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Chapter 1

Preliminaries

1.1 Overview

In the next chapter we consider the problem of solving the system of lin-
ear equations Ax = b, or, more generally, ATAx = AT b, along with the
iterative Landweber algorithm that provides a solution. In the chapters
that follow, we shall study in some detail the many ways this problem
can be generalized and the variety of iterative algorithms that extend the
Landweber method. In this beginning chapter we present several of the
fundamental definitions and results pertaining to matrix algebra that we
shall use later.

Occasionally in this book we make reference to [46, 47]. These books
are available as pdf documents on my website.

1.2 Matrix Rank and Invertibility

Throughout this book we shall denote by A an I by J matrix with real
entries. The extension of definitions and results to the complex case is
usually straightforward and we shall omit it without comment. Unless
otherwise indicated, the symbol ‖x‖ will denote the Euclidean norm of
x ∈ RJ , also called the two-norm of x, given by

‖x‖2 =

√√√√ J∑
j=1

x2
j . (1.1)

We shall also have occasion to use the one-norm of x, given by

‖x‖1 =
J∑

j=1

|xj |. (1.2)

1



2 CHAPTER 1. PRELIMINARIES

From the definition of Ax, the vector resulting from the multiplication
of a vector x by a matrix A, we can easily see that the vector Ax is a linear
combination of the columns of A; specifically, we have

Ax =
J∑

j=1

xja
j , (1.3)

where xj is the jth entry of the vector x and aj is the jth column of A.
From the definition of matrix multiplication of matrices B and C, the jth
column of the product A = BC is a linear combination of the columns of
B, with coefficients the entries of the jth column of C.

Definition 1.1 The row rank of A, denoted rr(A), is the maximum num-
ber of linearly independent rows of A, and the column rank of A, denoted
cr(A), is the maximum number of linearly independent columns of A.

Clearly, the row rank of A equals the column rank of its transpose, AT .

Proposition 1.1 The row rank and the column rank of any A are the
same.

Proof: Suppose that the column rank of A is K. Form the I by K matrix
B having for its columns K linearly independent columns of A. Then every
column of A is a linear combination of the columns of B, which means that
there is a K by J matrix C such that A = BC. Then AT = CTBT , which
tells us that each column of AT is a linear combination of the K columns of
CT . Consequently, there can be at most K linearly independent columns
of AT . So the column rank of AT , which is the row rank of A, cannot
exceed the column rank of A. But since this must be true for all choices of
A, the assertion of the proposition follows.

Definition 1.2 The rank of A, denoted r(A), is its column rank.

Definition 1.3 A square matrix S is invertible if there is a matrix R such
that SR = RS = I, where I denotes the identity matrix of the appropriate
size. Then R is the inverse of S and we write R = S−1.

Definition 1.4 The linear transformation A : RJ → RI induced by multi-
plication by A, which we also denote by A, is onto RI , or simply onto, if,
for every b ∈ RI , there is x ∈ RJ with b = Ax.

Lemma 1.1 Let S be any square matrix. The linear transformation S is
onto if and only if the linear transformation ST is onto.

Proof: Suppose S is I by I and S is onto RI . Then the columns of S span
all of RI and so the rank of S is I. Therefore, the rank of ST is also I, its
columns also span all of RI , and ST is onto.



1.3. THE FUNDAMENTAL DECOMPOSITION THEOREM 3

Proposition 1.2 The matrix S invertible if and only if the induced linear
transformation S is onto RI .

Proof: If S is invertible and b is any vector in RI , then x = S−1b satisfies
b = Sx; therefore the transformation is onto RI . Conversely, if the trans-
formation is onto RI , then for each i there is a vector ri such that Sri = δi,
where δi denotes the ith column of the identity matrx I. The matrix R
whose ith column is ri then satisfies SR = I. Because ST is also onto,
there is a matrix U such that STU = I and so UTS = I. Then

UT = UT (SR) = (UTS)R = IR = R

and RS = I. So R = S−1.

Corollary 1.1 The matrix S is invertible if and only if the rank of S is I.

Proposition 1.3 Let B be I by K, with rank K. Then BTB also has rank
K and is therefore invertible.

Proof: If BTBu = 0, then 0 = uTBTBu = ‖Bu‖22, so that Bu = 0.
But since the rank of B is K, the columns of B are linearly independent.
Consequently, u = 0. It follows that the columns of BTB must be linearly
independent, and its rank is then K.

This brings us to the main result of this chapter.

1.3 The Fundamental Decomposition Theo-
rem

We begin with two definitions.

Definition 1.5 The range of A, denoted R(A), is the span of the columns
of A in RI .

Definition 1.6 The null space of AT , denoted NS(AT ), is the set of all
w ∈ RI such that ATw = 0.

Lemma 1.2 If b ∈ R(A) ∩NS(AT ), then b = 0.

Proof: If b = Ax, and AT b = ATAx = 0, then xTATAx = ‖Ax‖22 = 0, so
b = Ax = 0.

Corollary 1.2 If A is onto, then NS(AT ) = {0}.

Proof: Let w ∈ NS(AT ). Since A is onto, we also have w ∈ R(A).
Therefore w = 0.

Once we prove the Fundamental Decomposition Theorem we will be
able to prove the converse of this corollary.
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Theorem 1.1 The Fundamental Decomposition Theorem Every b
in RI can be written uniquely as

b = Ax+ w,

for some x ∈ RJ and w ∈ NS(AT ).

Proof:
If ATA is invertible, then we take w = b − A(ATA)−1AT b, which is

clearly in NS(AT ). We then have b = Ax+ w, for x = (ATA)−1AT b.
Now suppose that ATA is not invertible, and the rank of A is K. Form

the I by K matrix B as previously, so that the rank of B is K, BTB is
invertible, and R(B) = R(A). From the previous paragraph, we know that
b = Bz+ v, where v is in the null space of BT , and Bz is in R(B) = R(A).
Since A = BC, we have AT = CTBT . It follows that v must be in the null
space of AT .
Remark: Note that w and Ax are unique, but x need not be.

Corollary 1.3 If NS(AT ) = {0}, then A is onto.

Proof: According to Theorem 1.1, if b is not in R(A), then there is w 6= 0
in NS(AT ) and x ∈ RJ with b = Ax+ w.

Corollary 1.4 The system of linear equations ATAx = AT b always has
solutions.

Proof: From Theorem 1.1 we know that b = Ax + w, with ATw = 0.
Therefore, AT b = ATAx.

When the system Ax = b has no solution, which means A is not onto,
we often seek a least squares solution, say xLS , which is an exact solution
to ATAx = AT b, which, as we just saw, always has exact solutions. In fact,
we always have b = AxLS + w. If Ax = b does have exact solutions, then
w = 0, so any least squares solution is an exact solution of Ax = b.

When ATA is invertible, the unique least squares solution is

xLS = (ATA)−1AT b. (1.4)

When Ax = b has exact solutions, and AAT is invertible, the unique so-
lution with the smallest two-norm is the minimum norm solution, xMN ,
given by

xMN = AT (AAT )−1b. (1.5)

For large A even calculating ATA or AAT is out of the question and we
must turn to iterative methods to find the desired solution. The Landweber
algorithm, which we take up in the next chapter, is an iterative method for
solving these problems.



Chapter 2

Landweber’s Algorithm
and Beyond

2.1 Landweber’s Algorithm

Having chosen x0 and having calculated xn, the next iterate given by
Landweber’s algorithm [100] is

xn+1 = xn + γAT (b−Axn), (2.1)

where 0 < γ < 2/ρ(ATA). The spectral radius of a square matrix S,
denoted ρ(S), is the largest absolute value of any eigenvector of S. Since
S = ATA is non-negative definite, all its eigenvalues are non-negative and
ρ(ATA) is the largest eigenvalue of ATA.

Theorem 2.1 The sequence {xn} obtained using Landweber’s algorithm
converges to the solution of ATAx = AT b for which ‖x−x0‖2 is minimized.

Proof: Let ATAz = AT b. Then

‖z − xn+1‖22 = ‖z − xn‖2 + 2〈z − xn, xn − xn+1〉+ ‖xn − xn+1‖22.

From
‖xn − xn+1‖22 = γ2‖AT (Az −Axn)‖22

and
〈z − xn, xn − xn+1〉 = γ〈z − xn, AT (Axn − b)〉

= γ〈z − xn, AT (Axn −Az)〉 = γ〈Az −Axn, Axn −Az〉 = −γ‖Az −Axn‖22
we have

‖z − xn‖22 − ‖z − xn+1‖22 = 2γ‖Az −Axn‖22 − γ2‖AT (Az −Axn)‖22. (2.2)

5
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Since
‖AT (Az −Axn)‖22 ≤ ρ(ATA)‖Az −Axn‖22,

we have

‖z − xn‖22 − ‖z − xn+1‖22 ≥ 2γ‖Az −Axn‖22 − γ2ρ(ATA)‖Az −Axn‖22.

Because γ is chosen so that 0 < γ < 2/ρ(ATA), we have

2γ − γ2ρ(ATA) > 0.

We now know that the sequence {‖z − xn‖2} is decreasing, so that the
sequence {‖Az − Axn‖2} converges to zero. The sequence {xn} is then
bounded and a subsequence converges to some vector x∗. It follows that
Ax∗ = Az. Replacing the generic z with x∗ in the calculations above, we
conclude that the sequence {‖x∗ − xn‖2} is decreasing, but must actually
converge to zero, since a subsequence converges to zero. So the sequence
{xn} converges to a least squares solution of Ax = b. We can say more,
though.

Since the right side of Equation (2.2) depends on z only through Az,
so does the left side. Summing the left side over n = 0, 1, ..., we find that
‖z−x0‖22−‖z−x∗‖22 depends only on Az = Ax∗, and not on any particular
z. Consequently, minimizing ‖z − x0‖2 over all least squares solutions z
is equivalent to minimizing ‖z − x∗‖2 over all such z; but the solution to
the latter problem is obviously z = x∗. This concludes the proof of the
theorem.

There are several reasons for giving a complete proof of convergence of
the Landweber algorithm at this early stage. First, it lets us see where the
condition on γ is used. Second, this proof will be used later as a template
for proofs of convergence of related algorithms. Finally, Theorem 1.1 will
be obtained later as a corollary of more general theorems. Therefore, it is
good to see an elementary proof of convergence first.

2.2 Beyond Landweber

Our goal, in this book, is to present a variety of problems and algorithms
that emerge from solving Ax = b using Landweber’s algorithm. To moti-
vate these generalizations, it is helpful to have several ways to view Landwe-
ber’s algorithm.

2.2.1 Projection onto Hyperplanes

Whenever we use the least squares solution of Ax = b we should first
normalize each equation by dividing both sides by the length of that row
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of A. Then we have
J∑

j=1

A2
ij = 1,

for all i. The problem is that the least squares solutions, unlike exact
solutions, are dependent on the scaling of each equation. For example, the
system x = 1 and x = 2 has xLS = 1.5, while the system 2x = 2 and
x = 2 has xLS = 1.2. The normalization also simplifies notation. We
shall assume, throughout this book, and without further comment, that
the system Ax = b has been normalized.

For each i, the hyperplane in RJ corresponding to the ith equation in
Ax = b is

Hi := {x|(Ax)i = bi}. (2.3)

For any z ∈ RJ the unique member of Hi closest to z, in the two-norm
sense, is denoted PHiz, or just Piz if the context is clear, and is given in
closed form by

Piz := z + (bi − (Az)i)ai, (2.4)

where ai denotes the ith column of the matrix AT . The operator Pi : RJ →
RJ is called the orthogonal projection onto Hi.

Cimmino’s algorithm [64] for finding a least squares solution of Ax = b
has the iterative step

xn+1 =
1
I

I∑
i=1

Pix
n. (2.5)

Cimmino’s idea is to find the vectors closest to xn in each of the hyper-
planes, and then to average them to get xn+1. Landweber’s algorithm can
be written as

xn+1 = γ

I∑
i=1

Pix
n. (2.6)

Since A is normalized, the traces of ATA and AAT are equal to I and so
ρ(ATA) ≤ I. Therefore, Cimmino’s choice of γ = 1

I is acceptable. Loosely
speaking, the larger the γ the larger the iterative step in Landweber’s
algorithm, and the sooner the algorithm converges.

For large matrices A, calculating the largest eigenvalue of ATA directly,
or even calculating ATA, is too expensive and time-consuming, so we must
estimate ρ(ATA). Because the spectral radius ρ(ATA) governs the choice
of γ, it is helpful to have a good estimate of ρ(ATA). Estimating ρ(ATA)
by the trace of ATA, as in Cimmino’s algorithm, is quite conservative
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in general, especially for large matrices. Many of the matrices A that we
encounter in image processing and remote sensing are sparse, meaning that
most of their entries are zero. As we shall see in a later chapter, there are
better estimates of ρ(ATA) that make use of the sparseness of A.

If, for each i, Ci is a non-empty closed, convex subset of RJ , then the
orthogonal projection onto Ci is well defined and we could attempt to find
a member of the intersection of the Ci by using these operators instead
of the Pi in Landweber or ART. The orthogonal projections onto closed
convex sets are particularly nice operators and useful classes of operators
are found by generalizing these projection operators.

2.2.2 Using Blocks

Expressing Landweber’s algorithm in terms of the orthogonal projections
onto the hyperplanes Hi suggests several possible generalizations that we
shall consider in more detail in subsequent chapters. Instead of calculating
all the orthogonal projections of xn, we could calculate only a single pro-
jection at each step; then we would cycle through each hyperplane in turn.
The resulting algorithm, known as Kaczmarz’s Algorithm [96], or the Al-
gebraic Reconstruction Technique (ART) [87], is a sequential or row-action
method.

We shall also consider more general block-iterative versions of Landwe-
ber. We decompose the set {i = 1, ..., I} into M blocks; that is, into M
(not necessarily disjoint) subsets Bm, m = 1, ...,M . For n = 0, 1, ..., we set
m = m(n) = n(modM) + 1. For block-iterative Cimmino, having found
xn, we take xn+1 to be the average of the orthogonal projections of xn onto
the hyperplanes Hi for which i ∈ Bm. The ART is a special case of this
approach in which each block consists of only a single value of i. Block-
iterative Landweber makes use of more general step-length parameters.

2.2.3 Function Minimization

A least squares solution of Ax = b is a minimizer of the function

f(x) =
1
2
‖Ax− b‖22. (2.7)

The gradient of f(x) is

∇f(x) = AT (Ax− b). (2.8)

Therefore, Landweber’s algorithm can be written as

xn+1 = xn − γ∇f(xn); (2.9)
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this is the form of a gradient descent algorithm with a fixed step-length
parameter. This suggests studying the properties of the operator

Tx = x− γ∇f(x), (2.10)

for any differentiable convex function f(x) to see when the iterative scheme
xn+1 = Txn converges to a fixed point of T . If Tx∗ = x∗, then ∇f(x∗) = 0
and x∗ is a global minimizer of f(x).

2.2.4 Fixed-Point Iteration

As we have just seen, the Landweber algorithm can be viewed as a gradient
descent algorithm for the function given in Equation (2.7). The sequence
{xn} converges to a vector x∗ for which ∇f(x∗) = 0. Therefore Tx∗ = x∗

for the operator T in Equation (2.10). Often we find that the solution to
our problem is a vector x∗ that is a fixed point of some operator T ; that is,
Tx∗ = x∗. When we search for fixed points of T it is natural to consider
an iterative algorithm of the form xn+1 = Txn. Of course, unless T enjoys
some special properties, the sequence {xn} need not converge.

Definition 2.1 An operator T : RJ → RJ is non-expansive, with respect
to a given norm ‖ · ‖ if, for all x and y, we have

‖Tx− Ty‖ ≤ ‖x− y‖.

You might think that, if T is non-expansive, then the sequence {xn+1 =
Txn} will converge, but this is not always the case. Let T = −I, the
negative of the identity operator, and x0 6= 0; then we have xn = (−1)nx0,
which does not converge, even though T has a fixed point, namely x = 0.
We shall need to consider properties of operators that are stronger than
being non-expansive, in order to get convergent iterative sequences.

Later we shall show that the orthogonal projection operator onto C,
which we shall denote by PC , is a firmly non-expansive operator. If T is
any firmly non-expansive, then the iterative sequence defined by xn+1 =
Txn converges to a fixed point of T , whenever fixed points of T exist.
However, the product of two or more firmly non-expansive operators need
not be firmly non-expansive. For example, if C1 and C2 are two closed
convex subsets of RJ , and PC1 and PC2 the associated orthogonal projection
operators, the operator T = PC2PC1 need not be firmly non-expansive.
As we shall see, convergence does hold for the class of averaged operators,
which is a subclass of the operators that are non-expansive in the two-norm,
and contains the firmly non-expansive operators. Products of averaged
operators are again averaged, making this class of operators nearly ideal
for fixed-point iteration.
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If f : RJ → R is convex and differentiable, and if

‖∇f(x)−∇f(y)‖2 ≤ L‖x− y‖2

for all x and y, then the gradient of f is said to be L-Lipschitz continuous.
In that case the operator

Tx = x− γ∇f(x)

is firmly non-expansive, whenever 0 < γ < 2/L.

2.2.5 Alternating Minimization

The Landweber algorithm can also be obtained through the alternating
minimization (AM) approach of Csiszár and Tusnády [69]. Let Θ : RJ ×
RJ → R. The AM approach is to minimize Θ(xn, y) to get y = yn, and
then minimize Θ(x, yn) to get x = xn+1. To get the Landweber sequence
we define Θ(x, y) by

Θ(x, y) = γ‖Ax− b‖22 +
1
2
‖x− y‖22 − γ‖Ax−Ay‖22. (2.11)

Suppose that b = inf Θ(x, y) > −∞. The main objective of any AM
algorithm is to have Θ(xn, yn)→ b, although this need not happen without
further restrictions on Θ.

2.2.6 Sequential Unconstrained Minimization

We can also obtain the Landweber algorithm through sequential uncon-
strained minimization. At the nth step of a sequential unconstrained min-
imization approach to minimizing a function f(x), we obtain xn by mini-
mizing

Gn(x) = f(x) + gn(x), (2.12)

where gn(x) is an appropriately chosen auxiliary function. These auxiliary
functions are often selected to impose constraints on the x, but can also be
used to permit xn to be calculated in closed form, as is the case with the
Landweber algorithm. To get the Landweber sequence we define

Gn(x) = γ‖Ax− b‖22 +
1
2
‖x− xn‖22 − γ‖Ax−Axn‖22. (2.13)

Suppose that b := inf f(x) > −∞. The main objective of any sequential
unconstrained minimization algorithm is to have f(xn) → b. In order
to achieve this objective, additional conditions have to be placed on the
auxiliary functions gn(x).
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The SUMMA class of sequential unconstrained minimization algorithms
was defined in [43]. It turns out that this class is quite large and includes
many of the popular sequential unconstrained minimization algorithms. To
be in the SUMMA class it is required that, for all x,

Gn(x)−Gn(xn) ≥ gn+1(x) ≥ 0. (2.14)

All algorithms in the SUMMA class have f(xn)→ b.

2.2.7 Other Distances

The least squares solution of Ax = b minimizes the distance from Ax
to b, with respect to the two-norm. It is sometimes helpful to use other
measures of distance, such as the cross-entropy, or Kullback-Leibler [99],
distance between non-negative vectors.

For a > and b > 0 we define the Kullback-Leibler (KL) distance from
a to b by

KL(a, b) := a log
a

b
+ b− a. (2.15)

Taking limits, we find that KL(0, b) = b and KL(a, 0) = +∞. We extend
the KL distance to non-negative vectors component-wise, so that

KL(x, z) :=
J∑

j=1

KL(xj , zj). (2.16)

Note that KL(x, z) and KL(z, x) are not generally the same. The KL
distance is not a metric in the formal sense, but it does have a number of
convenient properties, as we shall see later.

Let b ∈ RI be a positive vector, and A an I by J matrix whose entries
are non-negative. We can then find exact or approximate non-negative
solutions of Ax = b by minimizing either KL(Ax, b) or KL(b, Ax). We
shall derive algorithms for solving both of these problems in later chapters.

Both the (square of the) two-norm and the KL distance are Bregman
distances. For convex differentiable functions f : RJ → R the Bregman
distance [12, 19] from x to z is

Df (x, z) := f(x)− f(z)− 〈∇f(z), x− z〉. (2.17)

The square of the two-norm comes from the function f(x) = 1
2‖x‖

2
2, while

the KL distance comes from the function f(x) =
∑J

j=1 xj log(xj)− xj . In
later chapters we shall extend to Bregman distances algorithms using the
two-norm and the KL distance.
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2.3 Summing Up

We have now seen several different ways to view the problem of solving
Ax = b and the Landweber algorithm: using orthogonal projections onto
hyperplanes, either simultaneously or sequentially; minimizing a function
by gradient descent; iterating to a fixed point of an operator; alternating
minimization; and sequential unconstrained minimization. As we shall see
in subsequent chapters, each of these approaches leads to other problems
and to other algorithms. Several times during our discussion of these topics
we shall return to the original problem treated in this chapter, to motivate
a definition, or to suggest a proof.



