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Preface

We shall not cease from exploration, and the end of all our exploring will
be to arrive where we started and know the place for the first time.

T. S. Eliot

I have been trying to understand the EM algorithm for twenty-five years.
I first encountered the EM algorithm in 1990, when I began collaborating
with Mike King and members of his research group in the Department of
Radiology, University of Massachusetts Medical School. They were inter-
ested in the application of the EM to image reconstruction in emission
tomography. The particular case of the EM algorithm that they showed
me was what I shall call here the EMML algorithm, also called the MLEM
algorithm, which was derived from the Poisson statistics of emission tomog-
raphy. Every time I visited UMassMed Bill Penney would give me a stack of
papers to further my education. This is how I learned of the work of Vardi,
Shepp, Kaufman, Lange, Csiszár, and others [63, 65, 36, 52, 67, 53, 48].

Around the same time, I became aware of the work of Gabor Her-
man and his colleagues and the ART, MART, and simultaneous MART
(SMART) algorithms [44, 28]. Their approach to medical image recon-
struction was more linear-algebraic than statistical. I recall an exchange
of comments on the paper [67] in which Herman et al. suggested that the
EMML algorithm might be usefully viewed in their linear-algebraic terms,
a suggestion that met with vehement denial from the original authors. After
I published [10], in which I showed a close connection between the EMML
and the SMART, I was invited to speak to Herman’s group at MIPG in
Philadelphia. There I met Yair Censor, with whom I have been collaborat-
ing ever since.

From the first, I was interested in the interplay between the statistical
and the linear-algebraic approaches to image reconstruction. Through my
study of the EMML and my collaboration with Censor I started to learn
something about optimization and the role it could play in the reconstruc-
tion problem. Indeed, this paper continues that quest to understand this
interplay.

Each time I wrote about the EMML algorithm and the more general
EM algorithm I felt that, although I was telling the truth, it was probably

vii



viii Preface

not the whole truth; I felt that there was always more to know about
these methods and open questions to be answered. I was also bothered by
what I perceived to be inadequacies in the standard treatment of the EM
algorithm. In particular, the usual proof that any EM algorithm increases
likelihood at each step is flawed. Because there is no all-encompassing proof
of convergence for the EM algorithm, each algorithm in this class must be
dealt with individually. A good illustration of this is found in the series
of papers on the behavior of the EM algorithm for emission tomography
[63, 65, 52, 67, 53, 10, 17]. I am sure that those who use the EM algorithms
frequently have learned to live with this overall lack of rigor, and have
focused on the particular EM algorithm they require. Nevertheless, it is of
some interest to see how one might go about fixing the flaw. The current
paper is just the latest in a series of attempts to understand what is going
on.

As several authors have noted, the EM algorithm is not truly an algo-
rithm, but a template or recipe for designing iterative algorithms. Never-
theless, I shall stick with tradition and refer here to “the EM algorithm”.
I discovered recently [26] that we can look at the EM algorithm from a
nonstochastic perspective, which I call the “nonstochastic EM”(NSEM)
template. Using the NSEM template we can derive an alternative to the
usual EM template that I call the “statistical EM”(STEM) template, to
distinguish it from the NSEM. I prove that any STEM iteration increases
likelihood, and that most EM algorithms are in fact STEM algorithms.

My approach here is to present four templates for iterative recon-
struction. With each class contained in the previous one, these four
are “auxiliary-function”(AF) algorithms, “alternating minimization”(AM),
“proximal minimization”algorithms (PMA), which are equivalent to “ma-
jorization minimization”(MM) methods, also known as “optimization
transfer”or “surrogate-function”methods, in statistics, and finally, the
NSEM. By deriving the STEM from the NSEM template we get that like-
lihood is increasing. But we want more than that; we want the likelihood
to increase to its maximum value.

Auxiliary-function algorithms are formulated as minimization algo-
rithms and it is guaranteed that the objective function is decreasing. The
SUMMA and the more general SUMMA2 algorithms are AF methods for
which it is guaranteed that the iterative sequence of values of the objective
function actually converges to the infimum of its values. Those STEM al-
gorithms that can be reformulated as SUMMA2 algorithms are guaranteed
to maximize likelihood; the EMML is one such example. By deriving the
STEM algorithms as NSEM algorithms we link STEM with other related
optimization methods, including those for entropy maximization.



Chapter 1

Introduction

1.1 Probabilistic Mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 SPECT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 List-Mode PET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

In this introductory chapter we present three applications of the EM algo-
rithm, first to a simple example involving marbles in bowls, and then to the
reconstruction of images in single-photon emission tomography (SPECT)
and list-mode positron emission tomography (List-mode PET). All three
of these examples involve probabilistic mixtures. The version of the EM
that we shall employ here is the standard version, which is suitable for the
problems in this chapter, but, as we shall discuss later, not always suitable
for other problems.

1.1 Probabilistic Mixtures

The following example is simple, yet sufficient to illustrate many aspects
of remote sensing. Imagine a box containing many slips of paper, on each
of which is written one of the numbers j = 1, 2, ..., J . We have no access
to the box. There are also J bowls of colored marbles. The colors of the
marbles are denoted i = 1, 2, ..., I. We are allowed to examine the contents
of each bowl, so we know precisely the probability Pi,j that a marble with
the color i will be drawn from bowl j. Out of my sight someone draws a
slip of paper from the box and without saying anything extracts a marble
from the indicated bowl. The color of the drawn marble is announced. This
process happensN times, at the end of which I have a list y = (i1, i2, ..., iN ),
where in is the index of the color of the nth marble drawn. On the basis of
this data and the probabilities Pi,j I must estimate, for each j, the number
θj , the proportion of slips of paper on which the number j is written.

Let f(i) be the probability that the color of the drawn marble is i.

1



2 The EM Algorithm and Related Methods for Iterative Optimization

Then, for each i, we have

f(i|θ) =

J∑
j=1

Pi,jθj = (Pθ)i, (1.1)

where P is the matrix with entries Pi,j and θ is the column vector with
entries θj . This is a discrete probabilistic mixture, with parameter vector
θ to be estimated.

Given the data i1, i2, ..., iN , the likelihood function is

L(θ) =

N∏
n=1

(Pθ)in ,

and the log likelihood function is

LL(θ) =

N∑
n=1

log(Pθ)in .

With Ni the number of times the number in appears in the list, we can
write

LL(θ) =

I∑
i=1

Ni log(Pθ)i. (1.2)

Maximizing LL(θ) over nonnegative vectors θ whose entries sum to one is
equivalent to minimizing the Kullback–Leibler (KL) distance

KL(α, Pθ) =

I∑
i=1

αi log

(
αi

(Pθ)i

)
+ (Pθ)i − αi, (1.3)

where α is the column vector with entries αi = Ni/N . The KL distance
will be defined and discussed in Chapter 2.

To employ the EM we postulate as the preferred data the list x =
(j1, j2, ..., jN ), where jn is the index of the bowl from which the nth marble
was drawn. We prefer this data because, if we had the jn, then our estimate
of θj would simply be Nj/N , where Nj is the number of times the index j
appears in the list. The log likelihood function for this preferred data is

LLp(θ) =

N∑
n=1

log θjn =

J∑
j=1

Nj log θj . (1.4)

Note that the observed data is not a function of the preferred data, so
the relationship Y = h(X) does not hold here. The probability of obtaining
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the list i1, i2, ..., iN , given θ and the list j1, j2, ..., jN , is
∏N
n=1 Pin,jn , which

is independent of θ; that is, this preferred data is acceptable, a term we
shall discuss in detail later.

In this particular instance there is an easy way to proceed; we can
calculate the conditional expected value of log fX(X|θ) directly. For each
n and j let Xn,j have the value one if jn = j, and zero, otherwise. Then

log fX(X|θ) =

N∑
n=1

J∑
j=1

Xn,j log θj .

Using

E(Xn,j |y, θk−1) = θk−1
j

Pin,j
(Pθk−1)in

,

we have

E(log fX(X|θ)|y, θk−1) =

I∑
i=1

J∑
j=1

θk−1
j Pi,j

Ni
(Pθk−1)i

log θj . (1.5)

Maximizing this with respect to θ, we have

θkj = θk−1
j

I∑
i=1

Pi,j
αi

(Pθk−1)i
. (1.6)

This iterative algorithm is well known and occurs as the EM algorithm
in single-photon emission tomography (SPECT), as we shall see next. In
that context it is often called the EMML algorithm, and we shall use that
terminology here.

1.2 SPECT

In single-photon emission tomography (SPECT) a radionuclide is in-
jected into the body of the patient. We take λj ≥ 0, j = 1, ..., J , to be
the unknown concentrations of the radionuclide at the j-th pixel, and as-
sume that λj is also the expected number of photons emitted at the j-th
pixel during the scanning time. We want to estimate θj , the proportion
of detected photons that came from pixel j. The detectors are numbered
i = 1, 2, ..., I. We have as our observed data the list i1, i2, ..., iN , where
in denotes the detector at which the nth detection was made. What we
wish we had, the preferred data, is the list j1, j2, ..., jN , where jn denotes
the pixel from which the nth detected photon was emitted. As in the bowl
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example, we have a discrete probabilistic mixture. The probability of a
detection at detector i, given θ = (θ1, θ2, ..., θJ), is

f(i|θ) =

J∑
j=1

Pi,jθj = (Pθ)i, (1.7)

where Pi,j is the probability that a photon emitted from pixel j will be
detected at detector i. We assume that these Pi,j are known to us.

Mathematically speaking, this problem is identical to the bowls prob-
lem and the iteration in Equation (1.6) solves the estimation problem.The
iteration in Equation (1.6) can be written as

λkj = λk−1
j

I∑
i=1

Pi,jNi/(Pλ
k−1)i. (1.8)

As we shall see later, the sequence {θk} converges to a maximizer of the
likelihood.

This formulation of the SPECT problem is not the usual formulation.
More commonly, one assumes that the random variables Yi,j are the num-
ber of photons emitted from j and detected at i, and that we have single
realizations of the random variables Yi =

∑J
j=1 Yi,j . The Yi,j are assumed

to be independent and Yi,j is Pi,jλj-Poisson. Then the Yi are indepen-
dent and Yi is (Pλ)i-Poisson. The likelihood function for the observed data
y = (N1, ..., NI) is

fY (y|λ) =

I∏
i=1

e−(Pλ)i(Pλ)Ni
i /Ni!. (1.9)

Maximizing the likelihood function is equivalent to minimizing the
Kullback–Leibler distance KL(y, Pλ). The EM iteration is once again that
given in Equation (1.6).

Some of the early papers on the application of the EM algorithm to
the SPECT problem credited desirable properties exhibited by the EMML
algorithm to the use of the Poisson statistics and greater adherence to the
actual physics of the situation. However, as we just saw, the same EMML
algorithm can be derived for the SPECT problem simply by treating it as
a probabilistic mixture problem, without assuming any Poisson statistics.
The images produced by the EMML algorithm are not always good images
and the convergence can be slow. What we can say is that the behavior of
the EMML algorithm is unrelated to the use of Poisson statistics.

It is a mistake to give most of the credit for the behavior of an al-
gorithm to the philosophical views that prompted its use. This happened
in the 1980’s when entropy maximization became increasingly popular for
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image reconstruction, and again with likelihood maximization. In [67] the
EMML algorithm is discussed in terms of the statistics of the Poisson model
for emission and it is suggested that its usefulness for tomographic image
reconstruction lies in its explicit use of the physics inherent in the emission
process. This article was published in a journal that invited and published
commentary on the article from interested parties. Among those invited
to comment were Gabor Herman and members of his group. In their work
tomographic reconstruction had been treated as a linear algebra problem
and their algorithms were iterative methods for solving large systems of
linear equations and linear inequalities with constraints [44]. In their com-
ments they offered the view that the EMML algorithm may well be viewed
in linear algebraic terms. In rebuttal, the authors of the original paper as-
serted quite strongly that there was no connection between their statistical
approach and that of Herman and his colleagues, claiming that likelihood
maximization was a well studied part of statistical estimation theory and
unrelated to solving linear equations.

In [12] I rederived the EMML algorithm in tandem with the simultane-
ous multiplicative algebraic reconstruction technique (SMART), a method
developed by Herman’s group and based on their linear-algebraic formu-
lation, showing that these algorithms were closely related and that both
algorithms could be viewed simply as iterative methods for solving systems
of linear equations. This tandem development will be presented later in
these notes. Whatever properties they may exhibit could not be attributed
to adherence to the physics, nor to the theory of statistical likelihood max-
imization.

1.3 List-Mode PET

In positron-emission tomography a positron is emitted at some pixel
(or voxel) and immediately encounters an electron. Their masses are anni-
hilated and two gamma-ray photons head off in nearly opposite directions,
along some line segment. When the detectors record two detections simul-
taneously, it is inferred that an emission occurred somewhere along the line
segment, called the line of response (LOR), determined by the sites of the
two detections. As the scanning proceeds, a list of the LOR involved is
kept. It is convenient to assume that the collection of potential LOR forms
a continuum, and that the probability that an LOR denoted by the variable
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v is on the list is given by

f(v|θ) =

J∑
j=1

θjfj(v), (1.10)

where θj is the probability that an emitted positron is emitted at pixel j
and fj(v) is the pdf governing the distribution of the LOR resulting from
emissions at the jth pixel. We have a probabilistic mixture once again, but
it is not quite the same as in the previous subsection, since probability
density functions are now involved.

We assume that our observed data is the vector y = (v1, v2, ..., vN ),
where vn denotes the nth LOR on the list. As in the discrete case, we take as
the preferred data the vector x = (j1, j2, ..., jN ), where jn denotes the pixel
at which the nth positron was emitted. We do not have the relationship
Y = h(X). However, the preferred data is acceptable. Alternatively, we can
take w = (j1, j2, ..., jN ) and x = (y, w), and use the missing-data model.
Now we do have Y = h(X). The W is acceptable, but that doesn’t matter
in the missing-data model.

It is shown in [17] that maximizing the likelihood in this case is equiv-
alent to minimizing

F (θ) = KL(u, Pθ) +

J∑
j=1

(1− sj)θj ,

over probability vectors θ, where sj =
∑N
n=1 fj(vn) and u is the vector

whose entries are all un = 1/N . Since we are dealing with probability
density functions now, the sj can take on any positive value and 1− sj can

be negative. It is easily shown that, if θ̂ minimizes F (θ) over all nonnegative

vectors θ, then θ̂ is a probability vector. Therefore, we can obtain the
maximum likelihood estimate of θ by minimizing F (θ) over nonnegative
vectors θ.

The iterative step of the EM is now

θkj =
1

N
θk−1
j

N∑
n=1

fj(vn)

f(vn|θk−1)
. (1.11)

In previous articles this iterative algorithm was called the Mix-EM algo-
rithm. As we shall discuss later, since the preferred data X is acceptable,
likelihood is increasing for this algorithm. We shall go further now, and
show that the sequence of probability vectors {θk} converges to a maxi-
mizer of the likelihood. The following theorem is found in [17].

Theorem 1.1 Let u be any positive vector, P any nonnegative matrix with
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sj > 0 for each j, and

F (θ) = KL(u, Pθ) +

J∑
j=1

δjKL(γj , θj).

If sj + δj > 0, αj = sj/(sj + δj), and δjγj ≥ 0, for all j, then the iterative
sequence given by

θk+1
j = αjs

−1
j θkj

( N∑
n=1

Pn,j
un

(Pθk)n

)
+ (1− αj)γj (1.12)

converges to a nonnegative minimizer of F (θ).

