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Abstract

The hyperspectral imaging technique described in [12] leads to the inter-
esting problem of reconstructing a three-dimensional data cube from measured
data. This problem involves three separate steps in which we must estimate
values of a function from values of its Fourier transform. Depending on which
of the two functions involved at each step has bounded support, that is, is zero
off of a bounded set, the estimation process can take one of two forms, which
we call Type One and Type Two problems. We discuss these two types and
suggest techniques for solving both of them. For Type Two problems there is a
good opportunity to incorporate whatever prior information we may have about
the shape of the function being reconstructed. Since the data sets are large we
recommend the use of iterative methods, such as the algebraic reconstruction

technique (ART).

1 Introduction

Hyperspectral image processing provides an excellent example of the need for esti-

mating Fourier transform values from limited data. In these notes we describe one

novel approach, due to Mooney et al [12]; the presentation here follows [1, 13, 10].

In this hyperspectral imaging problem the electromagnetic energy reflected or

emitted by a point, such as light reflected from a location on the earth’s surface, is

passed through a prism to separate the components as to their wavelengths. Due

to the dispersion of the different frequency components caused by the prism, these

components are recorded in the image plane not at a single spatial location, but at

distinct points along a line. Since the received energy comes from a region of points,

not a single point, what is received in the image plane is a superposition of different

wavelength components associated with different points within the object. The first
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task is to reorganize the data so that each location in the image plane is associated

with all the components of a single point of the object being imaged; this is a Fourier

transform estimation problem, which we can solve using band-limited extrapolation.

The coordinate systems are chosen so that the points of the image plane are in one-

to-one correspondence with points of the object plane.

The image reconstruction problem we face involves the estimation of values of a

function from values of its Fourier transform. At one stage of the reconstruction the

function being estimated is zero outside a bounded set, while at another stage the

function being sampled is zero outside a bounded set. For concreteness we let F (ω)

be defined for ω ∈ [0, 2π], with

f(x) =
1

2π

∫ 2π

0
F (ω)e−ixωdω. (1.1)

We shall say that estimating values of f(x) from finitely many samples of the function

F (ω) is a problem of Type One, while estimating F (ω) from finitely many samples of

the function f(x) is a problem of Type Two. These two types of estimation problems

are quite distinct and, as we shall see, require different techniques for their solution.

2 Hyperspectral Imaging

The region of the object plane that we wish to image is described by the two-

dimensional spatial coordinate x = (x1, x2). For simplicity, we take these coordinates

to be continuous, leaving until the end the issue of discretization. We shall also denote

by x the point in the image plane corresponding to the point x on the object plane;

the units of distance between two such points in one plane and their corresponding

points in the other plane may, of course, be quite different. For each x we let F (x, λ)

denote the intensity of the component at wavelength λ of the electromagnetic energy

that is reflected from or emitted by location x. The function F (x, λ) (or, rather, a

discretized version of it) is the data cube we wish to reconstruct. We shall assume

that F (x, λ) = 0 for (x, λ) outside some bounded portion of three-dimensional space.

Consider, for a moment, the case in which the energy sensed by the imaging system

comes from a single point x. If the dispersion axis of the prism is oriented according

to the unit vector pθ, for some θ ∈ [0, 2π), then the component at wavelength λ of

the energy from x on the object is recorded not at x in the image plane but at the

point x + µ(λ − λ0)pθ. Here µ > 0 is a constant and λ0 is the wavelength for which

the component from point x of the object is recorded at x in the image plane.

Now imagine energy coming to the imaging system for all the points within the
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imaged region of the object. Let G(x, θ) be the intensity of the energy received at

location x in the image plane when the prism orientation is θ. It follows from above

that

G(x, θ) =
∫ +∞

−∞
F (x − µ(λ − λ0)pθ, λ)dλ. (2.1)

The limits of integration are not really infinite due to the finiteness of the aperture

and the focal plane of the imaging system. Our data will consist of finitely many

values of G(x, θ), as x varies over the grid points of the image plane and θ varies over

some finite discretized set of angles.