Chapter 3

Block-iterative Landweber

3.1 Block-Iterative Variants of Landweber

Now we consider in some detail solving the problem Ax = b using block-
iterative versions of Landweber’s algorithm (BILW). We decompose the
set {i = 1, ..., I} into M blocks; that is, into M (not necessarily disjoint)
subsetsBm, m = 1, ...,M . For n = 0, 1, ..., we setm = m(n) = n(modM)+
1. Denote by Im the cardinality of Bm. Having found xn, we take xn+1

to be the average of the orthogonal projections of xn onto the hyperplanes
Hi for which i ∈ Bm. The ART is a special case of this approach in which
each block consists of only a single value of i. Block-iterative versions of
Landweber converge to a solution whenever Ax = b has solutions. However,
when Ax = b is inconsistent, each subsequence {xkM+m} converges to some
x∗,m, but generally, these x∗,m are distinct and form what is called a limit
cycle.

Later we shall study block-iterative versions of other algorithms. The
main idea is simply to use, at each step, some, but not all, of the equations
in the system to be solved.

3.2 The Algebraic Reconstruction Technique

The algebraic reconstruction technique (ART) [87], also known as Kacz-
marz’s Algorithm [96], is a sequential or row-action variant of Landweber’s
algorithm, in which only a single equation in the system is used at each
step of the iteration.

The iterative step of the ART is

xn+1 = xn + (bi − (Axn)i)ai, (3.1)

13
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where ai denotes the ith column of the matrix AT . We remind the reader
that we are assuming that the system has been normalized, so ‖ai‖2 = 1.

Because the ART is a special case of the more general block-iterative
Landweber algorithms, convergence of the ART, when Ax = b is consistent,
is a consequence of Theorem 3.1 in the following section.

When the system Ax = b has no solution, the ART does not converge
to a single vector, but the subsequences {xkI+i} converge to vectors x∗,i

comprising a limit cycle [126]. To avoid the limit cycle in the inconsistent
case, we can apply the ART to the consistent linear system[

A I
0 AT

] [
x
w

]
=

[
b
0

]
; (3.2)

the resulting x is the least squares solution closest to x0.

3.3 Convergence of the BILW Algorithm

For m = 1, 2, ...,M , denote by Am the Im by J matrix obtained from A by
removing the ith row for any i not in Bm; similarly form bm from b.

For n = 0, 1, ..., and m = n(modM) + 1, let

xn+1 = xn + γmA
T
m(bm −Amx

n). (3.3)

This is the iterative step of the BILW algorithm. The main convergence
theorem for the BILW algorithm is the following.

Theorem 3.1 Let Ax = b have solutions. For each m, let γm be chosen
so that

0 < γm < 2/ρ(AT
mAm).

For any choice of blocks, the sequence {xn} formed using Equation (3.3)
converges to the solution of Ax = b for which ‖x− x0‖2 is minimized.

Proof: Let Az = b. Then

‖z − xn‖22 − ‖z − xn+1‖22

= 2γm〈z − xn, AT
m(bm −Amx

n)〉 − γ2
m‖AT

m(bm −Amx
n)‖22

= 2γm‖bm −Amx
n‖22 − γ2

m‖AT
m(bm −Amx

n)‖22.

Therefore, we have

‖z − xn‖22 − ‖z − xn+1‖22 ≥ (2γm − γ2
mρ(A

T
mAm))‖bm −Amx

n‖22. (3.4)

It follows that the sequence {‖z−xn‖22} is decreasing and that the sequence
{‖bm − Amx

n‖22} converges to zero. The sequence {xn} is then bounded;
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let x∗ = x∗,0 be any cluster point of the subsequence {xkM}. Then, for
m = 1, ...,M , let

x∗,m = x∗,m−1 + γmA
T
m(bm −Amx

∗,m−1).

It follows that x∗,m = x∗ for all m and that Ax∗ = b. Replacing the
arbitrary solution z with x∗, we find that the sequence {‖x∗−xn‖22} is de-
creasing; but a subsequence converges to zero. Consequently, the sequence
{‖x∗ − xn‖22} converges to zero. We can therefore conclude that the se-
quence {xn} converges to a solution, whenever the system Ax = b is consis-
tent. In fact, since we have shown that the difference ‖z−xn‖22−‖z−xn+1‖22
is nonnegative and independent of the solution z that we choose, we know
that the difference ‖z − x0‖22 − ‖z − x∗‖22 is also nonnegative and indepen-
dent of z. It follows that z = x∗ is the solution that minimizes ‖z − x0‖.
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Chapter 4

Convex Feasibility

4.1 The Convex Feasibility Problem

For each i = 1, ..., I, let Ci be a non-empty, closed and convex subset of RJ ,
and C the (possibly empty) intersection of the Ci. The convex feasibility
problem (CFP) is to find a member of C, if there are any. When C is
empty, we find an approximate solution by minimizing the function F (x)
given by

F (x) =
1
2I

I∑
i=1

‖x− PCi
x‖22. (4.1)

In this chapter we show how, by replacing orthogonal projection onto hy-
perplanes with orthogonal projection onto closed convex sets, the Landwe-
ber and ART algorithms can be extended to solve these problems. The
algorithms we shall study are the successive orthogonal projection (SOP)
and simultaneous orthogonal projection (SIMOP) methods. We begin with
a discussion of the basic properties of orthogonal projection onto convex
sets.

4.2 Orthogonal Projection onto Convex Sets

The Parallelogram Law is an easy consequence of the definition of the two-
norm:

||x+ y||22 + ||x− y||22 = 2||x||22 + 2||y||22. (4.2)

It is important to remember that Cauchy’s Inequality and the Parallelo-
gram Law hold only for the two-norm. One consequence of the Parallelo-
gram Law that we shall need is the following: if x 6= y and ‖x‖2 = ‖y‖2 = d,
then ‖ 1

2 (x+ y)‖2 < d (Draw a picture!).

17
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The following proposition is fundamental in the study of convexity and
can be found in most books on the subject.

Proposition 4.1 Given any nonempty closed convex set C ∈ RJ and an
arbitrary vector x in RJ , there is a unique member PCx of C closest, in
the sense of the two-norm, to x. The vector PCx is called the orthogonal
(or metric) projection of x onto C and the operator PC the orthogonal
projection onto C.

Proof: If x is in C, then PCx = x, so assume that x is not in C. Then
d > 0, where d is the distance from x to C. For each positive integer n,
select cn in C with ||x− cn||2 < d+ 1

n . Then, since for all n we have

‖cn‖2 = ‖cn − x+ x‖2 ≤ ‖cn − x‖2 + ‖x‖2 ≤ d+
1
n

+ ‖x‖2 < d+ 1 + ‖x‖2,

the sequence {cn} is bounded; let c∗ be any cluster point. It follows easily
that ||x − c∗||2 = d and that c∗ is in C. If there is any other member c
of C with ||x − c||2 = d, then, by the Parallelogram Law, we would have
||x− (c∗ + c)/2||2 < d, which is a contradiction. Therefore, c∗ is PCx.

For an arbitrary nonempty closed convex set C in RJ , the orthogonal
projection T = PC is a nonlinear operator, unless, of course, C is a sub-
space. We may not be able to describe PCx explicitly, but we do know a
useful property of PCx.

Proposition 4.2 For a given x, a vector z in C is PCx if and only if

〈c− z, z − x〉 ≥ 0, (4.3)

for all c in the set C.

Proof: Let c be arbitrary in C and α in (0, 1). Then

||x− PCx||22 ≤ ||x− (1− α)PCx− αc||22 = ||x− PCx+ α(PCx− c)||22

= ||x− PCx||22 − 2α〈x− PCx, c− PCx〉+ α2||PCx− c||22. (4.4)

Therefore,

−2α〈x− PCx, c− PCx〉+ α2||PCx− c||22 ≥ 0, (4.5)

so that

2〈x− PCx, c− PCx〉 ≤ α||PCx− c||22. (4.6)

Taking the limit, as α→ 0, we conclude that

〈c− PCx, PCx− x〉 ≥ 0. (4.7)
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If z is a member of C that also has the property

〈c− z, z − x〉 ≥ 0, (4.8)

for all c in C, then we have both

〈z − PCx, PCx− x〉 ≥ 0, (4.9)

and

〈z − PCx, x− z〉 ≥ 0. (4.10)

Adding on both sides of these two inequalities lead to

〈z − PCx, PCx− z〉 ≥ 0. (4.11)

But,

〈z − PCx, PCx− z〉 = −||z − PCx||22, (4.12)

so it must be the case that z = PCx. This completes the proof.

Corollary 4.1 For any x and y in RJ we have

〈PCx− PCy, x− y〉 ≥ ‖PCx− PCy‖22. (4.13)

Proof: Use Inequality (4.2) to get

〈PCy − PCx, PCx− x〉 ≥ 0, (4.14)

and

〈PCx− PCy, PCy − y〉 ≥ 0. (4.15)

Add the two inequalities to obtain

〈PCx− PCy, x− y〉 ≥ ||PCx− PCy||22. (4.16)

4.3 The SOP Algorithm

The successive orthogonal projection (SOP) algorithm is a generalization
of the ART and has the following iterative step:

xn+1 = PCix
n, (4.17)

where i = n(mod I)+1. The main convergence theorem for the SOP is the
following:
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Theorem 4.1 If C is not empty, then the sequence {xn} converges to a
member of C.

Proof: Let z be a member of C. Then

‖z − xn‖22 = ‖z − PCix
n + PCix

n − xn‖22

= ‖z − xn+1‖22 + 2〈PCi
xn − xn, z − PCi

xn〉 + ‖PCi
xn − xn‖22.

Since
〈PCix

n − xn, z − PCix
n〉 ≥ 0,

we have
‖z − xn‖22 − ‖z − xn+1‖22 ≥ ‖xn+1 − xn‖22.

Then, for each i and m = 0, 1, ...,

‖z − xmI‖22 − ‖z − x(m+1)I‖22 ≥
I∑

i=1

‖xmI+i − xmI+(i−1)‖22.

Therefore, the sequence {‖z−xmI‖22} is decreasing, the sequence {‖xmI+i−
xmI+(i−1)‖22} converges to zero, the sequence {xmI} is bounded, and a sub-
sequence converges to some x∗,0. With x∗,i = PCi

x∗,i−1 for i = 1, ..., I, we
find that x∗,i = x∗,i−1 := x∗ for all i, and x∗ is a member of C. Replacing
the generic z with x∗, we conclude that the sequence {xn} converges to x∗.

4.4 The SIMOP Algorithm

The SOP algorithm uses one convex set Ci at each step. The SIMOP algo-
rithm uses all the Ci at each step. To prove convergence of the SIMOP we
need to consider the class of firmly non-expansive (fne) operators. Corol-
lary 4.1 says that the operator PC is fne; we need to know that the convex
combination of fne operators is again fne.

It can be shown that, for any non-empty closed convex set C, the func-
tion

f(x) =
1
2
‖x− PCx‖22

is convex and differentiable, and the gradient is the operator

∇f(x) = x− PCx;

for details see [47]. Therefore, the function F (x) in Equation (4.1) is convex
and differentiable and

∇F (x) =
1
I

I∑
i=1

(x− PCi
x) = x− 1

I

I∑
i=1

PCi
x. (4.18)
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As we shall show, the SIMOP iterative sequence generated by

xn+1 = xn −∇F (xn) (4.19)

converges to a minimizer of the function F (x) whenever minimizers exist.
To prove this we need to investigate properties of the operator T = I−∇F .

The operator T can be written as

Tx =
1
I

I∑
i=1

PCi
x. (4.20)

We shall show that T is firmly non-expansive. Since each of the operators
PCi

is firmly non-expansive, we need only show that the convex combina-
tion of firmly non-expansive operators is again firmly non-expansive.

4.5 Firmly Non-Expansive Operators

Definition 4.1 An operator T : RJ → RJ is non-expansive (ne) with
respect to a given norm ‖ · ‖ on RJ if, for all x and y,

‖Tx− Ty‖ ≤ ‖x− y‖. (4.21)

Definition 4.2 An operator T : RJ → RJ is firmly non-expansive (fne)
if, for all x and y,

〈Tx− Ty, x− y〉 − ‖Tx− Ty‖22 ≥ 0. (4.22)

By Cauchy’s Inequality, every fne operator is ne in the two-norm. Corollary
4.1 tells us that the operator T = PC is fne and therefore ne in the two-
norm. We show now that the convex combination of fne operators is again
fne, so that the operator T = 1

I

∑I
i=1 PCi

is fne.

Proposition 4.3 An operator F : RJ → RJ is fne if and only if F =
1
2 (I +N), for some operator N that is ne with respect to the two-norm.

Proof: Suppose that F = 1
2 (I +N). We show that F is fne if and only if

N is ne in the two-norm. First, we have

〈Fx− Fy, x− y〉 =
1
2
‖x− y‖22 +

1
2
〈Nx−Ny, x− y〉.

Also,

‖1
2
(I+N)x− 1

2
(I+N)y‖22 =

1
4
‖x−y‖2+

1
4
‖Nx−Ny‖2+

1
2
〈Nx−Ny, x−y〉.

Therefore,
〈Fx− Fy, x− y〉 ≥ ‖Fx− Fy‖22
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if and only if
‖Nx−Ny‖22 ≤ ‖x− y‖22.

Corollary 4.2 If, for each m = 1, ...,M , the operator Fm : RJ → RJ is
fne, and αm > 0, with

∑M
m=1 αm = 1, then F =

∑M
m=1 αmFm is fne.

Corollary 4.3 The operator T defined in Equation (4.20) is firmly non-
expansive.

4.6 Convergence of the SIMOP Algorithm

Let the operator T be given by Equation (4.20). From Equation (4.18), we
see that

∇F (x) = x− Tx. (4.23)

It follows that any fixed point of the operator T is a global minimizer of
F (x).

Lemma 4.1 If F (z) = 0 and Tx∗ = x∗, then F (x∗) = 0, and x∗ ∈ C.

Proof: From Tx∗ = x∗ it follows that ∇F (x∗) = 0, so that x∗ is a global
minimizer of F (x). But the minimum of F (x) is zero, since F (z) = 0.
Therefore, F (x∗) = 0, which tells us that x∗ ∈ C.

Note that, if C is empty, it is possible for Tx∗ = x∗ without x∗ being
in C; consider two parallel lines, with x∗ half way between the two lines.

The iterative step of the simultaneous orthogonal projection (SIMOP)
algorithm is xn+1 = Txn, where T is as defined in Equation (4.20). The
main convergence theorem for the SIMOP algorithm is the following.

Theorem 4.2 Whenever F (x) has minimizers, the sequence {xn} gener-
ated by xn+1 = Txn converges to a fixed point x∗ of T , and x∗ minimizes
F (x). If C is not empty, then x∗ is in C.

Proof: Let Tz = z. We have

‖xn+1 − xn‖22 = ‖z − xn − z + xn+1‖22

= ‖z − xn‖22 + ‖z − xn+1‖22 − 2〈z − xn, z − xn+1〉.

Since
〈z − xn, z − xn+1〉 = 〈Tz − Txn, z − xn〉,

and T is fne, it follows that

〈z − xn, z − xn+1〉 ≥ ‖Tz − Txn‖22 = ‖z − xn+1‖22.
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Therefore

‖xn+1 − xn‖22 ≤ ‖z − xn‖22 + ‖z − xn+1‖22 − 2‖z − xn+1‖22,

or
‖z − xn‖22 − ‖z − xn+1‖22 ≥ ‖xn+1 − xn‖22.

We conclude from this that the sequence {‖z − xn‖} is decreasing, the
sequence {‖xn+1−xn‖22} converges to zero, the sequence {xn} is bounded,
a subsequence converges to some x∗, and Tx∗ = x∗. Replacing the generic
z with x∗, we find that the sequence {‖x∗ − xn‖} is decreasing. But a
subsequence converges to zero, so the sequence {xn} converges to x∗, a
global minimizer of F (x). If C is not empty, then x∗ ∈ C.

Recall that Landweber’s algorithm converges to the solution closest to
x0. For the SIMOP algorithm we cannot make the analogous assertion; we
cannot claim that x∗ is PCx

0. See [47] and the discussion of the HLWB
algorithm for further details.

4.7 Block-Iterative Projection Methods

Including both the simultaneous and successive orthogonal projection al-
gorithms are the block-iterative projection (BIP) methods [59]. Each step
of the BIP algorithm uses a convex combination of some of the operators
PCi

. Each of these convex combinations is a fne operator, as we have seen.
As we discussed previously with regard to the BILW algorithm, we de-

compose the set {i = 1, ..., I} intoM blocks; that is, intoM (not necessarily
disjoint) subsets Bm, m = 1, ...,M . Denote by Im the cardinality of Bm.
For each m, and each i ∈ Bm, let αm

i > 0, with
∑

i∈Bm
αm

i = 1. Then let
Tm be the operator defined by

Tm :=
∑

i∈Bm

αm
i PCi . (4.24)

The operator Tm is fne.
The iterative step of the BIP algorithm is

xn+1 = Tmx
n, (4.25)

where, for each n = 0, 1, ..., we set m = m(n) = n(modM) + 1. The main
theorem concerning the BIP is the following.

Theorem 4.3 The sequence {xn} defined by Equation (4.25) converges to
a member of C whenever C is non-empty.

Proof: We have

‖xn+1 − xn‖22 = ‖z − xn − z + xn+1‖22
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= ‖z − xn‖22 + ‖z − xn+1‖22 − 2〈z − xn+1, z − xn〉.

From
〈z − xn+1, z − xn〉 = 〈Tmz − Tmx

n, z − xn〉

and the fact that Tm is fne, we have

〈z − xn+1, z − xn〉 ≥ ‖Tmz − Tmx
n‖22 = ‖z − xn+1‖22.

Therefore,
‖z − xn‖22 − ‖z − xn+1‖22 ≥ ‖xn+1 − xn‖22.

For k = 0, 1, ..., we have

‖z − xkM‖22 − ‖z − x(k+1)M‖22 ≥
M∑

m=1

‖xkM+m − xkM+(m−1)‖22.

From this inequality we know that the sequence {‖z−xkM‖22} is decreasing
and non-negative, the sequences {‖xkM+m − xkM+(m−1)‖22} converge to
zero, the sequence {xkM} is bounded, and a subsequence converges to some
x∗,0. With x∗,m = Tmx

∗,m−1, we find that x∗,m = x∗,m−1 for all m. The
vector x∗ := x∗,0 is then in C. Replacing the generic z with x∗, we have
that the sequence {xn} converges to x∗.

A somewhat more general version of the BIP is given in [59].



Chapter 5

SUMMA

5.1 Sequential Unconstrained Optimization

Sequential unconstrained optimization algorithms can be used to minimize
a function f : RJ → (−∞,∞] over a (not necessarily proper) subset C
of RJ [81]. At the nth step of a sequential unconstrained minimization
method we obtain xn by minimizing the function

Gn(x) = f(x) + gn(x), (5.1)

where the auxiliary function gn(x) is appropriately chosen. If C is a proper
subset of RJ we may force gn(x) = +∞ for x not in C, as in the barrier-
function methods; then each xn will lie in C. The objective is then to
select the gn(x) so that the sequence {xn} converges to a solution of the
problem, or failing that, at least to have the sequence {f(xn)} converging
to the infimum of f(x) over x in C.

5.2 SUMMA

In [43] we presented a particular class of sequential unconstrained mini-
mization methods called SUMMA. As we showed in that paper, this class
is broad enough to contain barrier-function methods, proximal minimiza-
tion methods, and the simultaneous multiplicative algebraic reconstruction
technique (SMART). By reformulating the problem, the penalty-function
methods can also be shown to be members of the SUMMA class. Any
alternating minimization (AM) problem with the five-point property [69]
can be reformulated as a SUMMA problem; therefore the expectation max-
imization maximum likelihood (EMML) algorithm for Poisson data, which
is such an AM algorithm, must also be a SUMMA algorithm.
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For a method to be in the SUMMA class we require that xn ∈ C for
each n and that each auxiliary function gn(x) satisfy the inequality

0 ≤ gn(x) ≤ Gn−1(x)−Gn−1(xn−1), (5.1)

for all x. Note that it follows that gn(xn−1) = 0, for all n.
We assume, throughout this chapter, that the inequality in (5.1) holds

for each n. We also assume that infx∈C f(x) = b > −∞. The next two
results are taken from [43].

Proposition 5.1 The sequence {f(xn)} is non-increasing and the sequence
{gn(xn)} converges to zero.

