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1. Basic Equations

i Let us derive the basic conservation equation for traffic flow. We consider
the flow of vehicles on a long road where the features of the flow we wish
b to calculate, such as bottlenecks, etc., are long compared with the average
distances between vehicles. Let n(x, x + Ax, 1) denote the number of vehi-
cles between point x and point x + Ax on the road at time ¢ (see Figure 14.1).
We shall assume that k(x, r) exists such that for any x, Ax, and ¢,

x+tAx
n(x, x + Ax, 1) = j k(%, 1) dx. (1)

X

We note that, by the fundamental theorem of calculus,

n(x, x + Ax, 1)

e, 1) = Alslcl:ﬂ) Ax

if k is continuous. We shall assume that we can adequately model the situa-
tions of interest with the assumption that k is continuous.

In terms of infinitesimals, & is the number of vehicles per unit length in
the infinitesimal length between x and x + Ax at time r. Empirical values
of k can be determined from aerial photographs of roads. We select some
“small” (infinitesimal) length Ax, count the vehicles between x and x + Ax,
- and divide by Ax.

Now let us define the flow rate g(x, r). The flow rate g is simply the rate
at which vehicles pass point x at time 7. The total number Q crossing point x
between time ¢ and time ¢ + At is then given by
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Figure 14.1. Traffic Situation at Some Time ¢
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. Figure 14.2. Flow Versus Concentration
Again, by the fundamental theorem of calculus, we have balance law in differential form
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This equation tells us how the concentration k changes in time at each x from
the flow ¢g. To predict how k changes, then, knowledge of another variable gis
required.

To see that this equation is qualitatively correct, consider the following
thought experiment. If 8g/0x < 0, then g is decreasing in a neighborhood of
the location x, and ¢(x + ¢, #) is less than g(x — &, t) for some small positive
number ¢. Thus the flow out of this section of road is less than the flow in,and
hence k& must increase in time near that location. Mathematically, this is
expressed by (7).

We note that we have one equation (7) for two unknown functions & and q.
Thus our system is underdetermined. A little more thought should convince
us that this underdetermination is necessary at this stage. After all, we have in
no essential way used the fact that we are modeling vehicular traffic. The
concentration and flow could just as well be concentration and flow of a
pollutant in a river, or of heat in a bar, or of electrons in a wire, or almost
anything which flows in a one-dimensional situation.

We need more equations which reflect the peculiarities of vehicular
i traffic. These equations may be balance equations (perhaps an equation for
B d/d:[772 g(%, 1) d%) or maybe simply some abstraction of empirical data
£ pertaining to the physical situation at hand. If we use empirical data, then

those data contain (we hope!) the essential constitution of the physical
¢ situation. Such a relation is called a constitutive equation. For the traffic flow
-~ problem, we have much data of the form flow rate plotted against concen-

tration (g versus k), as shown in Figure 14.2 (see Exercise .

Thus we assume that ¢ = ¢(k). It is noteworthy that the flow of vehicles

§ increases with increasing k for k small, while it decreases to zero as k

Empirical values of ¢ can be obtained by clocked counters iw:or mmaw w
time record of the vehicles crossing point x. We select some “'sma ,
count the vehicles crossing x between 7 and 1 + \.pr and Q:.;an g Az, .

Let us now consider the balance or conservation of <.mEo_mw in the SM - 3
Let us isolate a segment of the road lying coﬂsnmm uoﬁa x and x +ﬁ X &
and look at the rate of change of the number of <a§o_nm. in this mnmﬁga.

The balance law which applies here is that no vehicles are o.nnmam or
destroyed (neglecting collisions!) in this segment. Thus oo.swwﬂwﬁwwwew QMM
hicles requires that the rate of increase of Sm.xtﬁ@mw o\. vehicles heneer *
and x + Ax is equal to the rate at :k_E_Dm vehicles flow in minus the rate
which they flow out. Thus for any time instant

d fx+Ax

i k(i ndi = glx, ) — qlx + Ax, ). ()
[

.

