20

Optimization in Intensity
Modulated Radiation Therapy

Eva K. Lee
Center for Operations Research in Medicine,
School of Industrial and Systems Engineering,
Georgia Institute of Technology,
Atlanta, GA 30332-0205, USA
Winship Cancer Institute and Dept. of Radiation Oncology,
Emory University School of Medicine

(evakylee@isye.gatech.edu).

Joseph O. Deasy
Division of Bioinformatics and Outcomes Research,
Department of Radiation Oncology,
‘Washington University School of Medicine,
St. Louis, MO 63110, USA

{deasy®@radonc.wustl.edu).

Abstract: An overview and some computational
challenges in intensity modulated radiation therapy
are presented. Experience with a mixed-integer pro-
gramming treatment planning model is described.
The MIP model allows simultaneous optimization
over the space of beamlet intensity weights and beam
and couch angles. The model uses two classes of de-
cision variables to capture the beam configuration
and intensities simultaneously. Binary (0/1) vari-
ables are used to capture “on” or “off” or “yes”
or “no” decisions for each field, and nonnegative
continuous variables are used to represent intensi-
ties of beamlets. Binary and continuous variables
are also used for cach voxel to capture dose level
and dose deviation from target bounds. The treat-
ment planning model was designed to explicitly in-
corporate the following planning constraints: (a)
upper/lower/mean dose-based constraints, (b) dose-
volume and equivalent-uniform-dose constraints for
critical structures, (¢) homogeneity constraints (un-
derdose/overdose) for the planning target volume
(PTV), (d) coverage constraints for PTV, and (e)
maximum number of beams allowed. Results of ap-
plying the MIP Model to a patient case are pre-
sented. Brief discussions of recent linear program-
ming and nonlinear programming treatment plan-
ning models are also described, as is an MIP ap-
proach for direct aperture optimization.

1. Introduction

Every year over 1.4 million new cancer cases are di-
agnosed [1] in the United States, and over half of the
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patients receive radiation treatment at some point
during the course of their disease. The key to the
effectiveness of radiation therapy for the treatment
of cancer lies both in the fact that the repair mecha-
nisms for cancerous cells are less efficient than that of
normal cells, and the ability to deliver higher doses
to the target volume using “cross-fired” radiation
beam. 'Thus, a dose of radiation sufficient to kill
cancerous cells may not be lethal for nearby healthy
tissue. Nevertheless, avoiding or minimizing radia-
tion exposure to healthy tissue is extremely impor-
tant.

Using multiple beams of radiation from multiple
directions to cross-fire at the tumor volume provides
a method to keep radiation exposure to normal tis-
sue at relatively low levels, while dose to tumor cells
is elevated. The crux of the treatment planning pro-
cess involves designing beam profiles (i.e., a collec-
tion of beams) that delivers a sterilizing dose of ra-
diation to the tumor volume, while dose levels to
critical normal tissues are kept below established tol-
erance levels. Often, one attempts to design a plan
for which the prescription dose isodose surface con-
forms to the geometric shape of the specified tumor
volume [28, 67]. (The term prescription dose typi-
cally refers to the minimum dose desired to be deliv-
ered to the tumor volume; it is generally physician
specified.)

Linear accelerators (LINAC) are common beam
delivery units used for external beam radiotherapy.
The table on which the patient lies and the beam de-
livery mechanism for the LINAC rotate about sepa-
rate orthogonal axes, providing the ability to adjust
the angle and entry point of radiation fields used
during treatments. Each field is further defined by
a bank of multileaf collimators (MLC), small metal-
lic leaves located inside the LINAC treatment unit.
These leaves can be opened or closed, and used to
shape the radiation beam as it exits the machine.
Figure 1 shows a linear accelerator.

Intensity-modulated radiation therapy (IMRT) is
an important recent advance in radiation ther-
apy [68]. In conventional radiotherapy treatment,
the planning process consists of determining a set
of external beams that meet, as best as possible, the
clinical dose distribution criteria. In many cases, sig-
nificant compromises to critical structure function
have to be made to enable a tumoricidal dose to
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Figure 1: A linear accelerator used for external beam
radiotherapy treatment

be delivered to the targets. In IMRT, the radia-
tion fluence is varied across the beam, which allows
a higher degree of conformation to the tumor than
previously possible and allows concave isodose pro-
files to be generated, which may block, for example,
dose to critical structure anterior or posterior to the
target from that view. Specifically, not only is the
shape of the beam controlled, but combinations of
open and closed multileaf collimators modulate the
intensity as well. For this reason, IMRT provides
improved delivery control over conventional treat-
ment. Indeed, it provides an unprecedented capa-
bility to dynamically vary the dose to accommodate
the shape of the tumor from different angles, and to
spare normal tissues and organs-at-risk (OAR) that
may be potentially harmed during treatment.