Proof: We have

f(xn+1) + gn+1(xn+1) = Gn+1(xn+1) ≤ Gn+1(xn) = f(xn). (5.2)

Theorem 5.1 The sequence {f(xn)} converges to b.

Proof: Suppose that there is δ > 0 such that f(xn) ≥ b + 2δ, for all n.
Then there is z ∈ C such that f(xn) ≥ f(z) + δ, for all n. From the
inequality in (5.1) we have

gn(z)− gn+1(z) ≥ f(xn) + gn(xn)− f(z) ≥ f(xn)− f(z) ≥ δ, (5.3)

for all n. But this cannot happen; the successive differences of a non-
increasing sequence of non-negative terms must converge to zero.

5.3 Using SUMMA

Sequential unconstrained minimization algorithms are most commonly used
to enforce constraints on the vector variable x. Sometimes, though, they
can be used to simplify calculations and to enable us to obtain each xn in
closed form.

For example, we can formulate the Landweber iteration as a SUMMA
method and use this approach to prove convergence. For each n let

Gn(x) =
1
2
‖Ax− b‖22 +

1
2γ
‖x− xn−1‖22 −

1
2
‖Ax−Axn−1‖22. (5.4)

If we require that 0 < γ < 1/ρ(ATA), then

gn(x) =
1
2γ
‖x− xn−1‖22 −

1
2
‖Ax−Axn−1‖22 (5.5)
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is non-negative. We also have

Gn(x)−Gn(xn) =
1
2γ
‖x− xn‖22 ≥ gn+1(x), (5.6)

so the iteration falls into the SUMMA class. We shall use this idea several
times throughout this book.

Let ATAz = AT b. Then z minimizes

f(x) :=
1
2
‖Ax− b‖22.

Then we have

Gn(z)−Gn(xn) = f(z) + gn(z)− f(xn)− gn(xn)

≤ f(z) +Gn−1(z)−Gn−1(xn−1)− f(xn)− gn(xn),

so that(
Gn−1(z)−Gn−1(xn−1)

)
−

(
Gn(z)−Gn(xn)

)
≥ f(xn)−f(z)+gn(xn) ≥ 0.

Therefore, the sequence {Gn(z)−Gn(xn)} is decreasing and non-negative,
so that the sequences {f(xn)− f(z)} and {gn(xn)} converge to zero. Since

Gn(z)−Gn(xn) =
1
2γ
‖z − xn‖22,

it follows that the sequence {xn} is bounded, a subsequence converges to
some x∗, and f(z) = f(x∗). Replacing z with x∗, we conclude that the
sequence {xn} converges to x∗.
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Chapter 6

Function Minimization

6.1 Gradient Descent Iteration

As we have seen, the Landweber algorithm minimizes the function f(x) =
‖Ax− b‖2, and the SIMOP algorithm minimizes the function f(x) = F (x)
defined by Equation (4.1). The iterative step for both algorithms has the
gradient descent form

xn+1 = xn − γ∇f(xn). (6.1)

In this chapter we consider the general problem of minimizing a differen-
tiable convex function f(x) using the iteration in Equation (6.1).

6.2 A Convergence Theorem

If f : RJ → R is convex and differentiable, and the gradient operator
Tx = ∇f(x) is L-Lipschitz continuous, that is,

‖∇f(x)−∇f(y)‖2 ≤ L‖x− y‖2,

then the gradient of the function g(x) = 1
Lf(x) is non-expansive. Accord-

ing to Theorem 16.1, the operator Fx = ∇g(x) is firmly non-expansive.
Therefore, the operator A := I − γF is averaged, for 0 < γ < 2/L, and the
iterative sequence {Anx0} converges to a fixed point of A, and therefore to
a global minimizer of f(x), whenever such minimizers exist. In this chapter
we prove a slightly weaker form of this convergence theorem, without using
the non-trivial Theorem 16.1.

Theorem 6.1 Let ∇f be L-Lipschitz continuous. The sequence {Anx0}
converges to a fixed point of A, and therefore to a global minimizer of f(x),
whenever such minimizers exist, provided that 0 < γ < 1/L.

29



30 CHAPTER 6. FUNCTION MINIMIZATION

Proof: Denote by Df (x, z) the Bregman distance associated with the func-
tion f(x) and given by

Df (x, z) := f(x)− f(z)− 〈∇f(z), x− z〉. (6.2)

For each n we find xn by minimizing the function

Gn(x) = f(x) +
1
2γ
‖x− xn−1‖22 −Df (x, xn−1). (6.3)

It follows then that

0 = ∇f(xn) +
1
γ

(xn − xn−1)−∇f(xn) + γ∇f(xn−1)

so that
xn = xn−1 − γ∇f(xn−1).

The function Gn(x) can be written as

Gn(x) = f(x) + gn(x),

for
gn(x) =

1
2γ
‖x− xn−1‖22 −Df (x, xn−1).

From

Gn(x)−Gn(xn) =
1
2γ
‖x− xn‖22 + f(x)− f(xn)− 〈∇f(xn), x− xn〉,

it follows that

Gn(x)−Gn(xn) ≥ 1
2γ
‖x− xn‖22 ≥ gn+1(x).

The restriction 0 < γ < 1/L implies that gn(x) ≥ 0. Therefore, this
iterative method falls into the SUMMA class.

Let z be a global minimizer of f(x). From the proof of convergence of
SUMMA iterations, we may conclude that(
Gn−1(z)−Gn−1(xn−1)

)
−

(
Gn(z)−Gn(xn)

)
≥ f(xn)−f(z)+gn(xn) ≥ 0.

Therefore, the sequence {Gn(z)−Gn(xn)} is decreasing, and the sequence
{f(xn} converges to f(z). From

Gn(z)−Gn(xn) ≥ 1
2γ
‖z − xn‖22,

it follows that the sequence {xn} is bounded, that a subsequence converges
to some x∗, and that f(x∗) = f(z). Replacing the generic z with x∗, we
find that the sequence {xn} converges to x∗.



Chapter 7

Forward-Backward
Splitting

7.1 The Forward-Backward Splitting Algorithm

In this chapter we present the forward-backward splitting (FBS) algorithm
and prove convergence. The FBS algorithm is quite general and contains,
as particular cases, every one of the simultaneous iterative algorithms dis-
cussed so far in this book.

Let f : RJ → R be convex. For each z ∈ RJ the function

mf (z) = min
x
{f(x) +

1
2
‖x− z‖22}

is minimized by x = proxf (z). Moreau’s proximity operator proxf extends
the notion of orthogonal projection onto a closed convex set [108, 109, 110].
We have x = proxf (z) if and only if z − x ∈ ∂f(x), where the set ∂f(x) is
the sub-differential of f at x, given by

∂f(x) = {u|〈u, y − x〉 ≤ f(y)− f(x), for all y}.

Proximity operators are also firmly non-expansive [66]; indeed, the prox-
imity operator proxf is the resolvent of the maximal monotone operator
B(x) = ∂f(x) and all such resolvent operators are firmly non-expansive
[15].

Our objective here is to provide an elementary proof of convergence
for the forward-backward splitting (FBS) algorithm; a detailed discussion
of this algorithm and its history is given by Combettes and Wajs in [66].
Convergence of the version of the FBS algorithm given here involves only
the fact the proximity operators are fne. A slightly more general version
can be obtained using averaged operators, as we shall see later.
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Theorem 7.1 Let f : RJ → R be convex, with f = f1 + f2, both convex,
f2 differentiable, and ∇f2 L-Lipschitz. For 0 < γ < 1

L , let

xn = proxγf1

(
xn−1 − γ∇f2(xn−1)

)
. (7.1)

The sequence {xn} converges to a minimizer of the function f(x), whenever
such minimizers exist.

Any fixed point of the iteration minimizes the function f(x). Because
proximity operators are firmly non-expansive, and therefore averaged, it is a
consequence of the Krasnoselskii-Mann Theorem 8.1 [98, 105] for averaged
operators that convergence holds for 0 < γ < 2

L . The proof given here
employs sequential unconstrained minimization and avoids using the non-
trivial results that, because the operator 1

L∇f2 is non-expansive, it is firmly
non-expansive, and that the product of averaged operators is averaged.

7.2 Convergence of the FBS algorithm

For each k = 1, 2, ... let

Gn(x) = f(x) +
1
2γ
‖x− xn−1‖22 −Df2(x, x

n−1), (7.2)

where

Df2(x, x
n−1) = f2(x)− f2(xn−1)− 〈∇f2(xn−1), x− xn−1〉. (7.3)

Since f2(x) is convex, Df2(x, y) ≥ 0 for all x and y and is the Bregman
distance formed from the function f2 [12].

Lemma 7.1 The xn that minimizes Gn(x) over x is given by Equation
(7.1).

Proof: Since xn minimizes Gn(x) we know that

0 ∈ ∇f2(xn) +
1
γ

(xn − xn−1)−∇f2(xn) +∇f2(xn−1) + ∂f1(xn).

Therefore, (
xn−1 − γ∇f2(xn−1)

)
− xn ∈ ∂γf1(xn).

Consequently,
xn = proxγf1

(xn−1 − γ∇f2(xn−1)).
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The auxiliary function

gn(x) =
1
2γ
‖x− xn−1‖22 −Df2(x, x

n−1) (7.4)

can be rewritten as

gn(x) = Dh(x, xn−1), (7.5)

where

h(x) =
1
2γ
‖x‖22 − f2(x). (7.6)

Therefore, gn(x) ≥ 0 whenever h(x) is a convex function.
We know that h(x) is convex if and only if

〈∇h(x)−∇h(y), x− y〉 ≥ 0, (7.7)

for all x and y. This is equivalent to

1
γ
‖x− y‖22 − 〈∇f2(x)−∇f2(y), x− y〉 ≥ 0. (7.8)

Since ∇f2 is L-Lipschitz, the inequality (7.8) holds whenever 0 < γ < 1
L .

A relatively simple calculation shows that

Gn(x)−Gn(xn) =
1
2γ
‖x− xn‖22+

(
f1(x)− f1(xn)− 〈(xn−1 − γ∇f2(xn−1))− xn, x− xn〉

)
. (7.9)

Since
(xn−1 − γ∇f2(xn−1))− xn ∈ ∂γf1(xn),

it follows that(
f1(x)− f1(xn)− 〈(xn−1 − γ∇f2(xn−1))− xn, x− xn〉

)
≥ 0.

Therefore,

Gn(x)−Gn(xn) ≥ 1
2γ
‖x− xn‖22 ≥ gn+1(x). (7.10)

Therefore, the inequality in (5.1) holds and the iteration fits into the
SUMMA class.

Now let x̂ minimize f(x) over all x. Then

Gn(x̂)−Gn(xn) = f(x̂) + gn(x̂)− f(xn)− gn(xn)
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≤ f(x̂) +Gk−1(x̂)−Gk−1(xn−1)− f(xn)− gn(xn),

so that(
Gk−1(x̂)−Gk−1(xn−1)

)
−

(
Gn(x̂)−Gn(xn)

)
≥ f(xn)−f(x̂)+gn(xn) ≥ 0.

Therefore, the sequence {Gn(x̂)−Gn(xn)} is decreasing and the sequences
{gn(xn)} and {f(xn)− f(x̂)} converge to zero.

From

Gn(x̂)−Gn(xn) ≥ 1
2γ
‖x̂− xn‖22,

it follows that the sequence {xn} is bounded and that a subsequence con-
verges to some x∗ ∈ C with f(x∗) = f(x̂).

Replacing the generic x̂ with x∗, we find that {Gn(x∗) − Gn(xn)} is
decreasing. By Equation (7.9), it therefore converges to the limit

1
2γ
‖x∗−x∗‖22+

1
γ
〈(proxγf1

−I)(x∗−γ∇f(x∗)), x∗−proxγf1
(x∗−γ∇f(x∗))〉 = 0.

From the inequality in (7.10), we conclude that the sequence {‖x∗−xn‖22}
converges to zero, and so {xn} converges to x∗. This completes the proof
of the theorem.

7.3 Some Particular Cases of the FBS

As we shall show, the FBS algorithm is quite general and includes, as
particular cases, all the simultaneous metods discussed previously in this
book.

7.3.1 Projected Gradient Descent

Let C be a non-empty, closed convex subset of RJ and f1(x) = ιC(x),
the function that is +∞ for x not in C and zero for x in C. Then ιC(x)
is convex, but not differentiable. We have proxγf1

= PC , the orthogonal
projection onto C. The iteration in Equation (7.1) becomes

xn = PC

(
xn−1 − γ∇f2(xn−1)

)
. (7.11)

This is the iterative step of the projected gradient descent (PGD) algorithm.
If C = RJ , then the PGD algorithm becomes the gradient descent (GD)
algorithm. The sequence {xn} converges to a minimizer of f2 over x ∈ C,
whenever such minimizers exist.
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7.3.2 The CQ Algorithm

Let A be a real I by J matrix, C ⊆ RJ , and Q ⊆ RI , both closed convex
sets. The split feasibility problem (SFP) is to find x in C such that Ax is
in Q. The function

f2(x) =
1
2
‖PQAx−Ax‖22 (7.12)

is convex, differentiable and ∇f2 is L-Lipschitz for L = ρ(ATA), the spec-
tral radius of ATA. The gradient of f2 is

∇f2(x) = AT (I − PQ)Ax. (7.13)

We want to minimize the function f2(x) over x in C, or, equivalently, to
minimize the function f(x) = ιC(x)+f2(x). The projected gradient descent
algorithm now has the iterative step

xn = PC

(
xn−1 − γAT (I − PQ)Axn−1

)
; (7.14)

this iterative method was called the CQ-algorithm in [38, 39]. The sequence
{xn} converges to a solution whenever f2 has a minimum on the set C.

7.3.3 The Projected Landweber Algorithm

The problem is to minimize the function

f2(x) =
1
2
‖Ax− b‖22,

over x ∈ C. This is a special case of the SFP and we can use the CQ-
algorithm, with Q = {b}. The resulting iteration is the projected Landweber
(PLW) algorithm; when C = RJ it becomes the Landweber algorithm.

7.3.4 The SIMOP Algorithm

The function

f(x) =
1
2I

I∑
i=1

‖x− PCix‖22

is convex, differentiable, and its gradient operator is

∇f(x) = x− 1
I

I∑
i=1

PCi
x.

The GD iteration in this case, with γ = 1, is

xn+1 =
1
I

I∑
i=1

PCi
xn,

which is the iterative step for the SIMOP algorithm.
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Chapter 8

Fixed-Point Methods

8.1 Fixed-Points in Iteration

As we have seen, a number of problems can be solved by formulating the
solution to the problem as a fixed-point of a continuous operator T and
considering the sequence {xn} generated by the iterative algorithm xn+1 =
Txn. If the sequence {xn} converges, then the limit point x∗ satisfies
Tx∗ = x∗; that is, x∗ is a fixed-point of T . We are concerned, therefore,
with conditions on the operator T that guarantee the convergence of the
sequence {xn} whenever T has fixed points. It is not enough that T be
non-expansive in some norm, as the operator T = −I shows. It is often
sufficient that T be firmly non-expansive, but this is overly restrictive in
some cases, since the product of fne operators need not be fne. The class
of averaged operators is a useful class to consider.

8.2 Averaged Operators

The class of averaged (av) operators contains the class of fne operators and
is contained in the class of ne operators. Averaged operators are closed
to finite products. According to the Krasnosel’skii-Mann Theorem 8.1, if
A : RJ → RJ is av, then the iterative sequence {xn = Anx0} converges to
a fixed point of A, whenever fixed points exist.

In a previous chapter, we were able to prove convergence of the quite
general FBS algorithm using the fact that prox operators are fne. There we
had to assume that the parameter γ satisfies the restrictions 0 < γ < 1/L.
Using the full power of averaged operators, we can relax the restrictions to
0 < γ < 2/L.
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8.3 Two Useful Identities

The identities in the next two lemmas relate an arbitrary operator T to
its complement, G = I − T , where I denotes the identity operator. These
identities will allow us to transform properties of T into properties of G
that may be easier to work with. A simple calculation is all that is needed
to establish the following lemma.

Lemma 8.1 Let T be an arbitrary operator T on RJ and G = I−T . Then

||x− y||22 − ||Tx− Ty||22 = 2(〈Gx−Gy, x− y〉) − ||Gx−Gy||22. (8.1)

Lemma 8.2 Let T be an arbitrary operator T on RJ and G = I−T . Then

〈Tx− Ty, x− y〉 − ||Tx− Ty||22 =

〈Gx−Gy, x− y〉 − ||Gx−Gy||22. (8.2)

Proof: Use the previous lemma.

The term ‘averaged operator’ appears in the work of Baillon, Bruck
and Reich [15, 4]. There are several ways to define averaged operators.
One way is in terms of the complement operator.

Definition 8.1 An operator G on RJ is called ν-inverse strongly monotone
(ν-ism)[86] (also called co-coercive in [65]) if there is ν > 0 such that

〈Gx−Gy, x− y〉 ≥ ν||Gx−Gy||22. (8.3)

The proof of the following lemma is left to the reader.

Lemma 8.3 An operator T is ne, with respect to the two-norm, if and
only if its complement G = I −T is 1

2 -ism, and T is fne if and only if G is
1-ism, and if and only if G is fne. Also, T is ne if and only if F = (I+T )/2
is fne. If G is ν-ism and γ > 0 then the operator γG is ν

γ -ism.

Definition 8.2 An operator T is called averaged (av) if G = I − T is ν-
ism for some ν > 1

2 . If G is 1
2α -ism, for some α ∈ (0, 1), then we say that

T is α-av.

It follows that every av operator is ne, with respect to the Euclidean norm,
and every fne operator is av.
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8.4 Properties of Averaged Operators

The averaged operators are sometimes defined in a different, but equivalent,
way, using the following characterization of av operators.

Lemma 8.4 An operator T is av if and only if, for some operator N that
is non-expansive in the two-norm, and α ∈ (0, 1), we have

T = (1− α)I + αN.

Consequently, the operator T is av if and only if, for some α in (0, 1), the
operator

N =
1
α
T − 1− α

α
I = I − 1

α
(I − T ) = I − 1

α
G

is non-expansive.

Proof: We assume first that there is α ∈ (0, 1) and ne operator N such
that T = (1 − α)I + αN , and so G = I − T = α(I − N). Since N is ne,
I − N is 1

2 -ism and G = α(I − N) is 1
2α -ism. Conversely, assume that G

is ν-ism for some ν > 1
2 . Let α = 1

2ν and write T = (1 − α)I + αN for
N = I − 1

αG. Since I −N = 1
αG, I −N is αν-ism. Consequently I −N is

1
2 -ism and N is ne.

An averaged operator is easily constructed from a given operator N
that is ne in the two-norm by taking a convex combination of N and the
identity I. The beauty of the class of av operators is that it contains many
operators, such as PC , that are not originally defined in this way. As we
shall see shortly, finite products of averaged operators are again averaged,
so the product of finitely many orthogonal projections is av.

We present now the fundamental properties of averaged operators, in
preparation for the proof that the class of averaged operators is closed to
finite products.

Note that we can establish that a given operator is av by showing that
there is an α in the interval (0, 1) such that the operator

1
α

(A− (1− α)I) (8.4)

is ne. Using this approach, we can easily show that if T is sc, then T is av.

Lemma 8.5 Let T = (1−α)A+αN for some α ∈ (0, 1). If A is averaged
and N is non-expansive then T is averaged.

Proof: Let A = (1 − β)I + βM for some β ∈ (0, 1) and ne operator M .
Let 1− γ = (1− α)(1− β). Then we have

T = (1− γ)I + γ[(1− α)βγ−1M + αγ−1N ]. (8.5)



40 CHAPTER 8. FIXED-POINT METHODS

Since the operator K = (1− α)βγ−1M + αγ−1N is easily shown to be ne
and the convex combination of two ne operators is again ne, T is averaged.

Corollary 8.1 If A and B are av and α is in the interval [0, 1], then the
operator T = (1 − α)A + αB formed by taking the convex combination of
A and B is av.

Corollary 8.2 Let T = (1 − α)F + αN for some α ∈ (0, 1). If F is fne
and N is ne then T is averaged.

The orthogonal projection operators PH onto hyperplanes H = H(a, γ)
are sometimes used with relaxation, which means that PH is replaced by
the operator

T = (1− ω)I + ωPH , (8.6)

for some ω in the interval (0, 2). Clearly, if ω is in the interval (0, 1), then T
is av, by definition, since PH is ne. We want to show that, even for ω in the
interval [1, 2), T is av. To do this, we consider the operator RH = 2PH−I,
which is reflection through H; that is,

PHx =
1
2
(x+RHx), (8.7)

for each x.

Lemma 8.6 The operator RH = 2PH − I is an isometry; that is,

||RHx−RHy||2 = ||x− y||2, (8.8)

for all x and y, so that RH is ne.