We explore the relationship between the measurements and the desired data cube

by taking the two-dimensional inverse Fourier transform of G(x, θ) with respect to

the spatial variable x to get

g(y, θ) =
1

(2π)2

∫

G(x, θ) exp(−ix · y)dx. (2.2)

Inserting the expression for G in equation (2.1) into equation (2.2) we obtain

g(y, θ) = exp(iµλ0pθ · y)
∫

exp(−iµλpθ · y)f(y, λ)dλ, (2.3)

where f(y, λ) is the two-dimensional inverse Fourier transform of F (x, λ) with respect

to the spatial variable x. Therefore

g(y, θ) = exp(iµλ0pθ · y)F(y, γθ), (2.4)

where F(y, γ) denotes the three-dimensional inverse Fourier transform of F (x, λ)

and γθ = µpθ · y. We see then that each value of g(y, θ) that we estimate from our

measurements provides us with a single estimated value of F .

Our reconstruction involves three distinct Fourier transform estimation steps:

Step 1: We use the measured values of G(x, θ) to estimate values of g(y, θ) given by

equation (2.2). Since the variable x is restricted to a bounded set this is a problem

of Type One.

Step 2: For each fixed y we use the estimated values of g(y, θ) to estimate values of

the function f(y, λ), according to equation (2.3). Since the variable λ is restricted to

a bounded set this is a problem of Type Two.

Step 3: From the estimated values of f(y, λ) we estimate its spatial Fourier trans-

form, which is F (x, λ). The variable x is restricted to a bounded set, so this is a

problem of Type Two.

In the next section we consider the two types of Fourier transform estimation

problems.
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3 Fourier transform estimation

It is often the case in remote sensing that what we want and what we can measure are

related by Fourier transformation. Frequently one of the two functions has bounded

support, so that the other one is band-limited. If our measurements are samples of a

function of bounded support we shall say that we are solving a problem of Type One,

while if the sampled function is band-limited we say the problem is of Type Two.

As we shall see, these two types of problems are distinct and different techniques are

required to solve them.

Throughout this section we let F (ω) be defined for ω ∈ [0, 2π], with

f(x) =
1

2π

∫ 2π

0
F (ω)e−ixωdω. (3.1)

In applications F (ω) usually represents some physical object of limited extent. In

problems of Type Two remote sensing has provided (usually noisy) values of f(x) for

finitely many x.

When algorithms are being developed and tested one often works with simulations.

If the F (ω) to be simulated is specified analytically we may be able to compute values

of f(x) by performing the integrals in equation (3.1). It may be the case, however,

that the integrals cannot be performed exactly or even that F (ω) is represented by a

finite vector of samples. Estimating values of f(x) in such cases becomes a problem

of Type One. In the hyperspectral imaging problem discussed here problems of both

types must be solved.

When discussing problems of Type One in this section we shall assume that we

have the values Fn = F (2πn/N), n = 0, 1, ..., N − 1 and wish to estimate f(x) for

certain values of x. When discussing problems of Type Two in this section we shall

assume, at first, that we have the values f(m), m = 0, ..., M −1 and wish to estimate

values of F (ω) and then allow the data to be f(xm), m = 1, ..., M , where the xm are

arbitrary.

For problems of Type One it is tempting to take as our estimate of f(x) what is

perhaps the obvious choice, the function

f̂(x) =
1

N

N−1
∑

n=0

Fne
−2πnx/N . (3.2)

and for problems of Type Two the estimate

F̂ (ω) =
M−1
∑

m=0

f(m)eimω. (3.3)
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If, in the first case, we decide to estimate f(x) only for the integer values j = 0, ..., N−

1 then we get

f̂(j) =
1

N

N−1
∑

n=0

Fne
−2πnj/N , (3.4)

which can be calculated using the Fast Fourier Transform. Similarly, if, in the second

case, we decide to estimate F (ω) only for the values ω = ωk = 2πk/M, k = 0, ..., M −

1, we get

F̂ (ωk) =
M−1
∑

m=0

f(m)e2πkm/M , (3.5)

The main theme of this section is that while these estimates may be obvious, they

are not necessarily good choices.

3.1 Problems of Type One:

Let us assume that F (ω) is Riemann integrable. For each x we can approximate the

integral in equation (3.1) by the Riemann sum

rs(x; N) =
1

N

N−1
∑

n=0

Fne
−2πinx/N , (3.6)

which is our estimate in equation (3.2). The problem is that how good an approxima-

tion rs(x; N) is of f(x) will depend on x; as |x| gets large the integrand becomes ever

more oscillatory and a larger value of N will be needed to obtain a good approximation

of the integral.

The basic idea here is to use the measured values F (2πn/N), n = 0, ..., N − 1

to find an approximation of the function F (ω) and then to take the inverse Fourier

transform of this approximation as our estimate of the function f(x). One particular

approximation we study in detail is a step function, although other approximations

can be considered. It is helpful to remember that the estimate in equation (3.2) is

N -periodic and is based on the unrealistic approximation of F (ω) by finitely many

delta functions supported on the points 2πn/N, n = 0, ..., N − 1.