Due to the complexity of the beam intensity profile
associated with IMRT, there has been a tremendous
research effort among medical physicists and radi-
ation oncologists related to IMRT treatment plan-
ning and delivery, and there remain many oppor-
tunities for computational advances, particularly in
treatment design. A computer-driven optimization
algorithm must be used to determine the beam flu-
ences (intensity maps) that provide the best compro-
mise between target underdosing, target overdosing
and critical structure overdosing. The textbook by
Webb [68] has a good list of references for IMRT
optimization.

In Sections 2.1 and 2.2, we describe the treatment
planning problem for IMRT, and discuss relevant in-
put data and the dose matrix. In Section 2.3, we
discuss our experience of a mixed integer program-
ming treatment planning model. The mixed integer

programming model allows one to simultaneously in-
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Figure 2: The treatment of a head-and-neck case via
IMRT. Shown is a 3D view of the patient, the plan-
ning tumor volume (PTV), yellow; the spinal cord,
pink; and the parotid glands, red. The 9 beams,
shown with gray levels, reflect the modulated radia-
tion intensity. (Use with permission from [2])

corporate dose coverage, underdose, overdose, ho-
mogeneity and conformity criteria on the tumor vol-
ume; dose volume restrictions on the critical struc-
tures (how much volume can receive more than a
specified dose); and physical constraints on the total
number of beams. Section 2.4 describes briefly the
associated clinical results, and Section 2.5 provides
a very brief discussion of current mathematical pro-
gramming approaches. Summary and discussion is
presented in Section 3.

2. Intensity-modulated radiation
therapy treatment planning

Treatment planning in intensity modulated radiation
therapy consists of a sequence of steps:

e Acquiring a 3D image of the affected region
and  healthy

e Delineating target volumes

anatomical structures

e Selecting the appropriate radiation source and
energy

e Seclecting a set of beam angles for use in treat-
ment

e Computing dose from each beam

e Performing intensity map optimization for the
selected beams

e Developing optimal collimator sequences for ac-
tual delivery
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some can be combined together, resulting in com-
plex numerical problems. In the sections presented
herein, much of the description follows our recent
work on mixed integer programming in this area
[35, 36]. Very brief discussions on linear program-
ming and nonlinear programming approaches are in-

cluded.

2.1 Input data and dose calculation

Image Acquisition and Segmentation. The
planning process begins when the patient is diag-
nosed with a tumor mass and radiation is selected
as part of the treatment regime. A 3D image, or
volumetric studyset, of the affected region, which
contains the tumor mass and the surrounding areas,
is acquired via computed tomography (CT) scans.
These CT data are used for treatment planning, and
electron density information derived from them are
used in the photon dose calculations. Additionally,
magnetic resonance imaging (MRI) scans may be ac-
quired, fused with the CT volumetric studyset, and
used to more accurately identify the location and ex-
tent of some tumors — especially those in the brain.
Based on these scans, the physician outlines the tu-
mor, and also outlines anatomic structures that need
to be held to a low dose during treatment.

It is common practice to identify three “volumes”
associated with the tumor. The gross tumor volume
(G'TV) represents the volume that encompasses the
imageable or palpable macroscopic disease; that is,
the disease that can be detected and localized by
the oncologist. The clinical target volume (CTV)
expands the GTV to include regions of suspected
microscopic disease. The delineation of the CTV de-
pends heavily on a priori knowledge of the behavior
of a given tumor type. For a given G'TV, tumor his-
tologic features, and patient type, a set of probabili-
ties exist (imperfectly known) that the tumor will, or
will not, extend microscopically into a given regional
organ or lymph node. However, accurate specific
data are usually not available to the radiation on-
cologist, only general principles are known. A more
quantitative and consistent definition of the CTV
is an important need. The planning target volume
(PTV) includes additional margins for anatomical
and patient setup uncertainties related to organ and
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patient movement over time. All volumetric data is
discretized into voxels (point representations of vol-
ume properties) at a granularity that is conducive
hoth to generating a realistic model and to ensur-
ing that the resulting treatment planning instances
are tractable (i.e., capable of being solved in a rea-
sonable amount of computational time for practical
clinical usage).

