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Preface

In graduate school, and for the first few years as an assistant professor, my
research was in pure mathematics, mainly topology and functional anal-
ysis. Around 1979 I was drawn, largely by accident, into signal process-
ing, collaborating with friends at the Naval Research Laboratory who were
working on sonar. Initially, I felt that the intersection of the mathematics
that I knew and that they knew was nearly empty. After a while, I began
to realize that the basic tools of signal processing are subjects with which
I was already somewhat familiar, including Fourier series, matrices, and
probability and statistics. Much of the jargon and notation seemed foreign
to me, and I did not know much about the particular applications everyone
else was working on. For a while it seemed that everyone else was speaking
a foreign language. However, my knowledge of the basic mathematical tools
helped me gradually to understand what was going on and, eventually, to
make a contribution.

Signal processing is, in a sense, applied Fourier analysis, applied linear
algebra, and some probability and statistics. I had studied Fourier series
and linear algebra as an undergraduate, and had taught linear algebra
several times. I had picked up some probability and statistics as a professor,
although I had never had a course in that subject. Now I was beginning to
see these tools in a new light; Fourier coefficients arise as measured data in
array processing and tomography, eigenvectors and eigenvalues are used to
locate sonar and radar targets, matrices become images and the singular-
value decomposition provides data compression. For the first time, I saw
Fourier series, matrices and probability and statistics used all at once, in the
analysis of the sampled cross-sensor correlation matrices and the estimation
of power spectra.

In my effort to learn signal processing, I consulted a wide variety of
texts. Each one helped me somewhat, but I found no text that spoke di-
rectly to people in my situation. The texts I read were either too hard,
too elementary, or written in what seemed to me to be a foreign language.
Some texts in signal processing are written by engineers for engineering
students, and necessarily rely only on those mathematical notions their
students have encountered previously. In texts such as [116] basic Fourier
series and transforms are employed, but there is little discussion of matri-
ces and no mention of probability and statistics, hence no random models.

iii
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I found the book [121] by Papoulis helpful, although most of the exam-
ples deal with issues of interest primarily to electrical engineers. The books
written by mathematicians tend to treat signal processing as a part of
harmonic analysis or of stochastic processes. Books about Fourier analysis
focus on its use in partial differential equations, or explore rigorously the
mathematical aspects of the subject. I was looking for something different.
It would have helped me a great deal if there had been a book addressed to
people like me, people with a decent mathematical background who were
trying to learn signal processing. My hope is that this book serves that
purpose.

There are many opportunities for mathematically trained people to
make a contribution in signal and image processing, and yet few mathemat-
ics departments offer courses in these subjects to their students, preferring
to leave it to the engineering departments. One reason, I imagine, is that
few mathematics professors feel qualified to teach the subject. My message
here is that they probably already know a good deal of signal processing,
but do not realize that they know it. This book is designed to help them
come to that realization and to encourage them to include signal processing
as a course for their undergraduates.

The situations of interest that serve to motivate much of what is dis-
cussed in this book can be summarized as follows: We have obtained data
through some form of sensing; physical models, often simplified, describe
how the data we have obtained relates to the information we seek; there
usually isn’t enough data and what we have is corrupted by noise, mod-
eling errors, and other distortions. Although applications differ from one
another in their details, they often make use of a common core of mathe-
matical ideas. For example, the Fourier transform and its variants play an
important role in remote sensing, and therefore in many areas of signal and
image processing, as do the language and theory of matrix analysis, itera-
tive optimization and approximation techniques, and the basics of proba-
bility and statistics. This common core provides the subject matter for this
text. Applications of the core material to tomographic medical imaging,
optical imaging, and acoustic signal processing are included in this book.

The term signal processing is used here in a somewhat restrictive sense
to describe the extraction of information from measured data. I believe
that to get information out we must put information in. How to use the
mathematical tools to achieve this is one of the main topics of the book.

This text is designed to provide a bridge to help those with a solid math-
ematical background to understand and employ signal processing tech-
niques in an applied environment. The emphasis is on a small number of
fundamental problems and essential tools, as well as on applications. Cer-
tain topics that are commonly included in textbooks are touched on only
briefly or in exercises or not mentioned at all. Other topics not usually
considered to be part of signal processing, but which are becoming increas-
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ingly important, such as iterative optimization methods, are included. The
book, then, is a rather personal view of the subject and reflects the author’s
interests.

The term signal is not meant to imply a restriction to functions of a
single variable; indeed, most of what we discuss in this text applies equally
to functions of one and several variables and therefore to image process-
ing. However, there are special problems that arise in image processing,
such as edge detection, and special techniques to deal with such prob-
lems; we shall not consider such techniques in this text. Topics discussed
include the following: Fourier series and transforms in one and several vari-
ables; applications to acoustic and electro-magnetic propagation models,
transmission and emission tomography, and image reconstruction; sam-
pling and the limited data problem; matrix methods, singular value de-
composition, and data compression; optimization techniques in signal and
image reconstruction from projections; autocorrelations and power spectra;
high-resolution methods; detection and optimal filtering; eigenvector-based
methods for array processing and statistical filtering, time-frequency anal-
ysis, and wavelets.

The ordering of the first eighteen chapters of the book is not random;
these main chapters should be read in the order of their appearance. The
remaining chapters are ordered randomly and are meant to supplement the
main chapters.

Reprints of my journal articles referenced here are available in pdf for-
mat at my website, http://faculty.uml.edu/cbyrne/cbyrne.html.
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2 Signal Processing: A Mathematical Approach

1.1 Chapter Summary

We begin with an overview of applications of signal processing and the
variety of sensing modalities that are employed. It is typical of remote-
sensing problems that what we want is not what we can measure directly,
and we must obtain our information by indirect means. To illustrate that
point without becoming entangled in the details of any particular applica-
tion, we present a marbles-in-bowls model of remote sensing that, although
simple, still manages to capture the dominate aspects of many real-world
problems.

1.2 Aims and Topics

The term signal processing has broad meaning and covers a wide variety
of applications. In this course we focus on those applications of signal pro-
cessing that can loosely be called remote sensing, although the mathematics
we shall study is fundamental to all areas of signal processing.

In a course in signal processing it is easy to get lost in the details
and lose sight of the big picture. My main objectives here are to present
the most important ideas, techniques, and methods, to describe how they
relate to one another, and to illustrate their uses in several applications.
For signal processing, the most important mathematical tools are Fourier
series and related notions, matrices, and probability and statistics. Most
students with a solid mathematical background have probably encountered
each of these topics in previous courses, and therefore already know some
signal processing, without realizing it.

Our discussion here will involve primarily functions of a single real vari-
able, although most of the concepts will have multi-dimensional versions.
It is not our objective to treat each topic with the utmost mathematical
rigor, and we shall seek to avoid issues that are primarily of mathematical
concern.

1.2.1 The Emphasis in This Book

This text is designed to provide the necessary mathematical background
to understand and employ signal processing techniques in an applied en-
vironment. The emphasis is on a small number of fundamental problems
and essential tools, as well as on applications. Certain topics that are com-
monly included in textbooks are touched on only briefly or in exercises or
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not mentioned at all. Other topics not usually considered to be part of
signal processing, but which are becoming increasingly important, such as
matrix theory and linear algebra, are included.

The term signal is not meant to imply a specific context or a restriction
to functions of time, or even to functions of a single variable; indeed, most
of what we discuss in this text applies equally to functions of one and
several variables and therefore to image processing. However, this is in no
sense an introduction to image processing. There are special problems that
arise in image processing, such as edge detection, and special techniques to
deal with such problems; we shall not consider such techniques in this text.

1.2.2 Topics Covered

Topics discussed in this text include the following: Fourier series and
transforms in one and several variables; applications to acoustic and EM
propagation models, transmission and emission tomography, and image re-
construction; sampling and the limited data problem; matrix methods, sin-
gular value decomposition, and data compression; optimization techniques
in signal and image reconstruction from projections; autocorrelations and
power spectra; high-resolution methods; detection and optimal filtering;
eigenvector-based methods for array processing and statistical filtering;
time-frequency analysis; and wavelets.

1.2.3 Limited Data

As we shall see, it is often the case that the data we measure is not
sufficient to provide a single unique answer to our problem. There may
be many, often quite different, answers that are consistent with what we
have measured. In the absence of prior information about what the answer
should look like, we do not know how to select one solution from the many
possibilities. For that reason, I believe that to get information out we must
put information in. How to do this is one of the main topics of the course.
The example at the end of this chapter will illustrate this point.

1.3 Examples and Modalities

There are a wide variety of problems in which what we want to know
about is not directly available to us and we need to obtain information
by more indirect methods. In this section we present several examples of
remote sensing. The term “modality” refers to the manner in which the
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desired information is obtained. Although the sensing of acoustic and elec-
tromagnetic signals is perhaps the most commonly used method, remote
sensing involves a wide variety of modalities: electromagnetic waves (light,
x-ray, microwave, radio); sound (sonar, ultrasound); radioactivity (positron
and single-photon emission); magnetic resonance (MRI); seismic waves; and
a number of others.

1.3.1 X-ray Crystallography

The patterns produced by the scattering of x-rays passing through var-
ious materials can be used to reveal their molecular structure.

1.3.2 Transmission Tomography

In transmission tomography x-rays are transmitted along line segments
through the object and the drop in intensity along each line is recorded.