Consider the step function approximation of F (ω) given by

S(ω) =
N−1
∑

n=0

Fnχπ/N(ω −
2n + 1

N
π) (3.7)

with

s(x) =
1

2π

∫ 2π

0
S(ω)e−2πixωdω. (3.8)
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Performing the integrations we find that

s(x) = e−ixπ/Nrs(x; N)
sin(πx/N)

πx/N
. (3.9)

If N is large enough for S(ω) to provide a reasonable approximation of F (ω) then

s(x) should be a good estimate of f(x), at least for smaller values of x. Of course,

since the rate of decay of f(x) as |x| approaches infinity depends on the smoothness of

F (ω) we must not expect s(x) to approximate f(x) well for larger values of x. Before

leaving our discussion of problems of Type One we want to investigate to what extent

the function rs(x; N) provides a good estimate of f(x).

Notice that the first positive zero of sin(πx/N) occurs at x = N , which suggests

that rs(x; N) provides a reasonable estimate of f(x) for |x| not larger than, say, N/2;

therefore we may use fk to estimate f(k) for 0 ≤ k ≤ N/2. To be safe, we may

wish to use a smaller upper bound on k. Note also that rs(−x; N) = rs(−x+N ; N),

which means that we may use fN−k to approximate f(−k) for 0 < k ≤ N/2.

To summarize, the N samples of F (ω) provide useful estimates rs(k; N) of f(k)

for −N/2 < k ≤ N/2. For N = 2K we have −K < k ≤ K, so that the N samples of

F (ω) provide 2K = N useful estimates of f(k) through the use of rs(k; N).

There is yet another way to look at this problem. If F (ω) is twice continuously

differentiable then

F (ω) =
∞
∑

m=−∞

f(m)eimω (3.10)

with uniform convergence of this Fourier series for 0 ≤ ω ≤ 2π. Therefore, for M

large enough, we can estimate F (ω) using the truncated Fourier series

T (ω; M) =
M
∑

m=−M

f(m)eimω. (3.11)

Let N = 2M + 1 now.

Substituting ω = 2πn/N into equation (3.11) we obtain

T (2πn/N ; M) =
M
∑

m=−M

f(m)e2πimn/N . (3.12)

For j = −M, ..., M multiply both sides of equation (3.12) by e−2πinj/N , sum over

n = 0, ..., N − 1 and use orthogonality to get f(j) on the right side and

1

N

N−1
∑

n=0

T (2πn/N ; M)e−2πinj/N (3.13)
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on the left. Viewing T (2πn/N ; M) as an estimate of F (2πn/N) and replacing the

former by the latter in equation (3.13), we conclude once again that f(k) is well

approximated by fk for 0 ≤ k ≤ M and f(−k) by fN−k for 1 ≤ k ≤ M .

When F (ω) is real-valued f(x) is conjugate-symmetric, that is, f(−x) = f(x) for

each x. If we view fj as an estimate of f(j) for j = 1, ..., M , then we should view fN−j

as an estimate of f(−j). It does not make good sense to view fN−j as an estimate

of f(N − j) since there need be no relation between f(j) and f(N − j), while fj and

fN−j are complex conjugates of each other.

3.2 Problems of Type Two:

In problems of Type Two we want to estimate the function F (ω) having bounded

support and have samples of its Fourier transform, f(x). As we shall see, this type of

problem presents difficulties that are quite different from those presented by problems

of Type One.

According to Shannon’s sampling theorem we can recover F (ω) completely from

the infinite sequence of samples {f(k∆)}, where k runs over all the integers, for any

sampling rate ∆ ≤ 1. Unfortunately, we do not have infinitely many samples. In most

applications there is a bounded set of x variables within which we select our sampling

points. We may take as many sampling points as we desire, but must remain within

the bounded set. We need not take the samples equispaced one unit apart; in fact,

we may take irregularly spaced sample points. Let us assume now that we have the

samples {f(xm), m = 1, ..., M}, from which to estimate the function F (ω). We have

several options now. One method, which we shall not discuss here (see [4, 5, 2, 3])

estimates F (ω) for all ω, using a certain finite parameter model. Only after this

is done is the estimated function discretized. A second method, the one we shall

present here, is closely related to the first method, but begins with a discretization

of the function F (ω).