Lemma 8.7 For ω = 1 + γ in the interval [1, 2), we have

(1− ω)I + ωPH = αI + (1− α)RH , (8.9)

for α = 1−γ
2 ; therefore, T = (1− ω)I + ωPH is av.

The product of finitely many ne operators is again ne, while the product
of finitely many fne operators, even orthogonal projections, need not be fne.
It is a helpful fact that the product of finitely many av operators is again
av.

If A = (1− α)I + αN is averaged and B is averaged then T = AB has
the form T = (1 − α)B + αNB. Since B is av and NB is ne, it follows
from Lemma 8.5 that T is averaged. Summarizing, we have

Proposition 8.1 If A and B are averaged, then T = AB is averaged.
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Proposition 8.2 An operator F is firmly non-expansive if and only if
F = 1

2 (I+N), for some operator N that is non-expansive in the two-norm.

Lemma 8.8 An operator F : RJ → RJ is fne if and only if F = 1
2 (I+N),

for some operator N that is ne with respect to the two-norm.

Proof: Suppose that F = 1
2 (I +N). We show that F is fne if and only if

N is ne in the two-norm. First, we have

〈Fx− Fy, x− y〉 =
1
2
‖x− y‖22 +

1
2
〈Nx−Ny, x− y〉.

Also,

‖1
2
(I+N)x− 1

2
(I+N)y‖22 =

1
4
‖x−y‖2+

1
4
‖Nx−Ny‖2+

1
2
〈Nx−Ny, x−y〉.

Therefore,
〈Fx− Fy, x− y〉 ≥ ‖Fx− Fy‖22

if and only if
‖Nx−Ny‖22 ≤ ‖x− y‖22.

8.5 Gradient Operators

Another type of operator that is averaged can be derived from gradient
operators.

Definition 8.3 An operator T on RJ is monotone if

〈Tx− Ty, x− y〉 ≥ 0, (8.10)

for all x and y.

Firmly non-expansive operators on RJ are monotone operators. Let g(x) :
RJ → R be a differentiable convex function and f(x) = ∇g(x) its gradient.
The operator ∇g is also monotone. If ∇g is non-expansive, then ∇g is fne
(see [47]) . If, for some L > 0, ∇g is L-Lipschitz, for the two-norm, that is,

||∇g(x)−∇g(y)||2 ≤ L||x− y||2, (8.11)

for all x and y, then 1
L∇g is ne, therefore fne, and the operator T = I−γ∇g

is av, for 0 < γ < 2
L . The operators PC are actually gradient operators;

PCz = ∇g(z) for

g(z) =
1
2
(‖z‖22 − ‖z − PCz‖22).

Note that not all monotone operators are gradient operators.
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8.6 The Krasnosel’skii-Mann Theorem

For any operator T that is averaged, convergence of the sequence {Tnx0}
to a fixed point of T , whenever fixed points of T exist, is guaranteed by
the Krasnosel’skii-Mann (KM) Theorem [98, 105]:

Theorem 8.1 Let T be α-averaged, for some α ∈ (0, 1). Then the sequence
{Tnx0} converges to a fixed point of T , whenever Fix(T ) is non-empty.

Proof: Let z be a fixed point of T . The identity in Equation (8.1) is the
key to proving Theorem 8.1.

Using Tz = z and (I − T )z = 0 and setting G = I − T we have

||z − xn||22 − ||Tz − xn+1||22 = 2〈Gz −Gxn, z − xn〉 − ||Gz −Gxn||22.
(8.12)

Since, by Lemma 8.4, G is 1
2α -ism, we have

||z − xn||22 − ||z − xn+1||22 ≥ (
1
α
− 1)||xn − xn+1||22. (8.13)

Consequently the sequence {xn} is bounded, the sequence {||z − xn||2} is
decreasing and the sequence {||xn−xn+1||2} converges to zero. Let x∗ be a
cluster point of {xn}. Then we have Tx∗ = x∗, so we may use x∗ in place of
the arbitrary fixed point z. It follows then that the sequence {||x∗−xn||2}
is decreasing; since a subsequence converges to zero, the entire sequence
converges to zero. The proof is complete.

A version of the KM Theorem 8.1, with variable coefficients, appears
in Reich’s paper [115].

8.7 Norms Derived from Operators

Because it can be difficult to determine the properties of a given operator T
with respect to a given norm, we often construct a norm to be compatible
with a given operator.

Definition 8.4 An operator T on
X is a strict contraction (sc), with respect to a vector norm || · ||, if there
is r ∈ (0, 1) such that

||Tx− Ty|| ≤ r||x− y||, (8.14)

for all vectors x and y.
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Since ρ(B) ≤ ||B|| for every norm on B induced by a vector norm, B being
a strict contraction (sc) implies that ρ(B) < 1. When B is Hermitian, the
matrix norm of B induced by the Euclidean vector norm is ||B||2 = ρ(B),
so if ρ(B) < 1, then B is sc with respect to the Euclidean norm.

When B is not Hermitian, it is not as easy to determine if the affine
operator T is sc with respect to a given norm. Instead, we often tailor the
norm to the operator T . Suppose that B is a diagonalizable matrix, that
is, there is a basis for RJ consisting of eigenvectors of B. Let {u1, ..., uJ}
be such a basis, and let Buj = λju

j , for each j = 1, ..., J . For each x in
RJ , there are unique coefficients aj so that

x =
J∑

j=1

aju
j . (8.15)

Then let

||x|| =
J∑

j=1

|aj |. (8.16)

Lemma 8.9 The expression ||·|| in Equation (8.16) defines a norm on RJ .
If ρ(B) < 1, then the affine operator T is sc, with respect to this norm.

It is known that, for any square matrix B and any ε > 0, there is a vector
norm for which the induced matrix norm satisfies ||B|| ≤ ρ(B) + ε. There-
fore, if B is an arbitrary square matrix with ρ(B) < 1, there is a vector
norm with respect to which B is sc.

8.8 Affine Linear Operators

It may not always be easy to decide if a given operator is averaged. The
class of affine linear operators provides an interesting illustration of the
problem.

The affine operator Tx = Bx + d will be ne, sc, fne, or av precisely
when the linear operator given by multiplication by the matrix B is the
same.

8.9 The Hermitian Case

When B is Hermitian, we can determine if B belongs to these classes by
examining its eigenvalues λ:

• B is non-expansive if and only if −1 ≤ λ ≤ 1, for all λ;

• B is averaged if and only if −1 < λ ≤ 1, for all λ;
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• B is a strict contraction if and only if −1 < λ < 1, for all λ;

• B is firmly non-expansive if and only if 0 ≤ λ ≤ 1, for all λ.

An operator T : RJ → RJ is affine if Tx = Bx+ d, where B is a linear
operator, i.e., a matrix, and d is a fixed vector. Affine linear operators T
that arise, for instance, in splitting methods for solving systems of linear
equations, generally have non-Hermitian linear part B. Deciding if such
operators are fne or av is more difficult. Instead, we can ask if the operator
is paracontractive, with respect to some norm.

8.10 Paracontractive Operators

By examining the properties of the orthogonal projection operators PC ,
we were led to the useful class of averaged operators. The orthogonal
projections also belong to another useful class, the paracontractions.

Definition 8.5 An operator T is called paracontractive (pc), with respect
to a given norm, if, for every fixed point y of T , we have

||Tx− y|| < ||x− y||, (8.17)

unless Tx = x.

Paracontractive operators are studied by Censor and Reich in [57].

Proposition 8.3 The operators T = PC are paracontractive, with respect
to the two-norm.

Proof: It follows from Cauchy’s Inequality that

||PCx− PCy||2 ≤ ||x− y||2,

with equality if and only if

PCx− PCy = α(x− y),

for some scalar α with |α| = 1. But, because

0 ≤ 〈PCx− PCy, x− y〉 = α||x− y||22,

it follows that α = 1, and so

PCx− x = PCy − y.

When we ask if a given operator T is pc, we must specify the norm.
We often construct the norm specifically for the operator involved. To
illustrate, we consider the case of affine operators.
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8.10.1 Linear and Affine Paracontractions

Let the matrix B be diagonalizable and let the columns of V be an eigen-
vector basis. Then we have V −1BV = D, where D is the diagonal matrix
having the eigenvalues of B along its diagonal.

Lemma 8.10 A square matrix B is diagonalizable if all its eigenvalues are
distinct.

Proof: Let B be J by J . Let λj be the eigenvalues of B, Bxj = λjx
j , and

xj 6= 0, for j = 1, ..., J . Let xm be the first eigenvector that is in the span
of {xj |j = 1, ...,m− 1}. Then

xm = a1x
1 + ...am−1x

m−1, (8.18)

for some constants aj that are not all zero. Multiply both sides by λm to
get

λmx
m = a1λmx

1 + ...am−1λmx
m−1. (8.19)

From

λmx
m = Axm = a1λ1x

1 + ...am−1λm−1x
m−1, (8.20)

it follows that

a1(λm − λ1)x1 + ...+ am−1(λm − λm−1)xm−1 = 0, (8.21)

from which we can conclude that some xn in {x1, ..., xm−1} is in the span
of the others. This is a contradiction.

We see from this Lemma that almost all square matrices B are diago-
nalizable. Indeed, all Hermitian B are diagonalizable. If B has real entries,
but is not symmetric, then the eigenvalues of B need not be real, and the
eigenvectors of B can have non-real entries. Consequently, we must con-
sider B as a linear operator on CJ , if we are to talk about diagonalizability.
For example, consider the real matrix

B =
[

0 1
−1 0

]
. (8.22)

Its eigenvalues are λ = i and λ = −i. The corresponding eigenvectors are
(1, i)T and (1,−i)T . The matrix B is then diagonalizable as an operator
on C2, but not as an operator on R2.

Proposition 8.4 Let T be an affine linear operator whose linear part B is
diagonalizable, and |λ| < 1 for all eigenvalues λ of B that are not equal to
one. Then the operator T is pc, with respect to the norm given by Equation
(8.16).
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Proof: The proof is not difficult and we leave it to the reader.
We see from Proposition 8.4 that, for the case of affine operators T

whose linear part is not Hermitian, instead of asking if T is av, we can ask
if T is pc; since B will almost certainly be diagonalizable, we can answer
this question by examining the eigenvalues of B.

Unlike the class of averaged operators, the class of paracontractive op-
erators is not necessarily closed to finite products, unless those factor op-
erators have a common fixed point.

8.10.2 The Elsner-Koltracht-Neumann Theorem

Our interest in paracontractions is due to the Elsner-Koltracht-Neumann
(EKN) Theorem [79]:

Theorem 8.2 Let T be pc with respect to some vector norm. If T has
fixed points, then the sequence {T kx0} converges to a fixed point of T , for
all starting vectors x0.

We follow the development in [79].

Theorem 8.3 Suppose that there is a vector norm on RJ , with respect to
which each Ti is a pc operator, for i = 1, ..., I, and that F = ∩I

i=1Fix(Ti)
is not empty. For k = 0, 1, ..., let i(k) = k(mod I)+1, and xk+1 = Ti(k)x

k.
The sequence {xk} converges to a member of F , for every starting vector
x0.

Proof: Let y ∈ F . Then, for k = 0, 1, ...,

||xk+1 − y|| = ||Ti(k)x
k − y|| ≤ ||xk − y||, (8.23)

so that the sequence {||xk − y||} is decreasing; let d ≥ 0 be its limit. Since
the sequence {xk} is bounded, we select an arbitrary cluster point, x∗.
Then d = ||x∗ − y||, from which we can conclude that

||Tix
∗ − y|| = ||x∗ − y||, (8.24)

and Tix
∗ = x∗, for i = 1, ..., I; therefore, x∗ ∈ F . Replacing y, an arbitrary

member of F , with x∗, we have that ||xk − x∗|| is decreasing. But, a
subsequence converges to zero, so the whole sequence must converge to
zero. This completes the proof.

Corollary 8.3 If T is pc with respect to some vector norm, and T has
fixed points, then the iterative sequence {T kx0} converges to a fixed point
of T , for every starting vector x0.

Corollary 8.4 If T = TITI−1 · · ·T2T1, and F = ∩I
i=1Fix (Ti) is not empty,

then F = Fix (T ).
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Proof: The sequence xk+1 = Ti(k)x
k converges to a member of Fix (T ), for

every x0. Select x0 in F .

Corollary 8.5 The product T of two or more pc operators Ti, i = 1, ..., I
is again a pc operator, if F = ∩I

i=1Fix (Ti) is not empty.

Proof: Suppose that for T = TITI−1 · · · T2T1, and y ∈ F = Fix (T ), we
have

||Tx− y|| = ||x− y||. (8.25)

Then, since

||TI(TI−1 · · · T1)x− y|| ≤ ||TI−1 · · · T1x− y|| ≤ ...

≤ ||T1x− y|| ≤ ||x− y||, (8.26)

it follows that

||Tix− y|| = ||x− y||, (8.27)

and Tix = x, for each i. Therefore, Tx = x.
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Chapter 9

Regularization

9.1 Sensitivity

There are times when we do not want exact solutions of Ax = b or of
ATAx = AT b. In most remote sensing problems, such as medical imaging
from scan data, the vector x represents a digitized version of the image to
be reconstructed from data, the matrix A describes the (ideal) relationship
between the pixels of the image and the measurements to be taken, and the
vector b contains the actual measurement values. Of course, the digitizing
amounts to an approximation of the true object of interest, the relationship
described by A is never precisely true, and the entries of b are, at the very
least, truncated, and usually noisy, versions of the desired measurements.
Solving the systems of equations for exact solutions amounts to overlooking
the effects of digitization and to placing excessive confidence in the correct-
ness of the description in A and in the accuracy of the measurements in b.
The exact solutions of Ax = b or of ATAx = AT b can be quite sensitive to
these perturbations, and the resulting reconstructed images can be useless.
We need some way to prevent this sensitivity to errors in the model and
the measured data; regularization is the term used to describe such efforts.

9.2 Where Does Sensitivity Come From?

Consider the least squares solution x = (ATA)−1AT b. Because A has been
normalized, the eigenvalues of ATA, which are all positive here, add up
to one. But it is often the case that the largest eigenvalue is relatively
much larger than the smallest one; the matrix ATA is then said to be ill-
conditioned. For the inverse (ATA)−1 the situation is reversed and the least
squares solution can be dominated by the lowest eigenvalue of ATA. This
leads to increased sensitivity of x to errors in the model and noise in the
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data. Increased sensitivity can be detected by calculating the two-norm of
the least squares solution; when ATA is ill-conditioned, the two-norm of
the least squares solution is often unreasonably large.

The least squares solution minimizes the function ‖Ax− b‖22. To avoid
sensitivity to noise, we can minimize instead the function

f(x) = (1− α)‖Ax− b‖22 + α‖x‖22, (9.1)

where 0 < α < 1 and is typically near zero. The resulting regularized
solution, which we shall denote by xRLS , is called the norm-constrained
least squares solution. It can be written in closed form as

xRLS = (ATA+ ε2I)−1AT b, (9.2)

where ε2 = α
1−α .

As we have noted, when A has thousands of rows and columns, cal-
culating ATA must be avoided. One of the pleasant aspects of both the
Landweber algorithm and the ART is that we never need to calculate ATA.
It would appear, however, that we cannot avoid calculating ATA + ε2I if
we wish to find xRLS . This is not the case, fortunately, as we shall see.

9.3 Regularizing Landweber’s Algorithm

Our goal is to minimize the function in Equation (9.1). Notice that this is
equivalent to minimizing the function

F (x) = ||Bx− c||22, (9.3)

for

B =
[
A
εI

]
, (9.4)

and

c =
[
b
0

]
, (9.5)

where 0 denotes the column vector with all entries equal to zero. The
Landweber iteration for the problem Bx = c is

xn+1 = xn + γBT (c−Bxn), (9.6)

for 0 < γ < 2/ρ(BTB), where ρ(BTB) is the spectral radius of BTB.
Equation (9.6) can be written as

xn+1 = (1− γε2)xn + γAT (b−Axn). (9.7)

We turn now to the regularization of the ART.
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9.4 Regularizing the ART

We would like to get the regularized solution xRLS by taking advantage
of the faster convergence of the ART. Fortunately, there are ways to find
xRLS , using only the matrix A and the ART algorithm. We discuss two
methods for using ART to obtain regularized solutions of Ax = b. The
first one is presented in [41], while the second one is due to Eggermont,
Herman, and Lent [76].

In our first method we use ART to solve the system of equations given
in matrix form by

[AT εI ]
[
u
v

]
= 0. (9.8)

We begin with u0 = b and v0 = 0. Then, the lower component of the limit
vector is v∞ = −εxRLS , while the upper limit is u∞ = b−AxRLS .

The method of Eggermont et al. is similar. They use ART to solve the
system of equations given in matrix form by

[A εI ]
[
x
v

]
= b. (9.9)

They begin at x0 = 0 and v0 = 0. Then, the limit vector has for its upper
component x∞ = xRLS , and εv∞ = b−AxRLS .
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Chapter 10

Eigenvalue Bounds

10.1 Introduction and Notation

We are concerned here with iterative methods for solving, at least approx-
imately, the system of I linear equations in J unknowns symbolized by
Ax = b. In the applications of interest to us, such as medical imaging,
both I and J are quite large, making the use of iterative methods the only
feasible approach. It is also typical of such applications that the matrix
A is sparse, that is, has relatively few non-zero entries. Therefore, itera-
tive methods that exploit this sparseness to accelerate convergence are of
special interest to us.

Many of the algorithms considered so far involve a parameter γ that
must satisfy certain bounds. In the Landweber algorithm, for example, we
require that 0 < γ < 2/ρ(ATA). Generally, the larger the γ the larger the
increment from xn to xn+1. If γ is selected well below its upper bound, the
algorithm may converge slowly. When A is a large matrix, calculating ATA
is out of the question, so we must estimate ρ(ATA). Since A is normalized,
its eigenvalues sum to the trace of AAT , which is I. But estimating ρ(ATA)
by I is much too conservative most of the time. We need a better estimate
of ρ(ATA). For notational convenience, we shall often refer to ρ(ATA) as
L in this chapter.

Having a good upper bound for L is important. In the applications of
interest, principally medical image processing, the matrix A is large; even
calculating ATA, not to mention computing eigenvalues, is prohibitively
expensive. In addition, the matrix A is typically sparse; that is, most of
the entries of A are zero. However, ATA will not be sparse, generally,
even when A is. In this section we present upper bounds for L that do
not require the calculation of ATA, and are particularly useful when A is
sparse.
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10.2 Earlier Work

Many of the concepts we study in computational linear algebra were added
to the mathematical toolbox relatively recently, as this area blossomed with
the growth of electronic computers. Based on my brief investigations into
the history of matrix theory, I believe that the concept of a norm of a matrix
was not widely used prior to about 1945. This was recently confirmed when
I read the paper [88]; as pointed out there, the use of matrix norms became
an important part of numerical linear algebra only after the publication of
[131]. Prior to the late 1940’s a number of papers were published that
established upper bounds on ρ(A) for a general square matrix A. As we
now can see, several of these results are immediate consequences of the fact
that ρ(A) ≤ ‖A‖, for any induced matrix norm. We give two examples.

For a given N by N matrix A, let

Cn =
N∑

m=1

|Amn|,

Rm =
N∑

n=1

|Amn|,

and C and R the maxima of Cn and Rm, respectively. We now know that
C = ‖A‖1, and R = ‖A‖∞, but the earlier authors did not.

In 1930 Browne [13] proved the following theorem.

Theorem 10.1 (Browne) Let λ be any eigenvalue of A. Then

|λ| ≤ 1
2
(C +R).

In 1944 Farnell [80] published the following theorems.

Theorem 10.2 (Farnell I) For any eigenvalue λ of A we have

|λ| ≤
√
CR.

Theorem 10.3 (Farnell II) Let

rm =
N∑

n=1

|Amn|2,

and

cm =
N∑

n=1

|Anm|2.
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Then, for any eigenvalue λ of A, we have

|λ| ≤

√√√√ N∑
m=1

√
rmcm.

In 1946 Brauer [11] proved the following theorem.

Theorem 10.4 (Brauer) For any eigenvalue λ of A, we have

|λ| ≤ min{C,R}.

Ex. 10.1 Prove Theorems 10.1, 10.2, and 10.4 using properties of matrix
norms. Can you also prove Theorem 10.3 this way?

Let A be an arbitrary real rectangular matrix. Since the largest singular
value of A is the square root of the maximum eigenvalue of the square
matrix S = ATA, we could use the inequality

ρ(ATA) = ‖ATA‖2 ≤ ‖ATA‖,

for any induced matrix norm, to establish an upper bound for the singular
values of A. However, that bound would be in terms of the entries of ATA,
not of A itself. In what follows we obtain upper bounds on the singular
values of A in terms of the entries of A itself.

Ex. 10.2 Let A be an arbitrary rectangular matrix. Prove that no singular
value of A exceeds

√
‖A‖1‖A‖∞.