1.3.3 Emission Tomography

In emission tomography radioactive material is injected into the body
of the living subject and the photons resulting from the radioactive decay
are detected and recorded outside the body.

1.3.4 Back-Scatter Detectors

There is considerable debate at the moment about the use of so-called
full-body scanners at airports. These are not scanners in the sense of a
CAT scan; indeed, if the images were skeletons there would probably be
less controversy. These are images created by the returns, or backscatter, of
millimeter-wavelength (MMW) radio-frequency waves, or sometimes low-
energy x-rays, that penetrate only the clothing and then reflect back to the
machine.

The controversies are not really about safety to the passenger being
imaged. The MMW imaging devices use about 10, 000 times less energy
than a cell phone, and the x-ray exposure is equivalent to two minutes
of flying in an airplane. At present, the images are fuzzy and faces are
intentionally blurred, but there is some concern that the images will get
sharper, will be permanently stored, and eventually end up on the net.
Given what is already available on the net, the market for these images
will almost certainly be non-existent.
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1.3.5 Cosmic-Ray Tomography

Because of their ability to penetrate granite, cosmic rays are being used
to obtain transmission-tomographic three-dimensional images of the inte-
riors of active volcanos. Where magma has replaced granite there is less
attenuation of the rays, so the image can reveal the size and shape of the
magma column. It is hoped that this will help to predict the size and oc-
currence of eruptions.

In addition to mapping the interior of volcanos, cosmic rays can also be
used to detect the presence of shielding around nuclear material in a cargo
container. The shielding can be sensed by the characteristic scattering by
it of muons from cosmic rays; here neither we nor the objects of interest
are the sources of the probing. This is about as “remote” as sensing can
be.

1.3.6 Ocean-Acoustic Tomography

The speed of sound in the ocean varies with the temperature, among
other things. By transmitting sound from known locations to known re-
ceivers and measuring the travel times we can obtain line integrals of the
temperature function. Using the reconstruction methods from transmission
tomography, we can estimate the temperature function. Knowledge of the
temperature distribution may then be used to improve detection of sources
of acoustic energy in unknown locations.

1.3.7 Spectral Analysis

In our detailed discussion of transmission and remote sensing we shall,
for simplicity, concentrate on signals consisting of a single frequency. Never-
theless, there are many important applications of signal processing in which
the signal being studied has a broad spectrum, indicative of the presence
of many different frequencies. The purpose of the processing is often to
determine which frequencies are present, or not present, and to determine
their relative strengths. The hotter inner body of the sun emits radiation
consisting of a continuum of frequencies. The cooler outer layer absorbs
the radiation whose frequencies correspond to the elements present in that
outer layer. Processing these signals reveals a spectrum with a number of
missing frequencies, the so-called Fraunhofer lines, and provides informa-
tion about the makeup of the sun’s outer layers. This sort of spectral anal-
ysis can be used to identify the components of different materials, making
it an important tool in many applications, from astronomy to forensics.
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1.3.8 Seismic Exploration

Oil companies want to know if it is worth their while drilling in a partic-
ular place. If they go ahead and drill, they will find out, but they would like
to know what is the chance of finding oil without actually drilling. Instead,
they set off explosions and analyze the signals produced by the seismic
waves, which will tell them something about the materials the waves en-
countered. Explosive charges create waves that travel through the ground
and are picked up by sensors. The waves travel at different speeds through
different materials. Information about the location of different materials in
the ground is then extracted from the received signals.

1.3.9 Astronomy

Astronomers know that there are radio waves, visible-light waves, and
other forms of electro-magnetic radiation coming from the sun and distant
regions of space, and they would like to know precisely what is coming
from which regions. They cannot go there to find out, so they set up large
telescopes and antenna arrays and process the signals that they are able to
measure.

1.3.10 Radar

Those who predict the weather use radar to help them see what is going
on in the atmosphere. Radio waves are sent out and the returns are analyzed
and turned into images. The location of airplanes is also determined by
radar. The radar returns from different materials are different from one
another and can be analyzed to determine what materials are present.
Synthetic-aperture radar is used to obtain high-resolution images of regions
of the earth’s surface. The radar returns from different geometric shapes
also differ in strength; by avoiding right angles in airplane design stealth
technology attempts to make the plane invisible to radar.

1.3.11 Sonar

Features on the bottom of the ocean are imaged with sonar, in which
sound waves are sent down to the bottom and the returning waves are
analyzed. Sometimes near or distant objects of interest in the ocean emit
their own sound, which is measured by sensors. The signals received by the
sensors are processed to determine the nature and location of the objects.
Even changes in the temperature at different places in the ocean can be
determined by sending sound waves through the region of interest and
measuring the travel times.
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1.3.12 Gravity Maps

The pull of gravity varies with the density of the material. Features on
the surface of the earth, such as craters from ancient asteroid impacts, can
be imaged by mapping the variations in the pull of gravity, as measured by
satellites.

Gravity, or better, changes in the pull of gravity from one location to
another, was used in the discovery of the crater left behind by the asteroid
strike in the Yucatan that led to the extinction of the dinosaurs. The rocks
and other debris that eventually filled the crater differ in density from
the surrounding material, thereby exerting a slightly different gravitational
pull on other masses. This slight change in pull can be detected by sensitive
instruments placed in satellites in earth orbit. When the intensity of the
pull, as a function of position on the earth’s surface, is displayed as a two-
dimensional image, the presence of the crater is evident.

Studies of the changes in gravitational pull of the Antarctic ice between
2002 and 2005 revealed that Antarctica is losing 36 cubic miles of ice each
year. By way of comparison, the city of Los Angeles uses one cubic mile of
water each year. While this finding is often cited as clear evidence of global
warming, it contradicts some models of climate change that indicate that
global warming may lead to an increase of snowfall, and therefore more ice,
in the polar regions. This does not show that global warming is not taking
place, but only the inadequacies of some models [119].

1.3.13 Echo Cancellation

In a conference call between locations A and B, what is transmitted
from A to B can get picked up by microphones in B, transmitted back
to speakers in A and then retransmitted to B, producing an echo of the
original transmission. Signal processing performed at the transmitter in
A can reduce the strength of the second version of the transmission and
decrease the echo effect.

1.3.14 Hearing Aids

Makers of digital hearing aids include signal processing to enhance the
quality of the received sounds, as well as to improve localization, that is,
the ability of the hearer to tell where the sound is coming from. When a
hearing aid is used, sounds reach the ear in two ways: first, the usual route
directly into the ear, and second, through the hearing aid. Because that part
that passes through the hearing aid is processed, there is a slight delay. In
order for the delay to go unnoticed, the processing must be very fast. When
hearing aids are used in both ears, more sophisticated processing can be
used.
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1.3.15 Near-Earth Asteroids

An area of growing importance is the search for potentially damaging
near-earth asteroids. These objects are initially detected by passive op-
tical observation, as small dots of reflected sunlight; once detected, they
are then imaged by active radar to determine their size, shape, rotation,
path, and other important parameters. Satellite-based infrared detectors
are being developed to find dark asteroids by the heat they give off. Such
satellites, placed in orbit between the sun and the earth, will be able to
detect asteroids hidden from earth-based telescopes by the sunlight.

1.3.16 Mapping the Ozone Layer

Ultraviolet light from the sun is scattered by ozone. By measuring the
amount of scattered UV at various locations on the earth’s surface, and with
the sun in various positions, we obtain values of the Laplace transform of
the function describing the density of ozone, as a function of elevation.

1.3.17 Ultrasound Imaging

While x-ray tomography is a powerful method for producing images
of the interior of patients’ bodies, the radiation involved and the expense
make it unsuitable in some cases. Ultrasound imaging, making use of back-
scattered sound waves, is a popular method of inexpensive preliminary
screening for medical diagnostics, and for examining a developing fetus.

1.3.18 X-ray Vision?

The MIT computer scientist and electrical engineer Dina Katabi and
her students are currently exploring new uses of wireless technologies. By
combining Wi-Fi and vision into what she calls Wi-Vi, she has discovered
a way to detect the number and approximate location of persons within a
closed room and to recognize simple gestures. The scattering of reflected
low-bandwidth wireless signals as they pass through the walls is processed
to eliminate motionless sources of reflection from the much weaker reflec-
tions from moving objects, presumably people.

1.4 The Common Core

The examples just presented look quite different from one another, but
the differences are often more superficial than real. As we begin to use
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mathematics to model these various situations we often discover a common
core of mathematical tools and ideas at the heart of each of these applica-
tions. For example, the Fourier transform and its variants play an impor-
tant role in many areas of signal and image processing, as do the language
and theory of matrix analysis, iterative optimization and approximation
techniques, and the basics of probability and statistics. This common core
provides the subject matter for this book. Applications of the core mate-
rial to tomographic medical imaging, optical imaging, and acoustic signal
processing are among the topics to be discussed in some detail.

Although the applications of interest to us vary in their details, they
have common aspects that can be summarized as follows: the data has been
obtained through some form of sensing; physical models, often simplified,
describe how the data we have obtained relates to the information we seek;
there usually isn’t enough data and what we have is corrupted by noise
and other distortions.