Dose Calculation Radiation dose, measured in
Gray (Gy), is energy (Joules) deposited locally per
unit mass (kg). Fluence for external beam photon
radiation is defined mathematically by the number
of photon crossings per surface area. Dose tends
to be proportional to fluence, but is also influenced
by photons and electrons scattered in the patient’s
tissues as well as the incident energy and media in-
volved.

The calculation of the dose distribution associ-
ated with IMRT delivery is a critical aspect of the
IMRT optimization and delivery processes. The cal-
culated dose distribution from each candidate set of
plan parameters is evaluated at each iteration or at
the end of the optimization process, and the objec-
tive function values (costs or scores) for the itera-
tive optimization are typically obtained by analysis
of the dose distribution. For most systems, after
the fluence-optimized plan is obtained, another dose
calculation /optimization procedure, called leaf se-
quencing, is performed which first breaks the beams
up into machine-deliverable multileaf sequencing
steps, and then includes a final dose calculation step
based on the details of the multileaf field shapes.

One of the most commonly used IMRT dose cal-
culation algorithms involves a simple pencil beam
method and is usually part of a broader class of
correction-based dose-calculation algorithms [40, 4].
While these models offer significant speed advan-
tages for use in the optimization code, they have
varying limitations in accuracy.

In contrast, convolution/superposition, energy de-
position kernel-based approaches can take into ac-
count beam energy, geometry, beam modifiers, pa-
tient contour, and electron density distribution [41,
10, 3, 6, 43]. Both the convolution method and the
Monte Carlo method compute the dose per unit en-
ergy fluence (or fluence) incident on the patient.

Although it is clear that improved dose-calculation

accuracy afforded by the convolution-type calcula-
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tions may be important for IMRT, the long calcula-
tion times make this difficult.

Recently, significant progress has been made in the
development of Monte Carlo calculation algorithms
for photon beams, which simulate particle tracks in-
dividually, that are fast enough to compete with
other current methods [24, 39, 70, 57]. In several sit-
uations, the Monte Carlo method is likely to be even
more accurate than the convolution method [71]. For
example, multiple scatter (second and higher order
scatter) may be perturbed near the surface of a pa-
tient and the Monte Carlo method may be able to
account for this as long as the number of simulated
particles is sufficient. Direct Monte Carlo simulation
may be the only option for achieving accurate dose
computations in these complex situations. However,
the application of Monte Carlo methods to optimiza-
tion for IMRT is an area that requires much more
work before relevant results will be available.

Access and usage of realistic radiotherapy data can
be facilitated by using an open-source toolbox, de-
veloped by Deasy et al. [21], which enables users
to import clinical plan data into Matlab for viewing
and manipulation, and furthermore includes tools to
generate the dose influence matrices.

2.2 Treatment planning strategies

In a strategy known as forward treatment planning,
the beam geometry (beam orientation, shape, mod-
ifier, beam weights, etc.) is first defined, followed
by calculation of the 3D dose distribution. After
qualitative review of the dose distribution by the
treatment planner and/or radiation oncologist, plan
improvement is often attempted by modifying the
initial geometry (e.g., changing the beam weights
and/or modifiers, adding another beam), to improve
the target dose coverage and/or decrease the dose in
the organs at risk. This forward planning process is
repeated until a satisfactory plan is generated. As
one can imagine, this is a time consuming approach
to treatment planning.

In newer inverse treatment planning, the focus is
on the desired outcome (e.g., a specified dose distri-
bution or tumor control probability (T'CP) and nor-
mal tissue complication probability (NTCP)) rather
than on how the outcome is achieved. The user of

the system specifies the goals; the computer {opti-
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mization system) then adjusts the beam parameters
(mainly the intensities) iteratively in an attempt to
achieve the desired outcome. After review of the
computer optimized dose distribution, some modi-
fication of the desired outcome and adjustment of
the relative importance of each end point might be
needed if the physician is not satisfied with the dose
to the target volume or organs-at-risk (OARs).

Clearly, optimization is a classical inverse planning
approach: constraints and an objective function are
utilized to guide the optimization solver to select a
plan with pre-specified clinical properties. Begin-
ning with the work of Bahr et al. [5] in the late 60’s,
a number of research articles, authored primarily by
medical researchers, discussed the use of mathemati-
cal programming and other optimization techniques
in conventional external beam radiation treatment
planning [18, 30, 31, 32, 34, 56, 61, 65, 73].

Much of IMRT treatment planning research has
focused on the determination of the fluence map [67,
2, 7,8, 11, 13, 44, 45, 72, 26, 12, 15, 19, 25, 2T,
23); that is, the radiation intensity or beam weights
associated to each of the small beamlets of a selected
radiation field /beam. However, the determination of
beam angles, shapes, modifiers, couch positions and
radiation energy to be used are best modeled using
discrete variables.