This is the fundamental conservation law (balance law) for the segment |
of road between x and x + Ax: it is a statement about the balance we :
would see in a snapshot of the road (see Figure 14.1). We note that

& fx+Ax ) &; n+bk@
7 k(x, ndx = 3

X x

(%, 1) di. oF

Let us now divide by Ax and let Ax — 0. We have

1 [xre gk

. Lo glx, ) —glx + Ax, D. (©) ;
R Ax

By the fundamental theorem of calculus, the _:,B.H on the left .wm H.B.n&wa_mw
(8k/01)(x, 1), while by the definition of partial derivative, the limit of the §

! The number k; is the jam concentration, the number of cars per unit length of highway when
quotient on the right is —(3g/0x)(x, 1). Thus we arrive at the fundamental :

 the traffic is jammed and nothing moves.




approaches the jam concentration k; (here just slightly more than 225
veh/mi.' The maximum flow rate of 1500 veh/h occurs at about 75 veh/m.

Many different forms of ¢(k) have been fitted to the data. They range from
simple forms having the above general features to others which fit the data
very accurately. One of the simpler models for g(k) is Greenshields’ model
givenby g = ugk(l — k/k;). where u, is the (empirical) free wvmm.a of the road
(the speed at which a vehicle would travel if it were alone on the highway), and
k;is the jam concentration (see Exercise 2).

2. Propagation of a Disturbance

Let us consider the evolution of the traffic concentration & on a long road.
First let us assume that & is a function of x and ¢ and that ¢ 1s a function of k
(Figure 14.2). Then (7) can be rewritten by applying the chain rule to calculate
dg(k)/éx:

— + === (8)

Now, let us considera curve x = x(z) in the x7 plane on which & is constant.

Such a curve is called a characteristic of (8) and satisfies the implicit relation,

k(x(1), 1) = constant. ! 9)

The function x(z) also satisfies the differential equation obtained by differen-
tiating (9) with respect to ¢, :

(10)

where once again we have used the chain rule. Along a characteristic, k(x, 1)

satisfies both (8) and (10). Hence we must have
dx/dr = dgfdk (11)

along a characteristic. Since & is constant on x = x(7), sois dg/dk, and we can
immediately integrate (11) with respect to 1, obtaining

x = (dg/dk)t + xq (12)

as the equation of the family of characteristics. Since & is constant on each of
these curves, each curve is a straight line. Note that we assume that dgldk >0
throughout.

If we know the value of k at x, at 1 = 0, the value of k at each point on the
line x = (dg/dk)? + x,is the same as it isat x,. However, in terms of x and 1,
Xo = x — (dg/dk)t. Thus

dg
dk

k(x, 1) = k(xy,0) = k{x — =11 0], (13 %
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Figure 14.3. Curves of Constant % (Characteristics) (Slopes of lines are given by
dg/dk for particular value of k associated with given line.)
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Figure 14.4. Propagation of Discontinuity

Thus if we supply the concentration of vehicles k at time ¢ = 0, the initial
time, the solution is determined by the relation
—k(x_ %

kix, ) =k(x T t,0 (14)
—almost. Consider the lines emanating from the neighborhood of x = 0 in
Figure 14.3. If these lines are extended, they will cross. At a point where they
cross, the equation predicts two different values of k. Physically, this cannot
happen. Thus the partial differential equation cannot be valid everywhere
along any two of the characteristic lines which cross at some point (x,, #,). A
little thought suggests that somewhere on at least one of those characteristic
lines, the solution must be discontinuous. We shall discuss the location of the
discontinuity shortly. Before that, we note that the set of (x, #) where the
discontinuity occurs must be such that each given line must be separated
from all others which would intersect it by a discontinuity. Otherwise, two
different value of k& would be predicted for the point of intersection. This
suggests that the discontinuity must be more than a mere point, that it must

bea curvein x — ¢space (see Figure 14.4). Such a curve of discontinuities is
called a shock.
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3. Shocks

To obtain the condition valid at the shock, we must rederive the balance
condition without the assumptions of differentiability which we made there.
Consider a section of roadway which lies between Xy —eand x; + €, where
X, 18 the position of the shock and ¢ is some small positive &mﬁnnm. Since the
shock moves in time, this section of roadway will change in time. We must
account for this movement when we compute the inflow and outflow of
vehicles from the segment.

First, we note that since the segment of road is small, essentially no
vehicles will be found on it, and hence the rate of inflow to this segment must
equal the rate of outflow from it.

Let us compute the rate of outflow from the segment of road through mr.o
end at x,(r) + &. Consider the road at two times ¢ and 1 + A7 where At is
small (see Figure 14.5). The total number of vehicles which have moéﬁ out of
the segment between time r and time 1 + Az can be computed by oommam:mm
the flow through the location x,(1) + ¢ during this time and subtracting those
which did not make it out of the segment due to the movement of the end to
position x (¢ + A7) + e.