With the choices un = 1/N , γj = 0, and δj = 1 − sj , the iteration in
Equation (1.12) becomes that of the Mix-EM algorithm. Therefore, the
sequence {θk} converges to the maximum likelihood estimate of the mixing
proportions.
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Maximum Likelihood

2.1 Definition and Basic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
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2.1 Definition and Basic Properties

In this chapter we define the EM algorithm, and present the standard
proof, valid for the discrete case of probability functions, that likelihood is
increasing.

2.2 What is the EM Algorithm?

In applications of the EM algorithm in statistics, Y is a random vector
taking values in RM and governed by the probability density function (pdf)
or probability function (pf) fY (y|θtrue). The θtrue is a parameter, or vector
of parameters, to be estimated; the set Θ is the collection of all potential
values of θtrue. We have one realization, y, of Y , and we will estimate θtrue

by maximizing the likelihood function of θ, given by L(θ) = fY (y|θ), over
θ ∈ Θ, to get θML, a maximum-likelihood estimate of θtrue.

In the EM approach it is postulated that there is a second random vec-
tor, X, taking values in RN , such that, had we obtained an instance x of X,
maximizing the function Lx(θ) = fX(x|θ) would have been computation-
ally simpler than maximizing L(θ) = fY (y|θ). Clearly, maximizing Lx(θ) is
equivalent to maximizing LLx(θ) = log fX(x|θ). In most discussions of the
EM algorithm the vector y is called the “incomplete” data, while the x is
the “complete” data and the situation is described by saying that there is

9



10 The EM Algorithm and Related Methods for Iterative Optimization

“missing” data. In many applications of the EM algorithm this is suitable
terminology. However, any data that we do not have but wish that we did
have can be called “missing”. I will call the vector y the “observed” data
and the x the “preferred” data.

The basic idea underlying the EM algorithm is first to estimate x, using
the current estimate θk−1, then to use this estimate of x to get the next
estimate θk. Since it is LLx(θ) that we want to maximize, we estimate
log fX(x|θ), rather than x itself. The EM algorithm estimates LLx(x|θ) as

E(log fX(X|θ)|y, θk−1) =

∫
fX|Y (x|y, θk−1) log fX(x|θ)dx, (2.1)

the conditional expected value of the random function log fX(X|θ),
conditioned on the data y and the current estimate θk−1. This is
the so-called E-step of the EM algorithm; the M-step is to maximize
E(log fX(X|θ)|y, θk−1) to get θk. It is convenient to define

Q(θ|θk−1) =

∫
fX|Y (x|y, θk−1) log fX(x|θ)dx. (2.2)

For the case of probability functions we replace the integral with summa-
tion.

An EM algorithm generates a sequence {θk} of estimates of θtrue. There
are several objectives that we may consider:

1. the sequence {L(θk)} should be increasing;

2. the sequence {L(θk)} should converge to L(θML);

3. the sequence {θk} should converge to θML;

4. the sequence of functions {fY (y|θk)} should converge to fY (y|θML).

Clearly, in order to achieve the third objective it is necessary to have a
topology on the set Θ of potential parameter values.

2.3 The Kullback–Leibler or Cross-Entropy Distance

The Kullback–Leibler distance is quite useful in the discussions that
follow. For positive numbers s and t, the Kullback–Leibler distance from s
to t is

KL(s, t) = s log
s

t
+ t− s. (2.3)
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Since, for x > 0 we have

x− 1− log x ≥ 0

and equal to zero if and only if x = 1, it follows that

KL(s, t) ≥ 0,

andKL(s, s) = 0. We use limits to defineKL(0, t) = t andKL(s, 0) = +∞.
Now we extend the KL distance to nonnegative vectors component-wise.
The following lemma is easy to prove.

Lemma 2.1 For any nonnegative vectors x and z, with z+ =
∑J
j=1 zj > 0,

we have

KL(x, z) = KL(x+, z+) +KL(x,
x+

z+
z). (2.4)

We can extend the KL distance in the obvious way to infinite sequences
with nonnegative terms, as well as to nonnegative functions of continuous
variables.

2.4 The Discrete Case

We assume now that our actual data is y, one realization of Y , a discrete
random vector taking values in some finite or countably infinite set A and
governed by the probability function fY (y|θtrue). We postulate a second
random vector X taking values in a finite or countably infinite set B and
a function h : B → A. Then

fY (y|θ) =
∑

x∈h−1{y}

fX(x|θ), (2.5)

where
h−1{y} = {x|h(x) = y}.

Consequently,

fX|Y (x|y, θ) =

{
fX(x|θ)/fY (y|θ), if x ∈ h−1{y};

0, if x /∈ h−1{y}. (2.6)

Let c(x) = χh−1(y)(x) have the value one, for x ∈ h−1(y) and zero, other-
wise. Then

fX(x|θ)c(x) = (fX|Y (x|y, θ)c(x))fY (y|θ). (2.7)



12 The EM Algorithm and Related Methods for Iterative Optimization

We show now that the sequence {fY (y|θk)} is increasing. Use Equation
(2.7) to get

log(fX(x|θ)c(x)) = log(fX|Y (x|y, θ)c(x))− log fY (y|θ). (2.8)

Then maximizing∑
fX|Y (x|y, θk−1)c(x) log(fX(x|θ)c(x))

is equivalent to minimizing

KL
(
fX|Y (x|y, θk−1)c(x), fX|Y (x|y, θ)c(x)

)
− log fY (y|θ).

Now, since

log fY (y|θk−1) = log fY (y|θk−1)−KL
(
fX|Y (x|y, θk−1)c(x), fX|Y (x|y, θk−1)c(x)

)
≤ log fY (y|θk)−KL

(
fX|Y (x|y, θk−1)c(x), fX|Y (x|y, θk)c(x)

)
,

we have

log fY (y|θk) ≥ log fY (y|θk−1)+KL
(
fX|Y (x|y, θk−1)c(x), fX|Y (x|y, θk)c(x)

)
.

Therefore, the likelihood is increasing.

2.5 Some Difficulties

When the probability functions are replaced by probability density func-
tions, some difficulties arise. In [38, 55] and elsewhere we are told that

fX|Y (x|y, θ) = fX(x|θ)/fY (y|θ). (2.9)

This is false; integrating with respect to x gives one on the left side and
1/fY (y|θ) on the right side. Perhaps the equation is not meant to hold for all
x, but just for some x. In fact, if there is a function h such that Y = h(X),
then Equation (2.9) might hold just for those x such that h(x) = y, as
in the discrete case. However, this modification of Equation (2.9) fails in
the continuous case of probability density functions, since h−1{y} is often
a subset of zero measure. Even if the set h−1{y} has positive measure,
integrating both sides of Equation (2.9) over x ∈ h−1{y} tells us that
fY (y|θ) ≤ 1, which need not hold for probability density functions.

Everyone who works with the EM algorithm will say that the likelihood
is increasing for the EM algorithm. This is true for the discrete case, as we
just saw. The proof breaks down for probability density functions, however.
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The proof in [38] and reproduced in [55] proceeds as follows. Use Equa-
tion (2.9) to get

log fX(x|θ) = log fX|Y (x|y, θ)− log fY (y|θ). (2.10)

Then replace the term log fX(x|θ) in Equation (2.1) with the right side of
Equation (2.10), obtaining

log fY (y|θ)−Q(θ|θk−1) = −
∫
fX|Y (x|y, θk−1) log fX|Y (x|y, θ)dx. (2.11)

Jensen’s Inequality tells us that∫
u(x) log u(x)dx ≥

∫
u(x) log v(x)dx, (2.12)

for any probability density functions u(x) and v(x). Since fX|Y (x|y, θ) is a
probability density function, we have∫

fX|Y (x|y, θk−1) log fX|Y (x|y, θ)dx ≤∫
fX|Y (x|y, θk−1) log fX|Y (x|y, θk−1)dx. (2.13)

We conclude, therefore, that log fY (y|θ) −Q(θ|θk−1) attains its minimum
value at θ = θk−1. Then we have

log fY (y|θk)− log fY (y|θk−1) ≥ Q(θk|θk−1)−Q(θk−1|θk−1) ≥ 0. (2.14)

From (2.14) we have

Q(θ|θk−1) +
(
LL(θk−1)−Q(θk−1|θk−1)

)
≤ LL(θ), (2.15)

which is sometimes described, in the optimization-tranfer context, by saying
that, except for a constant, Q(θ|θk−1) is a “minorization”of LL(θ).

This proof is incorrect; clearly it rests on the validity of Equation (2.9),
which is generally false. How we may go about correcting this flaw in the
formulation of the EM algorithm is the topic of Chapter 3.
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The notion of conditional expectation is not one commonly found in the
toolbox of the average graduate student. For that reason, I found it a bit
difficult to introduce the EM algorithm to my students. In my search for an
alternative approach I discovered what I call the nonstochastic EM (NSEM)
algorithm. In this chapter we present the nonstochastic EM template for
optimization and define the STEM template in terms of NSEM. It will
follow from results concerning NSEM that likelihood is always increasing
for STEM algorithms.

3.1 NSEM

We assume that there is a function b : Θ × Ω → R+, where (Ω, µ) is a
measure space and

a(θ) = −f(θ) =

∫
Ω

b(θ, ω)dµ(ω). (3.1)

Let θ0 be arbitrary. For k = 1, 2, ..., we maximize∫
Ω

b(θk−1, ω) log b(θ, ω)dµ(ω) (3.2)

15
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to get θk. Note that the integration may be replaced by summation,
as needed. Using the Kullback–Leibler distance, we can reformulate the
NSEM.

With the shorthand notation b(θ) = b(θ, ω) we define

KL (b(θ), b(γ)) =

∫
Ω

KL (b(θ, ω), b(γ, ω)) dµ(ω).

Proposition 3.1 The sequence {a(θk)} is increasing.

Proof: We have

a(θk−1) = a(θk−1)−KL
(
b(θk−1), b(θk−1)

)
≤ a(θk)−KL

(
b(θk−1), b(θk)

)
.

Therefore,
a(θk)− a(θk−1) ≥ KL

(
b(θk−1), b(θk)

)
.

We see easily that θk minimizes

Gk(θ) = KL
(
b(θk−1), b(θ)

)
− a(θ) = f(θ) + d(θ, θk−1), (3.3)

for
d(θ, γ) = KL (b(γ), b(θ)) .

Consequently, the NSEM is an auxiliary-function method.

3.2 STEM

Now we define the STEM class of iterative algorithms as a subclass
of the NSEM. For any random vectors X and Y governed by the joint
probability density function or joint probability function fX,Y (x, y|θ) we
have

fY (y|θ) =

∫
fX,Y (x, y|θ)dx. (3.4)

With a(θ) = fY (y|θ) and b(θ, ω) = fX,Y (x, y|θ) we see that Equation
(3.4) becomes Equation (3.1). For the case of probability functions, the
integration is replaced by summation. So our STEM template fits into that
of the NSEM. The iterative step is then to find θk by maximizing the
function ∫

fX,Y (x, y|θk−1) log fX,Y (x, y|θ)dx.
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It follows from our discussion of the NSEM that the sequence {fY (y|θk)} is
increasing. Although the STEM approach can be viewed as an alternative
to the usual EM method, the two are the same in many important cases,
as we shall see now.

3.3 The Discrete Case, with Y = h(X)

In many applications of the EM algorithm Y takes values in RM , X
takes values in RN , with M ≤ N , and there is a function h : RN → RM
with Y = h(X). In the case of discrete Y and X and probability functions,
we have

fY (y|θ) =
∑

x∈h−1(y)

fX(x|θ), (3.5)

where h−1(y) denotes the set of all x for which y = h(x). The joint proba-
bility function is

fX,Y (x, y|θ) = fX(x|θ)c(x). (3.6)

Therefore,

fY (y|θ) =
∑
x

fX,Y (x, y|θ),

so that the usual EM formulation matches that of the STEM. Consequently,
the sequence {fY (y|θk)} is increasing.

3.4 The Continuous Case, with Y = h(X)

We suppose now that X and Y are no longer discrete and probability
density functions replace the probability functions in the previous subsec-
tion. When we mimic Equation (3.5) with

fY (y|θ) =

∫
x∈h−1(y)

fX(x|θ)dx, (3.7)

we run into a problem; the set h−1(y) often has measure zero, so this
relationship does not hold. We cannot say that

fX,Y (x, y|θ) = fX(x|θ)c(x).
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Later in these notes we shall consider some particular cases in which more
can be said, and show how the STEM approach gives us a way out of this
difficulty.

3.5 The Missing-Data Model

Most discussions of the EM algorithm refer to the data vector y as the
incomplete data, the desired vector x as the complete data, and describe
the situation by saying that there is missing data. As we shall see later,
there certainly are examples in which this terminology is reasonable. One
example to which we shall return later is that of censored exponential data.

As an illustration of censored exponential data, one often considers the
problem of estimating the average lifetime of lightbulbs. A collection of
bulbs are observed and their times-to-failure recorded. Perhaps, during the
limited observation time, not all the bulbs failed. The missing data is then
the times-to-failure of all the bulbs that failed to fail.

For the missing-data model the random variable Y is the observed data,
the random variable W is the missing data, and X = (Y,W ) is the complete
data. Then

fY (y|θ) =

∫
fY,W (y, w)dw, (3.8)

which fits into the STEM formulation. Once again, we can replace the
integral with summation if necessary. Also

E(log fX(X|θ)|y, θk−1) = E(log fY,W (y,W |θ)|y, θk−1), (3.9)

so that

E(log fX(X|θ)|y, θk−1) =

∫
fW |Y (w|y, θk−1) log fY,W (y, w|θk−1)dw.(3.10)

Therefore, since

fW |Y (w|y, θk−1) = fY,W (y, w|θk−1)/fY (y|θk−1),

the M-step of the EM algorithm is equivalent to maximizing∫
fY,W (y, w|θk−1) log fY,W (y, w|θ)dw. (3.11)

This is the iterative step of the STEM. Therefore, likelihood is increasing.
This version of the EM algorithm is used in [46].
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3.6 Another Approach

We suppose that there is a second function k : RN → RN−M such that
the function G : RN → RN given by

G(x) = (h(x), k(x)) = (y, w) = u

is invertible, with inverse H and determinant of the Jacobian matrix de-
noted by J(y, w). For any measurable set A in RM we have∫

A

fY (y|θ)dy =

∫
y∈A

∫
w∈W(y)

fX(H(y, w)|θ)J(y, w)dw,

where
W(y) = {w|w = k(x), y = h(x)}.

It then follows that

fY (y|θ) =

∫
w∈W(y)

fX(H(y, w)|θ)J(y, w)dw,

so that, for x ∈ h−1(y),

b(x|y, θ) = b(H(y, k(x))|y, θ) = fX(H(y, k(x))|θ)J(y, k(x))/fY (y|θ)

defines a probability density function on h−1(y).
For example, suppose that X = (Z1, Z2), where Z1 and Z2 are in-

dependent and uniformly distributed on the interval [0, θ]. Suppose that
Y = Z1 + Z2 = h(X). The set h−1(y) is the set of all points (z1, z2) for
which h(z1, z2) = z1 + z2 = y, which is a set of planar measure zero. The
function fY (y|θ) is

fY (y|θ) =

 y/θ2, 0 ≤ y ≤ θ;

(2θ − y)/θ2, θ ≤ y ≤ 2θ.
(3.12)

In our example, we have N = 2 and M = 1. Let k(z1, z2) = z1 − z2.
Then

G(z1, z2) = (z1 + z2, z1 − z2),

H(y, w) = (
y + w

2
,
y − w

2
),

and
J(y, w) = 1/2.

