗ minimizes g(t), we have

0 =
∂g

∂tj
(t∗) =

n∑
i=1

∂ui
∂tj

(t∗), (14.23)



208 Iterative Optimization in Inverse Problems

so that, from Equation (14.22), we have

0 =

n∑
i=1

aijui(t
∗), (14.24)

for each j = 1, ...,m. It follows that δ∗ is feasible. Since we have equality
in the GAGM Inequality, we know

g(t∗) = v(δ∗). (14.25)

Therefore, δ∗ solves (DGP). This completes the proof.

14.6 Solving the GP Problem

The theorem suggests how we might go about solving (GP). First, we
try to find a feasible δ∗ that maximizes v(δ). This means we have to find
a positive solution to the system of m+ 1 linear equations in n unknowns,
given by

n∑
i=1

δi = 1, (14.26)

and

n∑
i=1

aijδi = 0, (14.27)

for j = 1, ...,m, such that v(δ) is maximized. As we shall see, the multi-
plicative algebraic reconstruction technique (MART) is an iterative proce-
dure that we can use to find such δ. If there is no such vector, then (GP)
has no minimizer. Once the desired δ∗ has been found, we set

δ∗i =
ui(t

∗)

v(δ∗)
, (14.28)

for each i = 1, ..., n, and then solve for the entries of t∗. This last step can
be simplified by taking logs; then we have a system of linear equations to
solve for the values log t∗j .



Geometric Programming and the MART 209

14.7 Solving the DGP Problem

The iterative multiplicative algebraic reconstruction technique MART
can be used to minimize the function v(δ), subject to linear equality con-
straints, provided that the matrix involved has nonnegative entries. We
cannot apply the MART yet, because the matrix AT does not satisfy these
conditions.

14.7.1 The MART

The MART is an iterative algorithm for finding a nonnegative solution
of the system Px = y, for an I by J matrix P with nonnegative entries
and vector y with positive entries. We also assume that

pj =

I∑
i=1

Pij > 0,

for all i = 1, ..., I. When discussing the MART, we say that the system
Px = y is consistent when it has nonnegative solutions. We consider two
different versions of the MART.

14.7.1.1 MART I

The iterative step of the first version of MART, which we shall call
MART I, is the following: for k = 0, 1, ..., and i = k(mod I) + 1, let

xk+1
j = xkj

( yi
(Pxk)i

)Pij/mi
,

for j = 1, ..., J , where the parameter mi is defined to be

mi = max{Pij |j = 1, ..., J}.

The MART I algorithm converges, in the consistent case, to the nonnegative
solution for which the KL distance KL(x, x0) is minimized.

14.7.1.2 MART II

The iterative step of the second version of MART, which we shall call
MART II, is the following: for k = 0, 1, ..., and i = k(mod I) + 1, let

xk+1
j = xkj

( yi
(Pxk)i

)Pij/pjni
,



210 Iterative Optimization in Inverse Problems

for j = 1, ..., J , where the parameter ni is defined to be

ni = max{Pijp−1j |j = 1, ..., J}.

The MART II algorithm converges, in the consistent case, to the nonneg-
ative solution for which the KL distance

J∑
j=1

pjKL(xj , x
0
j )

is minimized.

14.7.2 Using the MART to Solve the DGP Problem

Let the (n + 1) by m matrix AT have the entries Aji = aij , for j =
1, ...,m and i = 1, ..., n, and A(m+1),i = 1. Let u be the column vector with
entries uj = 0, for j = 1, ...,m, and um+1 = 1.

The entries on the bottom row of AT are all one, as is the bottom en-
try of the column vector u, since these entries correspond to the equation∑I
i=1 δi = 1. By adding suitably large positive multiples of this last equa-

tion to the other equations in the system, we obtain an equivalent system,
BT δ = s, for which the new matrix BT and the new vector s have only
positive entries. Now we can apply the MART I algorithm to the system
BT δ = s, letting P = BT , pi =

∑J+1
j=1 Bij , δ = x, x0 = c and y = s. In the

consistent case, the MART I algorithm will find the nonnegative solution
that minimizes KL(x, x0), so we select x0 = c. Then the MART I algorithm
finds the nonnegative δ∗ satisfying BT δ∗ = s, or, equivalently, AT δ∗ = u,
for which the KL distance

KL(δ, c) =

I∑
i=1

(
δi log

δi
ci

+ ci − δi
)

is minimized. Since we know that

I∑
i=1

δi = 1,

it follows that minimizing KL(δ, c) is equivalent to maximizing v(δ). Using
δ∗, we find the optimal t∗ solving the GP problem.

For example, the linear system of equations AT δ = u corresponding to
the posynomial in Equation (14.1) is

AT δ = u =


−1 1 1 0
−1 0 1 1
−1 1 0 1
1 1 1 1



δ1
δ2
δ3
δ4

 =


0
0
0
1

 .



Geometric Programming and the MART 211

Adding two times the last row to the other rows, the system becomes

BT δ = s =


1 3 3 2
1 2 3 3
1 3 2 3
1 1 1 1



δ1
δ2
δ3
δ4

 =


2
2
2
1

 .
The matrix BT and the vector s are now positive. We are ready to apply
the MART.

The MART iteration is as follows. With j = k(mod (J + 1)) + 1, mj =
max {Bij |i = 1, 2, ..., I} and k = 0, 1, ..., let

δk+1
i = δki

( sj
(BT δk)j

)m−1
j Bij

.

The optimal δ∗ is δ∗ = (.4, .2, .2, .2)T , the optimal t∗ is t∗ = (2, 1, .5), and
the lowest cost is one hundred dollars.

14.8 Constrained Geometric Programming

Consider now the following variant of the problem of transporting the
gravel across the river. Suppose that the bottom and the two sides will
be constructed for free from scrap metal, but only four square yards are
available. The cost function to be minimized becomes

g0(t) =
40

t1t2t3
+ 40t2t3, (14.29)

and the constraint is

g1(t) =
t1t3

2
+
t1t2

4
≤ 1. (14.30)

With δ1 > 0, δ2 > 0, and δ1 + δ2 = 1, we write

g0(t) = δ1
40

δ1t1t2t3
+ δ2

40t2t3
δ2

. (14.31)

Since 0 ≤ g1(t) ≤ 1, we have

g0(t) ≥
(
δ1

40

δ1t1t2t3
+ δ2

40t2t3
δ2

)(
g1(t)

)λ
, (14.32)

for any positive λ. The GAGM Inequality then tells us that

g0(t) ≥

(( 40

δ1t1t2t3

)δ1(40t2t3
δ2

)δ2)(
g1(t)

)λ
, (14.33)



212 Iterative Optimization in Inverse Problems

so that

g0(t) ≥

((40

δ1

)δ1(40

δ2

)δ2)
t−δ11 tδ2−δ12 tδ2−δ13

(
g1(t)

)λ
. (14.34)

From the GAGM Inequality, we also know that, for δ3 > 0, δ4 > 0 and
λ = δ3 + δ4,(

g1(t)
)λ
≥ (λ)λ

(( 1

2δ3

)δ3( 1

4δ4

)δ4)
tδ3+δ41 tδ42 t

δ3
3 . (14.35)

Combining the inequalities in (14.34) and (14.35), we obtain

g0(t) ≥ v(δ)t−δ1+δ3+δ41 t−δ1+δ2+δ42 t−δ1+δ2+δ33 , (14.36)

with

v(δ) =
(40

δ1

)δ1(40

δ2

)δ2( 1

2δ3

)δ3( 1

4δ4

)δ4(
δ3 + δ4

)δ3+δ4
, (14.37)

and δ = (δ1, δ2, δ3, δ4). If we can find a positive vector δ with

δ1 + δ2 = 1,

δ3 + δ4 = λ,

−δ1 + δ3 + δ4 = 0,

−δ1 + δ2 + δ4 = 0

−δ1 + δ2 + δ3 = 0, (14.38)

then

g0(t) ≥ v(δ). (14.39)

In this particular case, there is a unique positive δ satisfying the equations
(14.38), namely

δ∗1 =
2

3
, δ∗2 =

1

3
, δ∗3 =

1

3
, and δ∗4 =

1

3
, (14.40)

and

v(δ∗) = 60. (14.41)

Therefore, g0(t) is bounded below by 60. If there is t∗ such that

g0(t∗) = 60, (14.42)



Geometric Programming and the MART 213

then we must have

g1(t∗) = 1, (14.43)

and equality in the GAGM Inequality. Consequently,

3

2

40

t∗1t
∗
2t
∗
3

= 3(40t∗2t
∗
3) = 60, (14.44)

and

3

2
t∗1t
∗
3 =

3

4
t∗1t
∗
2 = K. (14.45)

Since g1(t∗) = 1, we must have K = 3
2 . We solve these equations by taking

logarithms, to obtain the solution

t∗1 = 2, t∗2 = 1, and t∗3 =
1

2
. (14.46)

The change of variables tj = exj converts the constrained (GP) prob-
lem into a constrained convex programming problem. The theory of the
constrained (GP) problem can then be obtained as a consequence of the
theory for the convex programming problem.

See [28] for a discussion of the use of constrained GP to find the Perron-
Frobenius eigenvalue of a positive matrix.

14.9 Exercises

Ex. 14.1 Show that there is no solution to the problem of minimizing the
function

g(t1, t2) =
2

t1t2
+ t1t2 + t1, (14.47)

over t1 > 0, t2 > 0.

Ex. 14.2 Minimize the function

g(t1, t2) =
1

t1t2
+ t1t2 + t1 + t2, (14.48)

over t1 > 0, t2 > 0. This will require some iterative numerical method for
solving equations.

Ex. 14.3 Program the MART algorithm and use it to verify the assertions
made previously concerning the solutions of the two numerical examples.





Chapter 15

Variational Inequality Problems
and Algorithms

15.1 Monotone Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
15.2 The Split-Feasibility Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
15.3 The Variational Inequality Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
15.4 Korpelevich’s Method for the VIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

15.4.1 The Special Case of C = RJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
15.4.2 The General Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

15.5 On Some Algorithms of Noor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
15.5.1 A Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

15.6 Split Variational Inequality Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
15.7 Saddle Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

15.7.1 Notation and Basic Facts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
15.7.2 The Saddle-Point Problem as a VIP . . . . . . . . . . . . . . . . . . . . 226
15.7.3 Example: Convex Programming . . . . . . . . . . . . . . . . . . . . . . . . . 226
15.7.4 Example: Linear Programming . . . . . . . . . . . . . . . . . . . . . . . . . . 227
15.7.5 Example: Game Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

15.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

15.1 Monotone Functions

Variational inequality problems (VIP) generalize the problem of mini-
mizing a convex function over a closed convex set. Saddle-point problems
can be reformulated as variational inequality problems (VIP) for monotone
functions, and iterative algorithms used for their solution. Throughout this
chapter the norm is the Euclidean norm. We begin with some definitions.

A function f : RJ → [−∞,+∞] is proper if there is no x with f(x) =
−∞ and some x with f(x) < +∞. The effective domain of f , denoted
dom(f), is the set of all x for which f(x) is finite. If f is a proper convex
function on RJ , then the sub-differential ∂f(x), defined to be the set

∂f(x) = {u|f(z) ≥ f(x) + 〈u, z − x〉 for all z}, (15.1)

is a closed convex set, and nonempty for every x in the interior of dom(f).

215



216 Iterative Optimization in Inverse Problems

This is a consequence of applying the Support Theorem to the epi-graph of
f . We say that f is differentiable at x if ∂f(x) is a singleton set, in which
case we have ∂f(x) = {∇f(x)}.

Definition 15.1 An operator T : RJ → RJ is monotone if

〈Tx− Ty, x− y〉 ≥ 0,

for all x and y.

Definition 15.2 An operator T : RJ → RJ is strongly monotone if

〈Tx− Ty, x− y〉 ≥ ν‖x− y‖2,

for all x and y.

As we saw previously, an operator G : RJ → RJ is ν-inverse strongly
monotone (ν-ism) if

〈Gx−Gy, x− y〉 ≥ ν‖Gx−Gy‖2,

for all x and y.
Let f : RJ → R be convex and differentiable. Then the operator T = ∇f

is monotone. If f(x) is convex, but not differentiable, then B(x) = ∂f(x)
is a monotone set-valued function; we shall discuss set-valued functions in
Chapter 16. Not all monotone operators are gradient operators, as Exercise
15.1 will show. In fact, if A is a non-zero, skew-symmetric matrix, then
Tx = Ax is a monotone operator, but is not a gradient operator.

It is easy to see that if N is ne, then I −N is monotone.

Definition 15.3 An operator G : RJ → RJ is weakly ν-inverse strongly
monotone if

〈Gx, x− y〉 ≥ ν‖Gx‖2, (15.2)

whenever Gy = 0.

15.2 The Split-Feasibility Problem

The split-feasibility problem (SFP) is the following: find x in C with
Ax in Q, where A is an I by J matrix, and C and Q nonempty, closed



Variational Inequality Problems and Algorithms 217

convex sets in RJ and RI , respectively. The CQ algorithm [58, 59] has the
iterative step

xk+1 = PC(I − γAT (I − PQ)A)xk. (15.3)

For 0 < γ < 2
ρ(ATA)

, the sequence {xk} converges to a minimizer, over x

in C, of the convex function

f(x) =
1

2
‖PQAx−Ax‖2,

whenever such minimizers exist. From Theorem 8.1 we know that the gra-
dient of f(x) is

∇f(x) = AT (I − PQ)Ax,

so the iteration in Equation (15.3) can be written as

xk+1 = PC(I − γ∇f)xk. (15.4)

The limit x∗ of the sequence {xk} satisfies the inequality

〈∇f(x∗), c− x∗〉 ≥ 0, (15.5)

for all c in C.

15.3 The Variational Inequality Problem

Now let G be any operator on RJ . The variational inequality problem
(VIP), with respect to G and C, denoted VIP(G,C), is to find an x∗ in C
such that

〈Gx∗, c− x∗〉 ≥ 0,

for all c in C. The form of the CQ algorithm suggests that we consider
solving the VIP(G,C) using the following iterative scheme:

xk+1 = PC(I − γG)xk. (15.6)

The sequence {xk} solves the VIP(G,C) whenever there are solutions, if
G is ν-ism and 0 < γ < 2ν; this is sometimes called Dolidze’s Theorem,
and is proven in [59] (see also [133]). A good source for related algorithms
is the paper by Censor, Iusem and Zenios [90].

In [90] the authors mention that it has been shown that, if G is strongly
monotone and L-Lipschitz, then the iteration in Equation (15.6) converges
to a solution of VIP(G,C) whenever γ ∈ (0, 2ν/L2). Then we have a strict



218 Iterative Optimization in Inverse Problems

contraction mapping, a fixed point necessarily exists, and the result follows.
But under these conditions, I−γG is also averaged, so the result, except for
the existence of fixed points, follows from Dolidze’s Theorem. When G is
not ism, there are other iterative algorithms that can be used; for example,
Korpelevich’s algorithm [151] has been studied extensively and discussed
in detail in [120]. We discuss this method in the next section.

15.4 Korpelevich’s Method for the VIP

An operator T on RJ is pseudo-monotone if

〈Ty, x− y〉 ≥ 0

implies
〈Tx, x− y〉 ≥ 0.

Any monotone operator is pseudo-monotone.
Suppose now that G is L-Lipschitz and pseudo-monotone, but not nec-

essarily ism. Let γL < 1, and S = γG. Korpelevich’s algorithm is then

xk+1 = PC(xk − Syk), (15.7)

where

yk = PC(xk − Sxk). (15.8)

The sequence {xk} converges to a solution of VIP(G,C) whenever there
are solutions [151, 86].