We see from this exercise that Farnell (I) does generalize to arbitrary
rectangular matrices and singular values. Brauer’s Theorem 10.4 may sug-
gest that no singular value of a rectangular matrix A exceeds the minimum
of ‖A‖1 and ‖A‖∞, but this is not true. Consider the matrix A whose SVD
is given by

A =

 4 3
8 6
8 6

 =

 1/3 2/3 2/3
2/3 −2/3 1/3
2/3 1/3 −2/3

 15 0
0 0
0 0

[
4/5 3/5
3/5 −4/5

]
.

The largest singular value of A is 15, ‖A‖1 = 20, ‖A‖∞ = 14, and we do
have

15 ≤
√

(20)(14),

but we do not have
15 ≤ min{20, 14} = 14.
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10.3 Our Basic Eigenvalue Inequality

In [129] van der Sluis and van der Vorst show that certain rescaling of
the matrix A results in none of the eigenvalues of ATA exceeding one. A
modification of their proof leads to upper bounds on the eigenvalues of the
original ATA [45]. For any a in the interval [0, 2] let

caj = caj(A) =
I∑

i=1

|Aij |a,

rai = rai(A) =
J∑

j=1

|Aij |2−a,

and ca and ra the maxima of the caj and rai, respectively. We prove the
following theorem.

Theorem 10.5 For any a in the interval [0, 2], no eigenvalue of the matrix
ATA exceeds the maximum of

J∑
j=1

caj |Aij |2−a,

over all i, nor the maximum of

I∑
i=1

rai|Aij |a,

over all j. Therefore, no eigenvalue of ATA exceeds cara.

Proof: Let ATAv = λv, and let w = Av. Then we have

‖ATw‖22 = λ‖w‖22.

Applying Cauchy’s Inequality, we obtain∣∣∣ I∑
i=1

Aijwi

∣∣∣2 ≤ ( I∑
i=1

|Aij |a/2|Aij |1−a/2|wi|
)2

≤
( I∑

i=1

|Aij |a
)( I∑

i=1

|Aij |2−a|wi|2
)
.

Therefore,

‖ATw‖22 ≤
J∑

j=1

(
caj(

I∑
i=1

|Aij |2−a|wi|2)
)

=
I∑

i=1

( J∑
j=1

caj |Aij |2−a
)
|wi|2
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≤ max
i

( J∑
j=1

caj |Aij |2−a
)
‖w‖2.

The remaining two assertions follow in similar fashion.
As a corollary, we obtain the following eigenvalue inequality.

Corollary 10.1 For each i = 1, 2, ..., I, let

pi =
J∑

j=1

sj |Aij |2,

and let p be the maximum of the pi. Then L ≤ p.

Proof: Take a = 0. Then, using the convention that 00 = 0, we have
c0j = sj .

Corollary 10.2 ([38]; [128], Th. 4.2) If
∑J

j=1 |Aij |2 ≤ 1 for each i, then
L ≤ s.

Proof: For all i we have

pi =
J∑

j=1

sj |Aij |2 ≤ s
J∑

j=1

|Aij |2 ≤ s.

Therefore,
L ≤ p ≤ s.

Corollary 10.3 Selecting a = 1, we have

L = ‖A‖22 ≤ ‖A‖1‖A‖∞ = c1r1.

Therefore, the largest singular value of A does not exceed
√
‖A‖1‖A‖∞.

Corollary 10.4 Selecting a = 2, we have

L = ‖A‖22 ≤ ‖A‖2F ,

where ‖A‖F denotes the Frobenius norm of A.

Corollary 10.5 Let G be the matrix with entries

Gij = Aij
√
αi

√
βj ,

where

αi ≤
( J∑

j=1

sjβj |Aij |2
)−1

,

for all i. Then ρ(G†G) ≤ 1.
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Proof: We have

J∑
j=1

sj |Gij |2 = αi

J∑
j=1

sjβj |Aij |2 ≤ 1,

for all i. The result follows from Corollary 10.1.

Corollary 10.6 If
∑J

j=1 sj |Aij |2 ≤ 1 for all i, then L ≤ 1.

Corollary 10.7 If 0 < γi ≤ p−1
i for all i, then the matrix B with entries

Bij =
√
γiAij has ρ(B†B) ≤ 1.

Proof: We have

J∑
j=1

sj |Bij |2 = γi

J∑
j=1

sj |Aij |2 = γipi ≤ 1.

Therefore, ρ(B†B) ≤ 1, according to the theorem.

Corollary 10.8 If, for some a in the interval [0, 2], we have

αi ≤ r−1
ai , (10.1)

for each i, and

βj ≤ c−1
aj , (10.2)

for each j, then, for the matrix G with entries

Gij = Aij
√
αi

√
βj ,

no eigenvalue of G†G exceeds one.

Proof: We calculate caj(G) and rai(G) and find that

caj(G) ≤
(

max
i
α

a/2
i

)
β

a/2
j

I∑
i=1

|Aij |a =
(

max
i
α

a/2
i

)
β

a/2
j caj(A),

and
rai(G) ≤

(
max

j
β

1−a/2
j

)
α

1−a/2
i rai(A).

Therefore, applying the inequalities (10.1) and (10.2), we have

caj(G)rai(G) ≤ 1,

for all i and j. Consequently, ρ(G†G) ≤ 1.
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10.3.1 Another Upper Bound for L

The next theorem ([38]) provides another upper bound for L that is useful
when A is sparse. For this theorem we do not assume that A is normalized.
As previously, for each i and j, we let eij = 1, if Aij is not zero, and eij = 0,

if Aij = 0. Let 0 < νi =
√∑J

j=1 |Aij |2, σj =
∑I

i=1 eijν
2
i , and σ be the

maximum of the σj .

Theorem 10.6 ([38]) No eigenvalue of ATA exceeds σ.

Proof: Let ATAv = cv, for some non-zero vector v and scalar c. With
w = Av, we have

w†AATw = cw†w.

Then∣∣∣ I∑
i=1

Aijwi

∣∣∣2 =
∣∣∣ I∑

i=1

Aijeijνi
wi

νi

∣∣∣2 ≤ ( I∑
i=1

|Aij |2
|wi|2

ν2
i

)( I∑
i=1

ν2
i eij

)

=
( I∑

i=1

|Aij |2
|wi|2

ν2
i

)
σj ≤ σ

( I∑
i=1

|Aij |2
|wi|2

ν2
i

)
.

Therefore, we have

cw†w = w†AATw =
J∑

j=1

∣∣∣ I∑
i=1

Aijwi

∣∣∣2

≤ σ
J∑

j=1

( I∑
i=1

|Aij |2
|wi|2

ν2
i

)
= σ

I∑
i=1

|wi|2 = σw†w.

We conclude that c ≤ σ.

Corollary 10.9 Let the rows of A have Euclidean length one. Then no
eigenvalue of ATA exceeds the maximum number of non-zero entries in
any column of A.

Proof: We have ν2
i =

∑J
j=1 |Aij |2 = 1, for each i, so that σj = sj is

the number of non-zero entries in the jth column of A, and σ = s is the
maximum of the σj .

Corollary 10.10 Let ν be the maximum Euclidean length of any row of A
and s the maximum number of non-zero entries in any column of A. Then
L ≤ ν2s.
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When the rows of A have length one, it is easy to see that L ≤ I, so
the choice of γ = 1

I in the Landweber algorithm, which gives Cimmino’s
algorithm [64], is acceptable, although perhaps much too small.

The proof of Theorem 10.6 is based on results presented by Arnold Lent
in informal discussions with Gabor Herman, Yair Censor, Rob Lewitt and
me at MIPG in Philadelphia in the late 1990’s.

10.4 Eigenvalues and Norms: A Summary

It is helpful, at this point, to summarize the main facts concerning eigenval-
ues and norms. Throughout this section A will denote an arbitrary matrix,
S an arbitrary square matrix, and H an arbitrary Hermitian matrix. We
denote by ‖A‖ an arbitrary induced matrix norm of A.

Here are some of the things we now know:

• 1. ρ(S2) = ρ(S)2;

• 2. ρ(S) ≤ ‖S‖, for any matrix norm;

• 3. ρ(H) = ‖H‖2 ≤ ‖H‖, for any matrix norm;

• 4. ‖A‖22 = ρ(ATA) = ‖ATA‖2 ≤ ‖ATA‖;

• 5. ‖ATA‖1 ≤ ‖AT ‖1‖A‖1 = ‖A‖∞‖A‖1;

• 6. ‖A‖22 ≤ ‖A‖1‖A‖∞;

• 7. ρ(S) ≤ min{‖S‖1, ‖S‖∞};

• 8. if
∑J

j=1 |Aij |2 ≤ 1, for all i, then ‖A‖22 ≤ s, where s is the largest
number of non-zero entries in any column of A.



Chapter 11

A Tale of Two Algorithms

11.1 Overview

The algorithms discussed in the previous chapters are based on the two-
norm. Beginning with the present chapter we extend our study to in-
clude other distances. In this chapter the focus is on the cross-entropy, or
Kullback-Leibler, distance between non-negative vectors.

Although the EMML and SMART algorithms have quite different his-
tories and are not typically considered together, they are closely related,
as we shall see [27, 28]. In this chapter we examine these two algorithms
in tandem, following [29]. Forging a link between the EMML and SMART
led to a better understanding of both of these algorithms and to new re-
sults. The proof of convergence of the SMART in the inconsistent case [27]
was based on the analogous proof for the EMML [130], while discovery of
the faster version of the EMML, the rescaled block-iterative EMML (RBI-
EMML) [30] came from studying the analogous block-iterative version of
SMART [56]. The proofs we give here are elementary and rely mainly on
easily established properties of the cross-entropy or Kullback-Leibler dis-
tance. To illustrate this point, many of the proofs are left as exercises for
the reader.

11.2 Notation

Let A be an I by J matrix with entries Aij ≥ 0, such that, for each
j = 1, ..., J , we have sj =

∑I
i=1Aij > 0. Let b = (b1, ..., bI)T with bi > 0

for each i. We shall assume throughout this chapter that sj = 1 for each
j. If this is not the case initially, we replace xj with xjsj and Aij with
Aij/sj ; the quantities (Ax)i are unchanged.
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11.3 The Kullback-Leibler Distance

For a > 0 and b > 0, let the cross-entropy or Kullback-Leibler distance
from a to b be

KL(a, b) = a log
a

b
+ b− a, (11.1)

with KL(a, 0) = +∞, and KL(0, b) = b. Extend to nonnegative vectors
coordinate-wise, so that

KL(x, z) =
J∑

j=1

KL(xj , zj). (11.2)

Unlike the Euclidean distance, the KL distance is not symmetric; KL(Ax, b)
and KL(b, Ax) are distinct, and we can obtain different approximate so-
lutions of Ax = b by minimizing these two distances with respect to
non-negative x. Clearly, the KL distance has the property KL(cx, cz) =
cKL(x, z) for all positive scalars c.

Ex. 11.1 Let z+ =
∑J

j=1 zj > 0. Prove that

KL(x, z) = KL(x+, z+) +KL(x, (x+/z+)z). (11.3)

As we shall see, the KL distance mimics the ordinary Euclidean distance
in several ways that make it particularly useful in designing optimization
algorithms. The following exercise shows that the KL distance does exhibit
some behavior not normally associated with a distance.

Ex. 11.2 Let x be in the interval (0, 1). Show that

KL(x, 1) +KL(1, x−1) < KL(x, x−1).

11.4 The Two Algorithms

The algorithms we shall consider are the expectation maximization maxi-
mum likelihood (EMML) method and the simultaneous multiplicative alge-
braic reconstruction technique (SMART). When b = Ax has nonnegative
solutions, both algorithms produce such a solution. In general, the EMML
gives a nonnegative minimizer of KL(b, Ax), while the SMART minimizes
KL(Ax, b) over nonnegative x.

For both algorithms we begin with an arbitrary positive vector x0. The
iterative step for the EMML method is

xk+1
j = (xk)′j = xk

j

I∑
i=1

Aij
bi

(Axk)i
. (11.4)
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The iterative step for the SMART is

xm+1
j = (xm)′′j = xm

j exp
( I∑

i=1

Aij log
bi

(Axm)i

)
. (11.5)

Note that, to avoid confusion, we use k for the iteration number of the
EMML and m for the SMART.

11.5 Background

The expectation maximization maximum likelihood (EMML) method we
discuss here is actually a special case of a more general approach to like-
lihood maximization, usually called the EM algorithm [73]; the book by
McLachnan and Krishnan [106] is a good source for the history of this
more general algorithm.

It was noticed by Rockmore and Macovski [117] that the image recon-
struction problems that arise in medical tomography can be formulated as
statistical parameter estimation problems. Following up on this idea, Shepp
and Vardi [119] suggested the use of the EM algorithm for solving the re-
construction problem in emission tomography. In [101], Lange and Carson
presented an EM-type iterative method for transmission tomographic im-
age reconstruction, and pointed out a gap in the convergence proof given in
[119] for the emission case. In [130], Vardi, Shepp and Kaufman repaired
the earlier proof, relying on techniques due to Csiszár and Tusnády [69].
In [102] Lange, Bahn and Little improved the transmission and emission
algorithms, by including regularization to reduce the effects of noise. The
question of uniqueness of the solution in the inconsistent case was resolved
in [27, 28].

The EMML, as a statistical parameter estimation technique, was not
originally thought to be connected to any system of linear equations. In
[27], it was shown that the EMML algorithm minimizes the function f(x) =
KL(b, Ax), over non-negative vectors x. As in the previous section, b is a
vector with positive entries, and A is a matrix with non-negative entries,
such that sj =

∑I
i=1Aij = 1. Consequently, when the non-negative sys-

tem of linear equations Ax = b has a non-negative solution, the EMML
converges to such a solution.

The EMML has been the subject of much attention in the medical-
imaging literature over the past decade. Statisticians like it because it is
based on the well-studied principle of likelihood maximization for param-
eter estimation. Physicists like it because, unlike its competition, filtered
back-projection, it permits the inclusion of sophisticated models of the
physical situation. Mathematicians like it because it can be derived from
iterative optimization theory. Physicians like it because the images are
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often better than those produced by other means. No method is perfect,
however, and the EMML suffers from sensitivity to noise and slow rate of
convergence. Research is ongoing to find faster and less sensitive versions
of this algorithm.

Another class of iterative algorithms was introduced into medical imag-
ing by Gordon et al. in [87]. These include the algebraic reconstruction
technique (ART) and its multiplicative version, MART. These methods
were derived by viewing image reconstruction as solving systems of linear
equations, possibly subject to constraints, such as positivity.

What is usually called the simultaneous multiplicative algebraic recon-
struction technique (SMART) was discovered in 1972, independently, by
Darroch and Ratcliff [70], working in statistics, and by Schmidlin [118] in
medical imaging. The SMART provides another example of alternating
minimization having the three- and four-point properties.

Darroch and Ratcliff called their algorithm generalized iterative scal-
ing. It was designed to calculate the entropic projection of one probability
vector onto a family of probability vectors with a pre-determined marginal
distribution. They did not consider the more general problems of finding a
non-negative solution of a non-negative system of linear equations Ax = b,
or of minimizing a function; they did not, therefore, consider what hap-
pens in the inconsistent case, in which the system of equations Ax = b has
no non-negative solutions. This issue was resolved in [27], where it was
shown that the SMART minimizes the function f(x) = KL(Ax, b), over
non-negative vectors x. Here b is a vector with positive entries, and A is a
matrix with non-negative entries, such that sj =

∑I
i=1Aij > 0 for all j.

11.6 The Alternating Minimization Paradigm

For each nonnegative vector x for which (Ax)i =
∑J

j=1Aijxj > 0, let
r(x) = {r(x)ij} and q(x) = {q(x)ij} be the I by J arrays with entries

r(x)ij = xjAij
bi

(Ax)i

and
q(x)ij = xjAij .

The KL distances

KL(r(x), q(z)) =
I∑

i=1

J∑
j=1

KL(r(x)ij , q(z)ij)

and

KL(q(x), r(z)) =
I∑

i=1

J∑
j=1

KL(q(x)ij , r(z)ij)
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will play important roles in the discussion that follows. Note that if there
is a nonnegative x with r(x) = q(x) then b = Ax.

11.6.1 Some Pythagorean Identities Involving the KL
Distance

The iterative algorithms we discuss in this chapter are derived using the
principle of alternating minimization, according to which the distances
KL(r(x), q(z)) and KL(q(x), r(z)) are minimized, first with respect to the
variable x and then with respect to the variable z. Although the KL dis-
tance is not Euclidean, and, in particular, not even symmetric, there are
analogues of Pythagoras’ theorem that play important roles in the conver-
gence proofs.

Ex. 11.3 Establish the following Pythagorean identities:

KL(r(x), q(z)) = KL(r(z), q(z)) +KL(r(x), r(z)); (11.6)

KL(r(x), q(z)) = KL(r(x), q(x′)) +KL(x′, z), (11.7)

for

x′j = xj

I∑
i=1

Aij
bi

(Ax)i
; (11.8)

KL(q(x), r(z)) = KL(q(x), r(x)) +KL(x, z)−KL(Ax,Az); (11.9)

KL(q(x), r(z)) = KL(q(z′′), r(z)) +KL(x, z′′), (11.10)

for

z′′j = zj exp(
I∑

i=1

Aij log
bi

(Az)i
). (11.11)

Note that it follows from Equation (11.3) that KL(x, z)−KL(Ax,Az) ≥ 0.

11.6.2 Convergence of the SMART and EMML

We shall prove convergence of the SMART and EMML algorithms through
a series of exercises.
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Ex. 11.4 Show that, for {xk} given by Equation (11.4), {KL(b, Axk)}
is decreasing and {KL(xk+1, xk)} → 0. Show that, for {xm} given by
Equation (11.5), {KL(Axm, b)} is decreasing and {KL(xm, xm+1)} → 0.
Hint: Use KL(r(x), q(x)) = KL(b, Ax), KL(q(x), r(x)) = KL(Ax, b), and
the Pythagorean identities.

Ex. 11.5 Show that the EMML sequence {xk} is bounded by showing

J∑
j=1

xk+1
j =

I∑
i=1

bi.

Show that the SMART sequence {xm} is bounded by showing that

J∑
j=1

xm+1
j ≤

I∑
i=1

bi.

Ex. 11.6 Show that (x∗)′ = x∗ for any cluster point x∗ of the EMML
sequence {xk} and that (x∗)′′ = x∗ for any cluster point x∗ of the SMART
sequence {xm}. Hint: Use {KL(xk+1, xk)} → 0 and {KL(xm, xm+1)} →
0.

Ex. 11.7 Let x̂ and x̃ minimize KL(b, Ax) and KL(Ax, b), respectively,
over all x ≥ 0. Then, (x̂)′ = x̂ and (x̃)′′ = x̃. Hint: Apply Pythagorean
identities to KL(r(x̂), q(x̂)) and KL(q(x̃), r(x̃)).

Note that, because of convexity properties of the KL distance, even if
the minimizers x̂ and x̃ are not unique, the vectors Ax̂ and Ax̃ are unique.

Ex. 11.8 For the EMML sequence {xk} with cluster point x∗ and x̂ as
defined previously, we have the double inequality

KL(x̂, xk) ≥ KL(r(x̂), r(xk)) ≥ KL(x̂, xk+1), (11.12)

from which we conclude that the sequence {KL(x̂, xk)} is decreasing and
KL(x̂, x∗) < +∞. Hint: For the first inequality calculate KL(r(x̂), q(xk))
in two ways. For the second one, use (x)′j =

∑I
i=1 r(x)ij and Equation

(11.3).
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Ex. 11.9 Show that, for the SMART sequence {xm} with cluster point x∗

and x̃ as defined previously, we have

KL(x̃, xm)−KL(x̃, xm+1) = KL(Axm+1, b)−KL(Ax̃, b)+

KL(Ax̃,Axm) +KL(xm+1, xm)−KL(Axm+1, Axm), (11.13)

and so KL(Ax̃,Ax∗) = 0, the sequence {KL(x̃, xm)} is decreasing and
KL(x̃, x∗) < +∞. Hint: Expand KL(q(x̃), r(xm)) using the Pythagorean
identities.

Ex. 11.10 For x∗ a cluster point of the EMML sequence {xk} we have
KL(b, Ax∗) = KL(b, Ax̂). Therefore, x∗ is a nonnegative minimizer of
KL(b, Ax). Consequently, the sequence {KL(x∗, xk)} converges to zero,
and so {xk} → x∗. Hint: Use the double inequality of Equation (11.12)
and KL(r(x̂), q(x∗)).