The set W(y) is the entire real line.
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The pdf for X is

fX(z1, z2) =
1

θ2
χ[0,1](z1)χ[0,1](z2)

so the pdf for the random variable Y is

fY (y) =
1

2

∫
R

f(H(y, w))dw =
1

2θ2

∫
R

χ[0,1](
y + w

2
)χ[0,1](

y − w
2

)dw.

This is easily seen to be y
θ2 , for 0 ≤ y ≤ θ and 2θ−y

θ2 , for 1 ≤ y ≤ 2θ, which
is the pdf in Equation (3.12).

Related ideas are discussed in [33].

3.7 Acceptable Data

As we discussed, the relationship Y = h(X) is problematic when prob-
ability density functions are involved. In this subsection we describe a con-
dition that we can use as an alternative to Y = h(X).

We say that the random vector X is acceptable if the conditional pdf or
pf fY |X(y|x, θ) is independent of θ, that is

fY |X(y|x, θ) = fY |X(y|x). (3.13)

Let X be acceptable. Using

fX,Y (x, y|θk−1) = fX|Y (x|y, θk−1)fY (y|θk−1)

and
log fX(x|θ) = log fX,Y (x, y|θ)− log fY |X(y|x)

we find that maximizing E(log fX(X|θ)|y, θk−1) is equivalent to maximiz-
ing the function ∫

fX,Y (x, y|θk−1) log fX,Y (x, y|θ)dx,

which is the iterative step of the STEM. Therefore, once again, the likeli-
hood is increasing.

3.8 Using X as Missing Data

As we have just seen, the missing-data model, in which the integral
in (3.11) is maximized, is guaranteed to increase likelihood. Suppose that,
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having selected our preferred data X, we use the missing-data model, with
W = X. Then the likelihood would always be increasing. Why not do this
in every case and not worry about acceptable data? The answer is that the
original EM algorithm has us maximizing∫

fX|Y (x|y, θk−1) log fX(x|θ)dx,

while the missing-data model has us maximizing∫
fY,X(y, x|θk−1) log fY,X(y, x|θ)dx.

These two approaches produce the same sequence of iterates whenever the
preferred data X is acceptable.

3.9 Our Second and Third Objectives

Every EM algorithm that can be viewed as an NSEM algorithm satis-
fies the first of our three objectives. To satisfy the second objective, that
is, to have the sequence {L(θk)} converge to L(θML), we need additional
structure. The theory of the AF and AM templates provides conditions
sufficient for the second objective to hold, which is the main reason for em-
bedding the NSEM in these larger templates. The third objective holds in
some particular cases, as we shall see, but there is no generally applicable
theory to guarantee this. We turn now to the more general templates for
optimization.
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4.1 Definition and Basic Properties

In this chapter we discuss the four templates in some detail. In the in-
terest of consistent notation we shall describe the basic problem as follows.
Let f : Θ → R, where Θ is an arbitrary nonempty set. The problem is to
minimize f(θ) over θ in the set Θ. When we apply these templates to the
likelihood maximization problem the function f(θ) will be the negative of
the log likelihood function LL(θ) = log fY (y|θ).

4.2 Auxiliary-Function Methods

The most general template that we consider here is the auxiliary-
function (AF) template. A wide variety of iterative optimization meth-
ods are particular cases of AF algorithms [21]. Let θ0 be arbitrary. For
k = 1, 2, ..., we minimize the function

Gk(θ) = f(θ) + gk(θ), (4.1)

23
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to get θk, where gk : Θ → [0,+∞]. If the objective is to minimize f(θ)
over some subset Γ ⊆ Θ, we have a choice: we can augment f(θ) by adding
a function that is zero within Γ and +∞ outside Γ, or we can select the
functions gk(θ) to take the value +∞ outside Γ. In any case, we will always
select gk(θ) to be finite whenever f(θ) is finite.

For this to be an AF method we require that the auxiliary functions
gk(θ) be nonnegative and gk(θk−1) = 0.

Lemma 4.1 For any AF algorithm the sequence {f(θk)} is decreasing and
converges to some β∗ ≥ −∞ . If the function f is bounded below, then the
sequence {gk(θk)} converges to zero.

Proof: We have

f(θk−1) = Gk(θk−1) ≥ Gk(θk) = f(θk) + gk(θk),

so that
f(θk−1)− f(θk) ≥ gk(θk) ≥ 0.

Let β = infθ∈Θ f(θ). Later in these notes we shall consider conditions
under which we can assert that β∗ = β.

4.3 Alternating Minimization

Although it may not be immediately obvious, the alternating-
minimization (AM) template of Csiszár and Tusnády [36] can be shown
to be contained in the AF template.

Let Φ : P × Q → (−∞,+∞], where P and Q are arbitrary nonempty
sets. In the AM approach we minimize Φ(p, qk−1) over p ∈ P to get pk and
then minimize Φ(pk, q) over q ∈ Q to get qk. It follows immediately that
the sequence {Φ(pk, qk)} is decreasing. We want

{Φ(pk, qk)} ↓ β = inf{Φ(p, q)|p ∈ P, q ∈ Q}. (4.2)

In [36] Csiszár and Tusnády show that, if the function Φ possesses what
they call the five-point property (5PP),

Φ(p, q) + Φ(p, qk−1) ≥ Φ(p, qk) + Φ(pk, qk−1), (4.3)

for all p, q, and k, then (4.2) holds. There seemed to be no convincing expla-
nation of why the five-point property should be used, except that it works. I
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was quite surprised when I discovered that the AM method can be reformu-
lated as an AF method to minimize a function of the single variable p, and
that the five-point property for AM is precisely the SUMMA Inequality [23]
to be discussed later. For each p select q(p) for which Φ(p, q(p)) ≤ Φ(p, q)
for all q ∈ Q. Then let f(p) = Φ(p, q(p)). Then, since qk−1 = q(pk−1), we
have

Φ(p, qk−1) = Φ(p, q(pk−1)).

Minimizing Φ(p, qk−1) to get pk is equivalent to minimizing

Gk(p) = Φ(p, q(p)) + Φ(p, q(pk−1))− Φ(p, q(p)) = f(p) + gk(p), (4.4)

where
gk(p) = Φ(p, q(pk−1))− Φ(p, q(p)).

Clearly, gk(p) ≥ 0 and gk(pk−1) = 0. With p and P replaced by θ and Θ,
respectively, Equation (4.4) becomes Equation (4.1). Therefore, every AM
algorithm is also an AF algorithm.

4.3.1 The Three- and Four-Point Properties

It is often the case that AM methods are described using the three- and
four-point properties (3PP and 4PP). The 3PP is

Φ(p, qk−1)− Φ(pk, qk−1) ≥ ∆(p, pk) ≥ 0, (4.5)

where ∆ : P × P → R+ and ∆(p, p) = 0, for all p ∈ P . The 4PP is the
following:

∆(p, pk) ≥ Φ(p, qk)− Φ(p, q), (4.6)

for all p, q, and k. Clearly, the 3PP and 4PP together imply the 5PP.

4.3.2 Alternating Bregman Distance Minimization

The general problem of minimizing Φ(p, q) is simply a minimization of
a real-valued function of two variables, p ∈ P and q ∈ Q. In many cases the
function Φ(p, q) is a distance between p and q, either ‖p− q‖22 or KL(p, q).
In the case of Φ(p, q) = ‖p− q‖22, each step of the alternating minimization
algorithm involves an orthogonal projection onto a closed convex set; both
projections are with respect to the same Euclidean distance function. In
the case of cross-entropy minimization, we first project qn onto the set
P by minimizing the distance KL(p, qn) over all p ∈ P , and then project
pn+1 onto the set Q by minimizing the distance function KL(pn+1, q). This
suggests the possibility of using alternating minimization with respect to
more general distance functions. We shall focus on Bregman distances.
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4.3.3 Bregman Distances

Let f : RJ → R be a Bregman function [7, 30, 9], and so f(x) is convex
on its domain and differentiable in the interior of its domain. Then, for x in
the domain and z in the interior, we define the Bregman distance Df (x, z)
by

Df (x, z) = f(x)− f(z)− 〈∇f(z), x− z〉. (4.7)

For example, the KL distance is a Bregman distance with associated Breg-
man function

f(x) =

J∑
j=1

xj log xj − xj . (4.8)

Suppose now that f(x) is a Bregman function and P and Q are closed
convex subsets of the interior of the domain of f(x). Let pn+1 minimize
Df (p, qn) over all p ∈ P . It follows then that

〈∇f(pn+1)−∇f(qn), p− pn+1〉 ≥ 0, (4.9)

for all p ∈ P . Since

Df (p, qn)−Df (pn+1, qn) =

Df (p, pn+1) + 〈∇f(pn+1)−∇f(qn), p− pn+1〉, (4.10)

it follows that the three-point property holds, with

Φ(p, q) = Df (p, q), (4.11)

and

∆(p, p̂) = Df (p, p̃). (4.12)

To get the four-point property we need to restrict Df somewhat; we assume
from now on that Df (p, q) is jointly convex, that is, it is convex in the
combined vector variable (p, q) (see [3]). Now we can invoke a lemma due
to Eggermont and LaRiccia [40].

4.3.4 The Eggermont–LaRiccia Lemma

Lemma 4.2 Suppose that the Bregman distance Df (p, q) is jointly convex.
Then it has the four-point property.



Four Templates for Iterative Optimization 27

Proof: By joint convexity we have

Df (p, q)−Df (pn, qn) ≥

〈∇1Df (pn, qn), p− pn〉+ 〈∇2Df (pn, qn), q − qn〉,
where ∇1 denotes the gradient with respect to the first vector variable.
Since qn minimizes Df (pn, q) over all q ∈ Q, we have

〈∇2Df (pn, qn), q − qn〉 ≥ 0,

for all q. Also,

〈∇1Df (pn, qn), p− pn〉 = 〈∇f(pn)−∇f(qn), p− pn〉.

It follows that

Df (p, qn)−Df (p, pn) = Df (pn, qn) + 〈∇1Df (pn, qn), p− pn〉

≤ Df (p, q)− 〈∇2Df (pn, qn), q − qn〉 ≤ Df (p, q).

Therefore, we have

Df (p, pn) +Df (p, q) ≥ Df (p, qn).

This is the four-point property.

We now know that the alternating minimization method works for any
Bregman distance that is jointly convex. This includes the Euclidean and
the KL distances.

4.3.5 The Bauschke–Combettes–Noll Problem

In [4] Bauschke, Combettes and Noll consider the following problem:
minimize the function

Λ(p, q) = φ(p) + ψ(q) +Df (p, q), (4.13)

where φ and ψ are convex on RJ , D = Df is a Bregman distance, and
P = Q is the interior of the domain of f . They assume that

β = inf
(p,q)

Λ(p, q) > −∞, (4.14)

and seek a sequence {(pn, qn)} such that {Λ(pn, qn)} converges to β. The
sequence is obtained by the AM method, as in our previous discussion. They
prove that, if the Bregman distance is jointly convex, then {Λ(pn, qn)} ↓ b.
In this subsection we obtain this result by showing that Λ(p, q) has the five-
point property whenever D = Df is jointly convex. Our proof is loosely
based on the proof of the Eggermont-LaRiccia lemma.

The five-point property for Λ(p, q) is

Λ(p, qn−1)− Λ(pn, qn−1) ≥ Λ(p, qn)− Λ(p, q). (4.15)



28 The EM Algorithm and Related Methods for Iterative Optimization

Lemma 4.3 The inequality in (4.15) is equivalent to

Λ(p, q)− Λ(pn, qn) ≥

D(p, qn) +D(pn, qn−1)−D(p, qn−1)−D(pn, qn). (4.16)

By the joint convexity of D(p, q) and the convexity of φ and ψ we have

Λ(p, q)− Λ(pn, qn) ≥

〈∇pΛ(pn, qn), p− pn〉+ 〈∇qΛ(pn, qn), q − qn〉, (4.17)

where ∇pΛ(pn, qn) denotes the gradient of Λ(p, q), with respect to p, eval-
uated at (pn, qn).

Since qn minimizes Λ(pn, q), it follows that

〈∇qΛ(pn, qn), q − qn〉 = 0, (4.18)

for all q. Therefore,

Λ(p, q)− Λ(pn, qn) ≥ 〈∇pΛ(pn, qn), p− pn〉 . (4.19)

We have
〈∇pΛ(pn, qn), p− pn〉 =

〈∇f(pn)−∇f(qn), p− pn〉+ 〈∇φ(pn), p− pn〉. (4.20)

Since pn minimizes Λ(p, qn−1), we have

∇pΛ(pn, qn−1) = 0, (4.21)

or

∇φ(pn) = ∇f(qn−1)−∇f(pn), (4.22)

so that

〈∇pΛ(pn, qn), p− pn〉 = 〈∇f(qn−1)−∇f(qn), p− pn〉

= D(p, qn) +D(pn, qn−1)−D(p, qn−1)−D(pn, qn). (4.23)

Using (4.19) we obtain the inequality in (4.16). This shows that Λ(p, q) has
the five-point property whenever the Bregman distance D = Df is jointly
convex. From our previous discussion of AM, we conclude that the sequence
{Λ(pn, qn)} converges to β; this is Corollary 4.3 of [4].
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4.4 Proximal Minimization

Proximal minimization algorithms (PMA) can be shown to be particular
cases of AM algorithms, and, more directly, of AF algorithms. Let d :
Θ×Θ→ R+ be an arbitrary “distance”, with d(θ, θ) = 0, for all θ. Let θ0

be arbitrary in Θ. For each k = 1, 2, ... we minimize the function

Gk(θ) = f(θ) + d(θ, θk−1) (4.24)

to get θk. Clearly, since
gk(θ) = d(θ, θk−1)

is nonnegative and gk(θk−1) = 0, any PMA is an AF algorithm. In Chapter
6 we consider PMA algorithms for which the distance function is a Bregman
distance. We shall call such algorithms members of the PMAB class.

With P = Q = Θ and

Φ(p, q) = Φ(θ, γ) = f(θ) + d(θ, γ) (4.25)

we see that minimizing Gk(θ) in Equation (4.24) to get θk is equivalent
to minimizing Φ(θ, θk−1) and that minimizing Φ(θk, γ) gives γ = θk again.
Therefore, any PMA is also an AM algorithm.

In [34] the authors review the use, in statistics, of “majorization min-
imization” (MM), also called “optimization transfer”. The objective is to
minimize f : Θ → R. In MM methods a second “majorizing” function
g(θ|γ) is postulated, with the properties g(θ|γ) ≥ f(θ) and g(θ|θ) = f(θ).
We then minimize g(θ|θk−1) to get θk. Writing

d(θ, γ) = g(θ|γ)− f(θ),

it is clear that MM methods are equivalent to PMA. In numerous pa-
pers [42, 1] Jeff Fessler and his colleagues use the terminology “surrogate-
function minimization” to describe optimization transfer.

It is clear from our previous discussion of the NSEM template that
every NSEM algorithm is also in the PMA class.
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5.1 Definition and Basic Properties

As we have seen, for any AF algorithm the sequence {f(θk)} is decreas-
ing and so converges to some β∗ ≥ −∞.We want more, however; we want
β∗ = β

.
= infθ f(θ). To have this we need to impose an additional condition

on the auxiliary functions gk(θ); the SUMMA Inequality is one such addi-
tional condition. To motivate our definition of the SUMMA Inequality we
consider briefly barrier-function algorithms for constrained optimization.

5.2 Barrier-Function Algorithms

The problem is to minimize f : Θ → R, subject to θ ∈ Γ, where Γ is a
nonempty subset of an arbitary set Θ. We select b : Θ → (−∞,+∞] with
Γ = {θ|0 < b(θ) < +∞}. For each k we minimize Bk(θ) = f(θ) + 1

k b(θ)
over all θ ∈ Θ to get θk, which must necessarily lie in Γ. Formulated this
way, the method is not yet in AF form. Nevertheless, we have the following
proposition.