1.5 Active and Passive Sensing

In some signal and image processing applications the sensing is ac-
tive, meaning that we have initiated the process, by, say, sending an x-ray
through the body of a patient, injecting a patient with a radionuclide, trans-
mitting an acoustic signal through the ocean, as in sonar, or transmitting
a radio wave, as in radar. In such cases, we are interested in measuring
how the system, the patient, the quiet submarine, the ocean floor, the rain
cloud, will respond to our probing. In many other applications, the sens-
ing is passive, which means that the object of interest to us provides its
own signal of some sort, which we then detect, analyze, image, or process
in some way. Certain sonar systems operate passively, listening for sounds
made by the object of interest. Optical and radio telescopes are passive,
relying on the object of interest to emit or reflect light, or other electromag-
netic radiation. Night-vision instruments are sensitive to lower-frequency,
infrared radiation.

From the time of Aristotle and Euclid until the middle ages there was an
ongoing debate concerning the active or passive nature of human sight [112].
Those like Euclid, whose interests were largely mathematical, believed that
the eye emitted rays, the extramission theory. Aristotle and others, more
interested in the physiology and anatomy of the eye than in mathematics,
believed that the eye received rays from observed objects outside the body,
the intromission theory. Finally, around 1000 AD, the Arabic mathemati-
cian and natural philosopher Alhazen demolished the extramission theory
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by noting the potential for bright light to hurt the eye, and combined the
mathematics of the extramission theorists with a refined theory of intro-
mission. The extramission theory has not gone away completely, however,
as anyone familiar with Superman’s x-ray vision knows.

1.6 Using Prior Knowledge

An important point to keep in mind when doing signal processing is
that, while the data is usually limited, the information we seek may not be
lost. Although processing the data in a reasonable way may suggest other-
wise, other processing methods may reveal that the desired information is
still available in the data. Figure 1.1 illustrates this point.

The original image on the upper right of Figure 1.1 is a discrete rect-
angular array of intensity values simulating the distribution of the x-ray-
attenuating material in a slice of a head. The data was obtained by taking
the two-dimensional discrete Fourier transform of the original image, and
then discarding, that is, setting to zero, all these spatial frequency values,
except for those in a smaller rectangular region around the origin. Recon-
structing the image from this limited data amounts to solving a large system
of linear equations. The problem is under-determined, so a minimum-norm
solution would seem to be a reasonable reconstruction method. For now,
“norm” means the Euclidean norm.

The minimum-norm solution is shown on the lower right. It is calcu-
lated simply by performing an inverse discrete Fourier transform on the
array of modified discrete Fourier transform values. The original image has
relatively large values where the skull is located, but the least-squares re-
construction does not want such high values; the norm involves the sum
of squares of intensities, and high values contribute disproportionately to
the norm. Consequently, the minimum-norm reconstruction chooses instead
to conform to the measured data by spreading what should be the skull
intensities throughout the interior of the skull. The minimum-norm recon-
struction does tell us something about the original; it tells us about the
existence of the skull itself, which, of course, is indeed a prominent feature
of the original. However, in all likelihood, we would already know about
the skull; it would be the interior that we want to know about.

Using our knowledge of the presence of a skull, which we might have
obtained from the least-squares reconstruction itself, we construct the prior
estimate shown in the upper left. Now we use the same data as before, and
calculate a minimum-weighted-norm reconstruction, using as the weight
vector the reciprocals of the values of the prior image. This minimum-
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FIGURE 1.1: Extracting information in image reconstruction.

weighted-norm reconstruction, also called the PDFT estimator, is shown
on the lower left; it is clearly almost the same as the original image. The
calculation of the minimum-weighted-norm solution can be done iteratively
using the ART algorithm [143].

When we weight the skull area with the inverse of the prior image,
we allow the reconstruction to place higher values there without having
much of an effect on the overall weighted norm. In addition, the reciprocal
weighting in the interior makes spreading intensity into that region costly,
so the interior remains relatively clear, allowing us to see what is really
present there.

When we try to reconstruct an image from limited data, it is easy to
assume that the information we seek has been lost, particularly when a
reasonable reconstruction method fails to reveal what we want to know. As
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this example, and many others, show, the information we seek is often still
in the data, but needs to be brought out in a more subtle way.

1.7 An Urn Model of Remote Sensing

Most of the signal processing that we shall discuss in this book is re-
lated to the problem of remote sensing, which we might also call indirect
measurement. In such problems we do not have direct access to what we are
really interested in, and must be content to measure something else that is
related to, but not the same as, what interests us. For example, we want
to know what is in the suitcases of airline passengers, but, for practical
reasons, we cannot open every suitcase. Instead, we x-ray the suitcases. A
recent paper [137] describes progress in detecting nuclear material in cargo
containers by measuring the scattering, by the shielding, of cosmic rays;
you can’t get much more remote than that. Before we get into the mathe-
matics of signal processing, it is probably a good idea to consider a model
that, although quite simple, manages to capture many of the important
features of remote-sensing applications. To convince the reader that this is
indeed a useful model, we relate it to the problem of image reconstruction
in single-photon emission computed tomography (SPECT). There seems to
be a tradition in physics of using simple models or examples involving
urns and marbles to illustrate important principles. In keeping with that
tradition, we have here two examples, both involving urns of marbles, to
illustrate various aspects of remote sensing.

1.7.1 An Urn Model

Suppose that there is a box containing a large number of small pieces
of paper, and on each piece is written one of the numbers from j = 1
to j = J . I want to determine, for each j = 1, ..., J , the probability of
selecting a piece of paper with the number j written on it. Unfortunately,
I am not allowed to examine the box. I am allowed, however, to set up a
remote-sensing experiment to help solve my problem.

My assistant sets up J urns, numbered j = 1, ..., J , each containing mar-
bles of various colors. Suppose that there are I colors, numbered i = 1, ..., I.
I am allowed to examine each urn, so I know precisely the probability that
a marble of color i will be drawn from urn j. Out of my view, my assis-
tant removes one piece of paper from the box, takes one marble from the
indicated urn, announces to me the color of the marble, and then replaces
both the piece of paper and the marble. This action is repeated N times,
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at the end of which I have a long list of colors, i = {i1, i2, ..., iN}, where
in denotes the color of the nth marble drawn. This list i is my data, from
which I must determine the contents of the box.

This is a form of remote sensing; what we have access to is related to,
but not equal to, what we are interested in. What I wish I had is the list of
urns used, j = {j1, j2, ..., jN}; instead I have i, the list of colors. Sometimes
data such as the list of colors is called “incomplete data,” in contrast to
the “complete data,” which would be the list j of the actual urn numbers
drawn from the box.

Using our urn model, we can begin to get a feel for the resolution prob-
lem. If all the marbles of one color are in a single urn, all the black marbles
in urn j = 1, all the green in urn j = 2, and so on, the problem is trivial;
when I hear a color, I know immediately which urn contained that marble.
My list of colors is then a list of urn numbers; i = j. I have the complete
data now. My estimate of the number of pieces of paper containing the
urn number j is then simply the proportion of draws that resulted in urn
j being selected.

At the other extreme, suppose two urns have identical contents. Then I
cannot distinguish one urn from the other and I am unable to estimate more
than the total number of pieces of paper containing either of the two urn
numbers. If the two urns have nearly the same contents, we can distinguish
them only by using a very large N . This is the resolution problem.

Generally, the more the contents of the urns differ, the easier the task
of estimating the contents of the box. In remote-sensing applications, these
issues affect our ability to resolve individual components contributing to
the data.

1.7.2 Some Mathematical Notation

To introduce some mathematical notation, let us denote by xj the pro-
portion of the pieces of paper that have the number j written on them. Let
Pij be the proportion of the marbles in urn j that have the color i. Let yi be
the proportion of times the color i occurs in the list of colors. The expected
proportion of times i occurs in the list is E(yi) =

∑J
j=1 Pijxj = (Px)i,

where P is the I by J matrix with entries Pij and x is the J by 1 column
vector with entries xj . A reasonable way to estimate x is to replace E(yi)

with the actual yi and solve the system of linear equations yi =
∑J
j=1 Pijxj ,

i = 1, ..., I. Of course, we require that the xj be nonnegative and sum to
one, so special algorithms may be needed to find such solutions. In a num-
ber of applications that fit this model, such as medical tomography, the
values xj are taken to be parameters, the data yi are statistics, and the xj
are estimated by adopting a probabilistic model and maximizing the likeli-
hood function. Iterative algorithms, such as the expectation maximization
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maximum likelihood (EMML) algorithm, are often used for such problems;
see Chapter ?? for details.

1.7.3 An Application to SPECT Imaging

In single-photon emission computed tomography (SPECT) the patient
is injected with a chemical to which a radioactive tracer has been attached.
Once the chemical reaches its destination within the body the photons
emitted by the radioactive tracer are detected by gamma cameras outside
the body. The objective is to use the information from the detected photons
to infer the relative concentrations of the radioactivity within the patient.

We discretize the problem and assume that the body of the patient
consists of J small volume elements, called voxels, analogous to pixels in
digitized images. We let xj ≥ 0 be the unknown proportion of the radioac-
tivity that is present in the jth voxel, for j = 1, ..., J . There are I detectors,
denoted {i = 1, 2, ..., I}. For each i and j we let Pij be the known prob-
ability that a photon that is emitted from voxel j is detected at detector
i; these probabilities are usually determined by examining the relative po-
sitions in space of voxel j and detector i. We denote by in the detector
at which the nth emitted photon is detected. This photon was emitted at
some voxel, denoted jn; we wish that we had some way of learning what
each jn is, but we must be content with knowing only the in. After N
photons have been emitted, we have as our data the list i = {i1, i2, ..., iN};
this is our incomplete data. We wish we had the complete data, that is, the
list j = {j1, j2, ..., jN}, but we do not. Our goal is to estimate the frequency
with which each voxel emitted a photon, which we assume, reasonably, to
be proportional to the unknown proportions xj , for j = 1, ..., J .