15.4.1 The Special Case of C = RJ

In the special case of the VIP(G,C) in which C = RJ and PC = I,
Korpelevich’s algorithm employs the iterative steps

xk+1 = xk − Syk, (15.9)

where

yk = xk − Sxk. (15.10)

Then we have

xk+1 = (I − S(I − S))xk. (15.11)



Variational Inequality Problems and Algorithms 219

If the operator S(I − S) is ν-ism for some ν > 1
2 , then the sequence {xk}

converges to a solution of VIP(G,RJ) whenever there are solutions, ac-
cording to the KMOO Theorem. Note that z solves the VIP(G,RJ) if and
only if 0 ∈ ∂G(z). The KMOO Theorem is valid whenever G is weakly
ν-ism for some ν > 1

2 . Therefore, we get convergence of this special case of
the Korpelevich iteration by showing that the operator S(I − S) is weakly
1

1+σ -ism, where σ = γL < 1.
Our assumptions are that T = I −S(I −S), S is pseudo-monotone and

σ-Lipschitz, for some σ < 1, and Tz = z. It follows then that S(I−S)z = 0.
From

‖Sz‖ = ‖Sz − S(I − S)z‖ ≤ σ‖z − (I − S)z‖ = σ‖Sz‖,

and the fact that σ < 1, we conclude that Sz = 0 as well.

Lemma 15.1 Let x be arbitrary, and z = Tz. Then

2〈S(I − S)x, x− z〉 ≥ (1− σ2)‖Sx‖2 + ‖S(I − S)x‖2. (15.12)

Proof: Using Sz = S(I − S)z = 0, we write

2〈S(I−S)x, x−z〉 = 2〈S(I−S)x−S(I−S)z, x−Sx−z+Sz〉+2〈S(I−S)x, Sx〉

= 2〈S(I−S)x−S(I−S)z, (I−S)x−(I−S)z〉+2〈S(I−S)x, Sx〉 ≥ 2〈S(I−S)x, Sx〉.
Also, we have

‖S(I−S)x‖2−2〈S(I−S)x, Sx〉 +‖Sx‖2 = ‖S(I−S)x−Sx‖2 ≤ σ2‖Sx‖2.

Therefore,

2〈S(I − S)x, x− z〉 ≥ 2〈S(I − S)x, Sx〉 ≥ (1− σ2)‖Sx‖2 + ‖S(I − S)‖2.

It follows from (15.12) and Cauchy’s Inequality that

2‖Sx‖‖S(I − S)x‖ ≥ 2〈S(I − S)x, Sx〉 ≥ (1− σ2)‖Sx‖2 + ‖S(I − S)‖2,

so that
σ2‖Sx‖2 ≥ (‖Sx‖ − ‖S(I − S)x‖)2.

Therefore,
(1 + σ)‖Sx‖ ≥ ‖S(I − S)x‖.

From

〈S(I − S)x, x− z〉 ≥ 1− σ2

2
‖Sx‖2 +

1

2
‖S(I − S)‖2

and

‖Sx‖2 ≥ 1

(1 + σ)2
‖S(I − S)x‖2

we get

〈S(I − S)x, x− z〉 ≥ 1

1 + σ
‖S(I − S)x‖2;

in other words, the operator S(I − S) is weakly 1
1+σ -ism.



220 Iterative Optimization in Inverse Problems

15.4.2 The General Case

Now we have xk+1 = Txk where S = γG and T = PC(I−SPC(I−S)).
We assume that Tz = z, so that z solves VIP(G,C).

The key Proposition now is the following.

Proposition 15.1 Let G : C → RJ be pseudo-monotone and L-Lipschitz,
let σ = γL < 1, and let S = γG. For any k let yk = PC(I − S)xk. Then

‖z − xk‖2 − ‖z − xk+1‖2 ≥ (1− σ2)‖yk − xk‖2. (15.13)

The proof of Proposition 15.1 follows that in [120]. The inequality in
(15.13) emerges as a consequence of a sequence of inequalities and equa-
tions. We list these results first, and then discuss their proofs. For conve-
nience, we let wk = xk − Sxk.

• 1) 〈Syk, yk − xk+1〉 ≥ 〈Syk, z − xk+1〉.

• 2) 〈Sxk − Syk, xk+1 − yk〉 ≥ 〈wk − yk, xk+1 − yk〉.

• 3) ‖z − wk|2 − ‖wk − xk+1‖2 ≥ ‖z − xk+1‖2.

• 4) ‖z − wk‖2 − ‖wk − xk+1‖2 =

‖z − xk‖2 − ‖xk − xk+1‖2 + 2〈Syk, z − xk+1〉.

• 5) ‖z − wk‖2 − ‖wk − xk+1‖2 ≤

‖z − xk‖2 − ‖xk − xk+1‖2 + 2〈Syk, yk − xk+1〉.

• 6) −‖xk − xk+1‖2 + 2〈Syk, yk − xk+1〉 =

−‖yk − xk‖2 − ‖yk − xk+1‖2 + 2〈wk − yk, xk+1 − yk〉.

• 7) ‖z − xk‖2 − ‖z − xk+1‖2 ≥

‖yk − xk‖2 + ‖yk − xk+1‖2 − 2〈yk − wk, yk − xk+1〉.

• 8) 2〈yk − wk, yk − xk+1〉 ≤ 2γL‖yk − xk+1‖‖yk − xk‖.

• 9) 2γL‖yk − xk+1‖‖yk − xk‖ ≤ γ2L2‖yk − xk‖2 + ‖yk − xk+1‖2.

• 10) 2γL‖yk − xk+1‖‖yk − xk‖ ≤ γL(‖yk − xk‖2 + ‖yk − xk+1‖2).

• 11) ‖z − xk‖2 − ‖z − xk+1‖2 ≥ (1− γ2L2)‖yk − xk‖2.

• 12) ‖z−xk‖2−‖z−xk+1‖2 ≥ (1− γL)(‖yk −xk‖2 + ‖yk −xk+1‖2).



Variational Inequality Problems and Algorithms 221

Inequality 1) follows from the fact that z solves the VIP(G,C) and
is pseudo-monotone, and xk+1 is in C. To obtain Inequality 2), add and
subtract Sxk on the left side of the inner product in 1) and use the fact
that yk = PC(I − S)xk.

To get Inequality 3), expand

‖z − xk+1‖2 = ‖z − wk + wk − xk+1‖2,

add and subtract xk+1 and use the fact that xk+1 = PCw
k.

To get Equation 4) use wk = xk −Syk and expand. Then Inequality 5)
follows from 4) using Inequality 1). Equation 6) is easy.

Inequality 7) follows from 3), 5) and 6). To get Inequality 8), use wk =
xk − Syk, add and subtract Sxk in the left side of the inner product, and
use yk = PC(I − S)xk.

To get Inequality 9), expand

(γL‖yk − xk‖ − ‖yk − xk+1‖)2.

Then 11) is immediate, and the Proposition is proved. To get Inequality
10), expand

(‖yk − xk‖ − ‖yk − xk+1‖)2.

Then 12) is immediate. We shall use 12) in a moment.
From Inequality (15.13), we learn that the sequence {‖z − xk‖} is de-

creasing, and so the sequence ‖yk − xk‖} converges to zero. From 12) we
learn that the sequence {‖yk − xk+1‖} converges to zero.

We know that

‖xk − xk+1‖2 = ‖xk − yk + yk − xk+1‖2 =

‖xk − yk‖2 + ‖yk − xk+1‖2 + 2〈xk − yk, yk − xk+1〉 ≤

‖xk − yk‖2 + ‖yk − xk+1‖2 + 2‖xk − yk‖‖xk+1 − yk‖,

so it follows that {‖xk − xk+1‖} converges to zero. The sequence {xk} is
bounded; let x∗ be a cluster point. Then x∗ is a fixed point; that is

x∗ = PC(x∗ − S(I − S)x∗),

so x∗ solves the VIP(G,C) and we can replace z with x∗ in all the lines
above. It follows that {xk} converges to x∗. Therefore, the Korpelevich
iteration converges whenever there is a solution of the VIP(G,C).

We saw that in the special case of PC = I, the operator S(I − S) is
weakly ν-ism; it does not appear to be true in the general case that weak
ism plays a role.



222 Iterative Optimization in Inverse Problems

15.5 On Some Algorithms of Noor

In this section I comment on two algorithms that appear in the papers
of Noor.

15.5.1 A Conjecture

We saw that for the case of C = RJ the operator T = I − S(I − S)
generates a sequence that converges to a fixed point of T . I suspected that
the operator P = (I − S)2 = T − S might also work. More generally, I
conjectured that the operator

Px = PC(PC(x− Sx)− SPC(x− Sx)) = (PC(I − S))2x (15.14)

would work for the general case. Noor [178, 179, 180] considers this and
related methods, but does not provide details for this particular algorithm.
The conjecture is false, but we can at least show that z = Pz if and only
if z solves VIP(G,C).

Proposition 15.2 We have z = Pz if and only if z solves VIP(G,C).

Proof: One way is clear. So assume that z = Pz. Let y = PC(z − Sz), so
that z = PC(y − Sy). Then for all c ∈ C we have

〈z − y + Sy, c− z〉 ≥ 0,

and
〈y − z + Sz, c− y〉 ≥ 0.

Therefore,
〈Sy, y − z〉 ≥ ‖y − z‖2,

and
−〈Sz, y − z〉 ≥ ‖y − z‖2.

Adding, we get

σ‖y − z‖2 ≥ ‖Sy − Sz‖ ‖y − z‖ ≥ 〈Sy − Sz, y − z〉 ≥ 2‖y − z‖2,

from which we conclude that y = z.

Unfortunately, this algorithm, which is Algorithm 3.6 in Noor [179],
fails to converge, in general, as the following example shows. Let S be the
operator on R2 given by multiplication by the matrix

S =

[
0 a
−a 0

]
,



Variational Inequality Problems and Algorithms 223

for some a ∈ (0, 1). The operator S is then monotone and a-Lipschitz con-
tinuous. With C = R2, the variational inequality problem is then equivalent
to finding a zero of S. Note that Sz = 0 if and only if z = 0.

The Korpelevich iteration in this case is

xk+1 = Txk = (I − S(I − S))xk.

Noor’s Algorithm 3.6 now has the iterative step

xk+1 = Pxk = (I − S)2xk.

The operator T is then multiplication by the matrix

T =

[
1− a2 −a
a 1− a2

]
,

and the operator P is multiplication by the matrix

P =

[
1− a2 −2a

2a 1− a2
]
.

For any x ∈ R2 we have

‖Tx‖2 = ((1− a2)2 + a2)‖x‖2 < ‖x‖2,

for all x 6= 0, while

‖Px‖2 = ((1− a2)2 + 4a2)‖x‖2 = (1 + a2)2‖x‖2.

This proves that the sequence xk+1 = Pxk does not converge, generally.

15.6 Split Variational Inequality Problems

The split variational inequality problem (SVIP) is the following: find x∗

in C such that

〈f(x∗), c− x∗〉 ≥ 0, (15.15)

for all c ∈ C, and

〈g(Ax∗), q −Ax∗〉 ≥ 0, (15.16)

for all q ∈ Q.



224 Iterative Optimization in Inverse Problems

In [87] the authors present an iterative algorithm for solving the SVIP
(see also [172]). The iterative step is xk+1 = Sxk, where

S = U(I + γAT (T − I)A),

U = PC(I − λf),

and
T = PQ(I − λg).

It is easy to show that x∗ satisfies Equation (15.15) if and only if x∗ is
a fixed point of U , and Ax∗ satisfies Equation (15.16) if and only if Ax∗

is a fixed point of T . We have the following convergence theorem for the
sequence {xk}.

Theorem 15.1 Let f be ν1-ism, g be ν2-ism, ν = min{ν1, ν2}, λ ∈ (0, 2α),
and γ ∈ (0, 1/L), where L is the spectral radius of ATA. If the SVIP has
solutions, then the sequence {xk} converges to a solution of the SVIP.

Take λ < 2ν. Then the operators I − λf and I − λg are δ-av, for
δ = λ

2ν < 1. The operator PQ is firmly non-expansive, so is 1
2 -av. Then the

operator T = PQ(I − λg) is φ-av, with φ = δ+1
2 .

The following lemma is key to the proof of the theorem.

Lemma 15.2 If T is φ-av, for some φ ∈ (0, 1), then AT (I − T )A is 1
2φL -

ism.

Proof: We have

〈AT (I−T )Ax−AT (I−T )Ay, x− y〉 = 〈(I−T )Ax− (I−T )Ay,Ax−Ay〉.

Since I − T is 1
2φ -ism, we have

〈(I − T )Ax− (I − T )Ay,Ax−Ay〉 ≥ 1

2φ
‖(I − T )Ax− (I − T )Ay‖2.

From

‖AT (I − T )Ax−AT (I − T )Ay‖2 ≤ L‖(I − T )Ax− (I − T )Ay‖2,

it follows that

〈(I−T )Ax− (I−T )Ay,Ax−Ay〉 ≥ 1

2φL
‖AT (I−T )Ax−AT (I−T )Ay‖2.

Proof of the Theorem: Assume that z is a solution of the SVIP. The



Variational Inequality Problems and Algorithms 225

operator γAT (I − T )A is 1
2γφL -ism. The operator V will be averaged if

γφL < 1, or

γ <
1

φL
=

2

(δ + 1)L
. (15.17)

If γ ≤ 1
L , then the inequality (15.17) holds for all choices of λ < 2α.

In similar iterative algorithms, such as the CQ algorithm and the
Landweber algorithm (see [58, 59]), the upper bound on γ is 2

L . We can
allow γ to approach 2

L here, but only by making δ approach zero, that is,
only by taking λ near zero.

Since U is also averaged, the operator S is averaged. Since the inter-
section of Fix(U) and Fix(V ) is not empty, this intersection equals Fix(S).
By the Krasnosel’skii-Mann-Opial Theorem 7.1, the iteration xk+1 = Sxk

converges to a fixed point x∗ of S, which is then a fixed point of both U
and V . From V (x∗) = x∗ it follows that AT (T − I)Ax∗ = 0. We show that
(T − I)Ax∗ = 0. We know that T (Ax∗) = Ax∗ + w, where ATw = 0. Also
T (Az) = Az, since z solves the SVIP. Therefore, we have

‖T (Ax∗)− T (Az)‖2 = ‖Ax∗ −Az‖2 + ‖w‖2;

but T is non-expansive, so w = 0 and (T − I)Ax∗ = 0.

15.7 Saddle Points

As the title of [151] indicates, the main topic of the paper is saddle
points. The main theorem is about convergence of an iterative method for
finding saddle points. The saddle-point problem can be turned into a case
of the variational inequality problem, which is why the paper contains the
theorem on convergence of an iterative algorithm for the VIP that we have
already discussed.

The increased complexity of Korpelevich’s algorithm is not needed if
our goal is to minimize a convex function f(x) over a closed convex set C,
when ∇f is L-Lipschitz. In that case, the operator 1

L∇f is ne, from which
it can be shown that it must be fne. Then we can use the averaged operator
T = PC(I − γ∇f), for 0 < γ < 2

L . Similarly, we don’t need Korpelevich
to solve z = Nz, for non-expansive N ; we can use the averaged operator
T = (1 − α)I + αN . However, for saddle-point problems, Korpelevich’s
method is useful.



226 Iterative Optimization in Inverse Problems

15.7.1 Notation and Basic Facts

Let C ⊆ RJ and Q ⊆ RI be closed convex sets. Say that u∗ = (x∗, y∗) ∈
U is a saddle-point for the function f(x, y) : U = C × Q → R if, for all
u = (x, y) ∈ U , we have

f(x∗, y) ≤ f(x∗, y∗) ≤ f(x, y∗). (15.18)

We make the usual assumptions that f(x, y) is convex in x and concave
in y, and that the partial derivatives fx(x, y) and fy(x, y) are L-Lipschitz.
Denote by U∗ the set of all saddle points u∗.

It can be shown that u∗ = (x∗, y∗) is a saddle point for f(x, y) if and
only if

〈fx(x∗, y∗), x− x∗〉 ≥ 0,

for all x ∈ C, and
〈fy(x∗, y∗), y − y∗〉 ≤ 0,

for all y ∈ Q.