Ex. 11.11 For x∗ a cluster point of the SMART sequence {xm} we have
KL(Ax∗, b) = KL(Ax̃, b). Therefore, x∗ is a nonnegative minimizer of
KL(Ax, b). Consequently, the sequence {KL(x∗, xm)} converges to zero,
and so {xm} → x∗. Moreover,

KL(x̃, x0) ≥ KL(x∗, x0)

for all x̃ as before. Hints: Use Exercise 11.9. For the final assertion use
the fact that the difference KL(x̃, xm)−KL(x̃, xm+1) is independent of the
choice of x̃, since it depends only on Ax∗ = Ax̃. Now sum over the index
m.

Both the EMML and the SMART algorithms are slow to converge. For
that reason attention has shifted, in recent years, to block-iterative versions
of these algorithms.

11.7 Regularization

We discussed previously how the least squares solution can become overly
sensitive to noise in the data. The same is true for the SMART and EMML
solutions. Both methods benefit from regularization.
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11.7.1 Regularizing the SMART

One way to regularize the SMART is to minimize the function

f(x) = KL(Ax, b) +
J∑

j=1

δjKL(xj , pj), (11.14)

where p > 0 is a prior estimate of the desired solution and δj > 0.
As we have seen, the iterative step of the SMART is obtained by mini-

mizing the function KL(q(x), r(xn)) over non-negative x, and the limit of
the SMART minimizes KL(Ax, b). To obtain xn+1 from xn, we minimize

KL(q(x), r(xn)) +
J∑

j=1

δjKL(xj , pj).

There are many penalty functions we could use here, but the one we have
chosen permits the minimizing xn+1 to be obtained in closed form.

The iterative step of the regularized SMART is as follows:

log xn+1
j =

δj
δj + sj

log pj+

sj

δj + sj

(
log xn

j + s−1
j

I∑
i=1

Aij log
bi

(Axn)i

)
. (11.15)

11.7.2 Regularizing the EMML

As we have seen, the iterative step of the EMML is obtained by minimizing
the function KL(r(xn), q(x)) over non-negative x, and the limit of the
EMML minimizes KL(b, Ax). We can regularize by minimizing

KL(b, Ax) +
J∑

j=1

δjKL(pj , xj). (11.16)

To obtain xn+1 from xn, we minimize

KL(r(xn), q(x)) +
J∑

j=1

δjKL(pj , xj).

Again, there are many penalty functions we could use here, but the one we
have chosen permits the minimizing xn+1 to be obtained in closed form.

The iterative step of the regularized EMML is as follows:

xn+1
j =

δj
δj + sj

pj +
1

δj + sj
xn

j

I∑
i=1

Aij

( bi
(Axn)i

)
. (11.17)
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MART and EMART

12.1 The MART Algorithm

Both the algebraic reconstruction technique (ART) and the multiplicative
algebraic reconstruction technique (MART) were introduced by Gordon,
Bender and Herman [87] as two iterative methods for discrete image recon-
struction in transmission tomography. It was noticed somewhat later that
the ART is a special case of Kaczmarz’s algorithm [96].

Both methods are what are called row-action methods, meaning that
each step of the iteration uses only a single equation from the system. The
MART is limited to non-negative systems for which non-negative solutions
are sought. In the under-determined case, both algorithms find the solution
closest to the starting vector, in the two-norm or weighted two-norm sense
for ART, and in the cross-entropy sense for MART, so both algorithms
can be viewed as solving optimization problems. We consider two different
versions of the MART.

12.1.1 MART I

The iterative step of the first version of MART, which we call MART I, is
the following: for n = 0, 1, ..., and i = n(mod I) + 1, let

xn+1
j = xn

j

( bi
(Axn)i

)Aij/mi

,

for j = 1, ..., J , where the parameter mi is defined to be

mi = max{Aij |j = 1, ..., J}.

The MART I algorithm converges, in the consistent case, to the non-
negative solution of Ax = b for which the KL distance KL(x, x0) is mini-
mized.
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12.1.2 MART II

The iterative step of the second version of MART, which we shall call
MART II, is the following: for n = 0, 1, ..., and i = n(mod I) + 1, let

xn+1
j = xn

j

( bi
(Axn)i

)Aij/sjni

,

for j = 1, ..., J , where the parameter ni is defined to be

ni = max{Aijs
−1
j |j = 1, ..., J},

and

sj =
I∑

i=1

Aij .

The MART II algorithm converges,in the consistent case, to the non-
negative solution of Ax = b for which the KL distance

J∑
j=1

sjKL(xj , x
0
j )

is minimized. Just as the Landweber method is a simultaneous cousin of
the row-action ART, the MART, not surprisingly, is the row-action cousin
of the SMART.

12.2 The EMART Algorithm

When there are non-negative solutions of the non-negative system Ax = b,
the MART converges faster than the SMART, and to the same solution.
The SMART involves exponentiation and a logarithm, and the MART a
non-integral power, both of which complicate their calculation. The EMML
is considerably simpler in this respect, but, like SMART, converges slowly.
We would like to have a row-action variant of the EMML that converges
faster than the EMML in the consistent case, but is easier to calculate than
the MART. The EM-MART is such an algorithm.

As with the MART, we distinguish two versions, EM-MART I and EM-
MART II. When the system Ax = b has non-negative solutions, both EM-
MART I and EM-MART II converge to non-negative solutions, but nothing
further is known about these solutions. To motivate these algorithms, we
rewrite the MART algorithms as follows:
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12.2.1 MART I again

The iterative step of MART I can be written as follows: for n = 0, 1, ...,
and i = n(mod I) + 1, let

xn+1
j = xn

j exp
((Aij

mi

)
log

( bi
(Axn)i

))
,

or, equivalently, as

log xn+1
j =

(
1− Aij

mi

)
log xn

j +
(Aij

mi

)
log

(
xn

j

bi
(Axn)i

)
. (12.1)

12.2.2 MART II again

Similarly, the iterative step of MART II can be written as follows: for
n = 0, 1, ..., and i = n(mod I) + 1, let

xn+1
j = xn

j exp
(( Aij

sjni

)
log

( bi
(Axn)i

))
,

or, equivalently, as

log xn+1
j =

(
1− Aij

sjni

)
log xn

j +
( Aij

sjni

)
log

(
xn

j

bi
(Axn)i

)
. (12.2)

We obtain the EM-MART I and EM-MART II simply by removing the
logarithms in Equations (12.1) and (12.2), respectively.

12.2.3 EM-MART I

The iterative step of EM-MART I is as follows: for n = 0, 1, ..., and i =
n(mod I) + 1, let

xn+1
j =

(
1− Aij

mi

)
xn

j +
(Aij

mi

)(
xn

j

bi
(Axn)i

)
. (12.3)

12.2.4 EM-MART II

The iterative step of EM-MART II is as follows:

xn+1
j =

(
1− Aij

sjni

)
xn

j +
( Aij

sjni

)(
xn

j

bi
(Axn)i

)
. (12.4)

Convergence of the MART and EMART algorithms follows from the more
general convergence theorem for block-iterative algorithms to be discussed
in the next chapter.

When the system Ax = b has no non-negative solutions, neither MART
nor EMART converge. Instead,as with ART and BILW, they always exhibit
sub-sequential convergence to a limit cycle. However, no proof is known
that this subsequential convergence necessarily occurs.
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Chapter 13

Rescaled Block-Iterative
Algorithms

13.1 Ordered-Subset Versions

Those who have used the SMART or the EMML on sizable problems have
certainly noticed that they are both slow to converge. An important issue,
therefore, is how to accelerate convergence. One popular method is through
the use of block-iterative (or ordered subset) methods. As was the case when
we discussed the SMART and the EMML algorithms, Aij is non-negative
and bi is positive, for all i and j.

To illustrate block-iterative methods and to motivate our subsequent
discussion we consider now the ordered subset EM algorithm (OSEM),
which is a popular technique in some areas of medical imaging, as well as
an analogous version of SMART, which we shall call here the OSSMART.
The OSEM is now used quite frequently in tomographic image reconstruc-
tion, where it is acknowledged to produce usable images significantly faster
then EMML. From a theoretical perspective both OSEM and OSSMART
are incorrect. How to correct them is the subject of much that follows here.

The idea behind the OSEM (OSSMART) is simple: the iteration looks
very much like the EMML (SMART), but at each step of the iteration
the summations are taken only over the current block. The blocks are
processed cyclically.

We begin by decomposing the set {i = 1, ..., I} into M (not necessarily
disjoint) subsets Bm, m = 1, ...,M . For each m let

smj :=
∑

i∈Bm

Aij > 0. (13.1)

The OSEM iteration is the following: for n = 0, 1, ... and m = n(modM)+
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1, having found xn let

OSEM:

xn+1
j = xn

j s
−1
mj

∑
i∈Bm

Aij
bi

(Axn)i
. (13.2)

The OSSMART has the following iterative step:

OSSMART

xn+1
j = xn

j exp
(
s−1

mj

∑
i∈Bm

Aij log
bi

(Axn)i

)
. (13.3)

In general we do not expect block-iterative algorithms to converge in the
inconsistent case, but to exhibit subsequential convergence to a limit cycle,
as happens with MART and EMART. We do, however, want them to con-
verge to a solution in the consistent case; the OSEM and OSSMART fail to
do this except when the matrix A and the set of blocks {Bm, m = 1, ...,M}
satisfy the condition known as subset balance, which means that the sums
smj depend only on j and not on m. While this may be approximately
valid in some special cases, it is overly restrictive, eliminating, for example,
almost every set of blocks whose cardinalities are not all the same. When
the OSEM does well in practice in medical imaging it is probably because
the M is not large and only a few iterations are carried out.

The experience with the OSEM was encouraging, however, and strongly
suggested that an equally fast, but mathematically correct, block-iterative
version of EMML was to be had; this is the rescaled block-iterative EMML
(RBI-EMML). Both RBI-EMML and an analogous corrected version of
OSSMART, the RBI-SMART, provide fast convergence to a solution in
the consistent case, for any choice of blocks.

13.2 The RBI-SMART

We turn next to the block-iterative versions of the SMART, which we shall
denote BI-SMART. These methods were known prior to the discovery of
RBI-EMML and played an important role in that discovery; the importance
of rescaling for acceleration was apparently not appreciated, however.

We start by considering a formulation of BI-SMART that is general
enough to include all of the variants we wish to discuss. As we shall see,
this formulation is too general and will need to be restricted in certain ways
to obtain convergence. Let the iterative step be

xn+1
j = xn

j exp
(
βmj

∑
i∈Bm

αmiAij log
( bi

(Axn)i

))
, (13.4)
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for j = 1, 2, ..., J , m = n(modM) + 1 and βmj and αmi positive. As we
shall see, our convergence proof will require that βmj be separable, that is,
βmj = γjδm for each j and m and that

γjδmσmj ≤ 1. (13.5)

With these conditions satisfied we have the following result.

Theorem 13.1 Suppose that we are in the consistent case, in which the
system Ax = b has non-negative solutions. For any positive vector x0 and
any collection of blocks {Bm, m = 1, ...,M} the sequence {xn} given by
Equation (13.4) converges to the unique solution of b = Ax for which the
weighted cross-entropy

∑J
j=1 γ

−1
j KL(xj , x

0
j ) is minimized.

The inequality in the following lemma is the basis for the convergence proof.

Lemma 13.1 Let b = Ax for some nonnegative x. Then for {xn} as in
Equation (13.4) we have

J∑
j=1

γ−1
j KL(xj , x

n
j )−

J∑
j=1

γ−1
j KL(xj , x

n+1
j ) ≥ (13.6)

δm
∑

i∈Bm

αmiKL(bi, (Axn)i). (13.7)

Proof: First note that

xn+1
j = xn

j exp
(
γjδm

∑
i∈Bm

αmiAij log
( bi

(Axn)i

))
, (13.8)

and

exp
(
γjδm

∑
i∈Bm

αmiAij log
( bi

(Axn)i

))
(13.9)

can be written as

exp
(
(1− γjδmσmj) log 1 + γjδm

∑
i∈Bm

αmiAij log
( bi

(Axn)i

))
, (13.10)

which, by the convexity of the exponential function, is not greater than

(1− γjδmσmj) + γjδm
∑

i∈Bm

αmiAij
bi

(Axn)i
. (13.11)
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It follows that

J∑
j=1

γ−1
j (xn

j − xn+1
j ) ≥ δm

∑
i∈Bm

αmi((Axn)i − bi). (13.12)

We also have

log(xn+1
j /xn

j ) = γjδm
∑

i∈Bm

αmiAij log
bi

(Axn)i
. (13.13)

Therefore

J∑
j=1

γ−1
j KL(xj , x

n
j )−

J∑
j=1

γ−1
j KL(xj , x

n+1
j ) (13.14)

=
J∑

j=1

γ−1
j (xj log(xn+1

j /xn
j ) + xn

j − xn+1
j ) (13.15)

=
J∑

j=1

xjδm
∑

i∈Bm

αmiAij log
bi

(Axn)i
+

J∑
j=1

γ−1
j (xn

j − xn+1
j ) (13.16)

= δm
∑

i∈Bm

αmi(
J∑

j=1

xjAij) log
bi

(Axn)i
+

J∑
j=1

γ−1
j (xn

j − xn+1
j ) (13.17)

≥ δm
( ∑

i∈Bm

αmi(bi log
bi

(Axn)i
+ (Axn)i − bi)

)
= δm

∑
i∈Bm

αmiKL(bi, (Axn)i).

(13.18)

This completes the proof of the lemma.
From the inequality (13.7) we conclude that the sequence

{
J∑

j=1

γ−1
j KL(xj , x

n
j )} (13.19)

is decreasing, that {xn} is therefore bounded and the sequence

{
∑

i∈Bm

αmiKL(bi, (Axn)i)} (13.20)
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is converging to zero. Let x∗ be any cluster point of the sequence {xn}.
Then it is not difficult to show that b = Ax∗. Replacing x with x∗ we
have that the sequence {

∑J
j=1 γ

−1
j KL(x∗j , x

n
j )} is decreasing; since a sub-

sequence converges to zero, so does the whole sequence. Therefore x∗ is
the limit of the sequence {xn}. This proves that the algorithm produces
a solution of b = Ax. To conclude further that the solution is the one
for which the quantity

∑J
j=1 γ

−1
j KL(xj , x

0
j ) is minimized requires further

work to replace the inequality (13.7) with an equation in which the right
side is independent of the particular solution x chosen; see [46] for details.

We see from the theorem that how we select the γj is determined by
how we wish to weight the terms in the sum

∑J
j=1 γ

−1
j KL(xj , x

0
j ). In

some cases we want to minimize the cross-entropy KL(x, x0) subject to
b = Ax; in this case we would select γj = 1. In other cases we may
have some prior knowledge as to the relative sizes of the xj and wish to
emphasize the smaller values more; then we may choose γj proportional to
our prior estimate of the size of xj . Having selected the γj , we see from
the inequality (13.7) that convergence will be accelerated if we select δm as
large as permitted by the condition γjδmσmj ≤ 1. This suggests that we
take

δm = 1/min{σmjγj , j = 1, ..., J}. (13.21)

The rescaled BI-SMART (RBI-SMART) as presented in [30, 31, 32] uses
this choice, but with αmi = 1 for each m and i. For each m = 1, ...,M let

rm = max{smjs
−1
j |j = 1, ..., J}. (13.22)

The original RBI-SMART is as follows:

Algorithm 13.1 (RBI-SMART) Let x0 be an arbitrary positive vector.
For n = 0, 1, ..., let m = n(modM) + 1. Then let

xn+1
j = xn

j exp
(
r−1
m s−1

j

∑
i∈Bm

Aij log
( bi

(Axn)i

))
. (13.23)

Notice that Equation (13.23) can be written as

log xn+1
j = (1− r−1

m s−1
j smj) log xn

j + r−1
m s−1

j

∑
i∈Bm

Aij log
(
xn

j

bi
(Axn)i

)
,

(13.24)

from which we see that xn+1
j is a weighted geometric mean of xn

j and the
terms

(Qix
n)j = xn

j

( bi
(Axn)i

)
,
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for i ∈ Bm. This will be helpful in deriving block-iterative versions of the
EMML algorithm. The vectors Qi(xn) are sometimes called weighted KL
projections.

Let’s look now at some of the other choices for these parameters that
have been considered in the literature.

First, we notice that the OSSMART does not generally satisfy the re-
quirements, since in (13.3) the choices are αmi = 1 and βmj = s−1

mj ; the only
times this is acceptable is if the smj are separable; that is, smj = ujtm for
some uj and tm. This is slightly more general than the condition of subset
balance and is sufficient for convergence of OSSMART.

In [56] Censor and Segman make the choices βmj = 1 and αmi > 0 such
that σmj ≤ 1 for all m and j. In those cases in which σmj is much less than
1 for each m and j their iterative scheme is probably excessively relaxed;
it is hard to see how one might improve the rate of convergence by altering
only the weights αmi, however. Limiting the choice to γjδm = 1 reduces
our ability to accelerate this algorithm.

The original SMART uses M = 1, γj = s−1
j and αmi = αi = 1. Clearly

the inequality (13.5) is satisfied; in fact it becomes an equality now.
For the row-action version of SMART, the multiplicative ART (MART),

due to Gordon, Bender and Herman [87], we take M = I and Bm = Bi =
{i} for i = 1, ..., I. The MART has the iterative

xn+1
j = xn

j

( bi
(Axn)i

)m−1
i Aij

, (13.25)

for j = 1, 2, ..., J , i = n(mod I) + 1 and mi > 0 chosen so that m−1
i Aij ≤ 1

for all j. The smaller mi is the faster the convergence, so a good choice
is mi = max{Aij |, j = 1, ..., J}. Although this particular choice for mi is
not explicitly mentioned in the various discussions of MART I have seen,
it was used in implementations of MART from the beginning [92].

Darroch and Ratcliff included a discussion of a block-iterative version of
SMART in their 1972 paper [70]. Close inspection of their version reveals
that they require that smj =

∑
i∈Bm

Aij = 1 for all j. Since this is unlikely
to be the case initially, we might try to rescale the equations or unknowns
to obtain this condition. However, unless smj =

∑
i∈Bm

Aij depends only
on j and not on m, which is the subset balance property used in [95], we
cannot redefine the unknowns in a way that is independent of n.

The MART fails to converge in the inconsistent case. What is always
observed, but for which no proof exists, is that, for each fixed i = 1, 2, ..., I,
as k → +∞, the MART subsequences {xkI+i} converge to separate limit
vectors, say x∞,i. This limit cycle LC = {x∞,i|i = 1, ..., I} reduces to
a single vector whenever there is a nonnegative solution of b = Ax. The
greater the minimum value ofKL(Ax, b) the more distinct from one another
the vectors of the limit cycle are. An analogous result is observed for BI-
SMART.
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13.3 The RBI-EMML

As we did with SMART, we consider now a formulation of BI-EMML that
is general enough to include all of the variants we wish to discuss. Once
again, the formulation is too general and will need to be restricted in certain
ways to obtain convergence. Let the iterative step be

xn+1
j = xn

j (1− βmjσmj) + xn
j βmj

∑
i∈Bm

αmiAij
bi

(Axn)i
, (13.26)

for j = 1, 2, ..., J , m = n(modM) + 1 and βmj and αmi positive. As in
the case of BI-SMART, our convergence proof will require that βmj be
separable, that is,

βmj = γjδm (13.27)

for each j and m and that the inequality (13.5) hold. With these conditions
satisfied we have the following result.

Theorem 13.2 Suppose that we are in the consistent case. For any pos-
itive vector x0 and any collection of blocks {Bm, m = 1, ...,M} the se-
quence {xn} given by Equation (13.4) converges to a nonnegative solution
of b = Ax.

When there are multiple nonnegative solutions of b = Ax the solution
obtained by BI-EMML will depend on the starting point x0, but precisely
how it depends on x0 is an open question. Also, in contrast to the case of
BI-SMART, the solution can depend on the particular choice of the blocks.
The inequality in the following lemma is the basis for the convergence proof.

Lemma 13.2 Let Ax = b for some non-negative x. Then, for {xn} as in
Equation (13.26), we have

J∑
j=1

γ−1
j KL(xj , x

n
j )−

J∑
j=1

γ−1
j KL(xj , x

n+1
j ) ≥ (13.28)

δm
∑

i∈Bm

αmiKL(bi, (Axn)i). (13.29)

Proof: From the iterative step we have

xn+1
j = xn

j (1− γjδmσmj) + xn
j γjδm

∑
i∈Bm

αmiAij
bi

(Axn)i
(13.30)

log(xn+1
j /xn

j ) = log
(
(1− γjδmσmj) + γjδm

∑
i∈Bm

αmiAij
bi

(Axn)i

)
.(13.31)
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By the concavity of the logarithm we obtain the inequality

log(xn+1
j /xn

j ) ≥
(
(1− γjδmσmj) log 1 + γjδm

∑
i∈Bm

αmiAij log
bi

(Axn)i

)
,

(13.32)

or

log(xn+1
j /xn

j ) ≥ γjδm
∑

i∈Bm

αmiAij log
bi

(Axn)i
. (13.33)

Therefore

J∑
j=1

γ−1
j xj log(xn+1

j /xn
j ) ≥ δm

∑
i∈Bm

αmi(
J∑

j=1

xjAij) log
bi

(Axn)i
. (13.34)

Note that it is at this step that we used the separability of the βmj . Also

J∑
j=1

γ−1
j (xn+1

j − xn
j ) = δm

∑
i∈Bm

((Axn)i − bi). (13.35)

This concludes the proof of the lemma.