This problem is completely analogous to the urn problem previously
discussed. Any mathematical method that solves one of these problems
will solve the other one. In the urn problem, the colors were announced;
here the detector numbers are announced. There, I wanted to know the
urn numbers; here I want to know the voxel numbers. There, I wanted to
estimate the frequency with which the jth urn was used; here, I want to
estimate the frequency with which the jth voxel is the site of an emission,
which is assumed to be equal to the proportion of the radionuclide within
the jth voxel. In the urn model, two urns with nearly the same contents are
hard to distinguish unless N is very large; here, two neighboring voxels will
be very hard to distinguish (i.e., to resolve) unless N is very large. But in
the SPECT case, a large N means a high dosage, which will be prohibited
by safety considerations. Therefore, we have a built-in resolution problem
in the SPECT case.

Both problems are examples of probabilistic mixtures, in which the mix-
ing probabilities are the xj that we seek. The maximum likelihood (ML)



Introduction 15

method of statistical parameter estimation can be used to solve such prob-
lems. The interested reader should consult the text [42].

1.8 Hidden Markov Models

In the urn model we just discussed, the order of the colors in the list is
unimportant; we could randomly rearrange the colors on the list without
affecting the nature of the problem. The probability that a green marble
will be chosen next is the same, whether a blue or a red marble was just
chosen the previous time. This independence from one selection to another
is fine for modeling certain physical situations, such as emission tomogra-
phy. However, there are other situations in which this independence does
not conform to reality.

In written English, for example, knowing the current letter helps us,
sometimes more, sometimes less, to predict what the next letter will be.
We know that, if the current letter is a “q”, then there is a high probability
that the next one will be a “u”. So what the current letter is affects the
probabilities associated with the selection of the next one.

Spoken English is even tougher. There are many examples in which
the pronunciation of a certain sound is affected, not only by the sound or
sounds that preceded it, but by the sound or sounds that will follow. For
example, the sound of the “e” in the word “bellow” is different from the
sound of the “e” in the word “below”; the sound changes, depending on
whether there is a double “l” or a single “l” following the “e”. Here the
entire context of the letter affects its sound.

Hidden Markov models (HMM) are increasingly important in speech
processing, optical character recognition, and DNA sequence analysis. They
allow us to incorporate dependence on the context into our model. In this
section we illustrate HMM using a modification of the urn model.

Suppose, once again, that we have J urns, indexed by j = 1, ..., J and
I colors of marbles, indexed by i = 1, ..., I. Associated with each of the
J urns is a box, containing a large number of pieces of paper, with the
number of one urn written on each piece. My assistant selects one box, say
the j0th box, to start the experiment. He draws a piece of paper from that
box, reads the number written on it, call it j1, goes to the urn with the
number j1 and draws out a marble. He then announces the color. He then
draws a piece of paper from box number j1, reads the next number, say
j2, proceeds to urn number j2, etc. After N marbles have been drawn, the
only data I have is a list of colors, i = {i1, i2, ..., iN}.
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The transition probability that my assistant will proceed from the urn
numbered k to the urn numbered j is bjk, with

∑J
j=1 bjk = 1. The num-

ber of the current urn is the current state. In an ordinary Markov chain
model, we observe directly a sequence of states governed by the transition
probabilities. The Markov chain model provides a simple formalism for de-
scribing a system that moves from one state into another, as time goes on.
In the hidden Markov model we are not able to observe the states directly;
they are hidden from us. Instead, we have indirect observations, the colors
of the marbles in our urn example.

The probability that the color numbered i will be drawn from the urn
numbered j is aij , with

∑I
i=1 aij = 1, for all j. The colors announced

are the visible states, while the unannounced urn numbers are the hidden
states.

There are several distinct objectives one can have, when using HMM.
We assume that the data is the list of colors, i.

• Evaluation: For given probabilities aij and bjk, what is the proba-
bility that the list i was generated according to the HMM? Here, the
objective is to see if the model is a good description of the data.

• Decoding: Given the model, the probabilities, and the list i, what
list j = {j1, j2, ..., jN} of urns is most likely to be the list of urns
actually visited? Now, we want to infer the hidden states from the
visible ones.

• Learning: We are told that there are J urns and I colors, but are not
told the probabilities aij and bjk. We are given several data vectors i
generated by the HMM; these are the training sets. The objective is
to learn the probabilities.

Once again, the ML approach can play a role in solving these problems [68].
The Viterbi algorithm is an important tool used for the decoding phase (see
[149]).
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2.1 Chapter Summary

A basic problem in remote sensing is to determine the nature of a dis-
tant object by measuring signals transmitted by or reflected from that
object. If the object of interest is sufficiently remote, that is, is in the far
field, the data we obtain by sampling the propagating spatio-temporal field
is related, approximately, to what we want by Fourier transformation. In
this chapter we present examples to illustrate the roles played by Fourier
series and Fourier coefficients in the analysis of remote sensing and signal
transmission. We use these examples to motivate several of the computa-
tional problems we shall consider in detail later in the text. We also discuss
two inverse problems involving the Laplace transform.

We consider here a common problem of remote sensing of transmitted or
reflected waves propagating from distant sources. Examples include optical
imaging of planets and asteroids using reflected sunlight, radio-astronomy
imaging of distant sources of radio waves, active and passive sonar, radar
imaging using microwaves, and infrared (IR) imaging to monitor the ocean
temperature. In such situations, as well as in transmission and emission
tomography and magnetic-resonance imaging, what we measure are es-
sentially the Fourier coefficients or values of the Fourier transform of the
function we want to estimate. The image reconstruction problem then be-
comes one of estimating a function from finitely many noisy values of its
Fourier transform.

2.2 Fourier Series and Fourier Coefficients

We suppose that f : [−L,L]→ C, and that its Fourier series converges
to f(x) for all x in [−L,L]. In the examples in this chapter, we shall see
how Fourier coefficients can arise as data obtained through measurements.
However, we shall be able to measure only a finite number of the Fourier
coefficients. One issue that will concern us is the effect on the estimation
of f(x) if we use some, but not all, of its Fourier coefficients.

Suppose that we have cn, as defined by Equation (??), for n =
0, 1, 2, ..., N . It is not unreasonable to try to estimate the function f(x)
using the discrete Fourier transform (DFT) estimate, which is

fDFT (x) =

N∑
n=0

cne
inπL x.
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When we know that f(x) is real-valued, and so c−n = cn, we naturally
assume that we have the values of cn for |n| ≤ N .

2.3 The Unknown Strength Problem

In this example, we imagine that each point x in the interval [−L,L]
is sending out a signal that is a complex-exponential-function signal, also
called a sinusoid, at the frequency ω, each with its own strength f(x); that
is, the signal sent by the point x is

f(x)eiωt.

In our first example, we imagine that the strength function f(x) is unknown
and we want to determine it. It could be the case that the signals originate
at the points x, as with light or radio waves from the sun, or are simply
reflected from the points x, as is sunlight from the moon or radio waves
in radar. Later in this chapter, we shall investigate a related example, in
which the points x transmit known signals and we want to determine what
is received elsewhere.

2.3.1 Measurement in the Far Field

Now let us consider what is received by a point P on the circumference
of a circle centered at the origin and having large radius D. The point P
corresponds to the angle θ as shown in Figure 2.1; we use θ in the interval
[0, π]. It takes a finite time for the signal sent from x at time t to reach P ,
so there is a delay.

We assume that c is the speed at which the signal propagates. Because
D is large relative to L, we make the far-field assumption, which allows us
to approximate the distance from x to P by D − x cos θ. Therefore, what
P receives at time t from x is approximately what was sent from x at time
t− 1

c (D − x cos θ).

Ex. 2.1 Show that, for any point P on the circle of radius D and any
x 6= 0, the distance from x to P is always greater than or equal to the
far-field approximation D − x cos θ, with equality if and only if θ = 0 or
θ = π.

At time t, the point P receives from x the signal

f(x)eiω(t−
1
c (D−x cos θ) = eiω(t−

1
cD)f(x)ei

ω cos θ
c x.
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FIGURE 2.1: Far-field measurements.

Because the point P receives signals from all x in [−L,L], the signal that
P receives at time t is

eiω(t−
1
cD)

∫ L

−L
f(x)ei

ω cos θ
c xdx.

Therefore, from measurements in the far field, we obtain the values∫ L

−L
f(x)ei

ω cos θ
c xdx.

When θ is chosen so that

ω cos θ

c
=
−nπ
L

(2.1)

we have cn.

2.3.2 Limited Data

Note that we will be able to solve Equation (2.1) for θ if and only if we
have

|n| ≤ Lω

πc
.
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This tells us that we can measure only finitely many of the Fourier coeffi-
cients of f(x). It is common in signal processing to speak of the wavelength
of a sinusoidal signal; the wavelength associated with a given ω and c is

λ =
2πc

ω
.

Therefore we can measure 2N+1 Fourier coefficients, where N is the largest
integer not greater than 2L

λ , which is the length of the interval [−L,L],
measured in units of wavelength λ. We get more Fourier coefficients when
the product Lω is larger; this means that when L is small, we want ω to be
large, so that λ is small and N is large. As we saw previously, using these
finitely many Fourier coefficients to calculate the DFT reconstruction of
f(x) can lead to a poor estimate of f(x), particularly when N is small.