15.7.2 The Saddle-Point Problem as a VIP

Define T : U → RJ × RI by

Tu = (fx(x, y),−fy(x, y)).

Then u∗ ∈ U∗ if and only if

〈Tu∗, u− u∗〉 ≥ 0,

for all u ∈ U . The operator T is monotone and L-Lipschitz. Therefore,
we can find saddle points by applying the Korpelevich method for finding
solutions of the VIP.

Note that if T is a gradient operator, then we must have

f(x, y) = h(x)− g(y),

where h and g are convex functions. Then (x∗, y∗) is a saddle point if and
only if x∗ minimizes h(x) over x ∈ C and y∗ minimizes g(y) over y ∈ Q.
In this case, the saddle point can be found by solving two independent
minimization problems, and Korpelevich’s algorithm is not needed.

15.7.3 Example: Convex Programming

In convex programming (CP) we want to minimize a convex function
f : RJ → R over all x ≥ 0 such that g(x) ≤ 0, where g is also convex. The
Lagrangian function is

L(x, y) = f(x) + 〈y, g(x)〉. (15.19)



Variational Inequality Problems and Algorithms 227

When the problem is super-consistent, we know that x∗ is a solution of CP
if and only if there is y∗ ≥ 0 such that

L(x∗, y) ≤ L(x∗, y∗) ≤ L(x, y∗). (15.20)

15.7.4 Example: Linear Programming

The primary problem of linear programming, in canonical form, denoted
PC, is to minimize z = cTx, subject to x ≥ 0 and ATx ≥ b. The Lagrangian
is now

L(x, y) = cTx+ yT (b−ATx) = cTx+ bT y − yTATx. (15.21)

Therefore, x∗ is a solution if and only if there is y∗ ≥ 0 such that (15.20)
holds for L(x, y) given by Equation (15.21).

15.7.5 Example: Game Theory

In two-person zero-sum matrix games, the entries Amn of the matrix A
are the payoffs from Player Two (P2) to Player One (P1) when P1 plays
strategy m and P2 plays strategy n. Optimal randomized strategies p∗ and
q∗ for players P1 and P2, respectively, are probability vectors that satisfy
the saddle-point condition

f(q∗, p) ≤ f(q∗, p∗) ≤ f(q, p∗), (15.22)

where f(q, p) = pTAq for probability vectors p and q.
We could attempt to find the optimal randomized strategies p∗ and q∗

using Korpelevich’s saddle point method; however, the constraint that the
p and q be probability vectors may be difficult to implement in the iterative
algorithm. There is another way.

A standard approach to showing that optimal randomized strategies
exist is to convert the problem into a linear programming problem. Specif-
ically, we first modify A so that all the entries are nonnegative. Then we
take b and c to have all entries equal to one. We then minimize z = cTx
over all x ≥ 0 with ATx ≥ b. Because the entries of A are nonnegative,
both the primary and dual linear programming problems have feasible so-
lutions, and therefore have optimal solutions, which we denote by x∗ and
y∗. It follows that µ = cTx∗ = bT y∗, so that p∗ = 1

µx
∗ and q∗ = 1

µy
∗ are

probabilities. They are then the optimal randomized strategies.
From this, we see that we can reformulate the search for the game-

theory saddle point as a search for a saddle point of the Lagrangian for the
linear programming problem. Now the constraints are only that x ≥ 0 and
y ≥ 0.



228 Iterative Optimization in Inverse Problems

15.8 Exercises

Ex. 15.1 Let T : R2 → R2 be the operator defined by T (x, y) = (−y, x).
Show that T is a monotone operator, but is not a gradient operator.



Chapter 16

Set-Valued Functions in
Optimization

16.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
16.2 Notation and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
16.3 Basic Facts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
16.4 Monotone Set-Valued Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
16.5 Resolvents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
16.6 Split Monotone Variational Inclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
16.7 Solving the SMVIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
16.8 Special Cases of the SMVIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

16.8.1 The Split Minimization Problem . . . . . . . . . . . . . . . . . . . . . . . . 233
16.9 The Split Common Null-Point Problem . . . . . . . . . . . . . . . . . . . . . . . . . 234
16.10 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

16.1 Overview

Set-valued mappings play an important role in a number of optimization
problems. We examine several of those problems in this chapter. We discuss
iterative algorithms for solving these problems and prove convergence.

16.2 Notation and Definitions

Let f(x) = ιC(x), the indicator function of the set C, which is +∞ for
x not in C and zero for x in C. Then

∂ιC(x) = NC(x). (16.1)

Most of the time, but not always, we have

∂(f + g)(x) = ∂f(x) + ∂g(x),

229



230 Iterative Optimization in Inverse Problems

Consequently, most of the time, but not always, we have

NA∩B(x) = NA(x) ∩NB(x); (16.2)

see Exercise (16.1). In order for Equation (16.2) to hold, some additional
conditions are needed; for example, it is enough to know that the set A∩B
has a nonempty interior (see [27], p. 56, Exercise 10).

The mapping that takes each x to ∂f(x) is a set-valued function, or
multi-valued function. The role that set-valued functions play in optimiza-

tion is the subject of this chapter. It is common to use the notation 2R
J

to
denote the collection of all subsets of RJ .

16.3 Basic Facts

If x∗ minimizes the function f(x) over all x in RJ , then 0 ∈ ∂f(x∗); if
f is differentiable, then ∇f(x∗) = 0. The vector x∗ minimizes f(x) over x
in C if and only if x∗ minimizes the function f(x) + ιC(x) over all x in RJ ,
and so if and only if 0 ∈ ∂f(x∗) +NC(x∗), which is equivalent to

〈u, c− x∗〉 ≥ 0, (16.3)

for all u in ∂f(x∗) and all c in C. If f is differentiable at x∗, then this
becomes

〈∇f(x∗), c− x∗〉 ≥ 0, (16.4)

for all c in C.
Similarly, for each fixed x, y minimizes the function

f(t) +
1

2
‖x− t‖22

if and only if
0 ∈ y − x+ ∂f(y),

or
x ∈ y + ∂f(y).

Then we write y = proxfx. If C is a nonempty closed convex subset of RJ
and f(x) = ιC(x), then proxf (x) = PCx.



Set-Valued Functions in Optimization 231

16.4 Monotone Set-Valued Functions

A set-valued function B : RJ → 2R
J

is monotone if, for every x and y,
and every u ∈ B(x) and v ∈ B(y) we have

〈u− v, x− y〉 ≥ 0.

A monotone (possibly set-valued) function B is a maximal monotone opera-
tor if the domain of B cannot be enlarged without the loss of the monotone
property.

Let f : RJ → R be convex and differentiable. Then the operator T = ∇f
is monotone. If f(x) is convex, but not differentiable, then B(x) = ∂f(x) is
a monotone set-valued function. If A is a non-zero, skew-symmetric matrix,
then Tx = Ax is a monotone operator, but is not a gradient operator.

16.5 Resolvents

Let B : RJ → 2R
J

be a set-valued mapping. If B is monotone, then
x ∈ z+B(z) and x ∈ y+B(y) implies that z = y, since then x− z ∈ B(z)
and x− y ∈ B(y), so that

0 ≤ 〈(x− z)− (x− y), z − y〉 = −‖z − y‖22.

Consequently, the resolvent operator for B, defined by

JB = (I +B)−1

is single-valued, where
JB(x) = z

means that
x ∈ z +B(z).

If B(z) = NC(z) for all z, then z = JB(x) if and only if z = PC(x), the
orthogonal projection of x onto C; so we have

J∂ιC = JNC = PC = proxιC .

We know that z = proxfx if and only if x − z ∈ ∂f(z), and so if and
only if x ∈ (I + ∂f)z or, equivalently, z = J∂fx. Therefore,

J∂f = proxf .



232 Iterative Optimization in Inverse Problems

As we shall see shortly, this means that proxf is fne.
The following theorem is helpful in proving convergence of iterative

fixed-point algorithms [99, 57, 100].

Theorem 16.1 An operator T : RJ → RJ is firmly nonexpansive if and
only if T = JB for some (possibly set-valued) maximal monotone function
B.

We sketch the proof here. Showing that JB is fne when B is monotone
is not difficult. To go the other way, we suppose that T is fne and define
B(x) = T−1{x} − x, where y ∈ T−1{x} means Ty = x. Then JB = T .
That this function B is monotone follows fairly easily from the fact that
T = JB is fne.

16.6 Split Monotone Variational Inclusion

Let B1 : RJ → 2R
J

and B2 : RI → 2R
I

be set-valued mappings, A :
RJ → RI a real matrix, and f : RJ → RJ and g : RI → RI single-
valued operators. Following Moudafi [172], we can pose the split monotone
variational inclusion problem (SMVIP).

The SMVIP is to find x∗ in RJ such that

0 ∈ f(x∗) +B1(x∗), (16.5)

and

0 ∈ g(Ax∗) +B2(Ax∗). (16.6)

Let C be a closed, nonempty, convex set in RJ . The normal cone to C
at z is defined to be the empty set if z is not in C, and, if z ∈ C, to be the
set NC(z) given by

NC(z) = {u|〈u, c− z〉 ≤ 0, for all c ∈ C}. (16.7)

Suppose that C ⊆ RJ and Q ⊆ RI are closed nonempty convex sets. If we
let B1 = NC and B2 = NQ, then the SMVIP becomes the split variational
inequality problem (SVIP): find x∗ in C such that

〈f(x∗), c− x∗〉 ≥ 0, (16.8)

for all c ∈ C, and

〈g(Ax∗), q −Ax∗〉 ≥ 0, (16.9)

for all q ∈ Q.



Set-Valued Functions in Optimization 233

16.7 Solving the SMVIP

We can solve the SMVIP in a way similar to that used to solve the
SVIP, by modifying the CGR algorithm. Now we define

S = U(I − γAT (T − I)A),

where
U = JλB1

(I − λf),

and
T = JλB2

(I − λg),

for λ > 0. It is easy to show that x∗ satisfies Equation (16.5) if and only
if x∗ is a fixed point of U and Ax∗ satisfies Equation (16.6) if and only if
Ax∗ is a fixed point of T . We have assumed that there is a z that solves
the SMVIP, so it follows that z is a fixed point of both U and V , where V
is given by

V = (I + γAT (T − I)A).

Under the assumption that both B1 and B2 are maximal monotone set-
valued mappings, we can conclude that both JλB1 and JλB2 are fne oper-
ators, and so are av operators. It follows that both U and V are averaged,
as well, so that S is averaged.

Now we can argue just as we did in the proof of convergence of the
algorithm for the SVIP that the sequence {Skx0} converges to a fixed
point of S, which is then a solution of the SMVIP.

16.8 Special Cases of the SMVIP

There are several problems that can be formulated and solved as special
cases of the SMVIP. One example is the split minimization problem.

16.8.1 The Split Minimization Problem

Let f : RJ → R and g : RI → R be lower semicontinuous, convex
functions, and C and Q nonempty, closed, convex subsets of RJ and RI ,
respectively. The split minimization problem is to find x = x∗ ∈ C that
minimizes f(x) over all x ∈ C, and such that q = Ax∗ ∈ Q minimizes g(q)
over all q ∈ Q.



234 Iterative Optimization in Inverse Problems

16.9 The Split Common Null-Point Problem

The split common null-point problem (SCNPP) [69] is related to the
SMVIP. Let H1 and H2 be real Hilbert spaces. Let Bi : H1 → 2H1 , for
i = 1, ..., p, and Fj : H2 → 2H2 , for j = 1, ..., r, be set-valued mappings, and
Aj : H1 → H2 be bounded linear operators. The SCNPP is the following:
find a point x∗ in H1 such that

0 ∈ ∩pi=1Bi(x
∗),

and such that, for y∗j = Aj(x
∗), we have

0 ∈ ∩rj=1Fj(y
∗
j ).

16.10 Exercises

Ex. 16.1 In R2, let A and B be the closed circles with radius one cen-
tered at (−1, 0) and (1, 0), respectively. Show that NA∩B((0, 0)) = R2, while
NA((0, 0)) +NB((0, 0)) is the x-axis.



Chapter 17

Fenchel Duality

17.1 The Legendre-Fenchel Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
17.1.1 The Fenchel Conjugate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
17.1.2 The Conjugate of the Conjugate . . . . . . . . . . . . . . . . . . . . . . . . 236
17.1.3 Some Examples of Conjugate Functions . . . . . . . . . . . . . . . . 237
17.1.4 Infimal Convolution Again . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
17.1.5 Conjugates and Sub-gradients . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
17.1.6 The Conjugate of a Concave Function . . . . . . . . . . . . . . . . . . 239

17.2 Fenchel’s Duality Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
17.2.1 Fenchel’s Duality Theorem: Differentiable Case . . . . . . . . 241
17.2.2 Optimization over Convex Subsets . . . . . . . . . . . . . . . . . . . . . . 242

17.3 An Application to Game Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
17.3.1 Pure and Randomized Strategies . . . . . . . . . . . . . . . . . . . . . . . . 243
17.3.2 The Min-Max Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

17.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

17.1 The Legendre-Fenchel Transformation

The duality between convex functions on RJ and their tangent hyper-
planes is made explicit through the Legendre-Fenchel transformation. In
this chapter we discuss this transformation, state and prove Fenchel’s Du-
ality Theorem, and investigate some of its applications.

Throughout this section f : C ⊆ RJ → R is a closed, proper, convex
function defined on a nonempty, closed convex set C.

17.1.1 The Fenchel Conjugate

We say that a function h(x) : RJ → R is affine if it has the form
h(x) = 〈a, x〉 − γ, for some vector a and scalar γ. If γ = 0, then we call
the function linear. A function such as f(x) = 5x + 2 is commonly called
a linear function in algebra classes, but, according to our definitions, it
should be called an affine function.

For each fixed vector a in RJ , the affine function h(x) = 〈a, x〉 − γ is

235



236 Iterative Optimization in Inverse Problems

beneath the function f(x) if f(x)− h(x) ≥ 0, for all x; that is,

f(x)− 〈a, x〉+ γ ≥ 0,

or

γ ≥ 〈a, x〉 − f(x). (17.1)

This leads us to the following definition, involving the maximum of the
right side of the inequality in (17.1), for each fixed a.

Definition 17.1 The conjugate function associated with f is the function

f∗(a) = supx∈C(〈a, x〉 − f(x)). (17.2)

We then define C∗ to be the set of all a for which f∗(a) is finite. For
each fixed a, the value f∗(a) is the smallest value of γ for which the affine
function h(x) = 〈a, x〉 − γ is beneath f(x) for x ∈ C. The passage from f
to f∗ is the Legendre-Fenchel Transformation.

For example, suppose that f(x) = 1
2x

2. The function h(x) = ax + b is
beneath f(x) for all x if

ax+ b ≤ 1

2
x2,

for all x. Equivalently,

b ≤ 1

2
x2 − ax,

for all x. Then b must not exceed the minimum of the right side, which is
− 1

2a
2 and occurs when x− a = 0, or x = a. Therefore, we have

γ = −b ≥ 1

2
a2.

The smallest value of γ for which this is true is γ = 1
2a

2, so we have
f∗(a) = 1

2a
2.

17.1.2 The Conjugate of the Conjugate

Now we repeat this process with f∗(a) in the role of f(x). For each
fixed vector x, the affine function c(a) = 〈a, x〉 − γ is beneath the function
f∗(a) if f∗(a)− c(a) ≥ 0, for all a ∈ C∗; that is,

f∗(a)− 〈a, x〉+ γ ≥ 0,

or

γ ≥ 〈a, x〉 − f∗(a). (17.3)

This leads us to the following definition, involving the maximum of the
right side of the inequality in (17.3), for each fixed x.



Fenchel Duality 237

Definition 17.2 The conjugate function associated with f∗ is the function

f∗∗(x) = supa(〈a, x〉 − f∗(a)). (17.4)

For each fixed x, the value f∗∗(x) is the smallest value of γ for which the
affine function c(a) = 〈a, x〉 − γ is beneath f∗(a).