Proposition 5.1 The sequence {b(θk)} is increasing, and the sequence
{f(θk)} is decreasing and converges to β = infθ∈Γ f(θ).

31
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Proof: From Bk(θk−1) ≥ Bk(θk) and Bk−1(θk) ≥ Bk−1(θk−1), for k =
2, 3, ..., it follows easily that

1

k − 1
(b(θk)− b(θk−1)) ≥ f(θk−1)− f(θk) ≥ 1

k
(b(θk)− b(θk−1)).

Suppose that {f(θk)} ↓ β∗ > β. Then there is γ ∈ Γ with

f(θk) ≥ β∗ > f(γ) ≥ β,

for all k. Then

1

k
(b(γ)− b(θk)) ≥ f(θk)− f(γ) ≥ β∗ − f(γ) > 0,

for all k. But the sequence { 1
k (b(γ) − b(θk))} converges to zero, which

contradicts the assumption that β∗ > β.

The proof of Proposition 5.1 depended heavily on the details of the
barrier-function method. Now we reformulate the barrier-function method
as an AF method.

Minimizing Bk(θ) = f(θ) + 1
k b(θ) to get θk is equivalent to minimizing

kf(θ) + b(θ), which, in turn, is equivalent to minimizing

Gk(θ) = f(θ) + gk(θ),

where

gk(θ) = [(k − 1)f(θ) + b(θ)]− [(k − 1)f(θk−1) + b(θk−1)].

Clearly, gk(θ) ≥ 0 and gk(θk−1) = 0. Now we have the AF form of the
method. A simple calculation shows that

Gk(θ)−Gk(θk) = gk+1(θ), (5.1)

for all θ ∈ Θ. Equation (5.1) serves to motivate our definition of the
SUMMA Inequality.

5.3 The SUMMA Inequality

We say that an AF algorithm is in the SUMMA class if the SUMMA
Inequality holds for all θ in Θ:

Gk(θ)−Gk(θk) ≥ gk+1(θ). (5.2)
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One consequence of the SUMMA Inequality is

gk(θ) + f(θ) ≥ gk+1(θ) + f(θk), (5.3)

for all θ ∈ Θ. It follows from this that β∗ = β. If this were not the case,
then there would be φ ∈ Θ with

f(θk) ≥ β∗ > f(φ)

for all k. The sequence {gk(φ)} would then be a decreasing sequence of
nonnegative terms with the sequence of its successive differences bounded
below by β∗ − f(φ) > 0.

As we shall discuss, there are many iterative algorithms that satisfy
the SUMMA Inequality, and are therefore in the SUMMA class. However,
some important methods that are not in this class still have β∗ = β; one
example is the proximal minimization method of Auslender and Teboulle
[2]. This suggests that the SUMMA class, large as it is, is still unnecessarily
restrictive. This leads us to the definition of the SUMMA2 class.

5.4 The SUMMA2 Class

An AF algorithm is said to be in the SUMMA2 class if, for each sequence
{θk} generated by the algorithm, there are functions hk : Θ → R+ such
that, for all θ ∈ Θ, we have

hk(θ) + f(θ) ≥ hk+1(θ) + f(θk). (5.4)

Any algorithm in the SUMMA class is in the SUMMA2 class; use hk =
gk. As in the SUMMA case, we must have β∗ = β, since otherwise the
successive differences of the sequence {hk(φ)} would be bounded below by
β∗ − f(φ) > 0. It is helpful to note that the functions hk need not be the
gk, and we do not require that hk(θk−1) = 0.

The PMA of Auslender and Teboulle [2] is in the SUMMA2 class. It is
natural to ask if there are algorithms in the SUMMA2 class that are not in
SUMMA and are not in the class defined by Auslender and Teboulle. There
are such algorithms. As we shall discuss later, the expectation maximization
maximum likelihood (EMML) [67, 10, 11, 12], as it is usually formulated,
is such an algorithm.



34 The EM Algorithm and Related Methods for Iterative Optimization

5.5 AM and SUMMA

Let Φ : P × Q → (−∞,+∞], where P and Q are arbitrary nonempty
sets. In the AM approach we minimize Φ(p, qk−1) over p ∈ P to get pk and
then minimize Φ(pk, q) over q ∈ Q to get qk. It follows immediately that the
sequence {Φ(pk, qk)} is decreasing. The AM method can be reformulated as
an AF method to minimize a function of the single variable p, and the five-
point property for AM is precisely the SUMMA Inequality. For each p select
q(p) for which Φ(p, q(p)) ≤ Φ(p, q) for all q ∈ Q. Then let f(p) = Φ(p, q(p)).
Then, since qk−1 = q(pk−1), we have

Φ(p, qk−1) = Φ(p, q(pk−1)).

Minimizing Φ(p, qk−1) to get pk is equivalent to minimizing

Gk(p) = Φ(p, q(p)) + Φ(p, q(pk−1))− Φ(p, q(p)) = f(p) + gk(p), (5.5)

where

gk(p) = Φ(p, q(pk−1))− Φ(p, q(p)). (5.6)

Clearly, gk(p) ≥ 0 and gk(pk−1) = 0, so every AM algorithm is also an AF
algorithm.

We want

{Φ(pk, qk)} ↓ β = inf{Φ(p, q)|p ∈ P, q ∈ Q}. (5.7)

In [36] Csiszár and Tusnády show that, if the function Φ possesses what
they call the five-point property,

Φ(p, q) + Φ(p, qk−1) ≥ Φ(p, qk) + Φ(pk, qk−1), (5.8)

for all p, q, and k, then (5.7) holds. With gk(p) as in Equation (5.6) we can
easily show that the five-point property is precisely the SUMMA Inequality;
every AM algorithm with the five-point property is in the SUMMA class.

5.6 The Bauschke–Combettes–Noll Problem Revis-
ited

The BCN problem concerns the use of AM on the function Λ(p, q) given
by
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Λ(p, q) = φ(p) + ψ(q) +Df (p, q), (5.9)

where φ and ψ are convex on RJ , Df is a Bregman distance, and P = Q
is the interior of the domain of f . Their iterative steps are to minimize
Λ(pk−1, q) to get qk and then to minimize Λ(p, qk) to get pk. From [4]
we know that the five-point property (5PP) holds whenever the Bregman
function is jointly convex.

We consider now the particular case in which the function ψ(q) = 0, for
all q. Then we minimize φ(pk−1) +Df (pk−1, q) to get qk = pk−1 and then
minimize

Gk(p) = φ(p) +Df (p, pk−1)

to get pk. This iterative algorithm is in the PMAB class. As we shall show
in Chapter 6, all PMAB algorithms are in the SUMMA class.

In the previous subsection we learned that the function Φ(p, q) = ψ(p)+
Df (p, q) has the 5PP if and only if it can be reformulated as a SUMMA
algorithm for minimizing the function Φ(p, q(p)). In this case q(p) = p
and Φ(p, q(p)) = ψ(p). Therefore, since the iterative algorithm obtained by
minimizing Φ(p, pk−1) = ψ(p) + Df (p, pk−1) to get pk is in the SUMMA
class, the function Φ(p, q) = ψ(p) + Df (p, q) has the 5PP for all Bregman
distances Df (p, q); we do not need that the Bregman distance be jointly
convex.

5.7 The PMA of Auslender and Teboulle

In [2] Auslender and Teboulle take C to be a closed, nonempty, convex
subset of RJ , with interior U . At the kth step of their method one minimizes
a function

Gk(x) = f(x) + d(x, xk−1) (5.10)

to get xk. Their distance d(x, y) is defined for x and y in U , and the gradient
with respect to the first variable, denoted ∇1d(x, y), is assumed to exist.
The distance d(x, y) is not assumed to be a Bregman distance. Instead, they
assume that the distance d has an associated induced proximal distance
H(a, b) ≥ 0, finite for a and b in U , with H(a, a) = 0 and

〈∇1d(b, a), c− b〉 ≤ H(c, a)−H(c, b), (5.11)

for all c in U .
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If d = Dh, that is, if d is a Bregman distance, then from the equation

〈∇1d(b, a), c− b〉 = Dh(c, a)−Dh(c, b)−Dh(b, a) (5.12)

we see that Dh has H = Dh for its associated induced proximal distance,
so Dh is self-proximal, in the terminology of [2]. The method of Auslender
and Teboulle seems not to be a particular case of SUMMA. However, it is
in the SUMMA2 class, as we now show.

Since xk minimizes f(x) + d(x, xk−1), it follows that

0 ∈ ∂f(xk) +∇1d(xk, xk−1),

so that
−∇1d(xk, xk−1) ∈ ∂f(xk).

We then have

f(xk)− f(x) ≤ 〈∇1d(xk, xk−1), x− xk〉.

Using the associated induced proximal distance H, we find that, for all x,

H(x, xk−1)−H(x, xk) ≥ f(xk)− f(x).

Therefore, this method is in the SUMMA2 class, with the choice of hk(x) =
H(x, xk−1). Consequently, we have β∗ = β for these algorithms.

It is interesting to note that the Auslender-Teboulle approach places a
restriction on the function d(x, y), the existence of the induced proximal
distance H, that is unrelated to the objective function f(x), but this con-
dition is helpful only for convex f(x). In contrast, the SUMMA approach
requires that

0 ≤ gk+1(x) ≤ Gk(x)−Gk(xk),

which involves the f(x) being minimized, but does not require that f(x)
be convex; it does not even require any structure on the domain of f . The
SUMMA2 approach is general enough to include both classes.

In [2] the authors consider PMA with distances of the form

dφ(x, z) =

J∑
j=1

zjφ(xj/zj). (5.13)

They show that when the distance dφ satisfies certain conditions it has an
induced proximal distance. In the next section we give an example of this,
using the Hellinger distance.
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5.8 PMA with the Hellinger Distance

We consider now the PMA with the Hellinger distance. According to
[2] the Hellinger distance has an induced proximal distance, which turns
out to be half the KL distance.

For s > 0 and t > 0 the Hellinger distance from s to t is

h(s, t) = (
√
s−
√
t)2 = t

√
s

t
. (5.14)

With

φ(x) = (
√
x− 1)2, (5.15)

we have

h(s, t) = tφ(s/t). (5.16)

Since, for all c > 0, we have

2(c− b)(1−
√
a/b) ≤ KL(c, a)−KL(c, b) = c log

b

a
+ a− b, (5.17)

it follows from the theory in [2] that the Hellinger distance has half the KL
distance as its induced proximal distance. Therefore, the PMA with the
Hellinger distance is in the SUMMA2 class.
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Let H be a Hilbert space, and h : H → R strictly convex and Gâteaux
differentiable. The Bregman distance associated with h is

Dh(x, y) = h(x)− h(y)− 〈∇h(y), x− y〉. (6.1)

Proximal minimization with Bregman distances (PMAB) applies to the
minimization of a convex function f : H → R. In [29, 30] Censor and
Zenios discuss in detail the PMAB methods, which they call proximal min-
imization with D-functions.

6.1 All PMAB are in SUMMA

Minimizing Gk(x) = f(x) +Dh(x, xk−1) leads to

0 ∈ ∂f(xk) +∇h(xk)−∇h(xk−1),

where
∂f(x) = {u|f(y)− f(x)− 〈∇u, y − x〉 ≥ 0, for all y}

is the subdifferential of f at x. In [21] it was shown that for the PMAB
methods we have uk ∈ ∂f(xk) such that

Gk(x)−Gk(xk) = f(x)− f(xk)− 〈uk, x− xk〉+Dh(x, xk) ≥ gk+1(x),(6.2)

for all x. Consequently, the SUMMA Inequality holds and all PMAB algo-
rithms are in the SUMMA class.

39
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6.2 Convergence of the PMAB

Because all PMAB algorithms are in the SUMMA class, we know that
the sequence {f(xk)} ↓ β = infx f(x). From the inequality in (5.3) we have

Dh(x, xk−1)−Dh(x, xk) ≥ f(xk)− f(x), (6.3)

for all x. If there is x̂ such that f(x) ≥ f(x̂), for all x, then

Dh(x̂, xk−1)−Dh(x̂, xk) ≥ f(xk)− f(x̂) ≥ 0, (6.4)

for all k. Therefore, the sequence {Dh(x̂, xk)} is decreasing. If the Bregman
distanceDh(z, ·) has bounded level sets, then the sequence {xk} is bounded,
there is a cluster point of the sequence, call it x∗, and f(x∗) = f(x̂). Re-
placing x̂ with x∗, we find that the sequence {Dh(x∗, xk)} is decreasing.
Under reasonable assumptions on Dh [30, 25] it will follow that a subse-
quence converges to zero, the entire sequence converges to zero, and the
sequence {xk} converges to x∗.

The following will be of some interest later. Summing over 1 ≤ k ≤ N
on both sides of (6.4), we get

Dh(x̂, x0)−Dh(x̂, xN ) ≥ N
(

min
1≤k≤N

{f(xk)} − f(x̂)

)
, (6.5)

so that

1

N
Dh(x̂, x0) ≥ min

1≤k≤N
{f(xk)} − f(x̂). (6.6)

6.3 Simplifying the Calculations in PMAB

The iterative step of a PMAB algorithm is to minimize f(x) +
Dh(x, xk−1) to get xk. We then have to solve the equation

∇(f + h)(xk) = ∇h(xk−1) (6.7)

for xk. Unless h is selected with some care, solving Equation (6.7) can be
difficult. Here is a “trick” to simplify the calculation.

Suppose that g and h = g−f are such that h is convex and the equation

∇g(xk) = ∇h(xk−1) = ∇g(xk−1)−∇f(xk−1) (6.8)
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is easily solved. Said another way, we minimize

f(x) +Dg(x, x
k−1)−Df (x, xk−1) (6.9)

to get xk. In the next few subsections we give several examples of the use
of this “trick” . Later, in our discussion of the SMART algorithm, we will
show that it too is an example of this “trick” .

6.4 The Quadratic Upper Bound Principle

In [6] the authors introduce the quadratic upper bound principle as a
method for obtaining a majorizing function in optimization transfer. The
objective is to minimize the function f : RJ → R. If f is twice continuously
differentiable, then, for any x and z, we have, according to the extended
Mean Value Theorem,

f(x) = f(z) + 〈∇f(z), x− z〉+
1

2
(x− z)T∇2f(w)(x− z), (6.10)

for some w on the line segment connecting x and z. If there is a positive-
definite matrix B such that B −∇2f(w) is positive-definite for all w, then
we have

f(x) ≤ f(z) + 〈∇f(z), x− z〉+
1

2
(x− z)TB(x− z). (6.11)

Then we have g(x|z) ≥ f(x), for all x and z, where

g(x|z) .
= f(z) + 〈∇f(z), x− z〉+

1

2
(x− z)TB(x− z). (6.12)

The iterative step is now to minimize g(x|xk−1) to get xk.
The iterative step is equivalent to minimizing

Gk(x) = f(x) +
1

2
(x− xk−1)TB(x− xk−1)−Df (x, xk−1), (6.13)

which is quite similar to the “trick”introduced in the previous section.
However, it is not precisely the same, since the authors of [6] do not assume
that f is convex, so this is not a particular case of PMAB. Unless f is
convex, we cannot assert that this iteration is in the SUMMA class, so we
cannot be sure that the iteration reduces {f(xk)} to the infimal value β.
This approach also relies on the extended mean value theorem, while our
“trick” permits us considerable freeedom in the selection of the function g.