Consider the situation in which the points x are reflecting signals that
are sent to probe the structure of an object described by the function f ,
as in radar. This relationship between the number Lω and the number of
Fourier coefficients we can measure amounts to a connection between the
frequency of the probing signal and the resolution attainable; finer detail
is available only if the frequency is high enough.

The wavelengths used in primitive early radar at the start of World War
II were several meters long. Since resolution is proportional to aperture,
that is, the length of the array measured in units of wavelength, antennas
for such radar needed to be quite large. As Körner notes in [102], the general
feeling at the time was that the side with the shortest wavelength would
win the war. The cavity magnetron, invented during the war by British
scientists, made possible microwave radar having a wavelength of 10 cm,
which could then be mounted easily on planes.

2.3.3 Can We Get More Data?

As we just saw, we can make measurements at any points P in the
far field; perhaps we do not need to limit ourselves to just those angles
that lead to the cn. It may come as somewhat of a surprise, but from the
theory of complex analytic functions we can prove that there is enough
data available to us here to reconstruct f(x) perfectly, at least in principle.
The drawback, in practice, is that the measurements would have to be free
of noise and impossibly accurate. All is not lost, however.

2.3.4 Measuring the Fourier Transform

If θ is chosen so that
ω cos θ

c
=
−nπ
L

,
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then our measurement gives us the Fourier coefficients cn. But we can
select any angle θ and use any P we want. In other words, we can obtain
the values ∫ L

−L
f(x)ei

ω cos θ
c xdx,

for any angle θ. With the change of variable

γ =
ω cos θ

c
,

we can obtain the value of the Fourier transform,

F (γ) =

∫ L

−L
f(x)eiγxdx,

for any γ in the interval [−ωc ,
ω
c ].

We are free to measure at any P and therefore to obtain values of F (γ)
for any value of γ in the interval [−ωc ,

ω
c ]. We need to be careful how we

process the resulting data, however.

2.3.5 Over-Sampling

Suppose, for the sake of illustration, that we measure the far-field signals
at points P corresponding to angles θ that satisfy

ω cos θ

c
=
−nπ
2L

,

instead of
ω cos θ

c
=
−nπ
L

.

Now we have twice as many data points and from these new measurements
we can obtain

dn =

∫ L

−L
f(x)e−i

nπ
2L xdx,

for |n| ≤ 2N . We say now that our data is twice over-sampled. Note that
we call it over-sampled because the rate at which we are sampling is higher,
even though the distance between samples is shorter. The values dn are not
simply more of the Fourier coeffcients of f . The question now is: What are
we to do with these extra data values?

The values dn are, in fact, Fourier coefficients, but not of f ; they are
Fourier coefficients of the function g : [−2L, 2L] → C, where g(x) = f(x)
for |x| ≤ L, and g(x) = 0, otherwise. If we simply use the dn as Fourier
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coefficients of the function g(x) and compute the resulting DFT estimate
of g(x),

gDFT (x) =

2N∑
n=−2N

dne
inπ2L x,

this function estimates f(x) for |x| ≤ L, but it also estimates g(x) = 0 for
the other values of x in [−2L, 2L]. When we graph gDFT (x) for |x| ≤ L
we find that we have no improvement over what we got with the previous
estimate fDFT . The problem is that we have wasted the extra data by
estimating g(x) = 0 where we already knew that it was zero. To make
good use of the extra data we need to incorporate this prior information
about the function g. The MDFT and PDFT algorithms provide estimates
of f(x) that incorporate prior information.

2.3.6 The Modified DFT

The modified DFT (MDFT) estimate was first presented in [22]. For
our example of twice over-sampled data, the MDFT is defined for |x| ≤ L
and has the algebraic form

fMDFT (x) =

2N∑
n=−2N

ane
inπ2L x, (2.2)

for |x| ≤ L. The coefficients an are not the dn. The an are determined by
requiring that the function fMDFT be consistent with the measured data,
the dn. In other words, we must have

dn =

∫ L

−L
fMDFT (x)e−i

nπ
2L xdx. (2.3)

When we insert fMDFT (x) as given in Equation (2.2) into Equation (2.3)
we get a system of 2N+1 linear equations in 2N+1 unknowns, the an. We
then solve this system for the an and use them in Equation (2.2). Figure
?? shows the improvement we can achieve using the MDFT. The data used
to construct the graphs in that figure was thirty times over-sampled. We
note here that, had we extended f initially as a 2L-periodic function, it
would be difficult to imagine the function g(x) and we would have a hard
time figuring out what to do with the dn.

In this example we measured twice as much data as previously. We
can, of course, measure even more data, and it need not correspond to the
Fourier coefficients of any function. The potential drawback is that, as we
use more data, the system of linear equations that we must solve to obtain
the MDFT estimate becomes increasingly sensitive to noise and round-off
error in the data. It is possible to lessen this effect by regularization, but
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not to eliminate it entirely. Regularization can be introduced here simply
by multiplying by, say, 1.01, the entries of the main diagonal of the matrix
of the linear system. This makes the matrix less ill-conditioned.

In our example, we used the prior knowledge that f(x) = 0 for |x| > L.
Now, we shall describe in detail the use of other forms of prior knowledge
about f(x) to obtain reconstructions that are better than the DFT.

2.3.7 Other Forms of Prior Knowledge

As we just showed, knowing that we have over-sampled in our measure-
ments can help us improve the resolution in our estimate of f(x). We may
have other forms of prior knowledge about f(x) that we can use. If we know
something about large-scale features of f(x), but not about finer details,
we can use the PDFT estimate, which is a generalization of the MDFT.
In Chapter 1 the PDFT was compared to the DFT in a two-dimensional
example of simulated head slices.

The MDFT estimator can be written as

fMDFT (x) = χL(x)

2N∑
n=−2N

ane
inπ2L x.

We include the prior information that f(x) is supported on the interval
[−L,L] through the factor χL(x). If we select a function p(x) ≥ 0 that
describes our prior estimate of the shape of |f(x)|, we can then estimate
f(x) using the PDFT estimator, which, in this case of twice over-sampled
data, takes the form

fPDFT (x) = p(x)

2N∑
n=−2N

bne
inπ2L x.

As with the MDFT estimator, we determine the coefficients bn by requiring
that fPDFT (x) be consistent with the measured data.

There are other things we may know about f(x). We may know that
f(x) is nonnegative, or we may know that f(x) is approximately zero for
most x, but contains very sharp peaks at a few places. In more formal
language, we may be willing to assume that f(x) contains a few Dirac delta
functions in a flat background. There are nonlinear methods, such as the
maximum entropy method, the indirect PDFT (IPDFT), and eigenvector
methods, that can be used to advantage in such cases; these methods are
often called high-resolution methods.
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2.4 Generalizing the MDFT and PDFT

In our discussion so far the data we have obtained are values of the
Fourier transform of the support-limited function f(x). The MDFT and
PDFT can be extended to handle those cases in which the data we have
are more general linear-functional values pertaining to f(x).

Suppose that our data values are finitely many linear-functional values,

dn =

∫ L

−L
f(x)gn(x)dx,

for n = 1, ..., N , where the gn(x) are known functions. The extended MDFT
estimate of f(x) is

fMDFT (x) = χL(x)

N∑
m=1

amgm(x),

where the coefficients am are chosen so that fMDFT is consistent with the
measured data; that is,

dn =

∫ L

−L
fMDFT (x)gn(x)dx,

for each n. To find the am we need to solve a system of N equations in N
unknowns.

The PDFT can be extended in a similar way. The extended PDFT
estimate of f(x) is

fPDFT (x) = p(x)

N∑
m=1

bmgm(x),

where, as previously, the coefficients bm are chosen by forcing the estimate
of f(x) to be consistent with the measured data. Again, we need to solve
a system of N equations in N unknowns to find the coefficients.

For large values of N , setting up and solving the required systems of
linear equations can involve considerable effort. If we discretize the func-
tions f(x) and gn(x), we can obtain good approximations of the extended
MDFT and PDFT using the iterative ART algorithm [142, 143].
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2.5 One-Dimensional Arrays

In this section we consider the reversed situation in which the sources
of the signals are the points on the circumference of the large circle and we
are measuring the received signals at points of the x-axis. The objective is
to determine the relative strengths of the signals coming to us from various
angles.

People with sight in only one eye have a difficult time perceiving depth
in their visual field, unless they move their heads. Having two functioning
ears helps us determine the direction from which sound is coming; blind
people, who are more than usually dependent on their hearing, often move
their heads to get a better sense of where the source of sound is. Snakes
who smell with their tongues often have forked tongues, the better to detect
the direction of the sources of different smells. In certain remote-sensing
situations the sensors respond equally to arrivals from all directions. One
then obtains the needed directionality by using multiple sensors, laid out
in some spatial configuration called the sensor array. The simplest config-
uration is to have the sensors placed in a straight line, as in a sonar towed
array.

Now we imagine that the points P = P (θ) in the far field are the sources
of the signals and we are able to measure the transmissions received at
points x on the x-axis; we no longer assume that these points are confined
to the interval [−L,L] . The P corresponding to the angle θ sends f(θ)eiωt,
where the absolute value of f(θ) is the strength of the signal coming from
P . We allow f(θ) to be complex, so that it has both magnitude and phase,
which means that we do not assume that the signals from the different
angles are in phase with one another; that is, we do not assume that they
all begin at the same time.