Applying the Separation Theorem to the epigraph of the closed, proper,
convex function f(x), it can be shown ([192], Theorem 12.1) that f(x) is
the point-wise supremum of all the affine functions beneath f(x); that is,

f(x) = sup
a,γ
{h(x)|f(x) ≥ h(x)}.

Therefore,

f(x) = sup
a

(
〈a, x〉 − f∗(a)

)
.

This says that

f∗∗(x) = f(x). (17.5)

If f(x) is a differentiable function, then, for each fixed a, the function

g(x) = 〈a, x〉 − f(x)

attains its minimum when

0 = ∇g(x) = a−∇f(x),

which says that a = ∇f(x).

17.1.3 Some Examples of Conjugate Functions

• The exponential function f(x) = exp(x) = ex has conjugate

exp∗(a) = a log a− a, (17.6)

if a > 0, 0 if a = 0, and +∞ if a < 0.

• The function f(x) = − log x, for x > 0, has the conjugate function
f∗(a) = −1− log(−a), for a < 0.

• The function f(x) = |x|p
p has conjugate f∗(a) = |a|q

q , where p > 0,

q > 0, and 1
p + 1

q = 1. Therefore, the function f(x) = 1
2‖x‖

2 is its

own conjugate, that is, f∗(a) = 1
2‖a‖

2.

• Let A be a real symmetric positive-definite matrix and

f(x) =
1

2
〈Ax, x〉.

Then

f∗(a) =
1

2
〈A−1a, a〉.



238 Iterative Optimization in Inverse Problems

• Let iC(x) be the indicator function of the closed convex set C, that
is, iC(x) = 0, if x ∈ C, and ∞ otherwise.Then

i∗C(a) = sup
x∈C
〈a, x〉,

which is the support function of the set C, usually denoted σC(a).

• Let C ⊆ RJ be nonempty, closed and convex. The gauge function of
C is

γC(x) = inf{λ ≥ 0 |x ∈ λC}.

If C = B, the unit ball of RJ , then γB(x) = ‖x‖2. For each C define
the polar set for C by

C0 = {z|〈z, c〉 ≤ 1, for all c ∈ C}.

Then
γ∗C = ιC0 .

• Let C = {x| ||x||2 ≤ 1}, so that the function φ(a) = ‖a‖2 satisfies

φ(a) = sup
x∈C
〈a, x〉.

Then
φ(a) = σC(a) = i∗C(a).

Therefore,
φ∗(x) = σ∗C(x) = i∗∗C (x) = iC(x).

17.1.4 Infimal Convolution Again

The infimal convolution and deconvolution are related to the Fenchel
conjugate; specifically, under suitable conditions, we have

f ⊕ g = (f∗ + g∗)∗,

and
f 	 g = (f∗ − g∗)∗.

See Lucet [161] for details.



Fenchel Duality 239

17.1.5 Conjugates and Sub-gradients

We know from the definition of f∗(a) that

f∗(a) ≥ 〈a, z〉 − f(z),

for all z, and, moreover, f∗(a) is the supremum of these values, taken over
all z. If a is a member of the sub-differential ∂f(x), then, for all z, we have

f(z) ≥ f(x) + 〈a, z − x〉,

so that
〈a, x〉 − f(x) ≥ 〈a, z〉 − f(z).

It follows that
f∗(a) = 〈a, x〉 − f(x),

so that
f(x) + f∗(a) = 〈a, x〉.

If f(x) is a differentiable convex function, then a is in the sub-differential
∂f(x) if and only if a = ∇f(x). Then we can say

f(x) + f∗(∇f(x)) = 〈∇f(x), x〉. (17.7)

If a = ∇f(x1) and a = ∇f(x2), then the function

g(x) = 〈a, x〉 − f(x)

attains its minimum value at x = x1 and at x = x2, so that

f∗(a) = 〈a, x1〉 − ∇f(x1) = 〈a, x2〉 − f(x2).

Let us denote by x = (∇f)−1(a) any x for which ∇f(x) = a. Then the
conjugate of the differentiable function f : C ⊆ RJ → R can then be defined
as follows [192]. Let D be the image of the set C under the mapping ∇f .
Then, for all a ∈ D, define

f∗(a) = 〈a, (∇f)−1(a)〉 − f((∇f)−1(a)). (17.8)

The formula in Equation (17.8) is also called the Legendre Transform .

17.1.6 The Conjugate of a Concave Function

A function g : D ⊆ RJ → R is concave if f(x) = −g(x) is convex.
One might think that the conjugate of a concave function g is simply the
negative of the conjugate of −g, but not quite.



240 Iterative Optimization in Inverse Problems

The affine function h(x) = 〈a, x〉−γ is above the concave function g(x)
if h(x)− g(x) ≥ 0, for all x ∈ D; that is,

〈a, x〉 − γ − g(x) ≥ 0,

or

γ ≤ 〈a, x〉 − g(x). (17.9)

The conjugate function associated with g is the function

g∗(a) = infx(〈a, x〉 − g(x)). (17.10)

For each fixed a, the value g∗(a) is the largest value of γ for which the
affine function h(x) = 〈a, x〉 − γ is above g(x).

It follows, using f(x) = −g(x), that

g∗(a) = infx(〈a, x〉+ f(x)) = −supx(〈−a, x〉 − f(x)) = −f∗(−a).

17.2 Fenchel’s Duality Theorem

Let f(x) be a proper convex function on C ⊆ RJ and g(x) a proper
concave function on D ⊆ RJ , where C and D are closed convex sets with
nonempty intersection. Fenchel’s Duality Theorem deals with the problem
of minimizing the difference f(x)− g(x) over x ∈ C ∩D.

We know from our discussion of conjugate functions and differentiability
that

−f∗(a) ≤ f(x)− 〈a, x〉,

and
g∗(a) ≤ 〈a, x〉 − g(x).

Therefore,
f(x)− g(x) ≥ g∗(a)− f∗(a),

for all x and a, and so

inf
x

(
f(x)− g(x)

)
≥ sup

a

(
g∗(a)− f∗(a)

)
.

We let C∗ be the set of all a such that f∗(a) is finite, with D∗ similarly
defined.

The Fenchel Duality Theorem, in its general form, as found in [162] and
[192], is as follows.



Fenchel Duality 241

Theorem 17.1 Assume that C ∩ D has points in the relative interior of
both C and D, and that either the epigraph of f or that of g has nonempty
interior. Suppose that

µ = inf
x∈C∩D

(
f(x)− g(x)

)
is finite. Then

µ = inf
x∈C∩D

(
f(x)− g(x)

)
= max
a∈C∗∩D∗

(
g∗(a)− f∗(a)

)
,

where the maximum on the right is achieved at some a0 ∈ C∗ ∩D∗.
If the infimum on the left is achieved at some x0 ∈ C ∩D, then

max
x∈C

(
〈x, a0〉 − f(x)

)
= 〈x0, a0〉 − f(x0),

and
min
x∈D

(
〈x, a0〉 − g(x)

)
= 〈x0, a0〉 − g(x0).

The conditions on the interiors are needed to make use of sub-
differentials. For simplicity, we shall limit our discussion to the case of
differentiable f(x) and g(x).

17.2.1 Fenchel’s Duality Theorem: Differentiable Case

We suppose now that there is x0 ∈ C ∩D such that

inf
x∈C∩D

(f(x)− g(x)) = f(x0)− g(x0),

and that
∇(f − g)(x0) = 0,

or

∇f(x0) = ∇g(x0). (17.11)

Let ∇f(x0) = a0. From the equation

f(x) + f∗(∇f(x)) = 〈∇f(x), x〉

and Equation (17.11),we have

f(x0)− g(x0) = g∗(a0)− f∗(a0),

from which it follows that

inf
x∈C∩D

(f(x)− g(x)) = sup
a∈C∗∩D∗

(g∗(a)− f∗(a)).

This is Fenchel’s Duality Theorem.



242 Iterative Optimization in Inverse Problems

17.2.2 Optimization over Convex Subsets

Suppose now that f(x) is convex and differentiable on RJ , but we are
only interested in its values on the nonempty closed convex set C. Then we
redefine f(x) = +∞ for x not in C. The affine function h(x) = 〈a, x〉 − γ
is beneath f(x) for all x if and only if it is beneath f(x) for x ∈ C. This
motivates our defining the conjugate function now as

f∗(a) = sup
x∈C
〈a, x〉 − f(x).

Similarly, let g(x) be concave on D and g(x) = −∞ for x not in D. Then
we define

g∗(a) = inf
x∈D
〈a, x〉 − g(x).

Let
C∗ = {a| f∗(a) < +∞},

and define D∗ similarly. We can use Fenchel’s Duality Theorem to minimize
the difference f(x)− g(x) over the intersection C ∩D.

To illustrate the use of Fenchel’s Duality Theorem, consider the problem
of minimizing the convex function f(x) over the convex set D. Let C = RJ
and g(x) = 0, for all x. Then

f∗(a) = sup
x∈C

(
〈a, x〉 − f(x)

)
= sup

x

(
〈a, x〉 − f(x)

)
,

and
g∗(a) = inf

x∈D

(
〈a, x〉 − g(x)

)
= inf
x∈D
〈a, x〉.

The supremum is unconstrained and the infimum is with respect to a linear
functional. Then, by Fenchel’s Duality Theorem, we have

max
a∈C∗∩D∗

(g∗(a)− f∗(a)) = inf
x∈D

f(x).

17.3 An Application to Game Theory

In this section we apply the Fenchel Duality Theorem to prove the
Min-Max Theorem for two-person zero-sum matrix games.



Fenchel Duality 243

17.3.1 Pure and Randomized Strategies

In a two-person game, the first player selects a row of the matrix A, say
i, and the second player selects a column of A, say j. The second player pays
the first player Aij . If some Aij < 0, then this means that the first player
pays the second. As we discussed previously, there need not be optimal pure
strategies for the two players and it may be sensible for them, over the long
run, to select their strategies according to some random mechanism. The
issues then are which vectors of probabilities will prove optimal and do
such optimal probability vectors always exist. The Min-Max Theorem, also
known as the Fundamental Theorem of Game Theory, asserts that such
optimal probability vectors always exist.

17.3.2 The Min-Max Theorem

In [162], Luenberger uses the Fenchel Duality Theorem to prove the
Min-Max Theorem for two-person games. His formulation is in Banach
spaces, while we shall limit our discussion to finite-dimensional Euclidean
spaces.

Let A be an I by J pay-off matrix, whose entries represent the payoffs
from the second player to the first. Let

P = {p = (p1, ..., pI) | pi ≥ 0,

I∑
i=1

pi = 1},

S = {s = (s1, ..., sI) | si ≥ 0,

I∑
i=1

si ≤ 1},

and

Q = {q = (q1, ..., qJ) | qj ≥ 0,

J∑
j=1

qj = 1}.

The set S is the convex hull of the set P .
The first player selects a vector p in P and the second selects a vector

q in Q. The expected pay-off to the first player is

E = 〈p,Aq〉.

Let
m0 = max

p∈P
min
q∈Q
〈p,Aq〉,

and
m0 = min

q∈Q
max
p∈P
〈p,Aq〉.



244 Iterative Optimization in Inverse Problems

Clearly, we have

min
q∈Q
〈p,Aq〉 ≤ 〈p,Aq〉 ≤ max

p∈P
〈p,Aq〉,

for all p ∈ P and q ∈ Q. It follows that m0 ≤ m0. We show that m0 = m0.
Define

f(x) = max
p∈P
〈p, x〉,

which is equivalent to
f(x) = max

s∈S
〈s, x〉.

Then f is convex and continuous on RI . We want minq∈Q f(Aq).
We apply Fenchel’s Duality Theorem, with f = f , g = 0, D = A(Q),

and C = RI . Now we have

inf
x∈C∩D

(f(x)− g(x)) = min
q∈Q

f(Aq).

We claim that the following are true:

• 1) D∗ = RI ;

• 2) g∗(a) = minq∈Q〈a,Aq〉;

• 3) C∗ = S;

• 4) f∗(a) = 0, for all a in S.

The first two claims are immediate. To prove the third one, we take a
vector a ∈ RI that is not in S. Then, by the separation theorem, we can
find x ∈ RI and α > 0 such that

〈x, a〉 > α+ 〈x, s〉,

for all s ∈ S. Then
〈x, a〉 −max

s∈S
〈x, s〉 ≥ α > 0.

Now take k > 0 large and y = kx. Since

〈y, s〉 = k〈x, s〉,

we know that
〈y, a〉 −max

s∈S
〈y, s〉 = 〈y, a〉 − f(y) > 0

and can be made arbitrarily large by taking k > 0 large. It follows that
f∗(a) is not finite if a is not in S, so that C∗ = S.

As for the fourth claim, if a ∈ S, then

〈y, a〉 −max
s∈S
〈y, s〉



Fenchel Duality 245

achieves its maximum value of zero at y = 0, so f∗(a) = 0.
Finally, we have

min
q∈Q

max
p∈P
〈p,Aq〉 = min

q∈Q
f(Aq) = max

a∈S
g∗(a) = max

a∈S
min
q∈Q
〈p,Aq〉.

Therefore,
min
q∈Q

max
p∈P
〈p,Aq〉 = max

p∈P
min
q∈Q
〈p,Aq〉.

17.4 Exercises

Ex. 17.1 Show that the exponential function f(x) = exp(x) = ex has con-
jugate

exp∗(a) = a log a− a, (17.12)

if a > 0, 0 if a = 0, and +∞ if a < 0.

Ex. 17.2 Show that the function f(x) = − log x, for x > 0, has the conju-
gate function f∗(a) = −1− log(−a), for a < 0.

Ex. 17.3 Show that the function f(x) = |x|p
p has conjugate f∗(a) = |a|q

q ,

where p > 0, q > 0, and 1
p + 1

q = 1. Therefore, the function f(x) = 1
2‖x‖

2
2

is its own conjugate, that is, f∗(a) = 1
2‖a‖

2
2.

Ex. 17.4 Let A be a real symmetric positive-definite matrix and

f(x) =
1

2
〈Ax, x〉.

Show that

f∗(a) =
1

2
〈A−1a, a〉.

Hints: Find ∇f(x) and use Equation (17.8).





Chapter 18

Compressed Sensing

18.1 Compressed Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
18.2 Sparse Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
18.3 Minimum One-Norm Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

18.3.1 Why the One-Norm? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
18.3.2 Comparison with the PDFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
18.3.3 Iterative Reweighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

18.4 Why Sparseness? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
18.4.1 Signal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
18.4.2 Locally Constant Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
18.4.3 Tomographic Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

18.5 Compressed Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

18.1 Compressed Sensing

One area that has attracted much attention lately is compressed sensing
or compressed sampling (CS) [111]. For applications such as medical imag-
ing, CS may provide a means of reducing radiation dosage to the patient
without sacrificing image quality. An important aspect of CS is finding
sparse solutions of under-determined systems of linear equations, which
can often be accomplished by one-norm minimization. Perhaps the best
reference to date on CS is [36].

The objective in CS is exploit sparseness to reconstruct a vector f in
RJ from relatively few linear functional measurements [111].

Let U = {u1, u2, ..., uJ} and V = {v1, v2, ..., vJ} be two orthonormal
bases for RJ , with all members of RJ represented as column vectors. For
i = 1, 2, ..., J , let

µi = max
1≤j≤J

{|〈ui, vj〉|}

and
µ(U, V ) = max{µi |i = 1, ..., I}.

We know from Cauchy’s Inequality that

|〈ui, vj〉| ≤ 1,

247



248 Iterative Optimization in Inverse Problems

and from Parseval’s Equation

J∑
j=1

|〈ui, vj〉|2 = ||ui||22 = 1.

Therefore, we have
1√
J
≤ µ(U, V ) ≤ 1.