42 The EM Algorithm and Related Methods for Iterative Optimization

6.5 Gradient Descent

Say that the operator ∇f is L-Lipschitz continuous if, for all x and z,
we have

‖∇f(x)−∇f(z)‖ ≤ L‖x− z‖. (6.14)

If 0 < γ < 1
L , then the function g(x) = 1

2γ ‖x‖
2 − f(x) is convex. Having

found xk−1, we minimize

f(x) +
1

2γ
‖x− xk−1‖2 −Df (x, xk−1) (6.15)

to get

xk = xk−1 − γ∇f(xk−1), (6.16)

which is a version of the gradient descent algorithm.

6.6 The Landweber Algorithm

We want to minimize f(x) = 1
2‖Ax− b‖

2. This function is L-Lipschitz
continuous for L = ρ(ATA), the largest eigenvalue of the matrix ATA.
Therefore, the function g(x) = 1

2γ ‖x‖
2 − f(x) is convex, for 0 < γ < 1

L .

Having calculated xk−1, we minimize

f(x) +
1

2γ
‖x− xk−1‖2 −Df (x, xk−1)

= f(x) +
1

2γ
‖x− xk−1‖2 − 1

2
‖Ax−Axk−1‖2 (6.17)

to get

xk = xk−1 − γAT (Axk−1 − b), (6.18)

which is the Landweber algorithm.
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6.7 B-SMART

In [60] the authors consider the problem of minimizing f(x) =
Dφ(Px, y), where P is a nonnegative matrix, y a positive vector, and

σj =
∑I
i=1 Pi,j > 0, for all j. Their algorithm is called the B-SMART

algorithm.
They assume that there is a second Bregman distance Dϕ such that

cDϕ(x, z) ≥ Dφ(Px, Pz), for all x and z. Having calculated xk−1, they
minimize

f(xk−1) + 〈∇f(xk−1), x− xk−1〉+
c

t
Dϕ(x, xk−1) (6.19)

to get xk, with 0 < t ≤ 1. This is equivalent to minimizing

f(x) +
c

t
Dϕ(x, xk−1)−Df (x, xk−1). (6.20)

Noting that

Df (x, z) = Dφ(Px, Pz), (6.21)

this is equivalent to minimizing

f(x) +
c

t
Dϕ(x, xk−1)−Dφ(Px, Pxk−1). (6.22)

Since this method is in the PMAB class, Equation (14) of [60] follows
immediately from the inequality in (6.6) above.
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In this chapter we consider the various ways in which iterative algorithms
can be modified to incorporate constraints.

7.1 AF Methods with Constraints

We assume now that C ⊆ X is a nonempty subset of an arbitrary set X,
that f : X → R, and we want to minimize f(x) over x in C. As discussed
previously in Section 4.2, the iterative step of a general AF algorithm is to
minimize f(x) + gk(x) over x in X to get xk in X. There are several ways
to impose the constraint:

1. simply to minimize f(x) + gk(x) over x in C;

2. select as the auxiliary functions gk(x) functions defined only over x
in C;

3. replace f(x) with f(x) + ιC(x), where ιC(x) = 0 if x is in C, and
ιC(x) = +∞ if x is not in C;

4. replace gk(x) with gk(x) + ιC(x).

When X = RJ and f is differentiable, replacing f(x) with f(x) + ιC(x)
destroys differentiability. In the next section we consider a method to deal
with this situation.

45
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7.2 The Forward-Backward Splitting Methods

The forward-backward splitting (FBS) methods discussed by Combettes
and Wajs [35] form a particular subclass of the PMAB methods. The prob-
lem now is to minimize the function f(x) = f1(x) + f2(x), where both
f1 : H → (−∞,+∞] and f2 : H → (−∞,+∞] are lower semicontinuous,
proper and convex, and f2 is Gâteaux differentiable, with L-Lipschitz con-
tinuous gradient. Before we describe the FBS algorithm we need to recall
Moreau’s proximity operators.

Following Combettes and Wajs [35], we say that the Moreau envelope
of index γ > 0 of the closed, proper, convex function f : H → (−∞,∞], or
the Moreau envelope of the function γf , is the continuous, convex function

envγf (x) = inf
y∈H
{f(y) +

1

2γ
||x− y||2}; (7.1)

see also Moreau [56, 57, 58]. In Rockafellar’s book [61] and elsewhere,
it is shown that the infimum is attained at a unique y, usually denoted
proxγf (x). Proximity operators generalize the orthogonal projections onto
closed, convex sets. Consider the function f(x) = ιC(x), the indicator func-
tion of the closed, convex set C, taking the value zero for x in C, and +∞
otherwise. Then proxγf (x) = PC(x), the orthogonal projection of x onto C.
The following characterization of x = proxf (z) is quite useful: x = proxf (z)
if and only if z − x ∈ ∂f(x).

In [35] the authors show, using the characterization of proxγf given
above, that x is a solution of this minimization problem if and only if

x = proxγf1(x− γ∇f2(x)). (7.2)

This suggests to them the following FBS iterative scheme:

xk = proxγf1(xk−1 − γ∇f2(xk−1)). (7.3)

Basic properties and convergence of the FBS algorithm are then developed
in [35].

7.3 Convergence of the FBS algorithm

Let f : RJ → R be convex, with f = f1 + f2, both convex, f2 differen-
tiable, and ∇f2 L-Lipschitz continuous. Let {xk} be defined by Equation
(7.3) and let 0 < γ ≤ 1/L.



Incorporating Constraints 47

For each k = 1, 2, ... let

Gk(x) = f(x) +
1

2γ
‖x− xk−1‖22 −Df2(x, xk−1), (7.4)

where

Df2(x, xk−1) = f2(x)− f2(xk−1)− 〈∇f2(xk−1), x− xk−1〉. (7.5)

Since f2(x) is convex, Df2(x, y) ≥ 0 for all x and y and is the Bregman
distance formed from the function f2.

The auxiliary function

gk(x) =
1

2γ
‖x− xk−1‖22 −Df2(x, xk−1) (7.6)

can be rewritten as

gk(x) = Dh(x, xk−1), (7.7)

where

h(x) =
1

2γ
‖x‖22 − f2(x). (7.8)

Therefore, gk(x) ≥ 0 whenever h(x) is a convex function.
We know that h(x) is convex if and only if

〈∇h(x)−∇h(y), x− y〉 ≥ 0, (7.9)

for all x and y. This is equivalent to

1

γ
‖x− y‖22 − 〈∇f2(x)−∇f2(y), x− y〉 ≥ 0. (7.10)

Since ∇f2 is L-Lipschitz, the inequality (7.10) holds for 0 < γ ≤ 1/L.

Lemma 7.1 The xk that minimizes Gk(x) over x is given by Equation
(??).

Proof: We know that xk minimizes Gk(x) if and only if

0 ∈ ∇f2(xk) +
1

γ
(xk − xk−1)−∇f2(xk) +∇f2(xk−1) + ∂f1(xk),

or, equivalently,(
xk−1 − γ∇f2(xk−1)

)
− xk ∈ ∂(γf1)(xk).

Consequently,
xk = proxγf1(xk−1 − γ∇f2(xk−1)).
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Theorem 7.1 The sequence {xk} converges to a minimizer of the function
f(x), whenever minimizers exist.

Proof: A relatively simple calculation shows that

Gk(x)−Gk(xk) =
1

2γ
‖x− xk‖22 +

(
f1(x)− f1(xk)− 1

γ
〈(xk−1 − γ∇f2(xk−1))− xk, x− xk〉

)
. (7.11)

Since
(xk−1 − γ∇f2(xk−1))− xk ∈ ∂(γf1)(xk),

it follows that(
f1(x)− f1(xk)− 1

γ
〈(xk−1 − γ∇f2(xk−1))− xk, x− xk〉

)
≥ 0.

Therefore,

Gk(x)−Gk(xk) ≥ 1

2γ
‖x− xk‖22 ≥ gk+1(x). (7.12)

Therefore, the inequality in (5.2) holds and the iteration fits into the
SUMMA class.

Now let x̂ minimize f(x) over all x. Then

Gk(x̂)−Gk(xk) = f(x̂) + gk(x̂)− f(xk)− gk(xk)

≤ f(x̂) +Gk−1(x̂)−Gk−1(xk−1)− f(xk)− gk(xk),

so that(
Gk−1(x̂)−Gk−1(xk−1)

)
−
(
Gk(x̂)−Gk(xk)

)
≥ f(xk)−f(x̂)+gk(xk) ≥ 0.

Therefore, the sequence {Gk(x̂)−Gk(xk)} is decreasing and the sequences
{gk(xk)} and {f(xk)− f(x̂)} converge to zero.

From

Gk(x̂)−Gk(xk) ≥ 1

2γ
‖x̂− xk‖22,

it follows that the sequence {xk} is bounded. Therefore, we may select a
subsequence {xkn} converging to some x∗∗, with {xkn−1} converging to
some x∗, and therefore f(x∗) = f(x∗∗) = f(x̂).

Replacing the generic x̂ with x∗∗, we find that {Gk(x∗∗) − Gk(xk)} is
decreasing to zero. From the inequality in (7.12), we conclude that the
sequence {‖x∗−xk‖22} converges to zero, and so {xk} converges to x∗. This
completes the proof of the theorem.

A number of well known iterative algorithms are particular cases of the
FBS. We consider now some of these algorithms.
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7.4 Projected Gradient Descent

Let C be a nonempty, closed convex subset of RJ and f1(x) = ιC(x),
the function that is +∞ for x not in C and zero for x in C. Then ιC(x)
is convex, but not differentiable. We have proxγf1 = PC , the orthogonal
projection onto C. The iteration in Equation (7.3) becomes

xk = PC
(
xk−1 − γ∇f2(xk−1)

)
. (7.13)

The sequence {xk} converges to a minimizer of f2 over x ∈ C, whenever
such minimizers exist, for 0 < γ ≤ 1/L.

7.5 The CQ Algorithm and Split Feasibility

Let A be a real I by J matrix, C ⊆ RJ , and Q ⊆ RI , both closed convex
sets. The split feasibility problem (SFP) is to find x in C such that Ax is
in Q. The function

f2(x) =
1

2
‖PQAx−Ax‖2 (7.14)

is convex, differentiable and ∇f2 is L-Lipschitz for L = ρ(ATA), the spec-
tral radius of ATA. The gradient of f2 is

∇f2(x) = AT (I − PQ)Ax. (7.15)

We want to minimize the function f2(x) over x in C or, equivalently, to min-
imize the function f(x) = ιC(x) + f2(x) over all x. The projected gradient
descent algorithm in this case has the iterative step

xk = PC
(
xk−1 − γAT (I − PQ)Axk−1

)
; (7.16)

this iterative method was called the CQ-algorithm in [18, 19]. The sequence
{xk} converges to a solution whenever f2 has a minimum on the set C, for
0 < γ ≤ 1/L.

If Q = {b}, then the CQ algorithm becomes the projected Landweber
algorithm [5]. If, in addition, C = RJ , then we get the Landweber algorithm
[51]. In [31, 32] Yair Censor and his colleagues modified the CQ algorithm
and applied it to derive protocols for intensity-modulated radiation therapy
(IMRT).
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In this chapter we present several examples of the use of STEM.

8.1 A Multinomial Example

In many applications, the entries of the vector y are independent real-
izations of a single real-valued or vector-valued random variable V , as they
are, at least initially, for finite mixture problems. This is not always the
case, however, as the following example shows.

A well known example that was used in [38] and again in [55] to illustrate
the EM algorithm concerns a multinomial model taken from genetics. Here
there are four cells, with cell probabilities 1

2 + 1
4θ0, 1

4 (1 − θ0), 1
4 (1 − θ0),

and 1
4θ0, for some θ0 ∈ Θ = [0, 1] to be estimated. The entries of y are the

frequencies from a sample size of 197. We then have

fY (y|θ) =
197!

y1!y2!y3!y4!
(
1

2
+

1

4
θ)y1(

1

4
(1− θ))y2(

1

4
(1− θ))y3(

1

4
θ)y4 . (8.1)

It is then supposed that the first of the original four cells can be split into
two sub-cells, with probabilities 1

2 and 1
4θ0. We then write y1 = y11 + y12,

and let

X = (Y11, Y12, Y2, Y3, Y4), (8.2)

where X has a multinomial distribution with five cells. Note that we do
now have Y = h(X).

This example is a popular one in the literature on the EM algorithm
(see [38] for citations). It is never suggested that the splitting of the first
group into two subgroups is motivated by the demands of the genetics
theory itself. As stated in [55], the motivation for the splitting is to allow
us to view the two random variables Y12 + Y4 and Y2 + Y3 as governed by

51
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a binomial distribution; that is, we can view the value of y12 + y4 as the
number of heads, and the value y2 + y3 as the number of tails that occur
in the flipping of a biased coin y12 + y4 + y2 + y3 times. This simplifies the
calculation of the likelihood maximizer.

8.2 Censored Exponential Data

McLachlan and Krishnan [55] give the following example of a likeli-
hood maximization problem involving probability density functions. This
example provides a good illustration of the usefulness of the missing-data
model.

Suppose that Z is the time until failure of a component, which we
assume is governed by the exponential distribution

f(z|θ) =
1

θ
e−z/θ, (8.3)

where the parameter θ > 0 is the expected time until failure. We observe
a random sample of N components and record their failure times, zn. On
the basis of this data, we must estimate θ, the mean time until failure.

It may well happen, however, that during the time allotted for observing
the components, only r of the N components fail, which, for convenience,
are taken to be the first r items in the record. Rather than wait longer, we
record the failure times of those that failed, and record the elapsed time for
the experiment, say T , for those that had not yet failed. The censored data is
then y = (y1, ..., yN ), where yn = zn is the time until failure for n = 1, ..., r,
and yn = T for n = r+ 1, ..., N . The censored data is reasonably viewed as
incomplete, relative to the complete data we would have had, had the trial
lasted until all the components had failed.

Since the probability that a component will survive until time T is
e−T/θ, the pdf for the vector y is

fY (y|θ) =
( r∏
n=1

1

θ
e−yn/θ

)
e−(N−r)T/θ, (8.4)

and the log likelihood function for the censored, or incomplete, data is

log fY (y|θ) = −r log θ − 1

θ

N∑
n=1

yn. (8.5)

In this particular example we are fortunate, in that we can maximize
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fY (y|θ) easily, and find that the ML solution based on the incomplete,
censored data is

θMLi =
1

r

N∑
n=1

yn =
1

r

r∑
n=1

yn +
N − r
r

T. (8.6)

In most cases in which our data is incomplete, finding the ML estimate
from the incomplete data is difficult, while finding it for the complete data
is relatively easy.

We say that the missing data are the times until failure of those com-
ponents that did not fail during the observation time. The preferred data
is the complete data x = (z1, ..., zN ) of actual times until failure. The pdf
for the preferred data X is

fX(x|θ) =

N∏
n=1

1

θ
e−zn/θ, (8.7)

and the log likelihood function based on the complete data is

log fX(x|θ) = −N log θ − 1

θ

N∑
n=1

zn. (8.8)

The ML estimate of θ from the complete data is easily seen to be

θMLc =
1

N

N∑
n=1

zn. (8.9)

In this example, both the incomplete-data vector y and the preferred-data
vector x lie in RN . We have y = h(x) where the function h operates by
setting to T any component of x that exceeds T . Clearly, for a given y, the
set h−1{y} consists of all vectors x with entries xn ≥ T or xn = yn < T .
For example, suppose that N = 2, and y = (y1, T ), where y1 < T . Then
h−1{y} is the one-dimensional ray

h−1{y} = {x = (y1, x2)|x2 ≥ T}.