In narrow-band passive sonar, for example, we may have hydrophone
sensors placed at various points x and our goal is to determine how much
acoustic energy at a specified frequency is coming from different directions.
There may be only a few directions contributing significant energy at the
frequency of interest, in which case f(θ) is nearly zero for all but a few
values of θ.

2.5.1 Measuring Fourier Coefficients

At time t the point x on the x-axis receives from P = P (θ) what P sent
at time t− (D − x cos θ)/c; so, at time t, x receives from P

eiω(t−D/c)f(θ)ei
ωx
c cos θ.
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Since x receives signals from all the angles, what x receives at time t is

eiω(t−D/c)
∫ π

0

f(θ)ei
ωx
c cos θdθ.

We limit the angle θ to the interval [0, π] because, in this sensing model,
we cannot distinguish receptions from θ and from 2π − θ.

To simplify notation, we shall introduce the variable u = cos θ. We then
have

du

dθ
= − sin(θ) = −

√
1− u2,

so that

dθ = − 1√
1− u2

du.

Now let g(u) be the function

g(u) =
f(arccos(u))√

1− u2
,

defined for u in the interval (−1, 1). Since∫ π

0

f(θ)ei
ωx
c cos θdθ =

∫ 1

−1
g(u)ei

ωx
c udu,

we find that, from our measurement at x, we obtain G(γ), the value of the
Fourier transform of g(u) at γ, for

γ =
ωx

c
.

Since g(u) is limited to the interval (−1, 1), its Fourier coefficients are

an =
1

2

∫ 1

−1
g(u)e−inπudu.

Therefore, if we select x so that

γ =
ωx

c
= −nπ,

we have an. Consequently, we want to measure at the points x such that

x = −nπc
ω

= −nλ
2

= −n∆, (2.4)

where λ = 2πc
ω is the wavelength and ∆ = λ

2 is the Nyquist spacing.
A one-dimensional array consists of measuring devices placed along a

straight line (the x-axis here). Obviously, there must be some smallest
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bounded interval, say [A,B], that contains all these measuring devices.
The aperture of the array is B−A

λ , the length of the interval [A,B], in
units of wavelength. As we just saw, the aperture is directly related to the
number of Fourier coefficients of the function g(u) that we are measuring,
and therefore, to the accuracy of the DFT reconstruction of g(u). This is
usually described by saying that aperture determines resolution. As we saw,
a one-dimensional array involves an inherent ambiguity, in that we cannot
distinguish a signal from the angle θ from one from the angle 2π − θ. In
practice a two-dimensional configuration of sensors is sometimes used to
eliminate this ambiguity.

In numerous applications, such as astronomy, it is more realistic to
assume that the sources of the signals are on the surface of a large sphere,
rather than on the circumference of a large circle. In such cases, a one-
dimensional array of sensors does not provide sufficient information and
two- or three-dimensional sensor configurations are used.

The number of Fourier coefficients of g(u) that we can measure, and
therefore the resolution of the resulting reconstruction of f(θ), is limited by
the aperture. One way to improve resolution is to make the array of sensors
longer, which is more easily said than done. However, synthetic-aperture
radar (SAR) effectively does this. The idea of SAR is to employ the array
of sensors on a moving airplane. As the plane moves, it effectively creates a
longer array of sensors, a virtual array if you will. The one drawback is that
the sensors in this virtual array are not all present at the same time, as in
a normal array. Consequently, the data must be modified to approximate
what would have been received at other times.

The far-field approximation tells us that, at time t, every point x re-
ceives from P (π2 ) the same signal

eiω(t−D/c)f
(π

2

)
.

Since there is nothing special about the angle π
2 , we can say that the signal

arriving from any angle θ, which originally spread out as concentric circles
of constant value, has flattened out to the extent that, by the time it reaches
our line of sensors, it is essentially constant on straight lines. This suggests
the plane-wave approximation for signals propagating in three-dimensional
space. As we shall see in Chapter ??, these plane-wave approximations are
solutions to the three-dimensional wave equation. Much of array processing
is based on such models of far-field propagation.

As in the examples discussed previously, we do have more measurements
we can take, if we use values of x other than those described by Equation
(2.4). The issue will be what to do with these over-sampled measurements.
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2.5.2 Over-Sampling

One situation in which over-sampling arises naturally occurs in sonar
array processing. Suppose that an array of sensors has been built to operate
at a design frequency of ω0, which means that we have placed sensors a
distance of ∆0 apart in [A,B], where λ0 is the wavelength corresponding
to the frequency ω0 and ∆0 = λ0

2 is the Nyquist spacing for frequency
ω0. For simplicity, we assume that the sensors are placed at points x that
satisfy the equation

x = −nπc
ω0

= −nλ0
2

= −n∆0,

for |n| ≤ N . Now suppose that we want to operate the sensing at another
frequency, say ω. The sensors cannot be moved, so we must make do with
sensors at the points x determined by the design frequency.

Consider, first, the case in which the second frequency ω is less than
the design frequency ω0. Then its wavelength λ is larger than λ0, and the
Nyquist spacing ∆ = λ

2 for ω is larger than ∆0. So we have over-sampled.
The measurements taken at the sensors provide us with the integrals∫ 1

−1
g(u)ei

nπ
K udu,

where K = ω0

ω > 1. These are Fourier coefficients of the function g(u),
viewed as defined on the interval [−K,K], which is larger than [−1, 1], and
taking the value zero outside [−1, 1]. If we then use the DFT estimate of
g(u), it will estimate g(u) for the values of u within [−1, 1], which is what
we want, as well as for the values of u outside [−1, 1], where we already
know g(u) to be zero. Once again, we can use the MDFT, the modified
DFT, to include the prior knowledge that g(u) = 0 for u outside [−1, 1] to
improve our reconstruction of g(u) and f(θ). In sonar, for the over-sampled
case, the interval [−1, 1] is called the visible region (although audible region
seems more appropriate for sonar), since it contains all the values of u that
can correspond to actual angles of plane-wave arrivals of acoustic energy.
In practice, of course, the measured data may well contain components
that are not plane-wave arrivals, such as localized noises near individual
sensors, or near-field sounds, so our estimate of the function g(u) should
be regularized to allow for these non-plane-wave components.

2.5.3 Under-Sampling

Now suppose that the frequency ω that we want to consider is greater
than the design frequency ω0. This means that the spacing between the
sensors is too large; we have under-sampled. Once again, however, we cannot
move the sensors and must make do with what we have.
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Now the measurements at the sensors provide us with the integrals∫ 1

−1
g(u)ei

nπ
K udu,

where K = ω0

ω < 1. These are Fourier coefficients of the function g(u),
viewed as defined on the interval [−K,K], which is smaller than [−1, 1],
and taking the value zero outside [−K,K]. Since g(u) is not necessarily
zero outside [−K,K], treating it as if it were zero there results in a type
of error known as aliasing, in which energy corresponding to angles whose
u lies outside [−K,K] is mistakenly assigned to values of u that lie within
[−K,K]. Aliasing is a common phenomenon; the strobe-light effect is alias-
ing, as is the apparent backward motion of the wheels of stagecoaches in
cowboy movies. In the case of the strobe light, we are permitted to view
the scene at times too far apart for us to sense continuous, smooth motion.
In the case of the wagon wheels, the frames of the film capture instants of
time too far apart for us to see the true rotation of the wheels.

2.6 Resolution Limitations

As we have seen, in the unknown-strength problem the number of
Fourier coefficients we can measure is limited by the ratio L

λ . Additional
measurements in the far field can provide additional information about the
function f(x), but extracting that information becomes an increasingly ill-
conditioned problem, one more sensitive to noise the more data we gather.

In the line-array problem just considered, there is, in principle, no limit
to the number of Fourier coefficients we can obtain by measuring at the
points n∆ for integer values of n; the limitation here is of a more practical
nature.

In sonar, the speed of sound in the ocean is about 1500 meters per
second, so the wavelength associated with 50 Hz is λ = 30 meters. The
Nyquist spacing is then 15 meters. A towed array is a line array of sensors
towed behind a ship. The length of the array, and therefore the number
of Nyquist-spaced sensors for passive sensing at 50 Hz, is, in principle,
unlimited. In practice, however, cost is always a factor. In addition, when
the array becomes too long, it is difficult to maintain it in a straight-line
position.

Radar imaging uses microwaves with a wavelength of about one inch,
which is not a problem; synthetic-aperture radar can also be used to sim-
ulate a longer array. In radio astronomy, however, the wavelengths can
be more than a kilometer, which is why radio-astronomy arrays have to
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be enormous. For radio-wave imaging at very low frequencies, a sort of
synthetic-aperture approach has been taken, with individual antennas lo-
cated in different parts of the globe.

2.7 Using Matched Filtering

We saw previously that the signal that x receives from P (π2 ) at time t
is the same for all x. If we could turn the x-axis counter-clockwise through
an angle of φ, then the signals received from P (π2 + φ) at time t would be
the same for all x. Of course, we usually cannot turn the array physically
in this way; however, we can steer the array mathematically. This mathe-
matical steering makes use of matched filtering. In certain applications it
is reasonable to assume that only relatively few values of the function f(θ)
are significantly nonzero. Matched filtering is a commonly used method for
dealing with such cases.

2.7.1 A Single Source

To take an extreme case, suppose that f(θ0) > 0 and f(θ) = 0, for all
θ 6= θ0. The signal received at time t at x is then

s(x, t) = eiω(t−D/c)f(θ0)ei
ωx
c cos θ0 .