From the inequality in (13.29) we conclude, as we did in the BI-SMART
case, that the sequence {

∑J
j=1 γ

−1
j KL(xj , x

n
j )} is decreasing, that {xn} is

therefore bounded and the sequence {
∑

i∈Bm
αmiKL(bi, (Axn)i)} is con-

verging to zero. Let x∗ be any cluster point of the sequence {xn}. Then it
is not difficult to show that b = Ax∗. Replacing x with x∗ we have that the
sequence {

∑J
j=1 γ

−1
j KL(x∗j , x

n
j )} is decreasing; since a subsequence con-

verges to zero, so does the whole sequence. Therefore x∗ is the limit of
the sequence {xn}. This proves that the algorithm produces a nonnegative
solution of b = Ax. So far, we have been unable to replace the inequality
in (13.29) with an equation in which the right side is independent of the
particular solution x chosen.

Having selected the γj , we see from the inequality in (13.29) that con-
vergence will be accelerated if we select δm as large as permitted by the
condition γjδmσmj ≤ 1. This suggests that once again we take

δm = 1/min{σmjγj , j = 1, ..., J}. (13.36)

The rescaled BI-EMML (RBI-EMML) as presented in [30, 31, 32] uses this
choice, but with αmi = 1 for each m and i. The original motivation for the
RBI-EMML came from consideration of Equation (13.24), replacing the
geometric means with arithmetic means. This RBI-EMML is as follows:
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Algorithm 13.2 (RBI-EMML) Let x0 be an arbitrary positive vector.
For n = 0, 1, ..., let m = n(modM) + 1. Then let

xn+1
j = (1− r−1

m s−1
j smj)xk

j + r−1
m s−1

j xn
j

∑
i∈Bm

(Aij
bi

(Axn)i
). (13.37)

Let’s look now at some of the other choices for these parameters that
have been considered in the literature.

First, we notice that the OSEM does not generally satisfy the require-
ments, since in (13.2) the choices are αmi = 1 and βmj = s−1

mj ; the only
times this is acceptable is if the smj are separable; that is, smj = ujtn for
some uj and tn. This is slightly more general than the condition of subset
balance and is sufficient for convergence of OSEM.

The original EMML uses M = 1, γj = s−1
j and αmi = αi = 1. Clearly

the inequality (13.5) is satisfied; in fact it becomes an equality now.
Notice that the calculations required to perform the BI-SMART are

somewhat more complicated than those needed in BI-EMML. Because the
MART converges rapidly in most cases there is considerable interest in the
row-action version of EMML. It was clear from the outset that using the
OSEM in a row-action mode does not work. We see from the formula for
BI-EMML that the proper row-action version of EMML, which we call the
EM-MART, is the following:

Algorithm 13.3 (EM-MART) Let x0be an arbitrary positive vector and
i = n(mod I) + 1. Then let

xn+1
j = (1− δiγjαiiAij)xn

j + δiγjαiix
n
jAij

bi
(Axn)i

, (13.38)

with

γjδiαiiAij ≤ 1 (13.39)

for all i and j.

The optimal choice would seem to be to take δiαii as large as possible;
that is, to select δiαii = 1/max{γjAij , j = 1, ..., J}. With this choice the
EM-MART is called the rescaled EM-MART (REM-MART).

The EM-MART fails to converge in the inconsistent case. What is
always observed, but for which no proof exists, is that, for each fixed i =
1, 2, ..., I, as k → +∞, the EM-MART subsequences {xkI+i} converge to
separate limit vectors, say x∞,i. This limit cycle LC = {x∞,i|i = 1, ..., I}
reduces to a single vector whenever there is a nonnegative solution of b =
Ax. The greater the minimum value of KL(b, Ax) the more distinct from
one another the vectors of the limit cycle are. An analogous result is
observed for BI-EMML.
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As we stated earlier, in the consistent case the sequence {xn} generated
by the BI-SMART algorithm and given by Equation (13.8) converges to
the unique solution of b = Ax for which the distance

∑J
j=1 γ

−1
j KL(xj , x

0
j )

is minimized. For details, see [46].



Chapter 14

Alternating Minimization

14.1 Overview

As we have seen, both the EMML and the SMART are best derived as
alternating minimization (AM) algorithms. The idea of using the AM
framework for EMML is due to Vardi, Shepp and Kaufman [130]. The
main reference for alternating minimization is the paper [69] of Csiszár
and Tusnády. As the authors of [130] remark, the geometric argument in
[69] is “deep, though hard to follow”. As we shall see, all AM methods
for which the five-point property of [69] holds fall into the SUMMA class
(see [49]). Consequently, both the SMART and EMML algorithms are also
SUMMA algorithms.

14.2 Alternating Minimization

The alternating minimization (AM) iteration of Csiszár and Tusnády [69]
provides a useful framework for the derivation of iterative optimization
algorithms. In this section we discuss their five-point property and use it
to obtain a somewhat simpler proof of convergence for their AM algorithm.

14.2.1 The AM Framework

Suppose that P and Q are arbitrary non-empty sets and the function
Θ(p, q) satisfies −∞ < Θ(p, q) ≤ +∞, for each p ∈ P and q ∈ Q. We
assume that, for each p ∈ P , there is q ∈ Q with Θ(p, q) < +∞. There-
fore, b = infp∈P, q∈Q Θ(p, q) < +∞. We assume also that b > −∞; in
many applications, the function Θ(p, q) is non-negative, so this additional
assumption is unnecessary. We do not always assume there are p̂ ∈ P and
q̂ ∈ Q such that Θ(p̂, q̂) = b; when we do assume that such a p̂ and q̂

83
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exist, we will not assume that p̂ and q̂ are unique with that property. The
objective is to generate a sequence {(pn, qn)} such that Θ(pn, qn)→ b.

14.2.2 The AM Iteration

The general AM method proceeds in two steps: we begin with some q0,
and, having found qn, we

• 1. minimize Θ(p, qn) over p ∈ P to get p = pn+1, and then

• 2. minimize Θ(pn+1, q) over q ∈ Q to get q = qn+1.

In certain applications we consider the special case of alternating cross-
entropy minimization. In that case, the vectors p and q are non-negative,
and the function Θ(p, q) will have the value +∞ whenever there is an
index j such that pj > 0, but qj = 0. It is important for those particular
applications that we select q0 with all positive entries. We therefore assume,
for the general case, that we have selected q0 so that Θ(p, q0) is finite for
all p.

The sequence {Θ(pn, qn)} is decreasing and bounded below by b, since
we have

Θ(pn, qn) ≥ Θ(pn+1, qn) ≥ Θ(pn+1, qn+1). (14.1)

Therefore, the sequence {Θ(pn, qn)} converges to some B ≥ b. Without
additional assumptions, we can say little more.

We know two things:

Θ(pn+1, qn)−Θ(pn+1, qn+1) ≥ 0, (14.2)

and

Θ(pn, qn)−Θ(pn+1, qn) ≥ 0. (14.3)

Equation 14.3 can be strengthened to

Θ(p, qn)−Θ(pn+1, qn) ≥ 0. (14.4)

We need to make these inequalities more precise.

14.2.3 The Five-Point Property for AM

The five-point property is the following: for all p ∈ P and q ∈ Q and
n = 1, 2, ...

The Five-Point Property

Θ(p, q) + Θ(p, qn−1) ≥ Θ(p, qn) + Θ(pn, qn−1). (14.5)
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14.2.4 The Main Theorem for AM

We want to find sufficient conditions for the sequence {Θ(pn, qn)} to con-
verge to b, that is, for B = b. The following is the main result of [69].

Theorem 14.1 If the five-point property holds then B = b.

Proof: Suppose that B > b. Then there are p′ and q′ such that B >
Θ(p′, q′) ≥ b. From the five-point property we have

Θ(p′, qn−1)−Θ(pn, qn−1) ≥ Θ(p′, qn)−Θ(p′, q′), (14.6)

so that

Θ(p′, qn−1)−Θ(p′, qn) ≥ Θ(pn, qn−1)−Θ(p′, q′) ≥ 0. (14.7)

All the terms being subtracted can be shown to be finite. It follows that
the sequence {Θ(p′, qn−1)} is decreasing, bounded below, and therefore
convergent. The right side of Equation (14.7) must therefore converge to
zero, which is a contradiction. We conclude that B = b whenever the
five-point property holds in AM.

14.2.5 The Three- and Four-Point Properties

In [69] the five-point property is related to two other properties, the three-
and four-point properties. This is a bit peculiar for two reasons: first, as
we have just seen, the five-point property is sufficient to prove the main
theorem; and second, these other properties involve a second function, ∆ :
P ×P → [0,+∞], with ∆(p, p) = 0 for all p ∈ P . The three- and four-point
properties jointly imply the five-point property, but to get the converse, we
need to use the five-point property to define this second function; it can be
done, however.

The three-point property is the following:

The Three-Point Property

Θ(p, qn)−Θ(pn+1, qn) ≥ ∆(p, pn+1), (14.8)

for all p. The four-point property is the following:

The Four-Point Property

∆(p, pn+1) + Θ(p, q) ≥ Θ(p, qn+1), (14.9)

for all p and q.
It is clear that the three- and four-point properties together imply the

five-point property. We show now that the three-point property and the
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four-point property are implied by the five-point property. For that purpose
we need to define a suitable ∆(p, p̃). For any p and p̃ in P define

∆(p, p̃) = Θ(p, q(p̃))−Θ(p, q(p)), (14.10)

where q(p) denotes a member of Q satisfying Θ(p, q(p)) ≤ Θ(p, q), for all q
in Q. Clearly, ∆(p, p̃) ≥ 0 and ∆(p, p) = 0. The four-point property holds
automatically from this definition, while the three-point property follows
from the five-point property. Therefore, it is sufficient to discuss only the
five-point property when speaking of the AM method.

In the next two sections we discuss the SMART and EMML algorithms,
two important instances of alternating minimization.

14.3 The SMART as AM

In this section we consider the simultaneous multiplicative algebraic recon-
struction technique (SMART) as an example of AM. Let X be the set of all
x ≥ 0 for which the vector Ax has only positive entries. For each x ∈ X ,
let t(x) and r(x) be the I by J arrays with entries

t(x)ij = xjAij , (14.11)

and

r(x)ij = xjAijbi/(Ax)i. (14.12)

We then let

R = {r = {rij ≥ 0}|
J∑

j=1

rij = bi, for i = 1, 2, ..., I}, (14.13)

and

T = {t = t(x)|x ∈ X}. (14.14)

The sets R and T are convex in the space RI+J .
The functionKL(Ax, b) is continuous in the variable x and has bounded

level sets, so there is at least one minimizer; call it x̂. The vector Ax̂ is
unique, even if the vector x̂ is not. For notational convenience we shall
assume that sj = 1 for all j. If this is not the case initially, we replace Aij

with Aij/sj and xj with xjsj ; the product Ax is unchanged.
The Pythagorean identities for the SMART can be written as follows:

KL(t(x), r(z)) = KL(t(x), r(x)) +KL(x, z)−KL(Ax,Az); (14.15)
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and

KL(t(x), r(z)) = KL(t(z∗), r(z)) +KL(x, z∗), (14.16)

where x and z are arbitrary members of X and

z∗j = zj exp
( I∑

i=1

Aij log
( bi

(Az)i

))
, (14.17)

for each j. Note that

KL(Ax, b) = KL(t(x), r(x)), (14.18)

and

KL(x, z)−KL(Ax,Az) ≥ 0. (14.19)

To put the SMART algorithm into the framework of alternating mini-
mization, we take the sets Q = R and P = T as above and let pn = t(xn),
and qn = r(xn). Generic vectors are p = t(x) for some x ∈ X and q = r(z)
for some z ∈ X . Then we set

Θ(p, q) = KL(t(x), r(z)), (14.20)

and, for arbitrary p = t(x) and p̃ = t(x̃),

∆(p, p̃) = KL(t(x), t(x̃)) = KL(x, x̃). (14.21)

From the Pythagorean identity (14.16) we have

KL(t(x), r(xn−1)) = KL(t(xn), r(xn−1)) +KL(x, xn) (14.22)

so that

Θ(p, qn−1) = Θ(pn, qn−1) + ∆(p, pn), (14.23)

which is then the three-point property. From

KL(t(x), r(xn))−KL(t(x), r(x)) =

KL(x, xn)−KL(Ax,Axn) ≤ KL(x, xn) (14.24)

we have

∆(p, pn) ≥ Θ(p, qn)−Θ(p, q(p)) ≥ Θ(p, qn)−Θ(p, q), (14.25)

which is the four-point property.
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The iterative step of the SMART is then to minimize the function

Θ(p, qn−1) = KL(t(x), r(xn−1)) (14.26)

to get x = xn = (xn−1)∗. Since the SMART is a particular case of AM for
which the five-point property holds, we know that

{KL(Axn, b)} → inf{KL(Ax, b) |x ≥ 0}. (14.27)

As we have seen, using the Pythagorean identities we can show more: the
sequence {xn} converges to the non-negative minimizer of the function
KL(Ax, b) for which KL(x, x0) is minimized ([27, 29]) .

14.3.1 Related work of Csiszár

In [68] Csiszár shows that the generalized iterative scaling method of Dar-
roch and Ratcliff can be formulated in terms of successive entropic projec-
tion onto the sets R and T . In other words, he views their method as an
alternating projection method, not as alternating minimization. He derives
the generalized iterative scaling algorithm in two steps:

• 1. minimize KL(r(x), t(xn)) to get r(xn); and then

• 2. minimize KL(t(x), r(xn)) to get t(xn+1).

Although [68] appeared five years after [69], Csiszár does not reference
[69], nor does he mention alternating minimization, instead basing his con-
vergence proof here on his earlier paper [67], which deals with entropic
projection. He is able to make this work because the order of the t(xn) and
r(x) does not matter in the first step. Therefore, the generalized iterative
scaling, and, more generally, the SMART, is also an alternating projection
algorithm, as well.

14.4 The EMML Algorithm as AM

Because KL(b, Ax) is continuous in the variable x and has bounded level
sets, there is at least one non-negative minimizer; call it x̂. The vector Ax̂
is unique, even if x̂ is not.

For each x ∈ X , let t(x) and r(x) be as previously defined. The
Pythagorean identities for the EMML algorithm can be written as follows:

KL(r(x), t(z)) = KL(r(z), t(z)) +KL(r(x), r(z)); (14.28)

and

KL(r(x), t(z)) = KL(r(x), t(x′)) +KL(x′, z), (14.29)
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where x and z are arbitrary members of X and the entries of x′ are defined
by

x′j = xj

I∑
i=1

Aij
bi

(Ax)i
, (14.30)

for each j. Note that KL(b, Ax) = KL(r(x), t(x)).
In the EMML algorithm we minimize the function KL(r(xn), t(x)) to

get x = xn+1. The EMML iteration begins with a positive vector x0.
Having found the vector xn, the next vector in the EMML sequence is
xn+1 = (xn)′, with entries given by

xn+1
j = (xn)′j = xn

j

I∑
i=1

Aij

( bi
(Axn)i

)
=

I∑
i=1

r(xn)ij . (14.31)

The sequence {xn} converges to a non-negative minimizer of the function
KL(b, Ax).

We put the EMML algorithm into an AM framework using P = R,
Q = T , p = r(x), q = t(z), Θ(p, q) = KL(r(x), t(z)), and minimizing
KL(r(x), t(x)) = KL(b, Ax). Using the AM notation, we let qn−1 =
t(xn−1), pn = r(xn−1), p = r(x), p̃ = r(x̃), and q(p) = t(x′). At the
nth step of the EMML algorithm we obtain pn = r(xn−1) by minimizing

Θ(p, qn−1) = KL(r(x), t(xn−1)). (14.32)

According to the Pythagorean identities (14.28) and (14.29) and Lemma
11.3, we have xn = (xn−1)′ and

Θ(p, qn−1)−Θ(pn, qn−1) = KL(r(x), r(xn−1))

≥ KL(x′, (xn−1)′) = KL(x′, xn). (14.33)

With ∆(p, p̃) defined as

∆(p, p̃) = KL(r(x), r(x̃)), (14.34)

it follows that

∆(p, pn) = KL(r(x), r(xn−1)), (14.35)

so that

Θ(p, qn−1)−Θ(pn, qn−1) ≥ ∆(p, pn), (14.36)

which is the three-point property.
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We know that

KL(r(x), t(xn))−KL(r(x), t(x′)) = KL(x′, xn) (14.37)

and

KL(r(x), r(xn−1)) ≥ KL(x′, xn), (14.38)

from which it follows that

KL(r(x), r(xn−1)) ≥ KL(r(x), t(xn))−KL(r(x), t(x′)); (14.39)

this is the four-point property.

14.5 Alternating Bregman Distance Minimiza-
tion

The general problem of minimizing Θ(p, q) is simply a minimization of a
real-valued function of two variables, p ∈ P and q ∈ Q. In many cases the
function Θ(p, q) is a distance between p and q, either ‖p− q‖22 or KL(p, q).
In the case of Θ(p, q) = ‖p− q‖22, each step of the alternating minimization
algorithm involves an orthogonal projection onto a closed convex set; both
projections are with respect to the same Euclidean distance function. In
the case of cross-entropy minimization, we first project qn onto the set
P by minimizing the distance KL(p, qn) over all p ∈ P , and then project
pn+1 onto the set Q by minimizing the distance function KL(pn+1, q). This
suggests the possibility of using alternating minimization with respect to
more general distance functions. We shall focus on Bregman distances.

14.5.1 Bregman Distances

Let f : RN → R be a Bregman function [12, 59, 19], and so f(x) is convex
on its domain and differentiable in the interior of its domain. Then, for x in
the domain and z in the interior, we define the Bregman distance Df (x, z)
by

Df (x, z) = f(x)− f(z)− 〈∇f(z), x− z〉. (14.40)

For example, the KL distance is a Bregman distance with associated Breg-
man function

f(x) =
J∑

j=1

xj log xj − xj . (14.41)
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Suppose now that f(x) is a Bregman function and P and Q are closed
convex subsets of the interior of the domain of f(x). Let pn+1 minimize
Df (p, qn) over all p ∈ P . It follows then that

〈∇f(pn+1)−∇f(qn), p− pn+1〉 ≥ 0, (14.42)

for all p ∈ P . Since

Df (p, qn)−Df (pn+1, qn) =

Df (p, pn+1) + 〈∇f(pn+1)−∇f(qn), p− pn+1〉, (14.43)

it follows that the three-point property holds, with

Θ(p, q) = Df (p, q), (14.44)

and

∆(p, p̂) = Df (p, p̃). (14.45)

To get the four-point property we need to restrict Df somewhat; we assume
from now on that Df (p, q) is jointly convex, that is, it is convex in the
combined vector variable (p, q) (see [8]). Now we can invoke a lemma due
to Eggermont and LaRiccia [78].

14.5.2 The Eggermont-LaRiccia Lemma

Lemma 14.1 Suppose that the Bregman distance Df (p, q) is jointly con-
vex. Then it has the four-point property.

Proof: By joint convexity we have

Df (p, q)−Df (pn, qn) ≥

〈∇1Df (pn, qn), p− pn〉+ 〈∇2Df (pn, qn), q − qn〉,

where ∇1 denotes the gradient with respect to the first vector variable.
Since qn minimizes Df (pn, q) over all q ∈ Q, we have

〈∇2Df (pn, qn), q − qn〉 ≥ 0,

for all q. Also,

〈∇1(pn, qn), p− pn〉 = 〈∇f(pn)−∇f(qn), p− pn〉.

It follows that

Df (p, qn)−Df (p, pn) = Df (pn, qn) + 〈∇1(pn, qn), p− pn〉
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≤ Df (p, q)− 〈∇2Df (pn, qn), q − qn〉 ≤ Df (p, q).

Therefore, we have

Df (p, pn) +Df (p, q) ≥ Df (p, qn).

This is the four-point property.
We now know that the alternating minimization method works for any

Bregman distance that is jointly convex. This includes the Euclidean and
the KL distances.