At present, most IMRT optimization systems use
dose-based and/or dose-volume-based criteria. One
method commonly used to create dose-based and
dose-volume objective functions involves minimiz-
ing the variance of the dose relative to the pre-
scribed dose for the target volumes or dose limits
for the organs at risk. This type of objective func-
tion has been used for traditional radiation therapy
treatment optimization for the past several decades
[62]. Variance is defined as the sum of the squares
of the differences between the calculated dose and
the prescribed dose or dose limit. Thus, a typi-
cal dose-based or dose-volume-based objective func-
tion is the sum of the variance terms representing
each anatomic structure multiplied by appropriate
penalty factors (i.e., importance factors). Just as
in conventional radiation therapy [14], the resulting
unconstrained quadratic programming problem is of-
ten solved via the gradient method [61, 72], although
the inclusion of dose-volume constraints makes the
problem non-convex [20].
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Within the optimization community, linear pro- by
gramming and nonlinear programming have been
used to determine the optimal intensity map [55, Dp(w) = E E Dpij wij, (1)
58], while mixed integer programming has been in- B jeN;

i ‘ etermine t imal . oo
troduced to smml’taneou:sly d(‘. (‘ermme the opt:mfi where Dpj; denotes the dose per monitor unit in-
beam angles and beam intensities [35, 36], and in . . -

. , O . tensity contribution to voxel P from beamlet 7 in
finding optimal apertures for radiation delivery [52). : . . . .
. beam i. Various dose constraints are involved in
Below, we describe the MIP models formulated for . . .. .

i . . T the design of treatment plans. Clinically prescribed
simultaneous beam angle and intensity map opti-

o ! o Jower and upper bounds, say Lp and Up, for dose at
mization, closely following the presentation in Lee . M .

, “€ " voxel P are incorporated with (1) to form the basic
et al. [35, 36]. Results from a patient case will (e constraints:
be briefly summarized. We then briefly describe ' R o
linear and nonlinear programming approaches by
others. Besides mathematical programming ap- Z Z Dpyj wij > L, Z Z Dips; wiy < Up.

proachf’:s, heuristic a:pproacbes — such as simulated Py B jN;

annealing and genetic algorithms — have been com- (2)
monly used for radiation therapy treatment opti- Our model also allows selection of optimal beam
mization. angles out of a collection of candidate beams. Thus,

the resulting plan returns the optimal beam geome-

. . . try as well as beam intensities.
93 Mixed integer programming treat-
5 prog & Let x; be a binary variable denoting the use or

ment planning models . .
piat .g non-use of beam 4. The following constraints limit
the total number of beams used in the final plan and
ensure that beamlet intensities are zero for beams

not chosen:

The treatment planning models in [35, 36} use two
classes of decision variables to capture the beam
configuration and intensities simultaneously: Binary
(0/1) variables are used to capture “on” or “off” or
“yes” or “no” decisions for each field, and nonnega-

tive continuous variables are used to represent inten- Z i < Bumax and wij < Mit;. (3)
sities of beamlets. Binary and continuous variables
are also used for each voxel to capture dose level and  yy..0 By s the maximum oumber of beams de-
dose deviation from target bounds. Below, we pro- ... d’ in an optimal plan, and M; is a p ositive con-
vide t..he mathematical description of the treatment .+ 1.t can be chosen as the largest possible in-
planning models. tensity emitted from beam .

Let B denote the set of candidate beams (each  For each voxel in each anatomical structure, we as-
with an associated beam angle), and let N denote o ciate one binary variable and one continuous vari-
the set of beamlets (discretized sub-beams —ust= yhle to capture whether or not desired dose level is
ally rectangular in cross-section — which comprise ,hjeved and the deviation of received dose from de-
the beam) associated with beam i & B. Beamlets g.od dose. We also impose additional constraints
associated with a beam can only be used when the {.t0 our treatment plan design, as discussed below.
beam is chosen to be “on”. If a beam is on, the Clinically, it may be desirable to incorporate cov-
beamlets with positive dose intensity will contribute erage constraints within the model. For example,
a certain amount of radiation dosage to each voxel In tpo clinicians may consider that it is acceptable if,
the target volume and other anatomical structures. .. v, 95% of the PTV receives the prescription dose,
Once the set of potential beamlet intensities is Spec-  prDpse. Such a coverage requirement can be mo a-
ified, the total radiation dose received at each voxel  j104q as follows.
can be modelled. Let w;; = 0 denote the intensity of
beamlet j from beam 4 (in calibrated monitor units). Z Z Dpijwij — rp = PrDose, PePTV (4)
Then the total radiation dose at a voxel P is given ieB jeN;