Our objective is to determine θ0.
Suppose that we multiply s(x, t) by e−i

ωx
c cos θ, for arbitrary values of

θ. When one of the arbitrary values is θ = θ0, the product is no longer
dependent on the value of x; that is, the resulting product is the same for
all x. In practice, we can place sensors at some finite number of points x,
and then sum the resulting products over the x. When the arbitrary θ is
not θ0, we are adding up complex exponentials with distinct phase angles,
so destructive interference takes place and the magnitude of the sum is
not large. In contrast, when θ = θ0, all the products are the same and the
sum is relatively large. This is matched filtering, which is commonly used
to determine the true value of θ0.

2.7.2 Multiple Sources

Having only one signal source is the extreme case; having two or more
signal sources, perhaps not far apart in angle, is an important situation, as
well. Then resolution becomes a problem. When we calculate the matched
filter in the single-source case, the largest magnitude will occur when θ =
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θ0, but the magnitudes at other nearby values of θ will not be zero. How
quickly the values fall off as we move away from θ0 will depend on the
aperture of the array; the larger the aperture, the faster the fall-off. When
we have two signal sources near to one another, say θ1 and θ2, the matched-
filter output can have its largest magnitude at a value of θ between the
two angles θ1 and θ2, causing a loss of resolution. Again, having a larger
aperture will improve the resolution.

2.8 An Example: The Solar-Emission Problem

In [15] Bracewell discusses the solar-emission problem. In 1942, it was
observed that radio-wave emissions in the one-meter wavelength range were
arriving from the sun. Were they coming from the entire disk of the sun
or were the sources more localized, in sunspots, for example? The problem
then was to view each location on the sun’s surface as a potential source of
these radio waves and to determine the intensity of emission corresponding
to each location.

For electromagnetic waves the propagation speed is the speed of light
in a vacuum, which we shall take here to be c = 3× 108 meters per second.
The wavelength λ for gamma rays is around one Angstrom, that is, 10−10

meters, which is about the diameter of an atom; for x-rays it is about one
millimicron, or 10−9 meters. The visible spectrum has wavelengths that
are a little less than one micron, that is, 10−6 meters, while infrared radia-
tion (IR), predominantly associated with heat, has a wavelength somewhat
longer. Infrared radiation with a wavelength around 6 or 7 microns can
be used to detect water vapor; we use near IR, with a wavelength near
that of visible light, to change the channels on our TV sets. Shortwave ra-
dio has a wavelength around one millimeter. Microwaves have wavelengths
between one centimeter and one meter; those used in radar imaging have
a wavelength about one inch and can penetrate clouds and thin layers of
leaves. Broadcast radio has a λ running from about 10 meters to 1000 me-
ters. The so-called long radio waves can have wavelengths several thousand
meters long, necessitating clever methods of large-antenna design for radio
astronomy.

The sun has an angular diameter of 30 min. of arc, or one-half of a
degree, when viewed from earth, but the needed resolution was more like
3 min. of arc. Such resolution requires a larger aperture, a radio telescope
1000 wavelengths across, which means a diameter of 1km at a wavelength of
1 meter; in 1942 the largest military radar antennas were less than 5 meters
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across. A solution was found, using the method of reconstructing an object
from line-integral data, a technique that surfaced again in tomography.

2.9 Estimating the Size of Distant Objects

Suppose, in the previous example of the unknown strength problem,
we assume that f(x) = B, for all x in the interval [−L,L], where B > 0
is the unknown brightness constant, and we don’t know L. More realistic,
two-dimensional versions of this problem arise in astronomy, when we want
to estimate the diameter of a distant star.

In this case, the measurement of the signal at the point P gives us∫ L

−L
f(x) cos

(ω cos θ

c
x
)
dx

= B

∫ L

−L
cos

(
ω cos θ

c
x

)
dx =

2Bc

ω cos θ
sin

(
Lω cos θ

c

)
,

when cos θ 6= 0, whose absolute value is then the strength of the signal at P .
Notice that we have zero signal strength at P when the angle θ associated
with P satisfies the equation

sin

(
Lω cos θ

c

)
= 0,

without
cos θ = 0.

But we know that the first positive zero of the sine function is at π, so the
signal strength at P is zero when θ is such that

Lω cos θ

c
= π.

If
Lω

c
≥ π,

then we can solve for L and get

L =
πc

ω cos θ
.

When Lω is too small, there will be no angle θ for which the received signal
strength at P is zero. If the signals being sent are actually broadband,
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meaning that the signals are made up of components at many different
frequencies, not just one ω, which is usually the case, then we might be
able to filter our measured data, keep only the component at a sufficiently
high frequency, and then proceed as before.

But even when we have only a single frequency ω and Lω is too small,
there is something we can do. The received strength at θ = π

2 is

Fc(0) = B

∫ L

−L
dx = 2BL.

If we knew B, this measurement alone would give us L, but we do not
assume that we know B. At any other angle, the received strength is

Fc(γ) =
2Bc

ω cos θ
sin

(
Lω cos θ

c

)
.

Therefore,

Fc(γ)/Fc(0) =
sin(H(θ))

H(θ)
,

where

H(θ) =
Lω cos θ

c
.

From the measured value Fc(γ)/Fc(0) we can solve for H(θ) and then for
L. In actual optical astronomy, atmospheric distortions make these mea-
surements noisy and the estimates have to be performed more carefully.
This issue is discussed in more detail in Chapter ??, in Section ?? on Two-
Dimensional Fourier Transforms.

There is a simple relationship involving the intrinsic luminosity of a
star, its distance from earth, and its apparent brightness; knowing any two
of these, we can calculate the third. Once we know these values, we can
figure out how large the visible universe is. Unfortunately, only the appar-
ent brightness is easily determined. As Alan Lightman relates in [111], it
was Henrietta Leavitt’s ground-breaking discovery, in 1912, of the “period-
luminosity” law of variable Cepheid stars that eventually revealed just how
enormous the universe really is. Cepheid stars are found in many parts of
the sky. Their apparent brightness varies periodically. As Leavitt, working
at the Harvard College Observatory, discovered, the greater the intrinsic
luminosity of the star, the longer the period of variable brightness. The
final step of calibration was achieved in 1913 by the Danish astronomer
Ejnar Hertzsprung, when he was able to establish the actual distance to a
relatively nearby Cepheid star, essentially by parallax methods.

There is a wonderful article by Eddington [69], in which he discusses
the use of signal processing methods to discover the properties of the star
Algol. This star, formally Algol (Beta Persei) in the constellation Perseus,
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turns out to be three stars, two revolving around the third, with both of the
first two taking turns eclipsing the other. The stars rotate around their own
axes, as our star, the sun, does, and the speed of rotation can be estimated
by calculating the Doppler shift in frequency, as one side of the star comes
toward us and the other side moves away. It is possible to measure one side
at a time only because of the eclipse caused by the other revolving star.

2.10 The Transmission Problem

Now we change the situation and suppose that we are designing a broad-
casting system, using transmitters at each x in the interval [−L,L].

2.10.1 Directionality

At each x we will transmit f(x)eiωt, where both f(x) and ω are chosen
by us. We now want to calculate what will be received at each point P in
the far field. We may wish to design the system so that the strengths of the
signals received at the various P are not all the same. For example, if we
are broadcasting from Los Angeles, we may well want a strong signal in the
north and south directions, but weak signals east and west, where there are
fewer people to receive the signal. Clearly, our model of a single-frequency
signal is too simple, but it does allow us to illustrate several important
points about directionality in array processing.

2.10.2 The Case of Uniform Strength

For concreteness, we investigate the case in which f(x) = 1 for |x| ≤ L.
In this case, the measurement of the signal at the point P gives us

F (P ) =

∫ L

−L
f(x) cos

(ω cos θ

c
x
)
dx

=

∫ L

−L
cos
(ω cos θ

c
x
)
dx

=
2c

ω cos θ
sin
(Lω cos θ

c

)
,

when cos θ 6= 0. The absolute value of F (P ) is then the strength of the
signal at P .

In Figures 2.2 through 2.7 we see the plots of the function 1
2LF (P ), for
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various values of the aperture

A =
Lω

πc
=

2L

λ
.

FIGURE 2.2: Relative strength at P for A = 0.5.
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FIGURE 2.3: Relative strength at P for A = 1.0.

FIGURE 2.4: Relative strength at P for A = 1.5.
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FIGURE 2.5: Relative strength at P for A = 1.8.

FIGURE 2.6: Relative strength at P for A = 3.2.
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FIGURE 2.7: Relative strength at P for A = 6.5.
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2.10.2.1 Beam-Pattern Nulls

Is it possible for the strength of the signal received at some P to be
zero? As we saw in the previous section, to have zero signal strength, that
is, to have F (P ) = 0, we need

sin

(
Lω cos θ

c

)
= 0,

without
cos θ = 0.

Therefore, we need
Lω cos θ

c
= nπ,

for some positive integers n ≥ 1. Notice that this can happen only if

n ≤ Lωπ

c
=

2L

λ
.

Therefore, if 2L < λ, there can be no P with signal strength zero. The
larger 2L is, with respect to the wavelength λ, the more angles at which
the signal strength is zero.