The quantity µ(U, V ) is the coherence measure of the two bases; the closer
µ(U, V ) is to the lower bound of 1√

J
, the more incoherent the two bases

are.
Let f be a fixed member of RJ ; we expand f in the V basis as

f = x1v
1 + x2v

2 + ...+ xJv
J .

We say that the coefficient vector x = (x1, ..., xJ) is s-sparse if s is the
number of non-zero xj .

If s is small, most of the xj are zero, but since we do not know which
ones these are, we would have to compute all the linear functional values

xj = 〈f, vj〉

to recover f exactly. In fact, the smaller s is, the harder it would be to learn
anything from randomly selected xj , since most would be zero. The idea in
CS is to obtain measurements of f with members of a different orthonormal
basis, which we call the U basis. If the members of U are very much like
the members of V , then nothing is gained. But, if the members of U are
quite unlike the members of V , then each inner product measurement

yi = 〈f, ui〉 = fTui

should tell us something about f . If the two bases are sufficiently inco-
herent, then relatively few yi values should tell us quite a bit about f .
Specifically, we have the following result due to Candès and Romberg [74]:
suppose the coefficient vector x for representing f in the V basis is s-sparse.
Select uniformly randomly M ≤ J members of the U basis and compute
the measurements yi = 〈f, ui〉 . Then, if M is sufficiently large, it is highly
probable that z = x also solves the problem of minimizing the one-norm

||z||1 = |z1|+ |z2|+ ...+ |zJ |,

subject to the conditions

yi = 〈g, ui〉 = gTui,

for those M randomly selected ui, where

g = z1v
1 + z2v

2 + ...+ zJv
J .

The smaller µ(U, V ) is, the smaller the M is permitted to be without re-
ducing the probability of perfect reconstruction.



Compressed Sensing 249

18.2 Sparse Solutions

Suppose that A is a real M by N matrix, with M < N , and that the
linear system Ax = b has infinitely many solutions. For any vector x, we
define the support of x to be the subset S of {1, 2, ..., N} consisting of those
n for which the entries xn 6= 0. For any under-determined system Ax = b,
there will, of course, be at least one solution of minimum support, that is,
for which s = |S|, the size of the support set S, is minimum. However, find-
ing such a maximally sparse solution requires combinatorial optimization,
and is known to be computationally difficult. It is important, therefore,
to have a computationally tractable method for finding maximally sparse
solutions.

Consider the problem P0: among all solutions x of the consistent sys-
tem b = Ax, find one, call it x̂, that is maximally sparse, that is, has
the minimum number of non-zero entries. Obviously, there will be at least
one such solution having minimal support, but finding one, however, is a
combinatorial optimization problem and is generally NP-hard.

18.3 Minimum One-Norm Solutions

Instead, we can seek a minimum one-norm solution x∗, that is, solve
the problem P1: minimize

||x||1 =

N∑
n=1

|xn|,

subject to Ax = b. As we shall see shortly, problem P1 can be formulated as
a linear programming problem, so is more easily solved. The big questions
are: when does P1 have a unique solution x∗, and when is x∗ = x̂? The
problem P1 will have a unique solution if and only if A is such that the
one-norm satisfies

||x∗||1 < ||x∗ + v||1,
for all non-zero v in the null space of A.

If the vector x is required to be nonnegative, then the one-norm is simply
the sum of the entries, and minimizing the one-norm subject to Ax = b be-
comes a linear programming problem. This is the situation in applications
involving image reconstruction. Generally, though, the vector x cannot be
assumed to be nonnegative. The one-norm is not a linear functional of x,
but the problem can still be converted into a linear programming problem.



250 Iterative Optimization in Inverse Problems

The entries of x need not be nonnegative, so the problem is not yet a
linear programming problem. Let

B =
[
A −A

]
,

and consider the linear programming problem of minimizing the function

cT z =

2J∑
j=1

zj ,

subject to the constraints z ≥ 0, and Bz = b. Let z∗ be the solution. We
write

z∗ =

[
u∗

v∗

]
.

Then, as we shall see, x∗ = u∗ − v∗ minimizes the one-norm, subject to
Ax = b.

First, we show that u∗jv
∗
j = 0, for each j. If, say, there is a j such that

0 < v∗j ≤ u∗j , then we can create a new vector z from z∗ by replacing the
old u∗j with u∗j − v∗j and the old v∗j with zero, while maintaining Bz = b.

But then, since u∗j − v∗j < u∗j + v∗j , it follows that cT z < cT z∗, which is a

contradiction. Consequently, we have ‖x∗‖1 = cT z∗.
Now we select any x with Ax = b. Write uj = xj , if xj ≥ 0, and uj = 0,

otherwise. Let vj = uj − xj , so that x = u− v. Then let

z =

[
u
v

]
.

Then b = Ax = Bz, and cT z = ‖x‖1. Therefore

‖x∗‖1 = cT z∗ ≤ cT z = ‖x‖1,

and x∗ must be a minimum one-norm solution.

18.3.1 Why the One-Norm?

When a system of linear equations Ax = b is under-determined, we
can find the minimum-two-norm solution that minimizes the square of the
two-norm,

||x||22 =

N∑
n=1

x2n,

subject to Ax = b. One drawback to this approach is that the two-norm
penalizes relatively large values of xn much more than the smaller ones,



Compressed Sensing 251

so tends to provide non-sparse solutions. Alternatively, we may seek the
solution x∗ for which the one-norm,

||x||1 =

N∑
n=1

|xn|,

is minimized. The one-norm still penalizes relatively large entries xn more
than the smaller ones, but much less than the two-norm does. As a result,
it often happens that the minimum one-norm solution actually solves P0

as well.

18.3.2 Comparison with the PDFT

The PDFT approach [41, 42] to solving the under-determined system
Ax = b is to select weights wn > 0 and then to find the solution x̃ that
minimizes the weighted two-norm given by

N∑
n=1

|xn|2wn.

Our intention is to select weights wn so that w−1n is reasonably close to
|x∗n|; consider, therefore, what happens when w−1n = |x∗n|. We claim that x̃
is also a minimum-one-norm solution.

To see why this is true, note that, for any x, we have

N∑
n=1

|xn| =
N∑
n=1

|xn|√
|x∗n|

√
|x∗n|

≤

√√√√ N∑
n=1

|xn|2
|x∗n|

√√√√ N∑
n=1

|x∗n|.

Therefore,

N∑
n=1

|x̃n| ≤

√√√√ N∑
n=1

|x̃n|2
|x∗n|

√√√√ N∑
n=1

|x∗n|

≤

√√√√ N∑
n=1

|x∗n|2
|x∗n|

√√√√ N∑
n=1

|x∗n| =
N∑
n=1

|x∗n|.

Therefore, x̃ also minimizes the one-norm.



252 Iterative Optimization in Inverse Problems

18.3.3 Iterative Reweighting

Let x denote the truth. We want each weight wn to be a good prior
estimate of the reciprocal of |xn|. Because we do not yet know x, we may
take a sequential-optimization approach, beginning with weights w0

n > 0,
finding the PDFT solution using these weights, then using this PDFT so-
lution to get a (we hope!) better choice for the weights, and so on. This
sequential approach was successfully implemented in the early 1980’s by
Michael Fiddy and his students [127].

In [75], the same approach is taken, but with respect to the one-norm.
Since the one-norm still penalizes larger values disproportionately, balance
can be achieved by minimizing a weighted-one-norm, with weights close
to the reciprocals of the |x∗n|. Again, not yet knowing x∗, they employ a
sequential approach, using the previous minimum-weighted-one-norm so-
lution to obtain the new set of weights for the next minimization. At each
step of the sequential procedure, the previous reconstruction is used to
estimate the true support of the desired solution.

It is interesting to note that an on-going debate among users of the
PDFT concerns the nature of the prior weighting. Again, let x be the
truth. Does wn approximate |xn|−1 or |xn|−2? This is close to the issue
treated in [75], the use of a weight in the minimum-one-norm approach.

It should be noted again that finding a sparse solution is not usually
the goal in the use of the PDFT, but the use of the weights has much the
same effect as using the one-norm to find sparse solutions: to the extent
that the weights approximate the entries of |x∗|−1, their use reduces the
penalty associated with the larger entries of an estimated solution.

18.4 Why Sparseness?

One obvious reason for wanting sparse solutions of Ax = b is that we
have prior knowledge that the desired solution is sparse. Such a problem
arises in signal analysis from Fourier-transform data. In other cases, such
as in the reconstruction of locally constant signals, it is not the signal itself,
but its discrete derivative, that is sparse.



Compressed Sensing 253

18.4.1 Signal Analysis

Suppose that our signal f(t) is known to consist of a small number of
complex exponentials, so that f(t) has the form

f(t) =

J∑
j=1

aje
iωjt,

for some small number of frequencies ωj in the interval [0, 2π). For n =
0, 1, ..., N − 1, let fn = f(n), and let f be the N -vector with entries fn;
we assume that J is much smaller than N . The discrete (vector) Fourier

transform of f is the vector f̂ having the entries

f̂k =
1√
N

N−1∑
n=0

fne
2πikn/N ,

for k = 0, 1, ..., N−1; we write f̂ = Ef , where E is the N by N matrix with
entries Ekn = 1√

N
e2πikn/N . If N is large enough, we may safely assume that

each of the ωj is equal to one of the frequencies 2πik and that the vector f̂
is J-sparse. The question now is: How many values of f(n) do we need to
calculate in order to be sure that we can recapture f(t) exactly? We have
the following theorem [73]:

Theorem 18.1 Let N be prime. Let S be any subset of {0, 1, ..., N − 1}
with |S| ≥ 2J . Then the vector f̂ can be uniquely determined from the
measurements fn for n in S.

We know that
f = E†f̂ ,

where E† is the conjugate transpose of the matrix E. The point here is
that, for any matrix R obtained from the identity matrix I by deleting
N − |S| rows, we can recover the vector f̂ from the measurements Rf .

If N is not prime, then the assertion of the theorem may not hold, since
we can have n = 0 modN , without n = 0. However, the assertion remains
valid for most sets of J frequencies and most subsets S of indices; therefore,
with high probability, we can recover the vector f̂ from Rf .

Note that the matrix E is unitary, that is, E†E = I, and, equivalently,
the columns of E form an orthonormal basis for CN . The data vector is

b = Rf = RE†f̂ .

In this example, the vector f is not sparse, but can be represented sparsely
in a particular orthonormal basis, namely as f = E†f̂ , using a sparse vector
f̂ of coefficients. The representing basis then consists of the columns of the



254 Iterative Optimization in Inverse Problems

matrix E†. The measurements pertaining to the vector f are the values fn,
for n in S. Since fn can be viewed as the inner product of f with δn, the
nth column of the identity matrix I, that is,

fn = 〈δn, f〉,

the columns of I provide the so-called sampling basis. With A = RE† and
x = f̂ , we then have

Ax = b,

with the vector x sparse. It is important for what follows to note that the
matrix A is random, in the sense that we choose which rows of I to use to
form R.

18.4.2 Locally Constant Signals

Suppose now that the function f(t) is locally constant, consisting of
some number of horizontal lines. We discretize the function f(t) to get
the vector f = (f(0), f(1), ..., f(N))T . The discrete derivative vector is
g = (g1, g2, ..., gN )T , with

gn = f(n)− f(n− 1).

Since f(t) is locally constant, the vector g is sparse. The data we will have
will not typically be values f(n). The goal will be to recover f from M
linear functional values pertaining to f , where M is much smaller than N .
We shall assume, from now on, that we have measured, or can estimate,
the value f(0).

Our M by 1 data vector d consists of measurements pertaining to the
vector f :

dm =

N∑
n=0

Hmnfn,

for m = 1, ...,M , where the Hmn are known. We can then write

dm = f(0)
( N∑
n=0

Hmn

)
+

N∑
k=1

( N∑
j=k

Hmj

)
gk.

Since f(0) is known, we can write

bm = dm − f(0)
( N∑
n=0

Hmn

)
=

N∑
k=1

Amkgk,

where

Amk =

N∑
j=k

Hmj .



Compressed Sensing 255

The problem is then to find a sparse solution of Ax = g. As in the previous
example, we often have the freedom to select the linear functions, that is,
the values Hmn, so the matrix A can be viewed as random.

18.4.3 Tomographic Imaging

The reconstruction of tomographic images is an important aspect of
medical diagnosis, and one that combines aspects of both of the previous
examples. The data one obtains from the scanning process can often be
interpreted as values of the Fourier transform of the desired image; this is
precisely the case in magnetic-resonance imaging, and approximately true
for x-ray transmission tomography, positron-emission tomography (PET)
and single-photon emission tomography (SPECT). The images one encoun-
ters in medical diagnosis are often approximately locally constant, so the
associated array of discrete partial derivatives will be sparse. If this sparse
derivative array can be recovered from relatively few Fourier-transform val-
ues, then the scanning time can be reduced.

We turn now to the more general problem of compressed sampling.

18.5 Compressed Sampling

Our goal is to recover the vector f = (f1, ..., fN )T from M linear func-
tional values of f , where M is much less than N . In general, this is not
possible without prior information about the vector f . In compressed sam-
pling, the prior information concerns the sparseness of either f itself, or
another vector linearly related to f .

Let U and V be unitary N by N matrices, so that the column vectors
of both U and V form orthonormal bases for CN . We shall refer to the
bases associated with U and V as the sampling basis and the representing
basis, respectively. The first objective is to find a unitary matrix V so that
f = V x, where x is sparse. Then we want to find a second unitary matrix
U such that, when an M by N matrix R is obtained from U by deleting
rows, the sparse vector x can be determined from the data b = RV x = Ax.
Theorems in compressed sensing describe properties of the matrices U and
V such that, when R is obtained from U by a random selection of the rows
of U , the vector x will be uniquely determined, with high probability, as
the unique solution that minimizes the one-norm.





Chapter 19

Appendix: Bregman-Legendre
Functions

19.1 Essential Smoothness and Essential Strict Convexity . . . . . . . . . . . 257
19.2 Bregman Projections onto Closed Convex Sets . . . . . . . . . . . . . . . . . . 258
19.3 Bregman-Legendre Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

19.3.1 Useful Results about Bregman-Legendre Functions . . . . . 259

In [13] Bauschke and Borwein show convincingly that the Bregman-
Legendre functions provide the proper context for the discussion of Breg-
man projections onto closed convex sets. The summary here follows closely
the discussion given in [13].

19.1 Essential Smoothness and Essential Strict Con-
vexity

Following [192] we say that a closed proper convex function f is essen-
tially smooth if intD is not empty, f is differentiable on intD and xn ∈
intD, with xn → x ∈ bdD, implies that ||∇f(xn)||2 → +∞. Here

D = {x|f(x) < +∞},

and intD and bdD denote the interior and boundary of the set D. A closed
proper convex function f is essentially strictly convex if f is strictly convex
on every convex subset of dom ∂f .

The closed proper convex function f is essentially smooth if and only if
the subdifferential ∂f(x) is empty for x ∈ bdD and is {∇f(x)} for x ∈ intD
(so f is differentiable on intD) if and only if the function f∗ is essentially
strictly convex.

Definition 19.1 A closed proper convex function f is said to be a Legen-
dre function if it is both essentially smooth and essentialy strictly convex.

So f is Legendre if and only if its conjugate function is Legendre, in

257



258 Iterative Optimization in Inverse Problems

which case the gradient operator ∇f is a topological isomorphism with
∇f∗ as its inverse. The gradient operator ∇f maps int dom f onto int
dom f∗. If int dom f∗ = RJ then the range of ∇f is RJ and the equation
∇f(x) = y can be solved for every y ∈ RJ . In order for int dom f∗ = RJ it
is necessary and sufficient that the Legendre function f be super-coercive,
that is,

lim
||x||2→+∞

f(x)

||x||2
= +∞. (19.1)

If the effective domain of f is bounded, then f is super-coercive and its
gradient operator is a mapping onto the space RJ .