ieB
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rp < Dpryvp (5)

rp > Dpp(vp 1) (6)
> wp = alPTV]. (7)
PcPTV

Here, rp is a real-valued variable that measures the
discrepancy between prescription dose and actual
dose; vp is a 0/1 variable that captures whether
voxel P is above or below the prescription dose
bounds or not; a corresponds to the minimum per-
centage of coverage required (e.g., a = 0.95); D7,
and DEE. are the maximum overdose and maxi-
mum underdose levels tolerated for tumor cells; and
|PTV| represents the total number of voxels used
to represent the planning target volume. The val-
ues DYE, and DPL, can be chosen according to the
homogeneity level desired by the clinician for the
resulting plan. If 7p > 0, then voxel P receives suf-
ficient radiation dose to cover the prescribed dose.
In this case, vp = 1 and the amount of radiation
for voxel P above the prescribed dose is controlled
by the maximum-allowed-overdose constant, Dy,
Similarly, when rp < 0, voxel /7 is underdosed, and
the amount of underdose is limited by D{7,. In this
case, vp = 0.

By design, constraints (5) and (6) serve two pur-
poses: 1) they capture the number of PTV voxels
satisfying the prescription dose, and 2) they provide
a means of controlling underdose, overdose, and dose
homogeneity in the tumor. For the latter, the ratio
(PrDose+DER )/ (PrDose —D7,) can be viewed as
an implied PTV homogeneity constraint associated
with the model. Using a model with a smaller ho-
mogeneity constraint can be expected to result in a
more homogeneous plan. Constraint (7) corresponds
to the coverage level desired by the clinician.

Recently Equation (4) has been used to capture
dose gradient fall-off when 100% tumor coverage is
demanded. This was achieved by minimizing the
dose surrounding the tumor region [34]. For IMRT
planning optimization, it alone was used to model
the deviation from prescribed dose for the PTV
[13, 72, 17]. In these studies, a nonlinear objec-

tive function was formulated to steer the gradient-
based optimization engine towards achieving the pre-
scribed dose for the target volume; specifically, the
objective was to minimize the sum of dose devia-
; ; . — . /g
tion across the target volume: |[r]l, = (3 p |rp|9)Y
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(with no imposed constraints). When ¢ = 2, this is
a least-squares problem.

It is desirable that dose received by radiation sen-
sitive organs/tissues other than the tumor volume
should be controlled to reduce the risk of injury.
Thus, for other anatomical structures involved in
the planning process, along with the basic dose con-
straints given in (2), additional binary variables are
employed for modeling the dose-volume-tolerance re-
lationships. To incorporate this concept into the
model, let oy, G € (0,1] for k in some index set K.
(In our implementations, the cardinality of the in-
dex set K is typically between 3 and 10 but could be
larger.) The following set of constraints ensures that
at least 1003,% of the voxels in an organ-at-risk,
OAR, receive dose less than or equal to ay, PrDose.
The symbols y3* and ngR denote binary variables.

Z Z Dpijwij < [ag PrDoselyt
i€B jeN;
+ Dz, P € OAR(R)
ST oup = Bl OAR| (9)
PcOAR
i+ 2ptf = 1 (10)
y;kl S y;kz for g, = o, (11)

Here, D,,,, is the maximum dose allowed for OAR
(often determined by the maximum dose thought to
be well-tolerated), and oy, /% combinations are pa-
tient and tumor specific. When the total dose re-
ceived by a voxel P is less than oy PrDose, yf;‘,k =
1, and this contributes to a voxel count in Con-
straint (9). When it does not satisfy the dose bound
ay, PrDose, then y3F = 0, and in this case the dose
will be forced to be lower than the maximum dose
tolerance allowed, D,,,,, and ngR = 1. Note that by
using discrete variables to represent each voxel and
controlling the number of points satistfying a certain
dose level, we can impose strict dose-volume crite-
ria within the solution space. This is in contrast
to the common approach of incorporating “soft”
dose-volume criteria into a composite objective func-
tion [72]. Langer[31] was the first to apply MIP ideas
to model dose-volume relationships in conventional
radiation therapy. For IMRT, the challenge is that
the resulting problem instances are large-scale (in-
volving hundreds of thousands or even millions of in-
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equalities), and are computationally taxing and diffi-
cult to solve without the development of specialized
algorithms [35].