2.10.2.2 Local Maxima

Is it possible for the strength of the signal received at some P to be a
local maximum, relative to nearby points in the far field? We write

F (P ) =
2c

ω cos θ
sin

(
Lω cos θ

c

)
= 2Lsinc (H(θ)),

where

H(θ) =
Lω cos θ

c

and

sinc (H(θ)) =
sinH(θ)

H(θ)
,

for H(θ) 6= 0, and equals one for H(θ) = 0. The value of A used previously
is then A = H(0).

Local maxima or minima of F (P ) occur when the derivative of
sinc (H(θ)) equals zero, which means that

H(θ) cosH(θ)− sinH(θ) = 0,

or
tanH(θ) = H(θ).
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If we can solve this equation for H(θ) and then for θ, we will have found
angles corresponding to local maxima of the received signal strength. The
largest value of F (P ) occurs when θ = π

2 , and the peak in the plot of F (P )
centered at θ = π

2 is called the main lobe. The smaller peaks on either side
are called the grating lobes. We can see grating lobes in some of the polar
plots.

2.11 The Laplace Transform and the Ozone Layer

We have seen how values of the Fourier transform can arise as measured
data. The following examples, the first taken from Twomey’s book [156],
show that values of the Laplace transform can arise in this way as well.

2.11.1 The Laplace Transform

The Laplace transform of the function f(x), defined for 0 ≤ x < +∞,
is the function

F(s) =

∫ +∞

0

f(x)e−sxdx.

2.11.2 Scattering of Ultraviolet Radiation

The sun emits ultraviolet (UV) radiation that enters the earth’s atmo-
sphere at an angle θ0 that depends on the sun’s position, and with intensity
I(0). Let the x-axis be vertical, with x = 0 at the top of the atmosphere
and x increasing as we move down to the earth’s surface, at x = X. The
intensity at x is given by

I(x) = I(0)e−kx/ cos θ0 .

Within the ozone layer, the amount of UV radiation scattered in the direc-
tion θ is given by

S(θ, θ0)I(0)e−kx/ cos θ0∆p,

where S(θ, θ0) is a known parameter, and ∆p is the change in the pressure
of the ozone within the infinitesimal layer [x, x+∆x], and so is proportional
to the concentration of ozone within that layer.

2.11.3 Measuring the Scattered Intensity

The radiation scattered at the angle θ then travels to the ground, a
distance of X − x, weakened along the way, and reaches the ground with



42 Signal Processing: A Mathematical Approach

intensity
S(θ, θ0)I(0)e−kx/ cos θ0e−k(X−x)/ cos θ∆p.

The total scattered intensity at angle θ is then a superposition of the in-
tensities due to scattering at each of the thin layers, and is then

S(θ, θ0)I(0)e−kX/ cos θ0
∫ X

0

e−xβdp,

where

β = k

(
1

cos θ0
− 1

cos θ

)
.

This superposition of intensity can then be written as

S(θ, θ0)I(0)e−kX/ cos θ0
∫ X

0

e−xβp′(x)dx.

2.11.4 The Laplace Transform Data

Using integration by parts, we get∫ X

0

e−xβp′(x)dx = p(X)e−βX − p(0) + β

∫ X

0

e−βxp(x)dx.

Since p(0) = 0 and p(X) can be measured, our data is then the Laplace
transform value ∫ +∞

0

e−βxp(x)dx;

note that we can replace the upper limit X with +∞ if we extend p(x) as
zero beyond x = X.

The variable β depends on the two angles θ and θ0. We can alter θ as
we measure and θ0 changes as the sun moves relative to the earth. In this
way we get values of the Laplace transform of p(x) for various values of β.
The problem then is to recover p(x) from these values. Because the Laplace
transform involves a smoothing of the function p(x), recovering p(x) from
its Laplace transform is more ill-conditioned than is the Fourier transform
inversion problem.

2.12 The Laplace Transform and Energy Spectral
Estimation

In x-ray transmission tomography, x-ray beams are sent through the
object and the drop in intensity is measured. These measurements are
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then used to estimate the distribution of attenuating material within the
object. A typical x-ray beam contains components with different energy
levels. Because components at different energy levels will be attenuated
differently, it is important to know the relative contribution of each energy
level to the entering beam. The energy spectrum is the function f(E) that
describes the intensity of the components at each energy level E > 0.

2.12.1 The Attenuation Coefficient Function

Each specific material, say aluminum, for example, is associated with
attenuation coefficients, which is a function of energy, which we shall denote
by µ(E). A beam with the single energy E passing through a thickness x of
the material will be weakened by the factor e−µ(E)x. By passing the beam
through various thicknesses x of aluminum and registering the intensity
drops, one obtains values of the absorption function

R(x) =

∫ ∞
0

f(E)e−µ(E)xdE. (2.5)

Using a change of variable, we can write R(x) as a Laplace transform.

2.12.2 The Absorption Function as a Laplace Transform

For each material, the attenuation function µ(E) is a strictly decreasing
function of E, so µ(E) has an inverse, which we denote by g; that is,
g(t) = E, for t = µ(E). Equation (2.5) can then be rewritten as

R(x) =

∫ ∞
0

f(g(t))e−txg′(t)dt.

We see then that R(x) is the Laplace transform of the function r(t) =
f(g(t))g′(t). Our measurements of the intensity drops provide values of
R(x), for various values of x, from which we must estimate the functions
r(t), and, ultimately, f(E).
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[61] Csiszár, I. and Tusnády, G. (1984) “Information geometry and alter-
nating minimization procedures.” Statistics and Decisions Supp. 1,
pp. 205–237.

[62] Dainty, J. C. and Fiddy, M. (1984) “The essential role of prior knowl-
eldge in phase retrieval.”Optica Acta 31, pp. 325–330.

[63] Daubechies, I. (1988) “Orthogonal bases of compactly supported
wavelets.”Commun. Pure Appl. Math. 41, pp. 909–996.

[64] Daubechies, I. (1992) Ten Lectures on Wavelets. Philadelphia: Society
for Industrial and Applied Mathematics.

[65] De Bruijn, N. (1967) “Uncertainty principles in Fourier analysis.”In
Inequalties, O. Shisha, editor, pp. 57–71. Boston: Academic Press.

[66] Dhanantwari, A., Stergiopoulos, S., and Iakovidis, I. (2001) “Correct-
ing organ motion artifacts in x-ray CT medical imaging systems by
adaptive processing. I. Theory.”Med. Phys. 28(8), pp. 1562–1576.



50 Bibliography

[67] Donoho, D. (2006) “Compressed sensing.” IEEE Transactions on In-
formation Theory 52(4), pp. 1289–1306.

[68] Duda, R., Hart, P., and Stork, D. (2001) Pattern Classification. New
York: John Wiley and Sons, Inc.

[69] Eddington, A. (1927) “The story of Algol.”Stars and Atoms; reprinted
in [14].

[70] Feuillade, C., DelBalzo, D., and Rowe, M. (1989) “Environmental mis-
match in shallow-water matched-field processing: geoacoustic param-
eter variability.”Journal of the Acoustical Society of America 85, pp.
2354–2364.

[71] Feynman, R. (1985) QED: The Strange Theory of Light and Matter.
Princeton, NJ: Princeton University Press.

[72] Feynman, R., Leighton, R., and Sands, M. (1963) The Feynman Lec-
tures on Physics, Vol. 1. Boston: Addison-Wesley.

[73] Fiddy, M. (1983) “The phase retrieval problem.”In Inverse Optics,
SPIE Proceedings 413 (A.J. Devaney, editor), pp. 176–181.

[74] Fiddy, M. (2008) Private communication.

[75] Fienup, J. (1979) “Space object imaging through the turbulent atmo-
sphere.”Optical Engineering 18, pp. 529–534.

[76] Fienup, J. (1982) “Phase retrieval algorithms: a comparison.” Applied
Optics 21, pp. 2758–2769.

[77] Fienup, J. (1987) “Reconstruction of a complex-valued object from the
modulus of its Fourier transform using a support constraint.”Journal
of the Optical Society of America A 4(1), pp. 118–123.

[78] Frieden, B. R. (1982) Probability, Statistical Optics and Data Testing.
Berlin: Springer-Verlag.

[79] Gabor, D. (1946) “Theory of communication.”Journal of the IEE (Lon-
don) 93, pp. 429–457.

[80] Gasquet, C. and Witomski, F. (1998) Fourier Analysis and Applica-
tions. Berlin: Springer-Verlag.

[81] Gelb, A., ed. (1974) Applied Optimal Estimation, written by the tech-
nical staff of The Analytic Sciences Corporation. Cambridge, MA: MIT
Press.



Bibliography 51

[82] Geman, S. and Geman, D. (1984) “Stochastic relaxation, Gibbs distri-
butions and the Bayesian restoration of images.” IEEE Transactions
on Pattern Analysis and Machine Intelligence PAMI-6, pp. 721–741.

[83] Gerchberg, R. W. (1974) “Super-restoration through error energy re-
duction.”Optica Acta 21, pp. 709–720.

[84] Gordon, R., Bender, R., and Herman, G.T. (1970) “Algebraic recon-
struction techniques (ART) for three-dimensional electron microscopy
and x-ray photography.”J. Theoret. Biol. 29, pp. 471–481.

[85] Green, P. (1990) “Bayesian reconstructions from emission tomography
data using a modified EM algorithm.” IEEE Transactions on Medical
Imaging 9, pp. 84–93.

[86] Groetsch, C. (1999) Inverse Problems: Activities for Undergraduates.
Washington, DC: The Mathematical Association of America.
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