19.2 Bregman Projections onto Closed Convex Sets

Let f be a closed proper convex function that is differentiable on the
nonempty set intD. The corresponding Bregman distance Df (x, z) is de-
fined for x ∈ RJ and z ∈ intD by

Df (x, z) = f(x)− f(z)− 〈∇f(z), x− z〉. (19.2)

Note that Df (x, z) ≥ 0 always and that Df (x, z) = +∞ is possible. If f is
essentially strictly convex then Df (x, z) = 0 implies that x = z.

Let K be a nonempty closed convex set with K ∩ intD 6= ∅. Pick z ∈
intD. The Bregman projection of z onto K, with respect to f , is

P fK(z) = argminx∈K∩DDf (x, z). (19.3)

If f is essentially strictly convex, then P fK(z) exists. If f is strictly convex

on D then P fK(z) is unique. If f is Legendre, then P fK(z) is uniquely defined
and is in intD; this last condition is sometimes called zone consistency.

Example: Let J = 2 and f(x) be the function that is equal to one-half the
norm squared on D, the nonnegative quadrant, +∞ elsewhere. Let K be
the set K = {(x1, x2)|x1 + x2 = 1}. The Bregman projection of (2, 1) onto
K is (1, 0), which is not in intD. The function f is not essentially smooth,
although it is essentially strictly convex. Its conjugate is the function f∗

that is equal to one-half the norm squared on D and equal to zero elsewhere;
it is essentially smooth, but not essentially strictly convex.

If f is Legendre, then P fK(z) is the unique member of K∩intD satisfying
the inequality

〈∇f(P fK(z))−∇f(z), P fK(z)− c〉 ≥ 0, (19.4)



Appendix: Bregman-Legendre Functions 259

for all c ∈ K. From this we obtain the Bregman Inequality:

Df (c, z) ≥ Df (c, P fK(z)) +Df (P fK(z), z), (19.5)

for all c ∈ K.

19.3 Bregman-Legendre Functions

Following Bauschke and Borwein [13], we say that a Legendre function
f is a Bregman-Legendre function if the following properties hold:

B1: for x in D and any a > 0 the set {z|Df (x, z) ≤ a} is bounded.
B2: if x is in D but not in intD, for each positive integer n, yn is in intD
with yn → y ∈ bdD and if {Df (x, yn)} remains bounded, then Df (y, yn)→
0, so that y ∈ D.
B3: if xn and yn are in intD, with xn → x and yn → y, where x and y are
in D but not in intD, and if Df (xn, yn)→ 0 then x = y.

Bauschke and Borwein then prove that Bregman’s SGP method converges
to a member of K provided that one of the following holds: 1) f is Bregman-
Legendre; 2) K ∩ intD 6= ∅ and dom f∗ is open; or 3) dom f and dom f∗

are both open.
The Bregman functions form a class closely related to the Bregman-

Legendre functions. For details see [39].

19.3.1 Useful Results about Bregman-Legendre Functions

The following results are proved in somewhat more generality in [13].
R1: If yn ∈ int dom f and yn → y ∈ int dom f , then Df (y, yn)→ 0.
R2: If x and yn ∈ int dom f and yn → y ∈ bd dom f , then Df (x, yn) →
+∞.
R3: If xn ∈ D, xn → x ∈ D, yn ∈ int D, yn → y ∈ D, {x, y}∩ int D 6= ∅
and Df (xn, yn)→ 0, then x = y and y ∈ int D.
R4: If x and y are in D, but are not in int D, yn ∈ int D, yn → y and
Df (x, yn)→ 0, then x = y.
As a consequence of these results we have the following.
R5: If {Df (x, yn)} → 0, for yn ∈ int D and x ∈ RJ , then {yn} → x.

Proof of R5: Since {Df (x, yn)} is eventually finite, we have x ∈ D. By
Property B1 above it follows that the sequence {yn} is bounded; without
loss of generality, we assume that {yn} → y, for some y ∈ D. If x is in int



260 Iterative Optimization in Inverse Problems

D, then, by result R2 above, we know that y is also in int D. Applying
result R3, with xn = x, for all n, we conclude that x = y. If, on the other
hand, x is in D, but not in int D, then y is in D, by result R2. There are
two cases to consider: 1) y is in int D; 2) y is not in int D. In case 1) we
have Df (x, yn) → Df (x, y) = 0, from which it follows that x = y. In case
2) we apply result R4 to conclude that x = y.



Bibliography

[1] Anderson, A. and Kak, A. (1984) “Simultaneous algebraic reconstruc-
tion technique (SART): a superior implementation of the ART algo-
rithm.” Ultrasonic Imaging, 6 pp. 81–94.

[2] Attouch, H., Briceño-Arias, L.M., and Combettes, P. (2010) “A paral-
lel splitting method for coupled monotone inclusions.” SIAM J. Con-
trol Optim., 48, pp. 3246–3270.

[3] Attouch, H. (1984) Variational Convergence for Functions and Oper-
ators, Boston: Pitman Advanced Publishing Program.

[4] Attouch, H., and Wets, R. (1989) “Epigraphical analysis.” Ann. Inst.
Poincare: Anal. Nonlineaire, 6.

[5] Aubin, J.-P., (1993) Optima and Equilibria: An Introduction to Non-
linear Analysis, Springer-Verlag.

[6] Aubin, J.-P., and Ekeland, I. (1984) Applied Nonlinear Analysis, New
York: Wiley.

[7] Auslander, A., and Teboulle, M. (2006) “Interior gradient and prox-
imal methods for convex and conic optimization.” SIAM Journal on
Optimization, 16(3), pp. 697–725.

[8] Axelsson, O. (1994) Iterative Solution Methods. Cambridge, UK: Cam-
bridge University Press.

[9] Baillon, J.-B., Bruck, R.E., and Reich, S. (1978) “On the asymp-
totic behavior of nonexpansive mappings and semigroups in Banach
spaces.” Houston Journal of Mathematics, 4, pp. 1–9.

[10] Bauschke, H. (1996) “The approximation of fixed points of composi-
tions of nonexpansive mappings in Hilbert space.”Journal of Mathe-
matical Analysis and Applications, 202, pp. 150–159.

[11] Bauschke, H., and Borwein, J. (1993) “On the convergence of von
Neumann’s alternating projection algorithm for two sets.” Set-Valued
Analysis, 1, pp. 185–212.

261



262 Bibliography

[12] Bauschke, H., and Borwein, J. (1996) “On projection algorithms for
solving convex feasibility problems.” SIAM Review, 38 (3), pp. 367–
426.

[13] Bauschke, H., and Borwein, J. (1997) “Legendre functions and the
method of random Bregman projections.” Journal of Convex Analysis,
4, pp. 27–67.

[14] Bauschke, H., and Borwein, J. (2001) “Joint and separate convexity
of the Bregman distance.” in [38], pp. 23–36.

[15] Bauschke, H., and Combettes, P. (2001) “A weak-to-strong conver-
gence principle for Fejér monotone methods in Hilbert spaces.” Math-
ematics of Operations Research, 26, pp. 248–264.

[16] Bauschke, H., and Combettes, P. (2003) “Iterating Bregman retrac-
tions.” SIAM Journal on Optimization, 13, pp. 1159–1173.

[17] Bauschke, H., Combettes, P., and Noll, D. (2006) “Joint minimization
with alternating Bregman proximity operators.” Pacific Journal of
Optimization, 2, pp. 401–424.

[18] Bauschke, H., and Combettes, P. Convex Analysis and Monotone Op-
erator Theory in Hilbert Spaces, New York: Springer CMS Books in
Mathematics, 2011.

[19] Bauschke, H., and Lewis, A. (2000) “Dykstra’s algorithm with Breg-
man projections: a convergence proof.” Optimization, 48, pp. 409–427.

[20] Bauschke, H., Burachik, R., Combettes, P., Elser, V., Luke, D., and
Wolkowitz, H., eds. Fixed-Point Algorithms for Inverse Problems in
Science and Engineering, New York: Springer-Verlag, 2011.

[21] Becker, M., Yang, I., and Lange, K. (1997) “EM algorithms without
missing data.” Stat. Methods Med. Res., 6, pp. 38–54.

[22] Berinde, V. (2007) Iterative Approximation of Fixed Points, Berlin:
Springer-Verlag.

[23] Bertero, M., and Boccacci, P. (1998) Introduction to Inverse Problems
in Imaging, Bristol, UK: Institute of Physics Publishing.

[24] Bertsekas, D.P. (1997) “A new class of incremental gradient methods
for least squares problems.” SIAM J. Optim., 7, pp. 913-926.

[25] Bertsekas, D., and Tsitsiklis, J. (1989) Parallel and Distributed Com-
putation: Numerical Methods. New Jersey: Prentice-Hall.



Bibliography 263

[26] Bertsekas, D. Convex Analysis and Optimization, Nashua, NH: Athena
Scientific, 2003.

[27] Borwein, J. and Lewis, A. (2000) Convex Analysis and Nonlinear Op-
timization. Canadian Mathematical Society Books in Mathematics,
New York: Springer-Verlag.

[28] Boyd, S., and Vandenberghe, L. (2004) Convex Optimization. Cam-
bridge, England: Cambridge University Press.

[29] Boyles, R. (1983) “On the convergence of the EM algorithm.” J. Roy.
Statist. Soc. B, 45 pp. 47–50.

[30] Brauer, A. (1946) “Characteristic roots of a matrix.” Duke Mathe-
matics Journal, 13, pp. 387–395.

[31] Bregman, L.M. (1967) “The relaxation method of finding the common
point of convex sets and its application to the solution of problems in
convex programming.”USSR Computational Mathematics and Math-
ematical Physics 7: pp. 200–217.

[32] Bregman, L., Censor, Y., and Reich, S. (1999) “Dykstra’s algorithm as
the nonlinear extension of Bregman’s optimization method.” Journal
of Convex Analysis, 6 (2), pp. 319–333.

[33] Browne, E. (1930) “The characteristic roots of a matrix.” Bulletin of
the American Mathematical Society, 36, pp. 705–710.

[34] Browne, J. and A. DePierro, A. (1996) “A row-action alternative to
the EM algorithm for maximizing likelihoods in emission tomogra-
phy.”IEEE Trans. Med. Imag. 15, pp. 687–699.

[35] Bruck, R.E., and Reich, S. (1977) “Nonexpansive projections and re-
solvents of accretive operators in Banach spaces.” Houston Journal of
Mathematics, 3, pp. 459–470.

[36] Bruckstein, A., Donoho, D., and Elad, M. (2009) “From sparse solu-
tions of systems of equations to sparse modeling of signals and images.”
SIAM Review, 51(1), pp. 34–81.

[37] Burden, R.L., and Faires, J.D. (1993) Numerical Analysis, Boston:
PWS-Kent.

[38] Butnariu, D., Censor, Y., and Reich, S. (eds.) (2001) Inherently Paral-
lel Algorithms in Feasibility and Optimization and their Applications,
Studies in Computational Mathematics 8. Amsterdam: Elsevier Publ.



264 Bibliography

[39] Butnariu, D., Byrne, C., and Censor, Y. (2003) “Redundant axioms
in the definition of Bregman functions.” Journal of Convex Analysis,
10, pp. 245–254.

[40] Byrne, C. and Fitzgerald, R. (1979) “A unifying model for spectrum
estimation.” In Proceedings of the RADC Workshop on Spectrum
Estimation, Griffiss AFB, Rome, NY, October.

[41] Byrne, C. and Fitzgerald, R. (1982) “Reconstruction from partial in-
formation, with applications to tomography.”SIAM J. Applied Math.
42(4), pp. 933–940.

[42] Byrne, C., Fitzgerald, R., Fiddy, M., Hall, T., and Darling, A. (1983)
“Image restoration and resolution enhancement.”J. Opt. Soc. Amer.
73, pp. 1481–1487.

[43] Byrne, C. and Fitzgerald, R. (1984) “Spectral estimators that extend
the maximum entropy and maximum likelihood methods.”SIAM J.
Applied Math. 44(2), pp. 425–442.

[44] Byrne, C., Levine, B.M., and Dainty, J.C. (1984) “Stable estimation
of the probability density function of intensity from photon frequency
counts.”JOSA Communications 1(11), pp. 1132–1135.

[45] Byrne, C. and Fiddy, M. (1987) “Estimation of continuous object
distributions from Fourier magnitude measurements.”JOSA A 4, pp.
412–417.

[46] Byrne, C. and Fiddy, M. (1988) “Images as power spectra; reconstruc-
tion as Wiener filter approximation.”Inverse Problems 4, pp. 399–409.

[47] Byrne, C. (1993) “Iterative image reconstruction algorithms based on
cross-entropy minimization.”IEEE Transactions on Image Processing
IP-2, pp. 96–103.

[48] Byrne, C. (1995) “Erratum and addendum to ‘Iterative image re-
construction algorithms based on cross-entropy minimization’.”IEEE
Transactions on Image Processing IP-4, pp. 225–226.

[49] Byrne, C. (1996) “Iterative reconstruction algorithms based on cross-
entropy minimization.”in Image Models (and their Speech Model
Cousins), S.E. Levinson and L. Shepp, editors, IMA Volumes in Mathe-
matics and its Applications, Volume 80, pp. 1–11. New York: Springer-
Verlag.

[50] Byrne, C. (1996) “Block-iterative methods for image reconstruction
from projections.”IEEE Transactions on Image Processing IP-5, pp.
792–794.



Bibliography 265

[51] Byrne, C. (1997) “Convergent block-iterative algorithms for image
reconstruction from inconsistent data.”IEEE Transactions on Image
Processing IP-6, pp. 1296–1304.

[52] Byrne, C. (1998) “Accelerating the EMML algorithm and related it-
erative algorithms by rescaled block-iterative (RBI) methods.”IEEE
Transactions on Image Processing IP-7, pp. 100–109.

[53] Byrne, C. (1998) “Iterative algorithms for deblurring and deconvolu-
tion with constraints.” Inverse Problems, 14, pp. 1455–1467.

[54] Byrne, C. (2000) “Block-iterative interior point optimization methods
for image reconstruction from limited data.”Inverse Problems 16, pp.
1405–1419.

[55] Byrne, C. (2001) “Bregman-Legendre multi-distance projection algo-
rithms for convex feasibility and optimization.” in [38], pp. 87–100.

[56] Byrne, C. (2001) “Likelihood maximization for list-mode emission
tomographic image reconstruction.”IEEE Transactions on Medical
Imaging 20(10), pp. 1084–1092.

[57] Byrne, C., and Censor, Y. (2001) “Proximity function minimization us-
ing multiple Bregman projections, with applications to split feasibility
and Kullback-Leibler distance minimization.” Annals of Operations
Research, 105, pp. 77–98.

[58] Byrne, C. (2002) “Iterative oblique projection onto convex sets and
the split feasibility problem.”Inverse Problems 18, pp. 441–453.

[59] Byrne, C. (2004) “A unified treatment of some iterative algorithms in
signal processing and image reconstruction.”Inverse Problems 20, pp.
103–120.

[60] Byrne, C. (2005) “Choosing parameters in block-iterative or ordered-
subset reconstruction algorithms.” IEEE Transactions on Image Pro-
cessing, 14 (3), pp. 321–327.

[61] Byrne, C. (2005) Signal Processing: A Mathematical Approach, AK
Peters, Publ., Wellesley, MA.

[62] Byrne, C. (2007) Applied Iterative Methods, AK Peters, Publ., Welles-
ley, MA.

[63] Byrne, C. (2008) “Sequential unconstrained minimization algorithms
for constrained optimization.” Inverse Problems, 24(1), article no.
015013.



266 Bibliography

[64] Byrne, C. (2009) “Block-iterative algorithms.” International Transac-
tions in Operations Research, 16(4), pp. 427–463.

[65] Byrne, C. (2009) “Bounds on the largest singular value of a matrix
and the convergence of simultaneous and block-iterative algorithms
for sparse linear systems.” International Transactions in Operations
Research, 16(4), pp. 465–479.