We replace the function F (ω) with the vector F = (F1, F2, ..., FN)T , where the

entry Fn can be viewed as Fn = F (2π(n − 1)/N). Our data is

f(xm) =
1

2π

∫ 2π

0
F (ω)e−ixmωdω,

for m = 1, ..., M . We approximate the integrals with finite sums, obtaining

f(xm) =
1

2π

N
∑

n=1

Fne
−2πixmn, (3.14)

which we write in matrix form as f = AF, with A the M by N matrix with entries

Amn = 1
2π

exp(−ixmn). For reasons to be discussed below we want to take N > M .
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Since M < N the systems of equations AF = f will typically have infinitely many

solutions. Our goal is to incorporate our prior knowledge of the function F (ω) in the

choice of solution.

A common choice in such underdetermined problems is to select the minimum

norm solution, given by

Fminnorm = A†(AA†)−1f ,

where the superscript † indicates conjugate transpose and we assume, reasonably,

that the matrix AA† is invertible. However, suppose we have some prior information

about the shape of the function F (ω), such as it is zero outside some interval [a, b]

contained within [0, 2π], or, more generally, |F (ω)| can be approximated by some

nonnegative function P (ω) ≥ 0. We then let Pn = P (2π(n − 1)/N) and Wn = P−1/2
n

whenever Pn > 0; let Wn = α > 0 for some small α > 0 otherwise. Let W be the

diagonal matrix with entries Wn. The minimum weighted norm solution of f = AF

is

Fmwn = W−1A†(AW−1A†)−1f .

This minimum weighted norm solution can be obtained from the minimum norm

solution of a related system of linear equations. Let B = AW−1/2 and G = W 1/2F.

Then f = AF = BG. The minimum norm solution of f = BG is

Gminnorm = B†(BB†)−1f = W−1/2A†(AW−1A†)−1f

and

Fmwn = W−1/2Gminnorm.

We calculate Fmwn iteratively, either by applying the algebraic reconstruction tech-

nique ART directly to the system f = BG or rewriting the ART iterative step for

this system in terms of the original system f = AF.

When the data is noisy we often do not want an exact solution of f = AF. In

that case we regularize by taking as our approximate solution the vector

Frmwn = W−1A†(AW−1A† + ε2I)−1f ,

where ε > 0 is small and I is the identity matrix. This solution can also be found

iteratively, using ART, without having to calculate the matrix AW−1A†.

4 The ART

In applied mathematics it is often the case that the solution to our problem cannot

be written in closed form, nor can it be calculated exactly in a finite number of steps.
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In such cases we are forced to find approximate solutions using iterative algorithms;

the Newton-Raphson method for solving f(x) = 0 is an example of an iterative

method. There are also situations in which, in theory, the solution can be found

exactly, assuming infinitely precise calculations, but to do so would be impractical:

solving large systems of linear equations is an example of such a problem. We know

that, in theory, Gauss elimination will find the solution in a finite number of steps, if

there is a unique solution. But, when there are thousands of equations in thousands

of unknowns, as is commonly the case in image processing, Gauss elimination is not

practical. The iterative algebraic reconstruction technique (ART) was devised to solve

just such large systems of linear equations.

Finding a solution to the complex system of M linear equations in N unknowns

given in matrix form by Ax = b is equivalent to finding a complex N -dimensional

vector x that is in all of the sets

Hm = {x|(Ax)m = bm},

for m = 1, ..., M . The sets Hm are hyperplanes in CN . One way to find such an x is

to use the ART method.

In ART we begin with an arbitrary starting vector x0. We then let x1 be the

vector in H1 closest to x0, then x2 the vector in H2 closest to x1, and so on. When we

have found vector xM in HM closest to xM−1, we then let xM+1 be the vector in H1

closest to xM , etc.; that is, we cycle once again through each of the M hyperplanes.

This process is known to converge to the vector closest to x0 that is in all of the Hm.

Given any vector x and hyperplane Hm, the vector z in Hm closest to x can be

written explicitly. We have

zn = xn + Amn(bm − (Ax)m)/
∑N

j=1
|Amj|

2.

Therefore, the ART algorithm can be written explicitly as follows: for k = 0, 1, ...

and m = k(mod M) + 1 we have

xk+1
n = xk

n + Amn(bm − (Axk)m)/
∑N

j=1
|Amj|

2.

It is known that the ART can be slow to converge if the equations that make up

Ax = b are ordered so that successive rows of A are not significantly different. To

avoid this it is highly recommended that the equations be reordered according to

some random selection prior to using ART.