Because this set has measure zero in R2, Equation (3.7) does not make
sense in this case.

We need to calculate E(log fX(X|θ)|y, θk). Following McLachlan and
Krishnan [55], we note that since log fX(x|θ) is linear in the unobserved
data Zn, n = r + 1, ..., N , to calculate E(log fX(X|θ)|y, θk) we need only
replace the unobserved values with their conditional expected values, given
y and θk. The conditional distribution of Zn − T , given that Zn > T , is
still exponential, with mean θ. Therefore, we replace the unobserved values,
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that is, all the Zn for n = r+1, ..., N , with T +θk. Therefore, at the E-step
we have

E(log fX(X|θ)|y, θk) = −N log θ − 1

θ

(( N∑
n=1

yn

)
+ (N − r)θk

)
. (8.10)

The M-step is to maximize this function of θ, which leads to

θk+1 =

(( N∑
n=1

yn

)
+ (N − r)θk

)
/N. (8.11)

Let θ∗ be a fixed point of this iteration. Then we have

θ∗ =

(( N∑
n=1

yn

)
+ (N − r)θ∗

)
/N,

so that

θ∗ =
1

r

N∑
n=1

yn,

which, as we have seen, is the likelihood maximizer. From

θk − θ∗ = (1− r

N
)(θk−1 − θ∗)

it follows that the sequence {θk} converges to θ∗.
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In this chapter we illustrate the use of AM to derive an iterative algorithm
to minimize the function f(x) = ‖b − Ax‖2, where A is an I by J real
matrix and b an I by 1 real vector.

9.1 Definitions

Let R be the set of all I by J arrays r with entries ri,j such that∑J
j=1 ri,j = bi, for each i. Let Q be the set of all I by J arrays of the form

q(x), where q(x)i,j = Ai,jxj . For any vectors u and v with the same size
define

E(u, v) =
∑
n

(un − vn)2. (9.1)

9.2 Pythagorean Identities

We begin by minimizing E(r, q(x)) over all r ∈ R. We have the following
proposition.

Proposition 9.1 For all x and r we have

E(r, q(x)) = E(r(x), q(x)) + E(r, r(x)), (9.2)
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where

r(x)i,j = Ai,jxj +
1

J
(bi −Axi). (9.3)

Therefore, r = r(x) is the minimizer of E(r, q(x)).

Now we minimize E(r(x), q(z)) over z. We have the following proposition.

Proposition 9.2 For all x and z we have

E(r(x), q(z)) = E(r(x), q(Lx)) +

J∑
j=1

cj(Lxj − zj)2, (9.4)

where cj =
∑I
i=1A

2
i,j and

Lxj = xj +
1

Jcj

I∑
i=1

Ai,j(bi −Axi). (9.5)

We omit the proofs of these propositions, which are not deep, but involve
messy calculations. Note that

‖b−Ax‖2 = f(x) = E(r(x), q(x)). (9.6)

9.3 The AM Iteration

The iterative step of the algorithm is then

xkj = Lxk−1
j = xk−1

j +
1

Jcj

I∑
i=1

Ai,j(bi −Axk−1
i ). (9.7)

Applying (9.2) and (9.4) we obtain

f(xk−1) = E(r(xk−1), q(xk−1)) = E(r(xk−1), q(xk)) +

J∑
j=1

cj(x
k
j − xk−1

j )2

= E(r(xk), q(xk)) + E(r(xk−1), r(xk)) +

J∑
j=1

cj(x
k
j − xk−1

j )2

= f(xk) + E(r(xk−1), r(xk)) +

J∑
j=1

cj(x
k
j − xk−1

j )2.
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Therefore,

f(xk−1)− f(xk) = E(r(xk−1), r(xk)) +

J∑
j=1

cj(x
k
j − xk−1

j )2 ≥ 0,

or

f(xk−1)− f(xk) ≥
J∑
j=1

cj(x
k
j − xk−1

j )2 ≥ 0, (9.8)

from which it follows that the sequence {f(xk)} is decreasing and the se-

quence {
∑J
j=1 cj(x

k
j − x

k−1
j )2} converges to zero. The inequality in (9.8)

is the First Monotonicity Property for the Euclidean case. Since the se-
quence {E(b, Axk)} is decreasing, the sequences {Axk} and {xk} are
bounded; let x∗ be a cluster point of the sequence {xk}. Since the sequence

{
∑J
j=1 cj(x

k
j − x

k−1
j )2} converges to zero, it follows that x∗ = Lx∗.

9.4 Useful Lemmas

We now present several useful lemmas.

Lemma 9.1 For all x and z we have

E(r(x), r(z)) =

J∑
j=1

cj(xj − zj)2 − 1

J

I∑
i=1

(Axi −Azi)2. (9.9)

Lemma 9.2 For all x and z we have

1

J

I∑
i=1

(Axi −Azi)2 ≥ 1

J2

J∑
j=1

1

cj

(
I∑
i=1

Ai,j(Axi −Azi)

)2

. (9.10)

Proof: Use Cauchy’s Inequality.

Lemma 9.3 For all x and z we have

E(r(x), r(z)) ≥
J∑
j=1

cj(Lxj − Lzj)2. (9.11)

It follows from these lemmas that this iterative algorithm is in the
SUMMA2 class; for any x we have

J∑
j=1

cj(Lxj − xkj )2 −
J∑
j=1

cj(Lxj − xk+1
j )2 ≥
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f(xk)− f(x) +

J∑
j=1

cj(Lxj − xj)2. (9.12)

Consequently, the sequence f(xk)} converges to the minimum of the func-
tion f(x), which must then be f(x∗), and {xk} must converge to x∗.

9.5 Characterizing the Limit

The following proposition characterizes the limit x∗.

Proposition 9.3 The choice of x̂ = x∗ minimizes the distance∑J
j=1 cj(x̂j − x0

j )
2 over all minimizers x̂ of f(x) = ‖b−Ax‖.

Proof: Let x̂ be an arbitrary minimizer of f(x). Using the Pythagorean
identities we find that

E(r(xk), q(x̂)) = f(x̂) +

J∑
j=1

cj(Ax̂i −Axki )2 − 1

J

I∑
i=1

(Ax̂i −Axki )2,

and

E(r(xk), q(x̂)) = f(xk+1) + E(r(xk), r(xk+1)) +

J∑
j=1

cj(x̂j − xk+1
j )2.

Therefore,
J∑
j=1

cj(x̂j − xkj )2 −
J∑
j=1

cj(x̂j − xk+1
j )2

= f(xk+1)− f(x̂) + E(r(xk), r(xk+1)) +
1

J

I∑
i=1

(Ax̂i −Axki )2.

Note that the right side of the last equation depends only on Ax̂ and not
directly on x̂ itself; therefore the same is true of the left side. Now we sum
both sides over the index k to find that

J∑
j=1

cj(x̂j − x0
j )

2 −
J∑
j=1

cj(x̂j − x∗j )2

does not depend directly on the choice of x̂. The assertion of the proposition
follows.
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9.6 SUMMA for the Euclidean Case

To get xk we minimize

Gk(x) = E(r(xk−1), q(x)) = E(r(x), q(x))+
(
E(r(xk−1), q(x))− E(r(x), q(x))

)
= f(x) + gk(x),

where

gk(x) =
(
E(r(xk−1), q(x))− E(r(x), q(x))

)
= E(r(xk−1), r(x)).

From (9.9) we have

gk(x) =

J∑
j=1

cj(x
k−1
j − xj)2 − 1

J

I∑
i=1

(Axk−1
i −Axi)2. (9.13)

From
Gk(x)−Gk(xk) =

E(r(xk−1), q(x))− E(r(xk−1), q(xk)) =

J∑
j=1

cj(x
k
j − xj)2, (9.14)

we see that
Gk(x)−Gk(xk) ≥ gk+1(x),

for all x, so that the SUMMA Inequality holds in this case. Therefore, we
have

gk(x)− gk+1(x) ≥ f(xk)− f(x),

for all x, and so

gk(x̂)− gk+1(x̂) ≥ f(xk)− f(x̂) ≥ f(xk)− f(xk+1). (9.15)

This is the Second Monotonicity Property for the Euclidean case.

9.7 Using the Landweber Algorithm

It is of some interest to consider an alternative approach, using the
Landweber (LW) algorithm. The iterative step of the LW algorithm is

xkj = xk−1
j + γ

I∑
i=1

Ai,j(bi −Axk−1
i ), (9.16)
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where 0 < γ < 2
ρ(ATA)

. We define βj = Jcj , Bi,j =
√
βjAi,j , and zj =

xj/
√
βj . Then Bz = Ax. The LW algorithm, applied to Bz = b and with

γ = 1, is

zk = zk−1 +BT (b−Bzk−1). (9.17)

Since the trace ofBTB is one, the choice of γ = 1 is allowed. It is known that
the LW algorithm converges to the minimizer of ‖b−Bz‖ for which ‖z−z0‖
is minimized. Converting back to the original xk, we find that we get the
same iterative sequence that we got using the AM method. Moreover, we
find once again that the sequence {xk} converges to the minimizer x̂ of

f(x) for which the distance
∑J
j=1 cj(x̂j − x0

j )
2 is minimized.
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In this chapter we present the tandem development of the SMART and the
EMML algorithms, as originally published in [12].

10.1 The Problem to be Solved

We assume that y is a positive vector in RI , P an I by J matrix with
nonnegative entries Pi,j , sj =

∑I
i=1 Pi,j > 0, and we want to find a non-

negative solution or approximate solution x for the linear system of equa-
tions y = Px. The EMML algorithm will minimize KL(y, Px), while the
SMART will minimize KL(Px, y), over x ≥ 0. For notational simplicity we
shall assume that the system has been normalized so that sj = 1 for each
j.

10.2 The SMART Iteration

The SMART algorithm [37, 64, 28, 10, 12] minimizes the function
f(x) = KL(Px, y), over nonnegative vectors x. Having found the vector
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xk−1, the next vector in the SMART sequence is xk, with entries given by

xkj = xk−1
j exp

( I∑
i=1

Pij log(yi/(Px
k−1)i)

)
. (10.1)

The iterative step of the SMART can be decsribed as xk = Sxk−1, where
S is the operator defined by

(Sx)j = xj exp
( I∑
i=1

Pij log(yi/(Px)i)
)
. (10.2)

In our proof of convergence of the SMART we will show that any cluster
point x∗ of the SMART sequence {xk} is a fixed point of the operator S.
To avoid pathological cases in which Px∗i = 0 for some index i, we can
assume, at the outset, that all the entries of P are positive. This is wise,
in any case, since the model of y = Px is unlikely to be exactly accurate
in applications.

10.3 The EMML Iteration

The EMML algorithm minimizes the function f(x) = KL(y, Px), over
nonnegative vectors x. Having found the vector xk−1, the next vector in
the EMML sequence is xk, with entries given by

xkj = xk−1
j

( I∑
i=1

Pij(yi/(Px
k−1)i)

)
. (10.3)

The iterative step of the EMML algorithm can be described as xk =
Mxk−1, where M is the operator defined by

(Mx)j = xj

( I∑
i=1

Pij(yi/(Px)i)
)
. (10.4)

As we shall see, the EMML algorithm forces the sequence {KL(y, Pxk)}
to be decreasing. It follows that (Px∗)i > 0, for any cluster point x∗ and
for all i.
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10.4 The SMART as AM

In [10] the SMART was derived using the following alternating mini-
mization (AM) approach. Let X be the set of all nonnegative x for which
Px has only positive entries; all positive x are in X .

For each x ∈ X , let r(x) and q(x) be the I by J arrays with entries

r(x)ij = xjPijyi/(Px)i, (10.5)

and

q(x)ij = xjPij . (10.6)

In the iterative step of the SMART we get xk by minimizing the function

Gk(x) = KL(q(x), r(xk−1)) =

I∑
i=1

J∑
j=1

KL(q(x)ij , r(x
k−1)ij) (10.7)

over x ≥ 0. Note that f(x) = KL(Px, y) = KL(q(x), r(x)). We have the
following helpful Pythagorean identities:

KL(q(x), r(z)) = KL(q(x), r(x)) +KL(x, z)−KL(Px, Pz); (10.8)

and

KL(q(x), r(z)) = KL(q(Sz), r(z)) +KL(x, Sz). (10.9)

Note that it follows from Equation (2.4) that KL(x, z)−KL(Px, Pz) ≥ 0.
From the Pythagorean identities we find that xk is obtained by mini-

mizing
Gk(x) = KL

(
q(x), r(xk−1)

)
=

KL(Px, y) +KL(x, xk−1)−KL(Px, Pxk−1), (10.10)

so that

gk(x) = KL(x, xk−1)−KL(Px, Pxk−1). (10.11)

Then

Gk(x)−Gk(xk) = KL(x, xk) ≥ KL(x, xk)−KL(Px, Pxk) = gk+1(x).

Therefore, the SMART is in the SUMMA class. It follows from our discus-
sion of the SUMMA Inequality that, for all x ≥ 0,

gk(x) + f(x) ≥ gk+1(x) + f(xk). (10.12)
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Since
J∑
j=1

xkj ≤
I∑
i=1

yi,

the sequence {xk} is bounded and has a cluster point, x∗, with f(xk) ≥
f(x∗) for all k. With x = x∗ in (10.12), we obtain

Dh(x∗, xk−1)−Dh(x∗, xk) ≥ f(xk)− f(x∗) ≥ 0.

Therefore, the sequence {f(xk)} converges to f(x∗). Since the SMART is in
SUMMA, we know that f(x∗) must be the minimum of f(x). Since a sub-
sequence of {Dh(x∗, xk)} converges to zero, it follows that {xk} converges
to x∗.

Let x̂ be any minimizer of KL(Px, y). Using the Pythagorean identites
we find that

KL(x̂, xk)−KL(x̂, xk+1) = KL(Pxk+1, y)−KL(Px̂, y)+
KL(Px̂, Pxk) +KL(xk+1, xk)−KL(Pxk+1, Pxk). (10.13)

From Equation (10.13) we see that the difference KL(x̂, xk)−KL(x̂, xk+1)
depends only on Px̂, and not on x̂ itself. Summing over the index k on both
sides and “telescoping” , we find that the difference KL(x̂, x0)−KL(x̂, x∗)
also depends only on Px̂, and not on x̂ itself. It follows that x̂ = x∗ is
the minimizer of f(x) for which KL(x̂, x0) is minimized. If y = Px has
nonnegative solutions, and the entries of x0 are all equal to one, then x∗

maximizes the Shannon entropy over all nonnegative solutions of y = Px.
With f(x) = KL(Px, y), we have Df (x, z) = KL(Px, Pz). Therefore,

we obtain the next iterate xk by minimizing

Gk(x) = KL
(
q(x), r(xk−1)

)
= f(x) +KL(x, xk−1)−Df (x, xk−1).(10.14)

This shows that the SMART is yet another example of the “trick” used to
obtain PMAB algorithms with iterates that can be simply calculated.

The following theorem summarizes the situation with regard to the
SMART [10, 11, 12].