Besides the commonly used least-squares dose de-
viation objective function, other objective functions
have been used, including: minimizing the squared
radiation dose to OARs, maximizing the minimum
dose to tumor target, maximize/minimize weighted
sum of doses to target and OARs. Other more
complex biological objective functions — involving
equivalent uniform dose (the p-norm or generalized
mean value), tumor control probability, and normal
tissue complication probability — have also been
proposed [37, 38, 60, 59, 47, 50, 48, 49, 46].

The MIP treatment planning models for real pa-
tient cases involve tens to hundreds of thousands of
binary variables and constraints. Our experience is
that the resulting MIP instances are intractable via
commercial MIP solvers. However, we have observed
that, by using specialized algorithms [35], clinically
superior treatment plans can be obtained [36].

2.4 Computational results for a real pa-
tient case

We briefly describe a patient study. Input data in-
cludes 3D images of tissue to be treated. On these
images, the planning target volume (PTV) is de-
lineated, and contours of organs-at-risk (OAR) and
In addition to these
structures, a tissue ring of 5 mm thickness is drawn
around the PTV. We call this ring the critical-
normal-tissue-ring. In [31] it was demonstrated that
this normal tissue construct can assist in obtaining
conformal plans for radiosurgery. In [35, 36], we have

normal tissue are outlined.

shown its usefulness in designing conformal IMRT
plans. For the results herein, depending on the vol-
ume of the anatomical structure, a 3-5 mm voxel
size (for dose computation) is used for setting up
the MIP model instances.

For each beamlet, the dose per monitor unit inten-
sity to a voxel is calculated. The total dose per unit
intensity deposited to a voxel is equal to the sum
of dose per intensity deposited from each beamlet.
For the results described here, 16-24 coplanar fields
of size 10 x 10 em?® to 15 x 15 em?
as candidate fields, each of which consists of 400-
900 0.5 x 0.5 em? beamlets. This results in a large

are generated
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set of candidate beamlets used for instantiating the
treatment planning models.

In [35], we study the effect of maximum beam an-
gles allowed on plan quality. In [36], five objective
functions are considered and contrasted on three dif-
ferent tumor sites to compare plan quality and to
gain understanding of the steering effects of clini-
cal objectives. Below, we illustrate the results for a
head-and-neck case obtained via multiple objectives.

Some common metrics for reporting quality of
treatment plans include:

e Coverage — Coverage is computed as the ratio
of the target volume enclosed by the prescrip-
tion isodose surface to the total target volume.
Coverage is always less than or equal to 1.

e Conformity — Conformity is a measure of how
well the prescription isodose surface conforms to
the target volume; it is computed as the ratio
of the total volume enclosed by the prescription
isodose surface to the target volume enclosed by
this same surface. Conformity is always greater
than or equal to 1. i

e Homogeneity — The homogeneity index is de-
fined as the ratio of the maximum dose to the
minimum dose received by the tumor volume.

e Mean dose and maximum dose for each critical

structure.
e Dose-volume histograms (volume receiving
more than each given dose level) and isodose

curves.

Observe that these metrics are not entirely inde-
pendent. For example, while it is desirable to obtain
a prescription isodose surface big enough to cover the
target volume in order to ensure good coverage, it is
also desirable to have this surface “small” in order
to conform to the target volume. In addition, varia-
tions in conformity and coverage affect the amount
of irradiation to nearby organs at risk, thus affecting
dose distribution levels of these organs.

Head-and-neck tonsil cancer. We focus on a

tonsil cancer case where the PI'V is adjacent to
the left submandibular salivary gland. The follow-
ing structures with their respective clinical dose lim-
its are considered. PTV should receive 68 Gy; left
parotid: 30% < 27 Gy and 100% < 68 Gy; right
parotid: 100% < 15 Gy; right submandibular gland:
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100% < 30 Cy; left submandibular gland: 10% <
97 Gy and 100% < 68 Gy; larynx: 80% < 30 Gy
and 100% < 55 CGy; spinal cord and brainstem:
100% < 45 Gy.

Comnal View

Sagittal View

Figure 3: Anatomical structures for the head-and-
neck. Notation: right parotid (RP), left parotid
(LP), right submandibular gland (RS), left sub-
mandibular gland (LS), spinal cord (SP), brain stem
(BS).

A total of 1501 PTV voxels, 406 critical-normal-
tissue-ring voxels, 3247 voxels for the OARs and
6416 normal tissue voxels were used to instantiate
the MIP treatment model.