If we know that the solution being sought is real-valued we can rewrite the system

of equations so that the matrix A and the vector b are real. If, in addition, we know
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that the solution being sought has nonnegative entries then we can use clipped ART

on the real system Ax = b, which has the following iterative step:

xk+1
n = [xk

n + Amn(bm − (Axk)m)/
∑N

j=1
A2

mj]+,

where r+ is the maximum of the real number r and 0.

When M ≤ N the matrix AA† is typically invertible, the system Ax = b typically

has solutions and the ART algorithm converges to the solution closest to the starting

vector x0. If x0 = 0 then the ART limit is then the minimum norm solution, x =

A†(AA†)−1b. Sometimes, however, we do not want an exact solution. In such cases

regularization is required.

4.1 Regularizing ART:

It is often the case that the entries of the vector b in the system Ax = b come from

measurements, so are usually noisy. If the entries of b are noisy but the system Ax = b

remains consistent (which can easily happen in the underdetermined case, with N >

M) the ART begun at x0 = 0 converges to the solution having minimum norm, but

this norm can be quite large. The problem is that the matrix AA†, while invertible,

can be ill-conditioned, which means that slight changes in b can lead to larger changes

in the minimum norm solution. As a result, the minimum norm solution is probably

useless. Instead of solving Ax = b we can regularize by minimizing, for example, the

function

||Ax − b||2 + ε2||x||2, (4.1)

for some small ε2. The solution to this problem is the vector

x = (A†A + ε2I)−1A†b. (4.2)

It can be shown that this regularized solution is also

x = A†(AA† + ε2I)−1b,

where the possibly ill-conditioned matrix AA† used in the minimum norm solution

has been replaced by the better conditioned matrix AA† + ε2I.

Although we want the regularized solution we do not want to have to calculate

A†A or AA†, particularly when the matrix A is large. Fortunately the ART can find

the regularized solution using only the matrix A.

We discuss two methods for using ART to obtain regularized solutions of Ax = b.

The first one is new, the second one is due to Gabor Herman, in unpublished notes.
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In our first method we use ART to solve the system of equations given in matrix

form by

[ A† εI ]
[

u
v

]

= 0.

We begin with u0 = b and v0 = 0. The lower component of the limit vector is then

v∞ = −εx̂, where x̂ minimizes the function in (4.1).

Gabor Herman’s method is similar. In his we use ART to solve the system of

equations given in matrix form by

[ A εI ]
[

x
v

]

= b.

We begin at x0 = 0 and v0 = 0. Then the limit vector has for its upper component

the desired regularized solution x∞ = x̂. Also εv∞ = b − Ax̂.

As Herman and Meyer have shown [9], the order in which the equations are ac-

cessed in ART, as well as the use of relaxation parameters, can greatly affect the

speed of convergence. The main consideration is to avoid taking the equations in

an order such that each equation substantially repeats the information about the

image present in the previous equation. To avoid such a situation we could employ

a random ordering of the equations, although more carefully designed ordering may

achieve somewhat faster convergence.

5 The data cube reconstruction again

In this section we return to the three-step data cube reconstruction procedure, to see

what is to be done at each step, in light of our previous discussion.

5.1 Step 1:

Our measured data we take to be G(xj, θk), for j = 1, ..., J and k = 1, ..., K, with J

the number of pixels in the image plane grid and K the number of orientation angles

for the prism. Since Step 1 is a Type One problem, we should take as fine a grid as is

practical. Since G(x, θ) ≥ 0 we want to make sure the estimates g(y, θ) are conjugate

symmetric in the variable y; that is, g(−y, θ) = g(y, θ). As discussed above, we may

estimate as many values of g(y, θ) as desired, using the approximation of G(x, θ) by

a two-dimensional step function analogous to S(ω) earlier.

To be concrete, let us suppose that J = J1J2 and that the pixel grid has J1 rows,

J2 columns. Let the pixels have length ∆1 in the first variable and ∆2 in the second

variable. Let the j-th sample point be xj with coordinates ((j1 − 1)∆1, (j2 − 1)∆2),
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where j = (j1−1)J2+j2, so that the j-th pixel consists of those points in the rectangle

Rj, that is, those x = (x1, x2) with (j1 − 1)∆1 ≤ x1 < j1∆1 and (j2 − 1)∆2 ≤ x2 <

j2∆2.