14.6 Minimizing a Proximity Function

We present now an example of alternating Bregman distance minimization
taken from [37]. The problem is the convex feasibility problem (CFP), to
find a member of the intersection C ⊆ RJ of finitely many closed convex
sets Ci, i = 1, ..., I, or, failing that, to minimize the proximity function

F (x) =
I∑

i=1

Di(
←−
P ix, x), (14.46)

where fi are Bregman functions for which Di, the associated Bregman
distance, is jointly convex, and ←−P ix are the left Bregman projection of
x onto the set Ci, that is, ←−P ix ∈ Ci and Di(

←−
P ix, x) ≤ Di(z, x), for all

z ∈ Ci. Because each Di is jointly convex, the function F (x) is convex.
The problem can be formulated as an alternating minimization, where

P ⊆ RIJ is the product set P = C1 × C2 × ... × CI . A typical member
of P has the form p = (c1, c2, ..., cI), where ci ∈ Ci, and Q ⊆ RIJ is the
diagonal subset, meaning that the elements of Q are the I-fold product of
a single x; that is Q = {d(x) = (x, x, ..., x) ∈ RIJ}. We then take

Θ(p, q) =
I∑

i=1

Di(ci, x), (14.47)

and ∆(p, p̃) = Θ(p, p̃).
In [53] a similar iterative algorithm was developed for solving the CFP,

using the same sets P and Q, but using alternating projection, rather
than alternating minimization. Now it is not necessary that the Bregman
distances be jointly convex. Each iteration of their algorithm involves two
steps:

• 1. minimize
∑I

i=1Di(ci, xn) over ci ∈ Ci, obtaining ci = ←−P ix
n, and

then

• 2. minimize
∑I

i=1Di(x,
←−
P ix

n).
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Because this method is an alternating projection approach, it converges
only when the CFP has a solution, whereas the previous alternating mini-
mization method minimizes F (x), even when the CFP has no solution.

14.6.1 Right and Left Projections

Because Bregman distances Df are not generally symmetric, we can speak
of right and left Bregman projections onto a closed convex set. For any
allowable vector x, the left Bregman projection of x onto C, if it exists, is
the vector ←−P Cx ∈ C satisfying the inequality Df (←−P Cx, x) ≤ Df (c, x), for
all c ∈ C. Similarly, the right Bregman projection is the vector −→P Cx ∈ C
satisfying the inequality Df (x,−→P Cx) ≤ Df (x, c), for any c ∈ C.

The alternating minimization approach described above to minimize
the proximity function

F (x) =
I∑

i=1

Di(
←−
P ix, x) (14.48)

can be viewed as an alternating projection method, but employing both
right and left Bregman projections.

Consider the problem of finding a member of the intersection of two
closed convex sets C and D. We could proceed as follows: having found
xn, minimize Df (xn, d) over all d ∈ D, obtaining d = −→P Dx

n, and then
minimize Df (c,−→P Dx

n) over all c ∈ C, obtaining c = xn+1 = ←−P C
−→
P Dx

n.
The objective of this algorithm is to minimize Df (c, d) over all c ∈ C and
d ∈ D; such a minimum may not exist, of course.

In [9] the authors note that the alternating minimization algorithm of
[37] involves right and left Bregman projections, which suggests to them
iterative methods involving a wider class of operators that they call “Breg-
man retractions”.

14.7 More Proximity Function Minimization

Proximity function minimization and right and left Bregman projections
play a role in a variety of iterative algorithms. We survey several of them
in this section.

14.7.1 Cimmino’s Algorithm

Our objective here is to find an exact or approximate solution of the system
of I linear equations in J unknowns, written Ax = b. For each i let

Hi = {z|(Az)i = bi}, (14.49)
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and PHix be the orthogonal projection of x onto Hi. Then

(PHi
x)j = xj + αiAij(bi − (Ax)i), (14.50)

where

(αi)−1 =
J∑

j=1

A2
ij . (14.51)

Let

F (x) =
I∑

i=1

‖PHi
x− x‖22. (14.52)

Using alternating minimization on this proximity function gives Cimmino’s
algorithm, with the iterative step

xn+1
j = xn

j +
1
I

I∑
i=1

αiAij(bi − (Axn)i). (14.53)

14.7.2 Simultaneous Projection for Convex Feasibility

Now we let Ci be any closed convex subsets of RJ and define F (x) as in the
previous section. Again, we apply alternating minimization. The iterative
step of the resulting algorithm is

xn+1 =
1
I

I∑
i=1

PCix
n. (14.54)

The objective here is to minimize F (x), if there is a minimum.

14.7.3 The Bauschke-Combettes-Noll Problem

In [10] Bauschke, Combettes and Noll consider the following problem: min-
imize the function

Θ(p, q) = Λ(p, q) = φ(p) + ψ(q) +Df (p, q), (14.55)

where φ and ψ are convex on RJ , D = Df is a Bregman distance, and
P = Q is the interior of the domain of f . They assume that

b = inf
(p,q)

Λ(p, q) > −∞, (14.56)

and seek a sequence {(pn, qn)} such that {Λ(pn, qn)} converges to b. The se-
quence is obtained by the AM method, as in our previous discussion. They
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prove that, if the Bregman distance is jointly convex, then {Λ(pn, qn)} ↓ b.
In this subsection we obtain this result by showing that Λ(p, q) has the five-
point property whenever D = Df is jointly convex. Our proof is loosely
based on the proof of the Eggermont-LaRiccia lemma.

The five-point property for Λ(p, q) is

Λ(p, qn−1)− Λ(pn, qn−1) ≥ Λ(p, qn)− Λ(p, q). (14.57)

A simple calculation shows that the inequality in (14.57) is equivalent to

Λ(p, q)− Λ(pn, qn) ≥

D(p, qn) +D(pn, qn−1)−D(p, qn−1)−D(pn, qn). (14.58)

By the joint convexity of D(p, q) and the convexity of φ and ψ we have

Λ(p, q)− Λ(pn, qn) ≥

〈∇pΛ(pn, qn), p− pn〉+ 〈∇qΛ(pn, qn), q − qn〉, (14.59)

where ∇pΛ(pn, qn) denotes the gradient of Λ(p, q), with respect to p, eval-
uated at (pn, qn).

Since qn minimizes Λ(pn, q), it follows that

〈∇qΛ(pn, qn), q − qn〉 = 0, (14.60)

for all q. Therefore,

Λ(p, q)− Λ(pn, qn) ≥ 〈∇pΛ(pn, qn), p− pn〉 . (14.61)

We have
〈∇pΛ(pn, qn), p− pn〉 =

〈∇f(pn)−∇f(qn), p− pn〉+ 〈∇φ(pn), p− pn〉. (14.62)

Since pn minimizes Λ(p, qn−1), we have

∇pΛ(pn, qn−1) = 0, (14.63)

or

∇φ(pn) = ∇f(qn−1)−∇f(pn), (14.64)

so that

〈∇pΛ(pn, qn), p− pn〉 = 〈∇f(qn−1)−∇f(qn), p− pn〉 (14.65)
= D(p, qn) +D(pn, qn−1)−D(p, qn−1)−D(pn, qn). (14.66)
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Using (14.61) we obtain the inequality in (14.58). This shows that Λ(p, q)
has the five-point property whenever the Bregman distance D = Df is
jointly convex.

From our previous discussion of AM, we conclude that the sequence
{Λ(pn, qn)} converges to b; this is Corollary 4.3 of [10].

In [51] it was shown that, in certain cases, the expectation maximization
maximum likelihood (EM) method involves alternating minimization of a
function of the form Λ(p, q).

If ψ = 0, then {Λ(pn, qn)} converges to b, even without the assumption
that the distance Df is jointly convex. In such cases, Λ(p, q) has the form of
the objective function in proximal minimization and therefore the problem
falls into the SUMMA class.

14.8 AM as SUMMA

We show now that the SUMMA class of sequential unconstrained mini-
mization methods includes all the AM methods for which the five-point
property holds.

14.8.1 Reformulating AM as SUMMA

For each p in the set P , define q(p) in Q as a member of Q for which
Θ(p, q(p)) ≤ Θ(p, q), for all q ∈ Q. Let f(p) = Θ(p, q(p)).

At the nth step of AM we minimize

Gn(p) = Θ(p, qn−1) = Θ(p, q(p)) +
(
Θ(p, qn−1)−Θ(p, q(p))

)
(14.67)

to get pn. With

gn(p) =
(
Θ(p, qn−1)−Θ(p, q(p))

)
≥ 0, (14.68)

we can write

Gn(p) = f(p) + gn(p). (14.69)

According to the five-point property, we have

Gn(p)−Gn(pn) ≥ Θ(p, qn)−Θ(p, q(p)) = gn+1(p). (14.70)

It follows that AM is a member of the SUMMA class.

14.9 SMART and EMML as SUMMA

We have seen that both the SMART and the EMML can be obtained as
AM algorithms for which the five-point property holds. Consequently, both
SMART and EMML are particular cases of SUMMA.
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14.9.1 The SMART as SUMMA

In the case of SMART

Θ(p, q) = KL(t(x), r(z)), (14.71)

and

f(p) = Θ(p, q(p)) = KL(t(x), r(x)) = KL(Px, y), (14.72)

which is the function of x we seek to minimize over x ∈ X .

14.9.2 The EMML as SUMMA

In the case of EMML

Θ(p, q) = KL(r(x), t(z)), (14.73)

and

f(p) = Θ(p, q(p)) = KL(r(x), t(x′)), (14.74)

which is not KL(b, Ax). In order to obtain the EMML from an AM formu-
lation having the five-point property, and therefore to show that EMML
is in the SUMMA class, we need to view the problem as minimizing not
KL(b, Ax) but f(x) = KL(r(x), t(x′)). The minima are the same, however,
as are the minimizers.

For the EMML we get xn = (xn−1)′ by minimizing

Gn(x) = KL(r(x), t((xn−1)′)) = f(x) + gn(x), (14.75)

where

gn(x) = KL(r(x), t((xn−1)′))−KL(r(x), t(x′)). (14.76)

We need to show that

Gn(x)−Gn(xn) ≥ gn+1(x). (14.77)

From the Pythagorean identities for EMML we have

Gn(x)−Gn(xn) = KL(r(x), r(xn)), (14.78)

and

gn+1(x) = KL(x′, (xn)′) ≤ KL(r(x), r(xn)), (14.79)

which shows the EMML to be a member of the SUMMA class.
Consequently, the sequence {KL(b, Axn)} converges to the infimum of

the function KL(b, Ax) over all x ∈ X . The infimum is always attained at
some x ≥ 0 in the closure of X and it can be shown that the sequence {xn}
converges to a minimizer of KL(b, Ax) over x in the closure of X ([27, 29]).
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14.10 Conclusion

It was shown previously in [43] that the SUMMA class includes a wide
variety of optimization algorithms, including the barrier-function methods,
the proximal minimization algorithm of Censor and Zenios [58, 59], the
entropic proximal method of Teboulle [127], and the simultaneous multi-
plicative algebraic reconstruction technique (SMART)[70, 118, 68, 27, 28].
With some reformulation, it also contains the penalty-function methods.
We have now shown that the alternating minimization methods of [69] are
included in the SUMMA class whenever the five-point property holds. As
a consequence, we learn that the EMML algorithm for Poisson mixtures
[119, 101, 130, 102, 27, 28] is also a member of the SUMMA class.



Chapter 15

Appendix:
Bregman-Legendre
Functions

15.1 Chapter Summary

In [7] Bauschke and Borwein show convincingly that the Bregman-Legendre
functions provide the proper context for the discussion of Bregman pro-
jections onto closed convex sets. The summary here follows closely the
discussion given in [7].

15.2 Essential Smoothness and Essential Strict
Convexity

Following [116] we say that a closed proper convex function f : RJ → R
is essentially smooth if intD is not empty, f is differentiable on intD and
xn ∈ intD, with xn → x ∈ bdD, implies that ||∇f(xn)||2 → +∞. Here
intD and bdD denote the interior and boundary of the set D. A closed
proper convex function f is essentially strictly convex if f is strictly convex
on every convex subset of dom ∂f .

The closed proper convex function f is essentially smooth if and only if
the subdifferential ∂f(x) is empty for x ∈ bdD and is {∇f(x)} for x ∈ intD
(so f is differentiable on intD) if and only if the function f∗ is essentially
strictly convex.

Definition 15.1 A closed proper convex function f is said to be a Legen-
dre function if it is both essentially smooth and essentialy strictly convex.

99
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So f is Legendre if and only if its conjugate function is Legendre, in
which case the gradient operator ∇f is a topological isomorphism with
∇f∗ as its inverse. The gradient operator ∇f maps int dom f onto int
dom f∗. If int dom f∗ = RJ then the range of ∇f is RJ and the equation
∇f(x) = y can be solved for every y ∈ RJ . In order for int dom f∗ = RJ it
is necessary and sufficient that the Legendre function f be super-coercive,
that is,

lim
||x||2→+∞

f(x)
||x||2

= +∞. (15.1)

If the effective domain of f is bounded, then f is super-coercive and its
gradient operator is a mapping onto the space RJ .

15.3 Bregman Projections onto Closed Con-
vex Sets

Let f be a closed proper convex function that is differentiable on the
nonempty set intD. The corresponding Bregman distance Df (x, z) is de-
fined for x ∈ RJ and z ∈ intD by

Df (x, z) = f(x)− f(z)− 〈∇f(z), x− z〉. (15.2)

Note that Df (x, z) ≥ 0 always and that Df (x, z) = +∞ is possible. If f is
essentially strictly convex then Df (x, z) = 0 implies that x = z.

Let K be a nonempty closed convex set in RJ , with K ∩ intD 6= ∅. Pick
z ∈ intD. The Bregman projection of z onto K, with respect to f , is

P f
K(z) = argminx∈K∩DDf (x, z). (15.3)

If f is essentially strictly convex, then P f
K(z) exists. If f is strictly convex

on D then P f
K(z) is unique. If f is Legendre, then P f

K(z) is uniquely defined
and is in intD; this last condition is sometimes called zone consistency.

Example: Let J = 2 and f(x) be the function that is equal to one-half the
norm squared on D, the nonnegative quadrant, +∞ elsewhere. Let K be
the set K = {(x1, x2)|x1 + x2 = 1}. The Bregman projection of (2, 1) onto
K is (1, 0), which is not in intD. The function f is not essentially smooth,
although it is essentially strictly convex. Its conjugate is the function f∗

that is equal to one-half the norm squared onD and equal to zero elsewhere;
it is essentially smooth, but not essentially strictly convex.

If f is Legendre, then P f
K(z) is the unique member ofK∩intD satisfying

the inequality

〈∇f(P f
K(z))−∇f(z), P f

K(z)− c〉 ≥ 0, (15.4)
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for all c ∈ K. From this we obtain the Bregman Inequality:

Df (c, z) ≥ Df (c, P f
K(z)) +Df (P f

K(z), z), (15.5)

for all c ∈ K.

15.4 Bregman-Legendre Functions

Following Bauschke and Borwein [7], we say that a Legendre function
f : RJ → R is a Bregman-Legendre function if the following properties
hold:

B1: for x in D and any a > 0 the set {z|Df (x, z) ≤ a} is bounded.
B2: if x is in D but not in intD, for each positive integer n, yn is in intD
with yn → y ∈ bdD and if {Df (x, yn)} remains bounded, thenDf (y, yn)→
0, so that y ∈ D.
B3: if xn and yn are in intD, with xn → x and yn → y, where x and y
are in D but not in intD, and if Df (xn, yn)→ 0 then x = y.

Bauschke and Borwein then prove that Bregman’s SGP method converges
to a member ofK provided that one of the following holds: 1) f is Bregman-
Legendre; 2) K ∩ intD 6= ∅ and dom f∗ is open; or 3) dom f and dom f∗

are both open.
The Bregman functions form a class closely related to the Bregman-

Legendre functions. For details see [19].

15.5 Useful Results about Bregman-Legendre
Functions

The following results are proved in somewhat more generality in [7].
R1: If yn ∈ int dom f and yn → y ∈ int dom f , then Df (y, yn)→ 0.
R2: If x and yn ∈ int dom f and yn → y ∈ bd dom f , then Df (x, yn)→
+∞.
R3: If xn ∈ D, xn → x ∈ D, yn ∈ int D, yn → y ∈ D, {x, y}∩ int D 6= ∅
and Df (xn, yn)→ 0, then x = y and y ∈ int D.
R4: If x and y are in D, but are not in int D, yn ∈ int D, yn → y and
Df (x, yn)→ 0, then x = y.
As a consequence of these results we have the following.
R5: If {Df (x, yn)} → 0, for yn ∈ int D and x ∈ RJ , then {yn} → x.

Proof of R5: Since {Df (x, yn)} is eventually finite, we have x ∈ D. By
Property B1 above it follows that the sequence {yn} is bounded; without
loss of generality, we assume that {yn} → y, for some y ∈ D. If x is in int
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D, then, by result R2 above, we know that y is also in int D. Applying
result R3, with xn = x, for all n, we conclude that x = y. If, on the other
hand, x is in D, but not in int D, then y is in D, by result R2. There are
two cases to consider: 1) y is in int D; 2) y is not in int D. In case 1) we
have Df (x, yn) → Df (x, y) = 0, from which it follows that x = y. In case
2) we apply result R4 to conclude that x = y.



Chapter 16

Appendix: Convex
Functions

16.1 Gradient Operators

Definition 16.1 An operator T on RJ is called L-Lipschitz continuous,
with respect to a given norm on RJ , if, for every x and y in RJ , we have

‖Tx− Ty‖ ≤ L‖x− y‖. (16.1)

Clearly, if an operator T is L-Lipschitz continuous, then the operator
N = 1

LT is non-expansive. We have the following theorem concerning
the gradient of a differentiable convex function h(x).

Theorem 16.1 Let h(x) be convex and differentiable and its derivative,
∇h(x), non-expansive in the two-norm. Then ∇h(x) is firmly non-expansive;
that is,

〈∇h(x)−∇h(y), x− y〉 ≥ ||∇h(x)−∇h(y)||22. (16.2)

Suppose that g(x) : RJ → R is convex and the function Tx = ∇g(x) is
L-Lipschitz. Let h(x) = 1

Lg(x), so that Nx = ∇h(x) is a non-expansive
operator. Then, according to Theorem 16.1, the operator∇h(x) = 1

L∇g(x)
is firmly non-expansive.

The proof of Theorem 16.1 is not trivial. In [86] Golshtein and Tretyakov
prove the following theorem, from which Theorem 16.1 follows immediately.

Theorem 16.2 Let g : RJ → R be convex and differentiable. The follow-
ing are equivalent:
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• 1)

||∇g(x)−∇g(y)||2 ≤ ||x− y||2; (16.3)

• 2)

g(x) ≥ g(y) + 〈∇g(y), x− y〉+ 1
2
||∇g(x)−∇g(y)||22; (16.4)

and

• 3)

〈∇g(x)−∇g(y), x− y〉 ≥ ||∇g(x)−∇g(y)||22. (16.5)

Proof: The only difficult step in the proof is showing that Inequality (16.3)
implies Inequality (16.4). To prove this part, let x(t) = (1 − t)y + tx, for
0 ≤ t ≤ 1. Then

g′(x(t)) = 〈∇g(x(t)), x− y〉, (16.6)

so that∫ 1

0

〈∇g(x(t))−∇g(y), x− y〉dt = g(x)− g(y)− 〈∇g(y), x− y〉. (16.7)

Therefore,
g(x)− g(y)− 〈∇g(y), x− y〉 ≤

∫ 1

0

||∇g(x(t))−∇g(y)||2||x(t)− y||2dt (16.8)

≤
∫ 1

0

||x(t)− y||22dt =
∫ 1

0

||t(x− y)||22dt =
1
2
||x− y||22, (16.9)

according to Inequality (16.3). Therefore,

g(x) ≤ g(y) + 〈∇g(y), x− y〉+ 1
2
||x− y||22. (16.10)

Now let x = y −∇g(y), so that

g(y −∇g(y)) ≤ g(y) + 〈∇g(y),∇g(y)〉+ 1
2
||∇g(y)||22. (16.11)

Consequently,

g(y −∇g(y)) ≤ g(y)− 1
2
||∇g(y)||22. (16.12)
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Therefore,

inf g(x) ≤ g(y)− 1
2
||∇g(y)||22, (16.13)

or

g(y) ≥ inf g(x) +
1
2
||∇g(y)||22. (16.14)

Now fix y and define the function h(x) by

h(x) = g(x)− g(y)− 〈∇g(y), x− y〉. (16.15)

Then h(x) is convex, differentiable, and non-negative,

∇h(x) = ∇g(x)−∇g(y), (16.16)

and h(y) = 0, so that h(x) attains its minimum at x = y. Applying
Inequality (16.14) to the function h(x), with z in the role of x and x in the
role of y, we find that

inf h(z) = 0 ≤ h(x)− 1
2
||∇h(x)||22. (16.17)

From the definition of h(x), it follows that

0 ≤ g(x)− g(y)− 〈∇g(y), x− y〉 − 1
2
||∇g(x)−∇g(y)||22. (16.18)

This completes the proof of the implication.
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