Here, we report the results for a plan with a max-
imum of 7 beams in which the objectives include
minimizing the total dose to the critical structures
and optimizing the PTV conformity. The results are
based on the utilization of a specialized branch-and-
bound MIP solver for large-scale external beam ra-
diation [35] that is built on top of a general-purpose
mixed integer research code (MIPSOL) [33]. Fig-
ure 4 shows the dose volume histograms, and Fig-
ure 5 shows the isodose curves. Compared to the
clinical plan, we observe the following:

a. For all critical structures, the mean dose and
max dose received are drastically less than the
clinical plan.

b. For OARs that are close to the tumor volume,
namely the left parotid (< 10mm) and the left
submandibular gland (< 10mm), the mean dose
received is significantly reduced (70% and 50%,
respectively). The spinal cord enjoys moderate
dose reduction (33%)-

c. The coverage constraint and the objective
helped in achieving 98% coverage. Underdose
and overdose constraints kept minimum and
maximum dose to the tumor relatively uniform,
with a homogeneity index of 1.24. And the con-
formity objective helped to achieve a superior
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conformity value of 1.34. These all improve over
the clinical plan, which had 97% coverage, and
scores of 1.4 for homogeneity, and 1.6 for con-
formity.

d. The total overall monitor units of radiation
from the MIP optimized plan is less than that
from the clinical plan, indicating that the plan
uses less radiation but yet can still deliver the
required prescription dose to the tumor, thus
sparing excessive radiation dose to the critical
structures and normal tissue.

It is noteworthy that in contrast to the typically
equispaced beams chosen when beam configurations
are pre-selected, the optimal 7-beam plans obtained
herein (that are considered clinically acceptable) do
not have equispaced beams. Indeed, the optimal
beam angles returned appear to be non-intuitive,
and to depend on PTV size and geometry and the
spatial relationship between the tumor and the crit-
ical structures.

Figure 4: Dose-volume histogram for the head-and-
neck for the MIP model with objective of minimiz-
ing the OARs dose and optimizing prescription dose
conformity to tumor.

Sagittal View

Copenal Vv

Figure 5: Isodose curves for the head-and-neck case.
The critical-normal-tissue-ring is represented by the
dotted curve.
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2.5 Other mathematical programming
approaches

As previously mentioned, linear and nonlinear pro-
gramming have long been used for radiation therapy
treatment optimization [5, 56, 55]. Lacking discrete
variables, LP and NLP models typically use a pre-
selected beam configuration, and focus on determin-
ing beam intensities. Below, we briefly outline some
recent approaches in this area.

Simplified least-squares objective function
and dose-volume constraints: In [55], using
pre-selected beam angles, linear programming ap-
proaches were used to determine the associated op-
timal intensity map. The authors approximated the
least-squares objective function measuring deviation
of tumor voxel dose from prescribed dose via a piece-
wise linear function. They also utilized conditional
value-at-risk (CVaR) constraints to control the mean
dose received by subsets of voxels receiving the high-
est or lowest doses among all voxels in a given struc-
ture. Two forms of such constraints were used:

(i) lower a-CVaR: The average dose received by the
subset of a target of relative volume 1-a receiving
the lowest doses must be at least equal to L.

(ii) upper a-CVaR: The average dose received by the
subset of a structure of relative volume 1-c receiving
the highest doses may be no more than U?.

('VaR constraints were originally proposed by Rock-
afellar and Uryasev [54] to formulate risk manage-
ment constraints in terms of the tail means of distri-
butions of financial risk. Mathematically, the upper
a-CVaR constraint on a structure S is defined as

~CY 1 ] (]
CS(WHW ; max{0, Dp(w)—Cg(w)} < Ug,

(12)
where Ug is an upper bound target, Dp(w) is the
total dose from intensity vector w for voxel P,
and (g (w) denotes the smallest dose level with the
property that no more than 100(1 — a) percent of
the structure S receives a larger dose. The au-
thors showed that including such partial-volume con-
straints to bound the tail averages of the differential
dose-volume histograms of structures helps to im-
prove dose homogeneity to the target and to spare
dose to critical structures.