Thus the number of vehicles flowing out of the segment is given by

40D + & DAL = k(5 (0) + & D0+ AD = x,(0). (15) §

(Note that we use the flow rate and concentrations evaluated at time 7. This
approximation is not critical ; we could have used other representative values
of the time 1.)

To compute the rate at which vehicles flow out, we must divide by At and 4

let Az — 0. The rate of outflux of vehicles is then

ERECET ¥ VL Y Nﬁu

9 + 6,0 = kCx, + 5, 025, 16
A similar calculation of the inflow at X, — € gives
a0 = &) = k(x, = 6,022, (17)

Since no vehicles are created or destroyed in this segment, the difference
between these two flow rates must equal the rate of accumulation of vehicles
in the segment from x, — ¢to xs + & Ifwelete — 0, we expect no vehicles to

accumulate, and thus the flow rate in (16) must equal the flow rate out of (17).
Thus we have

T=0 )

lal — [4]
where
g\n”: = W“HW_H\AHM + g, qv rl.\.ﬁ.Hm - & Ou
is the jump in a function Jacross the shock.

Thus the velocity of the shock dx/dtis given by [q(k,) — q(k)]/ky — k),
where k, and &, are the concentrations ahead of and behind the shockwave.,
We note that [g(k,) — q(k,)]/(k2 — k,)is the slope of the chord connecting
the points (k,, g(k,)) and (k2 q(k;)) in the flow-concentration diagram
(Figure 14.2).

If we use Greenshields’ relation for q(k), we find that

(k) — gq(ky) _ 1[dg dq
ky =k, 3 |z%) pAGUE
so that dx/dr, the velocity of the shock, is the average of the slopes of the
characteristics which meet at the shock. Using this rule and practicing a bit, it
becomes possible to sketch the characteristics and the shocks for relatively
complex traffic flows.

For example, let us consider the propagation of a traffic “hump.” If the
hump is as shown in Figure 14.6(b), with characteristics as sketched in
Figure 14.6(a), we see that a shock must form somewhere around x = 0 and
persist, intersecting pairs of characteristics at the average of their slopes.

The situation shown in F igure 14.6 corresponds to low concentration flows
withk < k., where k,, is the concentration corresponding to maximum flow.
If we consider concentrations greater than k,,, the shock will propagate
backward. See Exercise 3. ,

We should also point out that dx/dt is the velocity of propagation of the
shock and is not related to the velocities of individual vehicles. The average
speed of the traffic defined by u = g/k is always positive for 0 < k < k;. The

shock speed, on the other hand, can be positive or negative, depending on the
two concentrations on either side.
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Figure 14.6. Development of Shock.

Exercises

I. Given the following data,

k (veh/mi) {(mi/h) ¢ (veh/h)

33 31 1023
43 26 1018
43 27 1061
48 23 1104
50 26 1300
92 12 1104
96 12 1112
98 11 1078
103 10 1030
106 10 1060
107 10 1070
110 8 880
110 9 990
114 9 1026
118 9 1062
119 9 1071
119 9 1071
121 9 1089
134 8 1072
135 8 1080
137 8 1096

use least squares to fit
a) Greenshields’ model

q = urk(l — kfkyp;

b) Greenberg’s model

215

q = uyIn(kfk).

That is, in a) choose u; and &; to minimize Y, [¢, — ugki(1 — kijk;)]*, where
(k;, g,) is an entry in the data table.

2. Compute the maximum flow rate for Greenshields’ model. At what concentration

does the maximum flow occur?

3. Consider the propagation of the traffic situation shown in Figure 14.7, where k > k...

The characteristics for small 7 are given in Figure 14.7(b). Use your intuition about
the formation of shocks to predict when a shock will form, and how it will propagate.



(a)

-

AR RN

(b)

Figure 14.7. (a) Concentration at r = 0; (b) Characteristics Corresponding to Con-
centration in (a).
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Notes for the Instructor

Objectives. This module introduces the fundamental balance idea necessary

to derive the kinematic conservation equation. A discussion of constitutive
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equations for traffic flow is given. To illustrate the complexities of the model
(and the physical situation), characteristics of first-order partial differential
equations are derived and used from first principles. The modeling ideas are
the main emphasis of this module.

Prerequisites. Multivariable calculus and differential equations and some

nnamnﬁcﬂmuaamro&ammmsEﬁorcuawnmﬁmn&amoﬁ. modeling from this
module. .

Time. The module can be covered in three lectures.