[66] Byrne, C. (2013) “Alternating minimization as sequential uncon-
strained minimization: a survey.” Journal of Optimization Theory and
Applications, electronic 154(3), DOI 10.1007/s1090134-2, (2012), and
hardcopy 156(3), February, 2013, pp. 554–566.

[67] Byrne, C. (2013) “An elementary proof of convergence of the forward-
backward splitting algorithm.” to appear in the Journal of Nonlinear
and Convex Analysis.

[68] Byrne, C., and Eggermont, P. (2011) “EM Algorithms.” in Handbook
of Mathematical Methods in Imaging, Otmar Scherzer, ed., Springer-
Science.

[69] Byrne, C., Censor, Y., A. Gibali, A., and Reich, S. (2012) “The split
common null point problem.” Journal of Nonlinear and Convex Anal-
ysis, 13, pp. 759–775.

[70] Byrne, C., and Ward, S. (2005) “Estimating the largest singular value
of a sparse matrix.” unpublished notes.

[71] Byrne, C., and Wells, D. (1983) “Limit of continuous and discrete
finite-band Gerchberg iterative spectrum extrapolation.”Optics Let-
ters 8 (10), pp. 526–527.

[72] Byrne, C., and Wells, D. (1985) “Optimality of certain iterative and
non-iterative data extrapolation procedures.”Journal of Mathematical
Analysis and Applications 111 (1), pp. 26–34.

[73] Candès, E., Romberg, J., and Tao, T. (2006) “Robust uncertainty prin-
ciples: exact signal reconstruction from highly incomplete frequency
information.” IEEE Transactions on Information Theory, 52(2), pp.
489–509.

[74] Candès, E., and Romberg, J. (2007) “Sparsity and incoherence in com-
pressive sampling.” Inverse Problems, 23(3), pp. 969–985.

[75] Candès, E., Wakin, M., and Boyd, S. (2007) “Enhancing
sparsity by reweighted l1 minimization.” preprint available at
http://www.acm.caltech.edu/ emmanuel/publications.html .



Bibliography 267

[76] Cegielski, A. (2010) “Generalized relaxations of nonexpansive opera-
tors and convex feasibility problems.” Contemp. Math., 513, pp. 111–
123.

[77] Cegielski, A. (2012) Iterative Methods for Fixed Point Problems in
Hilbert Space. Heidelberg: Springer Lecture Notes in Mathematics
2057.

[78] Cegielski, A., and Censor, Y. (2011) “Opial-type theorems and the
common fixed-point problem.” in Fixed-Point Algorithms for Inverse
Problems in Science and Engineering, H. Bauschke, R. Burachik, P.
Combettes, V. Elser, D. Luke, and H. Wolkowicz (eds.), Springer Op-
timization and its Applications, Vol. 49, New York: Springer.

[79] Cegielski, A., and Zalas, R. (2013) “Methods for the variational
inequality problem over the intersection of fixed points of quasi-
nonexpansive operators.” Numer. Funct. Anal. Optimiz., 34, pp. 255–
283.

[80] Censor, Y. (1981) “Row-action methods for huge and sparse systems
and their applications.”SIAM Review, 23, pp. 444–464.

[81] Censor, Y., Bortfeld, T., Martin, B., and Trofimov, A. “A unified ap-
proach for inversion problems in intensity-modulated radiation ther-
apy.” Physics in Medicine and Biology 51 (2006), 2353-2365.

[82] Censor, Y., Eggermont, P.P.B., and Gordon, D. (1983) “Strong
underrelaxation in Kaczmarz’s method for inconsistent sys-
tems.”Numerische Mathematik 41, pp. 83–92.

[83] Censor, Y. and Elfving, T. (1994) “A multi-projection algorithm using
Bregman projections in a product space.” Numerical Algorithms, 8
221–239.

[84] Censor, Y., Elfving, T., Herman, G.T., and Nikazad, T. (2008) “On
diagonally-relaxed orthogonal projection methods.” SIAM Journal on
Scientific Computation, 30(1), pp. 473–504.

[85] Censor, Y., Elfving, T., Kopf, N., and Bortfeld, T. (2005) “The
multiple-sets split feasibility problem and its application for inverse
problems.” Inverse Problems, 21 , pp. 2071-2084.

[86] Censor, Y., Gibali, A., and Reich, S. (2011) “The subgradient extra-
gradient method for solving variational inequalities in Hilbert space.”
Journal of Optimization Theory and Applications, 148, pp. 318–335 .

[87] Censor, Y., Gibali, A., and Reich, S. (2012) “Algorithms for the split
variational inequality problem.” Numerical Algorithms, 59, pp. 301–
323.



268 Bibliography

[88] Censor, Y., Gordon, D., and Gordon, R. (2001) “Component averag-
ing: an efficient iterative parallel algorithm for large and sparse un-
structured problems.” Parallel Computing, 27, pp. 777–808.

[89] Censor, Y., Gordon, D., and Gordon, R. (2001) “BICAV: A block-
iterative, parallel algorithm for sparse systems with pixel-related
weighting.” IEEE Transactions on Medical Imaging, 20, pp. 1050–
1060.

[90] Censor, Y., Iusem, A., and Zenios, S. (1998) “An interior point method
with Bregman functions for the variational inequality problem with
paramonotone operators.” Mathematical Programming, 81, pp. 373–
400.

[91] Censor, Y., and Reich, S. (1996) “Iterations of paracontractions and
firmly nonexpansive operators with applications to feasibility and op-
timization.” Optimization, 37, pp. 323–339.

[92] Censor, Y., and Reich, S. (1998) “The Dykstra algorithm for Bregman
projections.” Communications in Applied Analysis, 2, pp. 323–339.

[93] Censor, Y. and Segman, J. (1987) “On block-iterative maximization.”
J. of Information and Optimization Sciences 8, pp. 275–291.

[94] Censor, Y., and Zenios, S.A. (1992) “Proximal minimization algorithm
with D-functions.” Journal of Optimization Theory and Applications,
73(3), pp. 451–464.

[95] Censor, Y. and Zenios, S.A. (1997) Parallel Optimization: Theory, Al-
gorithms and Applications. New York: Oxford University Press.

[96] Cheney, W., and Goldstein, A. (1959) “Proximity maps for convex
sets.” Proc. Amer. Math. Soc., 10, pp. 448–450.

[97] Chidume, Ch. (2009) Geometric Properties of Banach Spaces and Non-
linear Iterations. London: Springer.

[98] Cimmino, G. (1938) “Calcolo approssimato per soluzioni dei sistemi
di equazioni lineari.”La Ricerca Scientifica XVI, Series II, Anno IX 1,
pp. 326–333.

[99] Combettes, P. (2000) “Fejér monotonicity in convex optimization.”in
Encyclopedia of Optimization, C.A. Floudas and P. M. Pardalos, edi-
tors, Boston: Kluwer Publ.

[100] Combettes, P. (2001) “Quasi-Fejérian analysis of some optimization
algorithms.” in Inherently Parallel Algorithms in Feasibility and Op-
timization and their Applications, edited by D. Butnariu, Y. Censor



Bibliography 269

and S. Reich, pp. 87-100, Studies in Computational Mathematics 8.
Amsterdam: Elsevier Publ.

[101] Combettes, P., and Wajs, V. (2005) “Signal recovery by proximal
forward-backward splitting.” Multiscale Modeling and Simulation,
4(4), pp. 1168–1200.

[102] Conn, A., Scheinberg, K., and Vicente, L. (2009) Introduction to
Derivative-Free Optimization: MPS-SIAM Series on Optimization.
Philadelphia: Society for Industrial and Applied Mathematics.

[103] Csiszár, I. (1975) “I-divergence geometry of probability distributions
and minimization problems.”The Annals of Probability 3(1), pp. 146–
158.

[104] Csiszár, I. (1989) “A geometric interpretation of Darroch and Rat-
cliff’s generalized iterative scaling.”The Annals of Statistics 17(3), pp.
1409–1413.

[105] Csiszár, I. and Tusnády, G. (1984) “Information geometry and al-
ternating minimization procedures.”Statistics and Decisions Supp. 1,
pp. 205–237.

[106] Darroch, J. and Ratcliff, D. (1972) “Generalized iterative scaling for
log-linear models.”Annals of Mathematical Statistics 43, pp. 1470–
1480.

[107] Dax, A. (1990) “The convergence of linear stationary iterative pro-
cesses for solving singular unstructured systems of linear equations.”
SIAM Review, 32, pp. 611–635.

[108] Dempster, A.P., Laird, N.M. and Rubin, D.B. (1977) “Maximum like-
lihood from incomplete data via the EM algorithm.”Journal of the
Royal Statistical Society, Series B 37, pp. 1–38.

[109] De Pierro, A. and Iusem, A. (1990) “On the asymptotic behavior of
some alternate smoothing series expansion iterative methods.”Linear
Algebra and its Applications 130, pp. 3–24.

[110] Deutsch, F., and Yamada, I. (1998) “Minimizing certain convex func-
tions over the intersection of the fixed point sets of non-expansive
mappings.” Numerical Functional Analysis and Optimization, 19, pp.
33–56.

[111] Donoho, D. (2006) “Compressed sampling” IEEE Transactions on
Information Theory, 52 (4). (download preprints at http://www.stat.
stanford.edu/ donoho/Reports).



270 Bibliography

[112] Duda, R., Hart, P., and Stork, D. (2001) Pattern Classification. New
York: Wiley.

[113] Duffin, R., Peterson, E., and Zener, C. (1967) Geometric Program-
ming: Theory and Applications. New York: Wiley.

[114] Dugundji, J. (1970) Topology Boston: Allyn and Bacon, Inc.

[115] Dykstra, R. (1983) “An algorithm for restricted least squares regres-
sion.” J. Amer. Statist. Assoc., 78 (384), pp. 837–842.

[116] Eggermont, P.P.B., Herman, G.T., and Lent, A. (1981) “Iterative
algorithms for large partitioned linear systems, with applications to
image reconstruction.”Linear Algebra and its Applications 40, pp. 37–
67.

[117] Eggermont, P., and LaRiccia, V. (2001) Maximum Penalized Likeli-
hood Estimation. New York: Springer.

[118] Elsner, L., Koltracht, L., and Neumann, M. (1992) “Convergence of
sequential and asynchronous nonlinear paracontractions.” Numerische
Mathematik, 62, pp. 305–319.

[119] Everitt, B., and Hand, D. (1981) Finite Mixture Distributions Lon-
don: Chapman and Hall.

[120] Facchinei, F., and Pang, J.S. (2003) Finite Dimensional Variational
Inequalities and Complementarity Problems, Volumes I and II. New
York: Springer Verlag.

[121] Fang, S-C.,and Puthenpura, S. (1993) Linear Optimization and Ex-
tensions: Theory and Algorithms. New Jersey: Prentice-Hall.

[122] Farkas, J. (1902) “Über die Theorie der einfachen Ungleichungen.”
J. Reine Angew. Math., 124, pp. 1–24.

[123] Farncombe, T. (2000) “Functional dynamic SPECT imaging using a
single slow camera rotation.” Ph.D. thesis, Dept. of Physics, Univer-
sity of British Columbia.

[124] Farnell, A.B. (1944) “Limits for the characteristic roots of a matrix.”
Bulletin of the American Mathematical Society, 50, pp. 789–794.

[125] Fessler, J., Ficaro, E., Clinthorne, N., and Lange, K. (1997)
“Grouped-coordinate ascent algorithms for penalized-likelihood trans-
mission image reconstruction.” IEEE Trans. Med. Imag. 16 (2) pp.
166–175.



Bibliography 271

[126] Fiacco, A., and McCormick, G. (1990) Nonlinear Programming: Se-
quential Unconstrained Minimization Techniques. Philadelphia, PA:
SIAM Classics in Mathematics (reissue).

[127] Fiddy, M. (2008) private communication.

[128] Geman, S., and Geman, D. (1984) “Stochastic relaxation, Gibbs dis-
tributions and the Bayesian restoration of images.”IEEE Transactions
on Pattern Analysis and Machine Intelligence PAMI-6, pp. 721–741.

[129] Gill, P., Murray, W., and Wright, M. (1981) Practical Optimization,
Academic Press, San Diego.

[130] Gill, P., Murray, W., Saunders, M., Tomlin, J., and Wright, M. (1986)
“On projected Newton barrier methods for linear programming and an
equivalence to Karmarkar’s projective method.” Mathematical Pro-
gramming, 36, pp. 183–209.

[131] Goebel, K., and Reich, S. (1984) Uniform Convexity, Hyperbolic Ge-
ometry, and Nonexpansive Mappings, New York: Dekker.

[132] Goldstein, S., and Osher, S. (2008) “The split Bregman algorithm
for L1 regularized problems. ” UCLA CAM Report 08-29, UCLA, Los
Angeles.

[133] Golshtein, E., and Tretyakov, N. (1996) Modified Lagrangians and
Monotone Maps in Optimization. New York: John Wiley and Sons,
Inc.

[134] Gordon, R., Bender, R., and Herman, G.T. (1970) “Algebraic recon-
struction techniques (ART) for three-dimensional electron microscopy
and x-ray photography.”J. Theoret. Biol. 29, pp. 471–481.

[135] Gordon, D., and Gordon, R.(2005) “Component-averaged row pro-
jections: A robust block-parallel scheme for sparse linear systems.”
SIAM Journal on Scientific Computing, 27, pp. 1092–1117.

[136] Grcar, J. (2011) “John von Neumann’s analysis of Gaussian elimina-
tion and the origins of modern numerical analysis.” SIAM Review, 53
(4), pp. 607–682.

[137] Gubin, L.G., Polyak, B.T. and Raik, E.V. (1967) “The method of
projections for finding the common point of convex sets.” USSR Com-
putational Mathematics and Mathematical Physics, 7: 1–24.

[138] Hager, W. (1988) Applied Numerical Linear Algebra, Englewood
Cliffs, NJ: Prentice Hall.



272 Bibliography

[139] Hager, B., Clayton, R., Richards, M., Comer, R., and Dziewonsky,
A. (1985) “Lower mantle heterogeneity, dynamic typography and the
geoid.” Nature, 313, pp. 541–545.

[140] Herman, G. T. (1999) private communication.

[141] Herman, G. T. and Meyer, L. (1993) “Algebraic reconstruction tech-
niques can be made computationally efficient.”IEEE Transactions on
Medical Imaging 12, pp. 600–609.

[142] Hildreth, C. (1957) “A quadratic programming procedure.” Naval
Research Logistics Quarterly, 4, pp. 79–85. Erratum, ibid., p. 361.

[143] Hiriart-Urruty, J.-B., and Lemaréchal, C. (2001) Fundamentals of
Convex Analysis. Berlin: Springer.

[144] Hirstoaga, S.A. (2006) “Iterative selection methods for common fixed
point problems.” J. Math. Anal. Appl., 324, pp. 1020–1035.

[145] R. Hogg, J. McKean, and A. Craig, Introduction to Mathematical
Statistics, 6th edition, Prentice Hall (2004).

[146] Holte, S., Schmidlin, P., Linden, A., Rosenqvist, G. and Eriksson,
L. (1990) “Iterative image reconstruction for positron emission to-
mography: a study of convergence and quantitation problems.”IEEE
Transactions on Nuclear Science 37, pp. 629–635.

[147] Jiang, M., and Wang, G. (2003) “Convergence studies on iterative
algorithms for image reconstruction.” IEEE Transactions on Medical
Imaging, 22(5), pp. 569–579.

[148] Kaczmarz, S. (1937) “Angenäherte Auflösung von Systemen linearer
Gleichungen.”Bulletin de l’Academie Polonaise des Sciences et Lettres
A35, pp. 355–357.

[149] Karmarkar, N. (1984) “A new polynomial-time algorithm for linear
programming.” Combinatorica, 4, pp. 373–395.

[150] Kelley, C.T. (1999) Iterative Methods for Optimization, Frontiers in
Applied Mathematics, Philadelphia: SIAM Publications.