Nonlinear programming approach: Sheperd ef
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al. [58] summarized several LP and NLP models
for determining optimal intensity maps. To model
dose-volume constraints, they applied a nonlinear er-
ror function approach. Their problem involved min-
imizing the standard objective of sum of the square
differences between the prescribed and the actual
doses over all of the voxels in the tumor, subject
to two partial volume constraints — to OARs and
to normal tissue. For an OAR S, the partial volume
constraint defined on S was:

Z erf(Dp(w) — Ap) < alS|
Pes
where A denotes a selected dose limit and « denotes
the fraction of the volume allowed to exceed this
limit. The error function erf(z) realizing the par-
tial volume constraints is a nonlinear function. (See
fig. 4.4 in [58].)
The authors also compared this with an MIP

(13)

approach to model partial volume constraints
on OARs, involving a simplified version of con-
straints (8)—(11) described above.

Direct aperture approaches via mixed integer
programming: Preciado-Walters ef al. [52] formu-
lated the treatment planning problem as a mixed
integer program over a coupled pair of column gen-
eration processes: the first designed to produce in-
tensity maps for the IMRT beamlet grid, followed by
the second to specify protected area choices aiding
in reducing the computational burden of enforcing
the dose-volume restrictions on tissues.

Instead of determining the beamlet intensity for
each beam, and then applying leaf-sequencing to de-
termine delivery patterns, the planning involved first
selecting a fixed set of deliverable beams. For each
of these beams, the authors pre-determined heuris-
tically a set of delivery patterns. They then intro-
duced continuous nonnegative decision variables x4
to represent the assigned intensity to whole pattern
g of beam j. Then the dose at any voxel I, is cal-
culated by

T
Dp=Y > aprjti

i=1qgeQ;

(14)

where xj, > 0, Q; is the set of patterns for beam
4, and apj, is the implied dose coefficient of pattern
q from beam j at voxel P when the pattern g is

constructed.
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The resulting MIP model for treatment planning
employed the objective function of maximizing the
minimum tumor dose. Similar to the above MIP
models, the constraints include upper and lower dose
bounds on tumor voxels, and upper dose bounds for
healthy tissues. Dose-volume constraints are formu-
lated just as constraints (8)—(11) above.

3. Summary and discussion

This article provides a brief overview of optimization
issues in intensity-modulated radiation therapy, and
summarizes our experience with an integer program-
ming approach. The MIP model described allows si-
multaneous optimization over the space of beamlet
intensity weights and beam angles. Based on ex-
periments with clinical data, this approach can re-
turn good plans that are clinically acceptable and
practical. This work is distinguished from recent
IMRT research in several ways. First, in previous
methods beam angles are selected prior to intensity
map optimization. - Herein, we employ 0/1 variables
to model the set of candidate beams, and thereby
allow the optimization process itself to select opti-
mal beams. Second, instead of incorporating dose-
volume criteria within the objective function as in
previous work, herein, a combination of discrete and
continuous variables associated with each voxel pro-
vides a mechanism to strictly enforce dose-volume
criteria within the constraints. The challenge of
using MIP modeling for IMRT is that the result-
ing instances are very large-scale, and since general
MIP is NP-hard, specialized algorithms designed to
solve IMRT instances are required. Third, incor-
porating the critical-normal-tissue-ring can improve
conformity in general tumor sites, without addition
of other dose-shaping structures. In general, our
MIP approach uses constraints to control a variety
of clinical criteria (coverage, homogeneity, underdose
to PTV, overdose to PTV, dose-volume limits on
organs-at-risk and normal tissue), while assigning
an objective to help with the solution search. The
model can also be expanded to incorporate energy
selection, couch angles and other treatment param-
eters.

Patient studies indicate that using the MIP ap-
proach, one can produce good clinical plans that ag-
oressively lower OAR dose below pre-imposed levels
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without compromising local tumor control [36]. This
is appealing since lower OAR dose should translate
to lower normal tissue complication probability.

Computationally, the specialized optimization en-
gine returns good feasible solutions within 30 min-
utes. We have performed standard leaf-sequencing
techniques on the resulting optimal intensity map,
and showed that returned plans are deliverable. The
results provide evidence that the MIP approach is
viable in producing good treatment plans that can
potentially lead to significant improvement in local
tumor control and reduction in normal tissue com-
plication.

With pre-selected beam angles, other approaches
such as linear programming [55] and nonlinear pro-
gramming [72, 58] can be used for intensity map op-
timization. Comparisons are needed to gauge the
quality of these plans versus those from MIP ap-
proaches. Direct aperture optimization [52] is ap-
pealing, since resulting segments are implementable
directly. Again, comparisons are needed to de-
termine the effectiveness, advantages and tradeoffs
among different planning optimization methods.

Other computational challenges actively pursued
by medical physics experts include image segmenta-
tion, planning under uncertainties, biological model-
ing, leaf-sequencing and treatment outcome analysis.
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