For each fixed θk define Sk(x), the step function approximation of G(x, θk) to be

Sk(x) =
J

∑

j=1

G(xj, θk)χj(x),

where χj(x) = 1 if x ∈ Rj and zero otherwise. The inverse Fourier transform of χj(x)

is

[
1

πy1

e−i(j1+ 1

2
)∆1y1 sin(y1∆1/2)][

1

πy2

e−i(j2+ 1

2
)∆2y2 sin(y2∆2/2)],

so the inverse Fourier transform of Sk(x) is

sk(y) = sk(y1, y2) = (5.1)

J1
∑

j1=1

J2
∑

j2=1

G(xj1 , xj2 , θk)[
1

πy1

e−i(j1+ 1

2
)∆1y1 sin(y1∆1/2)][

1

πy2

e−i(j2+ 1

2
)∆2y2 sin(y2∆2/2)].

Use equation (5.1) to estimate values g(ym, θk) for m = 1, ..., M . Make sure that one

of the ym is the zero vector.

5.2 Step 2:

In Step Two we discretize in the λ domain to equispaced wavelengths λ1, ..., λN , where

N > K and ∆λ > 0 is the spacing. Let

h(ym, θk) = g(ym, θk)e
−iµλ0pk·ym

so that for each fixed ym we have the approximation

h(ym, θk) = ∆λ

N
∑

n=1

f(ym, λn)e−iµλnpk·ym

for k = 1, ..., K. This system of equations is underdetermined. We solve for the min-

imum weighted norm solution using ART, with regularization if desired. The weights

can be uniform over each of the λn involved or can be modulated to incorporate

prior information as to the relative strengths of the contributions from each of the

wavelengths.
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5.3 Step 3:

In Step Three we fix each λn and use the values f(ym, λn), m = 1, ..., M , to estimate

F (x, λn). This is a Type Two problem again. We begin by discretizing the variable

x. Note that we need not use the same number of pixels employed in the discretizing

of the function G(x, θ).

Let xi, i = 1, ..., I be the discretization of the variable x. We want to estimate the

nonnegative quantities F (xi, λn) from the estimated values f(ym, λn). We assume

that I > M .

Approximating the Fourier transform integrals by finite sums we obtain the equa-

tions

f(ym, λn) =
1

(2π)2
∆Ax

I
∑

i=1

F (xi, λn)e−ixi·ym , (5.2)

where ∆Ax is the area of each of the pixels created by the discretization. For each

fixed n we have an underdetermined system of M complex equations in I nonnegative

unknowns. Since the unknowns are real-valued we transform this complex system to

a real system.

Since F (x, λ), the Fourier tranform of f(y, λ) with respect to the variable y, is

nonnegative, therefore real-valued, the function f(y, λ) is conjugate-symmetric:

f(−y, λ) = f(y, λ).

Substituting −ym for ym in equation (5.2) and averaging with the original equation

(5.2) we obtain the real equations

1

2
[f(ym, λn) + f(−ym, λn)] =

1

(2π)2

I
∑

i=1

F (xi, λn) cos(xi · ym). (5.3)

Similarly, we obtain the real equations

1

2i
[f(ym, λn) − f(−ym, λn)] =

1

(2π)2

I
∑

i=1

F (xi, λn) sin(xi · ym). (5.4)

We have the additional information that the desired values F (xi, λn) are nonnega-

tive. To obtain an estimate with this property we can employ clipping in the ART

algorithm. To obtain the weights needed we can either use a uniform weight over

each xi or modulate the weights to incorporate any prior information we may have

as to how the intensities F (xi, λn) vary with xi, for each fixed λn.

There is another way to incorporate nonnegativity into the estimate of the values

F (xi, λn). There are iterative algorithms, such as the rescaled block-iterative expec-

tation maximization maximum likelihood (RBI-EMML) [6, 7, 8], for solving systems
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of equations of the form y = Px where P is a matrix with nonnegative entries,

y is a known vector with positive entries and a nonnegative solution x is sought.

To apply these algorithms to the problem in Step 3 we need to perform one more

transformation, to make everything nonnegative.

We do this by adding the equation

f(0, λn) =
1

(2π)2
∆Ax

I
∑

i=1

F (xi, λn)

to both equations (5.3) and (5.4) above. Then the terms cos(xi ·ym) and sin(xi ·ym)

are replaced by 1+cos(xi ·ym) and 1+sin(xi ·ym), respectively. The resulting system

of linear equations then has the form y = Px as described above and the RBI-EMML

can then be applied. This algorithm has already been used successfully on related

unmixing problems in hyperspectral image processing [11].
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