[151] Korpelevich, G. (1976) “The extragradient method for finding saddle
points and other problems.” Ekonomika i Matematcheskie Metody (in
Russian), 12, pp. 747–756.

[152] Krasnosel’skii, M. (1955) “Two observations on the method of se-
quential approximations.” Uspeki Mathematicheskoi Nauki (in Rus-
sian), 10(1).



Bibliography 273

[153] Kullback, S. and Leibler, R. (1951) “On information and suffi-
ciency.”Annals of Mathematical Statistics 22, pp. 79–86.

[154] Landweber, L. (1951) “An iterative formula for Fredholm integral
equations of the first kind.”Amer. J. of Math. 73, pp. 615–624.

[155] Lange, K. and Carson, R. (1984) “EM reconstruction algorithms for
emission and transmission tomography.”Journal of Computer Assisted
Tomography 8, pp. 306–316.

[156] Lange, K., Bahn, M. and Little, R. (1987) “A theoretical study of
some maximum likelihood algorithms for emission and transmission
tomography.”IEEE Trans. Med. Imag. MI-6(2), pp. 106–114.

[157] Lange, K., Hunter, D., and Yang, I. (2000) “Optimization transfer
using surrogate objective functions (with discussion).” J. Comput.
Graph. Statist., 9, pp. 1–20.

[158] Leahy, R. and Byrne, C. (2000) “Guest editorial: Recent development
in iterative image reconstruction for PET and SPECT.”IEEE Trans.
Med. Imag. 19, pp. 257–260.

[159] Lent, A., and Censor, Y. (1980) “Extensions of Hildreth’s row-action
method for quadratic programming.” SIAM Journal on Control and
Optimization, 18, pp. 444–454.

[160] Levy, A. (2009) The Basics of Practical Optimization. Philadelphia:
SIAM Publications.

[161] Lucet, Y. (2010) “What shape is your conjugate? A survey of compu-
tational convex analysis and its applications.” SIAM Review, 52(3),
pp. 505–542.

[162] Luenberger, D. (1969) Optimization by Vector Space Methods. New
York: John Wiley and Sons, Inc.

[163] Luo, Z., Ma, W., So, A., Ye, Y., and Zhang, S. (2010) “Semidefinite
relaxation of quadratic optimization problems.” IEEE Signal Process-
ing Magazine, 27 (3), pp. 20–34.

[164] Mann, W. (1953) “Mean value methods in iteration.”Proc. Amer.
Math. Soc. 4, pp. 506–510.

[165] Marzetta, T. (2003) “Reflection coefficient (Schur parameter) repre-
sentation for convex compact sets in the plane.” IEEE Transactions
on Signal Processing, 51 (5), pp. 1196–1210.



274 Bibliography

[166] McKinnon, K. (1998) “Convergence of the Nelder-Mead simplex
method to a non-stationary point.” SIAM Journal on Optimization,
9(1), pp. 148–158.

[167] McLachlan, G.J. and Krishnan, T. (1997) The EM Algorithm and
Extensions. New York: John Wiley and Sons, Inc.

[168] Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., and
Teller, E. (1953) “Equation of state calculations by fast computing
machines” J. Chem. Phys. 21, pp. 1087–1091.

[169] Moreau, J.-J. (1962) “Fonctions convexes duales et points proximaux
dans un espace hilbertien.” C.R. Acad. Sci. Paris Sér. A Math., 255,
pp. 2897–2899.

[170] Moreau, J.-J. (1963) “Propriétés des applications ‘prox’.” C.R. Acad.
Sci. Paris Sér. A Math., 256, pp. 1069–1071.

[171] Moreau, J.-J. (1965) “Proximité et dualité dans un espace hilbertien.”
Bull. Soc. Math. France, 93, pp. 273–299.

[172] Moudafi, A. (2011) “Split monotone variation inclusions.” Journal
of Optimization Theory and Applications, 150, pp. 275–283.

[173] Narayanan, M., Byrne, C. and King, M. (2001) “An interior point
iterative maximum-likelihood reconstruction algorithm incorporating
upper and lower bounds with application to SPECT transmission
imaging.” IEEE Transactions on Medical Imaging TMI-20 (4), pp.
342–353.

[174] Nash, S. and Sofer, A. (1996) Linear and Nonlinear Programming.
New York: McGraw-Hill.

[175] Nelder, J., and Mead, R. (1965) “A simplex method for function
minimization” Computing Journal, 7, pp. 308–313.

[176] Nesterov, Y., and Nemirovski, A. (1994) Interior-Point Polynomial
Algorithms in Convex Programming. Philadelphia, PA: SIAM Studies
in Applied Mathematics.

[177] von Neumann, J., and Morgenstern, O. (1944) Theory of Games and
Economic Behavior. New Jersey: Princeton University Press.

[178] Noor, M.A. (1999) “Some algorithms for general monotone mixed
variational inequalities.” Mathematical and Computer Modelling, 29,
pp. 1–9.



Bibliography 275

[179] Noor, M.A. (2003) “Extragradient methods for pseudomonotone vari-
ational inequalities.” Journal of Optimization Theory and Applica-
tions, 117 (3), pp. 475–488.

[180] Noor, M.A. (2004) “Some developments in general variational in-
equalities.” Applied Mathematics and Computation, 152, pp. 199–277.

[181] Noor, M.A. (2010) “On an implicit method for nonconvex variational
inequalities.” Journal of Optimization Theory and Applications, 147,
pp. 411–417.

[182] Opial, Z. (1967) “Weak convergence of the sequence of successive
approximations for nonexpansive mappings.” Bulletin of the American
Mathematical Society, 73, pp. 591–597.

[183] Ortega, J., and Rheinboldt, W. (2000) Iterative Solution of Nonlinear
Equations in Several Variables, Classics in Applied Mathematics, 30.
Philadelphia, PA: SIAM, 2000.

[184] Osher, S., Mao, Y., Dong, B., and Yin, W. (2008) “Fast linearized
Bregman iterations for compressed sensing and sparse denoising.”
UCLA CAM Report 08-37.

[185] Papoulis, A. (1977) Signal Analysis. New York: McGraw-Hill.

[186] Peressini, A., Sullivan, F., and Uhl, J. (1988) The Mathematics of
Nonlinear Programming. New York: Springer-Verlag.

[187] Redner, R., and Walker, H. (1984) “Mixture densities, maximum like-
lihood and the EM algorithm.” SIAM Review 26(2), pp. 195–239.

[188] Reich, S. (1979) “Weak convergence theorems for nonexpansive map-
pings in Banach spaces.” Journal of Mathematical Analysis and Ap-
plications, 67, pp. 274–276.

[189] Reich, S. (1980) “Strong convergence theorems for resolvents of accre-
tive operators in Banach spaces.” Journal of Mathematical Analysis
and Applications, pp. 287–292.

[190] Reich, S. (1996) “A weak convergence theorem for the alternating
method with Bregman distances.” Theory and Applications of Non-
linear Operators, New York: Dekker.

[191] Renegar, J. (2001) A Mathematical View of Interior-Point Methods
in Convex Optimization. Philadelphia, PA: SIAM (MPS-SIAM Series
on Optimization).

[192] Rockafellar, R. (1970) Convex Analysis. Princeton, NJ: Princeton
University Press.



276 Bibliography

[193] Rockmore, A., and Macovski, A. (1976) “A maximum likelihood
approach to emission image reconstruction from projections.” IEEE
Transactions on Nuclear Science, NS-23, pp. 1428–1432.

[194] Saad, Y. (2003) Iterative Methods for Sparse Linear Systems (2nd
edition). Philadelphia: SIAM Publications.

[195] Schmidlin, P. (1972) “Iterative separation of sections in tomographic
scintigrams.” Nuklearmedizin 11, pp. 1–16.

[196] Shepp, L., and Vardi, Y. (1982) “Maximum likelihood reconstruction
for emission tomography.” IEEE Transactions on Medical Imaging,
MI-1, pp. 113–122.

[197] Shieh, M., Byrne, C., and Fiddy, M. (2006) “Image reconstruction:
a unifying model for resolution enhancement and data extrapolation:
Tutorial.” Journal of the Optical Society of America, A, 23(2), pp.
258–266.

[198] Shieh, M., Byrne, C., Testorf, M., and Fiddy, M. (2006) “Iterative
image reconstruction using prior knowledge.” Journal of the Optical
Society of America, A, 23(6), pp. 1292–1300.

[199] Shieh, M., and Byrne, C. (2006) “Image reconstruction from limited
Fourier data.” Journal of the Optical Society of America, A, 23(11),
pp. 2732–2736.

[200] Stark, H., and Yang, Y. (1998) Vector Space Projections. A Numeri-
cal Approach to Signal and Image processing, Neural Nets and Optics,
JNew York: John Wiley and Sons.

[201] Stark, H., and Woods, J. (2002) Probability and Random Processes,
with Applications to Signal Processing. Upper Saddle River, NJ:
Prentice-Hall.

[202] Tanabe, K. (1971) “Projection method for solving a singular system
of linear equations and its applications.”Numer. Math. 17, pp. 203–
214.

[203] Teboulle, M. (1992) “Entropic proximal mappings with applications
to nonlinear programming.” Mathematics of Operations Research,
17(3), pp. 670–690.

[204] van der Sluis, A. (1969) “Condition numbers and equilibration of
matrices.” Numer. Math., 14, pp. 14–23.

[205] van der Sluis, A., and van der Vorst, H.A. (1990) “SIRT- and CG-
type methods for the iterative solution of sparse linear least-squares
problems.” Linear Algebra and its Applications, 130, pp. 257–302.



Bibliography 277

[206] Vardi, Y., Shepp, L.A. and Kaufman, L. (1985) “A statistical model
for positron emission tomography.”Journal of the American Statistical
Association 80, pp. 8–20.

[207] von Neumann, J., and Goldstine, H. H. (1947) “Numerical inverting
of matrices of high order.” Bulletin of the American Mathematical
Society, 53, pp. 1021–1099.

[208] Wright, M. (2005) “The interior-point revolution in optimization: his-
tory, recent developments, and lasting consequences.” Bulletin (New
Series) of the American Mathematical Society, 42(1), pp. 39–56.

[209] Wright, M. (2009) “The dual flow between linear algebra and opti-
mization.” view-graphs of talk given at the History of Numerical Lin-
ear Algebra Minisymposium - Part II, SIAM Conference on Applied
Linear Algebra, Monterey, CA, October 28, 2009.

[210] Wu, C.F.J. (1983) “On the convergence properties of the EM algo-
rithm.” Annals of Stat. 11, pp. 95–103.

[211] Yang, Q. (2004) “The relaxed CQ algorithm solving the split feasi-
bility problem.” Inverse Problems, 20, pp. 1261–1266.

[212] Yamada, I. (2001) “The hybrid steepest descent method for the vari-
ational inequality problem over the intersection of fixed points of non-
expansive mappings.” in [38], pp. 473–504.

[213] Yamada, I., and Ogura, N. (2004) “Hybrid steepest descent method
for the variational inequality problem over the fixed point set of certain
quasi-nonexpansive mappings.” Optimiz., 25, pp. 619–655.





Index

λmax, 132
ν-ism, 94
‖ A ‖1, 112, 128
‖ A ‖2, 128
‖ A ‖∞, 112, 128
ρ(S), 126
σC(a), 238
iC(x), 238
sj , 162

Bregman-Legendre function, 259

affine function, 235
affine linear operator, 98
algebraic reconstruction technique,

14, 111, 158
alternating miinmization, 162
alternating minimization, 167, 175
AM, 162, 175
ART, 14, 16, 111, 116
av operator, 93
averaged operator, 93

Banach-Picard Theorem, 80
band-limited extrapolation, 7
Björck-Elfving equations, 149
Bregman distance, 35
Bregman’s Inequality, 259

CFP, 106
Cimmino method, 155
Cimmino’s algorithm, 111, 132
co-coercive operator, 94
compatible matrix norm, 127
compressed sampling, 247
compressed sensing, 247

concave function, 239
condition number, 134
conjugate function, 236
constrained ART, 119
contraction, 79
convex combination, 81, 90
convex feasibility problem, 106
convex function, 87
convex hull, 82
convex set, 81
Courant-Beltrami penalty, 42
CQ algorithm, 113

DART, 121
DFT, 7
DGP problem, 206
diagonalizable matrix, 99
discrete Fourier transform, 7
Dolidze’s Theorem, 217
double ART, 121
dual GP problem, 206
Dykstra’s algorithm, 114

effective domain, 87
eigenvalue, 126
eigenvector, 126
EKN Theorem, 101
Elsner-Koltracht-Neumann

Theorem, 101
EMART, 166
EMML algorithm, 162
epi(f), 87
epi-graph of a function, 87
essentially smooth, 257
essentially strictly convex, 257
Euclidean distance, 16

279



280 Index

Euclidean norm, 16
exterior-point method, 42
extreme point, 82

far-field assumption, 8
FBS, 67
Fenchel conjugate, 236
Fenchel’s Duality Theorem, 241
Fermi-Dirac generalized entropies,

170
firmly nonexpansive operator, 86
Fix(T ), 78
fixed point, 78
fne, 86
forward-backward splitting, 67
Frobenius norm, 127
full-cycle ART, 116
Fundamental Theorem of Game

Theory, 243

gauge function, 238
Gauss-Seidel method, 150
generalized AGM Inequality, 204
geometric programming problem,

205
GP problem, 203

Halpern-Lions-Wittmann-Bauschke
algorithm, 114, 115

HLWB algorithm, 114

incoherent bases, 248
indicator function, 68, 87, 238
induced matrix norm, 128
infimal convolution, 44, 238
infimal deconvolution, 44, 238
inner product, 16
interior-point methods, 29
inverse barrier function, 38
inverse strongly monotone, 94, 216
ism operator, 94, 216

Jacobi overrelaxation, 153, 154
Jacobi’s method, 150
JOR, 152

KL distance, 19
KMO Theorem, 97
Korpelevich’s algorithm, 218
Krasnosel’skii-Mann-Opial

Theorem, 97
Kullback-Leibler distance, 19

Landweber algorithm, 112, 132
least-squares, 42
Legendre function, 257
Legendre transform, 239
Legendre-Fenchel Transformation,

236
level set, 47
linear function, 235
Lipschitz continuity, 78
logarithmic barrier function, 38

majorization minimization, 31
Markov chain, 5
MART, 14, 17, 209
MDFT, 10
Min-Max Theorem, 243
modified DFT, 10
monotone operators, 216
Moreau envelope, 44, 68
multiplicative algebraic

reconstruction technique,
14, 209

multiplicative ART, 17

ne, 79
nonexpansive, 79
nonnegative-definite matrix, 126
norm-constrained least-squares, 43
normal cone, 108
normal equations, 149

one-norm, 16
operator on RJ , 78
optimization transfer, 31
orthogonal projection, 83

paracontractive, 99
pc, 99



Index 281

PDFT, 12, 251
positive-definite matrix, 126
posynomials, 205
proper function, 87
proximity function, 50, 106
proximity operator, 31, 68

qne, 85
quadratic-loss penalty, 42
quasi-averaged, 103
quasi-nonexpansive, 85

relaxed ART, 118
resolvent operator, 231
row-action method, 16, 116

saddle point, 225
sc, 80
SFP, 106, 216
Shannon entropy, 19
SIMOP, 111
simultaneous orthogonal

projections, 111
singular value, 126
SMART, 161
SMVIP, 232
SOP, 110
SOR, 152
spectral radius, 126
split monotone variational

inclusion, 232
split variational inequality problem,

223
split-feasibility problem, 106, 216
splitting methods, 150
strict contraction, 80
strong under-relaxation, 122
strongly monotone operators, 216
sub-differential, 36, 215
subspace, 82
successive orthogonal projection

method, 110
successive overrelaxation, 157
super-coercive, 258

support function, 238
SVIP, 223

transition probability, 5
two-norm, 16, 126

variational inequality problem, 217
VIP, 217
Viterbi algorithm, 6

wavelength, 9
weakly ism, 97, 216