Theorem 10.1 In the consistent case, in which the system y = Px has
nonnegative solutions, the sequence of iterates of SMART converges to the
unique nonnegative solution of y = Px for which the distance KL(x, x0) is
minimized. In the inconsistent case it converges to the unique nonnegative
minimizer of the distance KL(Px, y) for which KL(x, x0) is minimized.
In the inconsistent case, if P and every matrix derived from P by delet-
ing columns has full rank then there is a unique nonnegative minimizer of
KL(Px, y) and at most I − 1 of its entries are nonzero.
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10.5 The EMML as AM

Now we want to minimize f(x) = KL(y, Px). We have the following
helpful Pythagorean identities:

KL(r(x), q(z)) = KL(r(z), q(z)) +KL(r(x), r(z)); (10.15)

KL(r(x), q(z)) = KL(r(x), q(Mx)) +KL(Mx, z), (10.16)

From the Pythagorean identities we have

KL(y, Pxk)−KL(y, Pxk+1) =

KL(r(xk), r(xk+1)) +KL(xk+1, xk), (10.17)

so that

KL(y, Pxk)−KL(y, Pxk+1) ≥ KL(xk+1, xk). (10.18)

The inequality in (10.18) is called the First Monotonicity Property in [41].

Lemma 10.1 For {xk} given by Equation (10.3), the sequence {KL(y, Pxk)}
is decreasing and the sequences {KL(xk+1, xk)} and {KL(r(xk), r(xk+1))}
converge to zero.

Lemma 10.2 The EMML sequence {xk} is bounded; for k ≥ 1 we have

J∑
j=1

xkj =

I∑
i=1

yi.

Using (2.4) we obtain the following useful inequality:

KL(r(x), r(z)) ≥ KL(Mx,Mz). (10.19)

From

KL(r(x), q(xk)) = KL(r(xk), q(xk)) +KL(r(x), r(xk))

≥ f(xk) +KL(Mx, xk+1),

and
KL(r(x), q(xk)) = KL(r(x), q(Mx)) +KL(Mx, xk) =

f(x)−KL(Mx, x) +KL(Mx, xk)
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we have

KL(Mx, xk)−KL(Mx, xk+1) ≥ f(xk)− f(x) +KL(Mx, x). (10.20)

Note that we have used (10.19) here. Therefore, the EMML is in the
SUMMA2 class. With x∗ a cluster point, we have

KL(Mx∗, xk)−KL(Mx∗, xk+1) ≥ f(xk)− f(x∗) ≥ 0. (10.21)

Therefore, the sequence {KL(Mx∗, xk)} is decreasing, and the sequence
{f(xk)} converges to f(x∗). Since the EMML is in the SUMMA2 class, we
know that f(x∗) is the minimum value of f(x) and Mx∗ = x∗.

Let x̂ be a minimizer of f(x) = KL(y, Px). Inserting x = x̂ into Equa-
tion (10.20), we obtain

KL(x̂, xk)−KL(x̂, xk+1) ≥ KL(y, Pxk)−KL(y, Pxk+1). (10.22)

The inequality in (10.22) is called the Second Monotonicity Property in
[41].

The following theorem summarizes the situation with regard to the
EMML algorithm [10, 11, 12].

Theorem 10.2 In the consistent case, in which the system y = Px has
nonnegative solutions, the sequence of EMML iterates converges to a non-
negative solution of y = Px. In the inconsistent case it converges to a non-
negative minimizer of the distance KL(y, Px). In the inconsistent case, if
P and every matrix derived from P by deleting columns has full rank then
there is a unique nonnegative minimizer of KL(y, Px) and at most I − 1
of its entries are nonzero.

In contrast to the SMART, we cannot characterize the limit in terms of
the starting vector x0.
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For large values of I and J convergence of the SMART and EMML al-
gorithms, as well as other simultaneous algorithms, can be quite slow. In
this chapter we consider the use of block-iterative and sequential methods
to accelerate the creation of useful images. Our experience with the ART
and MART algorithms tells us that these block-iterative algorithms should
converge in the consistent case, that is, when there is a nonnegative solu-
tion of y = Px, but when no such solution exists, the iterates should cycle
among the vectors of a limit cycle.

11.1 Rescaled Block-Iterative SMART (RBI-SMART)

In the unnormalized case, in which sj =
∑I
i=1 Pi,j is positive, but not

necessarily equal to one, the iterative step for SMART given in Equation
(10.1) becomes

xkj = xk−1
j exp

(
s−1
j

I∑
i=1

Pij log

(
yi

(Pxk−1)i

))
, (11.1)

or,

xkj = xk−1
j

I∏
i=1

(
yi

(Pxk−1)i

)s−1
j Pi,j

. (11.2)
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We can also write SMART as

log xkj = log xk−1
j +

(
s−1
j

I∑
i=1

Pij log

(
yi

(Pxk−1)i

))
, (11.3)

The iterative step of the MART is

xkj = xk−1
j

(
yi

(Pxk−1)i

)m−1
i Pi,j

, (11.4)

where i = (k − 1)(mod I) + 1 and

mi = max{Pi,j |j = 1, ..., J}, (11.5)

which we can also write as

log xkj = log xk−1
j +m−1

i Pi,j log

(
yi

(Pxk−1)i

)
. (11.6)

In [28] the authors offer a block-iterative variant of SMART and MART.
The idea here is to decompose the set {i = 1, 2, ..., I} into the union ofN not
necessarily disjoint subsets, B1, ..., BN , and then to mimic Equation (11.2),
but to multiply only over the indices in the current subset. The rescaled
block-iterative SMART (RBI-SMART) is a slightly modified version of the
block-iterative algorithm in [28]. With n = (k − 1)(modN) + 1, sn,j =∑
i∈Bn

Pi.j and

mn = max{sn,js−1
j }, (11.7)

the iterative step of the RBI-SMART is

xkj = xk−1
j

∏
i∈Bn

(
yi

(Pxk−1)i

)m−1
n s−1

j Pi,j

, (11.8)

which we can write as

log xkj = log xk−1
j +

(
m−1
n s−1

j

∑
i∈Bn

Pij log

(
yi

(Pxk−1)i

))
. (11.9)

The objective now is to define analogous block-iterative variants of the
EMML algorithm.

11.2 The Rescaled Block-Iterative EMML (RBI-
EMML)

In the unnormalized case, in which sj =
∑I
i=1 Pi,j is positive, but not

necessarily equal to one, the iterative step for the EMML algorithm given
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in Equation (10.3) becomes

xkj = xk−1
j

(
s−1
j

I∑
i=1

Pij

(
yi

(Pxk−1)i

))
. (11.10)

In [47] the authors offered an accelerated variant of the EMML called the
“ordered-subset”EM (OSEM) algorithm. The idea here is to decompose
the set {i = 1, 2, ..., I} into the union of N not necessarily disjoint subsets,
B1, ..., BN , and then to mimic Equation (11.10), but to sum only over the
indices in the current subset. At the kth step of the OSEM we have

xkj = xk−1
j

(
s−1
n,j

∑
i∈Bn

Pij

(
yi

(Pxk−1)i

))
. (11.11)

At first glance the OSEM seems to be the proper generalization of the
EMML; in the RBI-SMART case we multiplied only over the indices in
Bn and now we add only over the indices in Bn. It was observed that the
OSEM produced useful images much quicker than did the EMML. It was
to be expected that, for N > 1, the OSEM algorithm would not converge
to a single image when the system y = Px is inconsistent. However, it was
observed that the OSEM could also fail to converge in the consistent case;
the authors of [47] proved convergence for the consistent case only under a
quite restrictive condition, called “subset balance”. It turned out that this
behavior of the OSEM was due to the absence in OSEM of a second term
[13].

The correct algorithm, called the “rescaled block-iterative” EMML
(RBI-EMML) [13], has the iterative step

xkj =

(
1− sn,j

mnsj

)
xk−1
j +

1

mnsj
xk−1
j

(∑
i∈Bn

Pi,j

(
yi

(Pxk−1)i

))
. (11.12)

The RBI-EMML converges to a solution in the consistent case, for any
choice of blocks and for any starting vector.

Note that, if sn,j = tjun, then mn = un/u+, for u+ =
∑N
n=1 un, sj =

tju+, m−1
n s−1

j sn,j = 1, and the RBI-EMML reduces to OSEM. In [47]
it was shown that OSEM converges to a solution in the consistent case
whenever the “subset balance” condition, sn,j = tj for all n, holds, which
means, in effect, whenever it is an RBI-EMML iteration. Subset balance is
highly unlikely and almost impossible to achieve in practice; in particular,
it would almost certainly force all the subsets to have the same number of
indices, which is not necessarily desirable.

It may seem that the new term in the RBI-EMML is simply pulled out
of a hat. After all, how can you know what should be there when it isn’t
yet there? In fact, the added term appears quite naturally when the close
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connection between the EMML and SMART algorithms is considered. The
key is KL projection onto hyperplanes.

11.3 KL Projections onto Hyperplanes

For notational simplicity, we shall assume once again that sj = 1, for
all j. For each i = 1, 2, ..., I, let Hi be the hyperplane

Hi = {z|(Pz)i = yi}. (11.13)

The KL projection of a given positive x onto Hi is the z in Hi that min-
imizes the KL distance KL(z, x). Generally, the KL projection onto Hi

cannot be expressed in closed form. However, the z in Hi that minimizes
the weighted KL distance

J∑
j=1

PijKL(zj , xj) (11.14)

is Ti(x) given by

Ti(x)j = xj

(
yi

(Px)i

)
. (11.15)

Both the SMART and the EMML can be described in terms of the Ti.

11.4 Reformulating SMART and EMML

The iterative step of the SMART algorithm,as given in Equation (10.1),
can be expressed as

xkj =

I∏
i=1

(Ti(x
k−1)j)

Pij . (11.16)

We see that xkj is a weighted geometric mean of the terms Ti(x
k−1)j .

The iterative step of the EMML algorithm, as given in Equation (10.3),
can be expressed as

xkj =

I∑
i=1

PijTi(x
k−1)j . (11.17)



Acceleration Using KL Projections 71

We see that xkj is a weighted arithmetic mean of the terms Ti(x
k−1)j , using

the same weights as in the case of SMART.
A correct block-iterative variant of the EMML was presented in [13];

block-iterative variants of the SMART, such as the MART, were already
known [44, 28].

11.5 The MART and EMART Algorithms

The MART algorithm has the iterative step

xkj = xk−1
j (yi/(Px

k−1)i)
Pijm

−1
i , (11.18)

where i = (k − 1)(mod I) + 1 and

mi = max{Pij |j = 1, 2, ..., J}. (11.19)

When there are nonnegative solutions of the system y = Px, the sequence
{xk} converges to the solution x that minimizes KL(x, x0) [13, 14, 15]. We
can express the MART in terms of the weighted KL projections Ti(x

k−1);

xkj = (xk−1
j )1−Pijm

−1
i (Ti(x

k−1)j)
Pijm

−1
i . (11.20)

We see then that the iterative step of the MART is a relaxed weighted KL
projection onto Hi, and a weighted geometric mean of the current xk−1

j

and Ti(x
k−1)j . The expression for the MART in Equation (11.20) suggests

a somewhat simpler iterative algorithm involving a weighted arithmetic
mean of the current xk−1

j and Ti(x
k−1)j ; this is the EMART algorithm.

The iterative step of the EMART algorithm is

xkj = (1− Pijm−1
i )xk−1

j + Pijm
−1
i Ti(x

k−1)j . (11.21)

Whenever the system y = Px has nonnegative solutions, the EMART
sequence {xk} converges to a nonnegative solution, but nothing further is
known about this solution. One advantage that the EMART has over the
MART is the substitution of multiplication for exponentiation.

11.6 RBI-SMART and RBI-EMML

As we just saw, the MART and EMART involve either weighted geomet-
ric or weighted arithmetic relaxation. The iterative step of the RBI-SMART
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can be expressed as

log xkj =
(

1− sn,j
mnsj

)
log xk−1

j +
1

mnsj

∑
i∈Bn

Pi,j log Ti(x
k−1)j . (11.22)

This suggests that the block-iterative variant of the EMML should be

xkj =
(

1− sn,j
mnsj

)
xk−1
j +

1

mnsj

∑
i∈Bn

Pi,jTi(x
k−1)j . (11.23)

Both the RBI-SMART and the RBI-EMML converge to a nonnegative solu-
tion of y = Px, not necessarily the same solution, whenever such solutions
exist, for any choice of blocks.
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We have made the claim, and experience has shown, that in the consistent
case, block-iterative methods can converge significantly faster than their
simultaneous relatives. In this chapter we investigate this claim a bit more
theoretically. The arguments given here are not completely rigorous, but
will give some idea of the source of the acceleration. Our goal is to get
orders-of-magnitude estimates, not precise values. We begin by comparing
the simultaneous Landweber algorithm with the sequential ART algorithm
for solving the general system of linear equations Ax = b. Then we com-
pare the simultaneous SMART with the sequential MART for solving the
nonnegative system Px = y.

12.1 The Landweber and Cimmino Algorithms

Let Az = b be a consistent system of linear equations, with
∑J
j=1A

2
i,j =

1, for each j = 1, ..., J . The iterative step of the Landweber algorithm is

xk+1 = xk + γAT (b−Axk), (12.1)

where 0 < γ < 2
L for L = ρ(ATA), the largest eigenvalue of the matrix

ATA. We know that 1 ≤ L ≤ I.
Simple calculations show that, for any z with Az = b,

‖z − xk‖2 − ‖z − xk+1‖2 ≥ (2γ − Lγ2)‖b−Axk‖2. (12.2)

The trace of ATA is I, so the choice of γ = 1
I is acceptable. With this
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choice of γ we get Cimmino’s algorithm:

xk+1 = xk +
1

I
AT (b−Axk), (12.3)

and

‖z − xk‖2 − ‖z − xk+1‖2 ≥ (2/I − L/I2)‖b−Axk‖2. (12.4)

The improvement we obtain in Equations (12.2) and (12.4) will depend L,
and the choice of γ.

If we know L, which is probably not the case, especially for large sys-
tems, we may select γ = 1

I , just to be safe; this is Cimmino’s choice. If we
have a better upper bound for L than just I, then we can use it in the choice
of γ. For example, it was shown in [22] that, whenever the rows of A are
normalized to length one, L cannot be larger than the maximum number of
nonzero entries in any column of A. This is useful in the case of sparse A.
In transmission tomography there are typically about

√
I nonzero entries

in a column, so the estimate L ≤
√
I is usually acceptable. If L = 1 and

we choose γ = 1, then Equation (12.2) becomes

‖z − xk‖2 − ‖z − xk+1‖2 ≥ ‖b−Axk‖2. (12.5)

However, if L is closer to I than to 1 the choice of γ = 1
I will give us

something more like

‖z − xk‖2 − ‖z − xk+1‖2 ≥ 1

I
‖b−Axk‖2. (12.6)

12.2 The ART

The iterative step of the ART is

xk+1
j = xkj +Ai,j(bi − (Axk)i), (12.7)

where i = (k−1)(mod I)+1. We consider the improvement we obtain after
one pass through all the data. For any z with Az = b we have

‖z − x0‖2 − ‖z − xI‖2 =

I∑
i=1

(bi − (Axi−1)i)
2. (12.8)

This is, very roughly, about I times the improvement in Equation (12.6).
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12.3 The SMART

For SMART we assume that sj =
∑I
i=1 Pi,j = 1, for each j. Then, with

y = Pz, Equation (10.13) tells us that

KL(z, xk)−KL(z, xk+1) ≈ KL(Pxk+1, y). (12.9)

12.4 The MART

With mi = max{Pi,j |j = 1, ..., J}, and y = Pz we have

KL(z, x0)−KL(z, x1) ≈ m−1
1 KL(y1, (Px

0)1). (12.10)

Since sj = 1, we might estimate m1 ≈ 1
I . Therefore, after one pass through

all the data, we have

KL(z, x0)−KL(z, xI) ≈ I KL(y, Pxi−1), (12.11)

for some representative i. The point is that the improvement we may expect
after one pass through the data may well be a factor of I larger than that
obtained by one SMART iteration. Of course, if the entries of P are not
more or less uniformly distributed, the mi may well be greater than 1

I and
the improvement after one pass through the data may well be somewhat less
than before. In the sparse case, in which there are, say, only

√
I nonnegative

entries in any column, the mi will be more like 1√
I

and the improvement will

be only a factor of
√
I better than SMART. Since, in many applications, I

is in the thousands, even this reduced improvement is significant.
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The “night sky” phenomenon that occurs in nonnegatively constrained
least-squares also happens with methods based on the Kullback-Leibler
distance, such as MART, EMML and SMART, requiring some sort of reg-
ularization.

13.1 The “Night-Sky” Problem

As we saw previously, the sequence {xk} generated by the EMML it-
erative step in Equation (10.3) converges to a nonnegative minimizer x̂ of
f(x) = KL(y, Px), and we have

x̂j = x̂j

I∑
i=1

Pij
yi

(Px̂)i
, (13.1)

for all j. We consider what happens when there is no nonnegative solution
of the system y = Px.

For those values of j for which x̂j > 0, we have

1 =

I∑
i=1

Pij =

I∑
i=1

Pij
yi

(Px̂)i
. (13.2)

Now let Q be the I by K matrix obtained from P by deleting rows j for
which x̂j = 0. If Q has full rank and K ≥ I, then QT is one-to-one, so
that 1 = yi

(Px̂)i
for all i, or y = Px̂. But we are assuming that there is no

nonnegative solution of y = Px. Consequently, we must have K < I and
I−K of the entries of x̂ are zero. This behavior is not restricted to the KL
distance and occurs also in nonnegative least squares.
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A simple picture helps to give a feel for what is going on here. Imagine an
unopened umbrella. The metal ribs of the umbrella are the columns of the
matrix P . Any vector of the form Px, for nonnegative x, is a nonnegative
linear combination of the columns of P , so is on the surface of the umbrella
or inside the umbrella. If the vector y is not on or inside the umbrella,
then when we find the closest vector on or inside the umbrella, that closest
vector to y cannot be inside; it must be on the surface of the umbrella. The
vectors on the surface of the umbrella are linear combinations of just a few
columns of P , that is, they lie on a face of the surface formed by just a
few of the metal ribs. Therefore, when we write this closest vector as Px,
the only xj that are positive are those whose index j corresponds to those
columns of P that we view as the ribs that form that face.

13.2 Regularizing SMART and EMML

As discussed in [10, 11], we can regularize the SMART algorithm by
minimizing the function

(1− α)KL(q(x), r(xk−1)) + αKL(x, p), (13.3)

where p ≥ 0 is chosen a priori, perhaps as a prior estimate of the desired
x, and 0 < α < 1. The resulting iterative step is

xkj = (Sxk−1
j )1−αpαj . (13.4)

We regularize EMML by minimizing

(1− α)KL(r(xk−1), q(x)) + αKL(p, x). (13.5)

The resulting iterative step is

xkj = (1− α)(Mxk−1)j + αpj . (13.6)

By placing the variable x in the same position in both terms we are able
to obtain a closed-form expression for the iterative step in each case.

13.3 More on Regularization

Simultaneous iterative methods such as the Landweber algorithm con-
verge to a least squares solution when applied to an inconsistent system,
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that is, they minimize ‖Ax− b‖, which means solving ATAx = AT b. When
the matrix A is ill-conditioned the resulting least-squares apporoximate so-
lution may not be suitable. A better approximate solution can be found
by using regularization. When A is ill-conditioned the least-squares solu-
tion may have an unrealistically large norm, prompting the introduction of
some form of norm constraint. For example, we can minimize

‖Ax− b‖2 + γ2‖x‖2.

The system to be solved now is (ATA+ γ2I)x = AT b, which is consistent.
Sequential iterative algorithms, such as ART and the various block-

iterative variants, cannot converge to a single vector when the system is
inconsistent. Instead, they exhibit subsequential convergence to a limit cy-
cle (LC) consisting of (typically) as many distinct vectors as there are
blocks. In [27] it was shown that the LC can be avoided and the least-
squares solution approximated through the use of a small relaxation pa-
rameter. This suggests the use of updating of the relaxation parameter as
the iteration proceeds. However, as noted in [66], convergence to the least-
squares solution can be quite slow. In [45] it is mentioned that selecting the
“right”update can be challenging. It is the main objective of the present
paper to provide methods for selecting the updates, based on previous work
on how particular relaxation parameters affect the data error.

As we noted previously, the system to be solved when we regularize is
the consistent system

(ATA+ γ2I)x = AT b.

We denote by x̂γ the regularized solution. When the system is large, we
want to avoid having to calculate ATA and we want to use iterative meth-
ods. We discuss two methods for using ART to obtain regularized solutions
of Ax = b. The first one is presented in [20], while the second one is due to
Eggermont, Herman, and Lent [39]. It would be of some interest to find a
similar approach for regularizing MART.

Both methods rely on the fact that when the ART is applied to a
consistent system Ax = b it converges to the solution of that system closest
to where we began the iteration.

In our first method we use ART to solve the system of equations given
in matrix form by

BT z =
[
AT γI

] [u
v

]
= 0. (13.7)

We begin with u0 = b and v0 = 0. This system is consistent. Then, the
lower component of the limit vector is v∞ = −γx̂γ . We know that with

c =

[
b
0

]
, we have

c = Bx̂γ + z,
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where BT z = 0 and z is the vector in the null space of BT closest to c. If
we had tried to solve the inconsistent system Bx = c we would get a limit
cycle.

The method of Eggermont et al. is similar. In their method we use ART
to solve the system of equations given in matrix form by

[
A γI

] [x
v

]
= b. (13.8)

We begin at x0 = 0 and v0 = 0. Then, the limit vector has for its upper
component x∞ = x̂γ as before, and that εv∞ = b−Ax̂γ .

We know that b = Ax̂+ ŵ, where ŵ is the member of the null space of
AT closest to b. One way to avoid the limit cycle in ART in the inconsistent
case is to apply ART twice. First, we solve the consistent system ATw = 0,
beginning at w0 = b, to get ŵ. Then we solve the consistent system Ax =
b− ŵ to get Ax̂. It would also be of interest to find a similar approach for
avoiding the limit cycle in MART.
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The SMART, EMML and their block-iterative versions are based on the
Kullback-Leibler distance between nonnegative vectors and require that
the solution sought be a nonnegative vector. To impose more general con-
straints on the entries of x we derive algorithms based on shifted KL dis-
tances, also called Fermi-Dirac generalized entropies.

14.1 Fermi–Dirac Entropies

For a fixed real vector u, the shifted KL distance KL(x − u, z − u) is
defined for vectors x and z having xj ≥ uj and zj ≥ uj . Similarly, the
shifted distance KL(v − x, v − z) applies only to those vectors x and z for
which xj ≤ vj and zj ≤ vj . For uj ≤ vj , the combined distance

KL(x− u, z − u) +KL(v − x, v − z)

is restricted to those x and z whose entries xj and zj lie in the interval
[uj , vj ]. Our objective is to mimic the derivation of the SMART, EMML
and BI methods, replacing KL distances with shifted KL distances, to ob-
tain algorithms that enforce the constraints uj ≤ xj ≤ vj , for each j. The
algorithms that result are the ABMART and ABEMML block-iterative
methods. These algorithms were originally presented in [16], in which the
vectors u and v were called a and b, hence the names of the algorithms.
As previously, we shall assume that the entries of the matrix P are non-
negative. We shall denote by Bn, n = 1, ..., N a partition of the index set
{i = 1, ..., I} into blocks. For k = 0, 1, ... let n(k) = k(modN) + 1.

No iterates of the EMML and SMART algorithms can have xj = 0; zero
values of xj can only occur in the limit. In certain medical imaging problems
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we are interested in locating “cold spots” with no uptake of radionuclide.
It is helpful, in such cases, to modify the EMML and SMART to permit
xj = 0 prior to the limit. The algorithms described in this section were
used in [59] to solve this kind of imaging problem.

14.2 Using Prior Bounds on xj

For a fixed real vector u, the shifted KL distance KL(x − u, z − u) is
defined for vectors x and z having xj ≥ uj and zj ≥ uj . Similarly, the
shifted distance KL(v − x, v − z) applies only to those vectors x and z for
which xj ≤ vj and zj ≤ vj . For uj ≤ vj , the combined distance

KL(x− u, z − u) +KL(v − x, v − z)

is restricted to those x and z whose entries xj and zj lie in the inter-
val [uj , vj ]. Our objective is to mimic the derivation of the SMART and
EMML methods, replacing KL distances with shifted KL distances, to ob-
tain algorithms that enforce the constraints uj ≤ λj ≤ vj , for each j. The
algorithms that result are the ABMART and ABEMML block-iterative
methods. These algorithms were originally presented in [16], in which the
vectors u and v were called a and b, hence the names of the algorithms.
We shall assume that the entries of the matrix P are nonnegative. We shall
denote by Bn, n = 1, ..., N a partition of the index set {i = 1, ..., I} into
blocks. For k = 0, 1, ... let n = n(k) = k(modN) + 1.

14.2.1 The ABMART Algorithm

We assume that (Pu)i ≤ yi ≤ (Pv)i and seek a solution of Px = y with
uj ≤ xj ≤ vj , for each j. The algorithm begins with an initial vector x0

satisfying uj ≤ x0
j ≤ vj , for each j. Having calculated xk, we take

xk+1
j = αkj vj + (1− αkj )uj , (14.1)

with n = n(k),

αkj =
ckj
∏n

(dki )Pij

1 + ckj
∏n

(dki )Aij
, (14.2)

ckj =
(xkj − uj)
(vj − xkj )

, (14.3)
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and

dkj =
(yi − (Pu)i)((Pv)i − (Pxk)i)

((Pv)i − yi)((Pxk)i − (Pu)i)
, (14.4)

where
∏n

denotes the product over those indices i in Bn(k). Notice that,

at each step of the iteration, xkj is a convex combination of the endpoints

uj and vj , so that xkj always lies in the interval [uj , vj ].
We have the following theorem concerning the convergence of the AB-

MART algorithm:

Theorem 14.1 If there is a solution of the system Px = y that satisfies the
constraints uj ≤ xj ≤ vj for each j, then, for any N and any choice of the
blocks Bn, the ABMART sequence converges to that constrained solution
of Px = y for which the Fermi-Dirac generalized entropic distance from x
to x0, given by

KL(x− u, x0 − u) +KL(v − x, v − x0),

is minimized. If there is no constrained solution of Px = y, then, for N = 1,
the ABMART sequence converges to the minimizer of

KL(Px− Pu, y − Pu) +KL(Pv − Px, Pv − y)

for which
KL(x− u, x0 − u) +KL(v − x, v − x0)

is minimized.

The proof is in [16].

14.2.2 The ABEMML Algorithm

We make the same assumptions as previously. The iterative step of the
ABEMML algorithm is

xk+1
j = αkj vj + (1− αkj )uj , (14.5)

where

αkj = γkj /d
k
j , (14.6)

γkj = (xkj − uj)ekj , (14.7)

βkj = (vj − xkj )fkj , (14.8)
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dkj = γkj + βkj , (14.9)

ekj =

(
1−

∑
i∈Bn

Pij

)
+
∑
i∈Bn

Pij

(
yi − (Pu)i

(Pxk)i − (Pu)i

)
, (14.10)

and

fkj =

(
1−

∑
i∈Bn

Pij

)
+
∑
i∈Bn

Pij

(
(Pv)i − yi

(Pv)i − (Pxk)i

)
. (14.11)

The following theorem concerns the convergence of the ABEMML algo-
rithm:

Theorem 14.2 If there is a solution of the system Px = y that satisfies
the constraints uj ≤ xj ≤ vj for each j, then, for any N and any choice
of the blocks Bn, the ABEMML sequence converges to such a constrained
solution of Px = y. If there is no constrained solution of Px = y, then, for
N = 1, the ABEMML sequence converges to a constrained minimizer of

KL(y − Pu, Px− Pu) +KL(Pv − y, Pv − Px).

The proof is found in [16]. In contrast to the ABMART theorem, this is all
we can say about the limits of the ABEMML sequences.

The projected Landweber algorithm can also be used to impose the
restrictions uj ≤ xj ≤ vj ; however, the projection step in that algorithm
is implemented by clipping, or setting equal to uj or vj values of xj that
would otherwise fall outside the desired range. The result is that the values
uj and vj can occur more frequently than may be desired. One advantage
of the AB methods is that the values uj and vj represent barriers that
can only be reached in the limit and are never taken on at any step of the
iteration.
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[60] Petra, S., Schnörr, C., Becker, F., and Lenzen, F. (2013) “B-SMART:
Bregman-based first-order algorithms for non-negative compressed
sensing problems.” in [49], pp. 110–124.

[61] Rockafellar, R. (1970) Convex Analysis. Princeton, NJ: Princeton Uni-
versity Press.



90 Bibliography

[62] Rockafellar, R.T. and Wets, R. J-B. (2009) Variational Analysis (3rd
printing), Berlin: Springer-Verlag.

[63] Rockmore, A., and Macovski, A. (1976) “A maximum likelihood ap-
proach to emission image reconstruction from projections.” IEEE
Transactions on Nuclear Science, NS-23, pp. 1428–1432.

[64] Schmidlin, P. (1972) “Iterative separation of sections in tomographic
scintigrams.” Nuklearmedizin 11, pp. 1–16.

[65] Shepp, L., and Vardi, Y. (1982) “Maximum likelihood reconstruction
for emission tomography.” IEEE Transactions on Medical Imaging,
MI-1, pp. 113–122.

[66] Trummer, M. (1983) “SMART- an algorithm for reconstructing pic-
tures from projections.” J. of Applied Mathematics and Physics
(ZAMP), 34, pp. 746–753.

[67] Vardi, Y., Shepp, L.A. and Kaufman, L. (1985) “A statistical model
for positron emission tomography.”Journal of the American Statistical
Association 80, pp. 8–20.



Index

5PP, 24

single-photon emission tomography,
3

ABEMML, 82
ABMART, 82
acceptable data, 3, 20
AF methods, 23
alternating minimization, 24
AM, 24
ART, 67
auxiliary functions, 24
auxiliary-function methods, 23

B-SMART algorithm, 43
barrier-function algorithms, 31
block-iterative methods, 69
Bregman distance, 26

censored exponential data, 52
Cimmino algorithm, 73
CQ algorithm, 49
cross-entropy, 10

EMART, 67, 71
EMML, 61
EMML algorithm, 3, 62
envγf , 46

FBS, 46
Fermi–Dirac entropy, 81
five-point property, 24
forward-backward splitting, 46

gradient-descent algorithm, 42

Hellinger distance, 37

indicator function, 46

Jensen’s Inequality, 13

KL distance, 2, 10
Kullback–Leibler distance, 2, 10

Landweber algorithm, 42
line of response, 5
list-mode PET, 5
LOR, 5

MART, 67
missing data, 18
Moreau envelope, 46
Moreau’s proximity operator, 46
multinomial model, 51

night-sky problem, 77
NSEM, 15

observed data, 10
ordered-subset methods, 69
OSEM, 69

PET, 5
PMA, 29
PMAB, 39
PMAB algorithms, 39
positron emission tomography, 5
preferred data, 10
probabilistic mixtures, 1
projected gradient-descent

algorithm, 49
projected Landweber algorithm, 49

91



92 Index

proximal minimization algorithms,
29

RBI-EMML, 67
RBI-SMART, 67
regularization, 79

SMART, 61
SPECT, 3
STEM, 15
SUMMA class, 32
SUMMA Inequality, 32
SUMMA2 class, 33


