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We consider the problem of reconstructing an object function f ðrÞ from finitely many linear functional
values. In our main application, the function f ðrÞ is a tomographic image, and the data are integrals of
f ðrÞ along thin strips. Because the data are limited, resolution can be enhanced through the inclusion of
prior knowledge. One way to do that, a generalization of the prior discrete Fourier transform (PDFT)
method, was suggested in 1982 [SIAM J. Appl. Math. 42, 933 (1982)] but was found to be difficult to
implement for the tomography problem, and that application was not pursued. Recent advances in ap-
proximating the PDFT make it possible to achieve the desired resolution enhancement in an easily im-
plemented procedure. © 2008 Optical Society of America

OCIS codes: 100.3010, 100.3020, 100.3190, 100.6640.

1. Introduction

The problem is to reconstruct a (possibly complex-
valued) function f∶RD → C from finitely many linear
functional measurements dn, n ¼ 1;…;N, pertaining
to f . The function f ðrÞ represents the physical object
of interest, such as the spatial distribution of acoustic
energy in sonar, the distribution of x-ray-attenuating
material in transmission tomography, the distribu-
tion of radionuclides in emission tomography, and
the sources of reflected radio waves in radar. Often
the reconstruction, or estimate, of the function f
takes the form of an image in two or three dimen-
sions; for that reason, we also speak of the problem
as one of image reconstruction. The data are ob-
tained through measurements. Because there are
only finitely many measurements, the problem is
highly underdetermined, and even noise-free data
are insufficient to specify a unique solution.
The function f ðrÞ of interest to us here has finite

support, that is, there is a closed, bounded set

S⊆RD such that f ðrÞ ¼ 0 for r not in S; we may or
may not know S precisely. The measurements of in-
terest to us are linear; that is, there are known func-
tions hnðrÞ, n ¼ 1;…;N, with

dn ¼
Z
S
f ðrÞhnðrÞdr: ð1Þ

We shall assume that the set fhnðrÞ; n ¼ 1;…;Ng is
linearly independent. A standard method for esti-
mating f ðrÞ involves formulating the problem in a
Hilbert-space setting.

The reconstruction approach described in this
paper was designed initially to reconstruct a function
from finitely many values of its Fourier transform.
Because it generalized the discrete Fourier transform
and incorporated prior knowledge, it was called the
prior discrete Fourier transform (PDFT) [1,2]. The
possibility was raised in [1] of applying the PDFT
approach to the reconstruction of images from tomo-
graphic data, but the PDFT, as then computed, was
impractical for such large problems, so that avenue
was left unexplored. Recent improvements [3,4] that
make it possible to calculate efficiently a discretized
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PDFT estimate suggest that now is a good time to
reopen that line of enquiry.

2. Hilbert Space Reconstruction Methods

In Sections 2–4 we present a rigorous discussion of
the reconstruction problem in Hilbert space.
In many applications the data are related linearly

to f . To model the operator that transforms f into the
data vector, we need to select an ambient space con-
taining f . Typically, we choose a Hilbert space. The
selection of the inner product provides an opportu-
nity to incorporate prior knowledge about f into
the reconstruction. The inner product induces a
norm, and our reconstruction is that function, consis-
tent with the data, for which this norm is minimized.
Minimum-Norm Solutions. Our estimation pro-

blem is highly underdetermined; there are infinitely
many functions in L2ðSÞ that are consistent with the
data and might be the right answer. Such underde-
termined problems are often solved by acting conser-
vatively and selecting as the estimate of that
function consistent with the data that has the smal-
lest norm. At the same time, however, we often have
some prior information about f that we would like to
incorporate into the estimate. One way to achieve
both of these goals is to select the norm to incorporate
prior information about f and then to take as the es-
timate of f the function, consistent with the data, for
which the chosen norm is minimized.
The data vector d ¼ ðd1;…;dNÞT is in CN , and the

linear operatorH from L2ðSÞ to CN takes f to d; so we
write d ¼ Hf . Associated with the mapping H is its
adjoint operator, H†, going from CN to L2ðSÞ and
given, for each vector a ¼ ða1;…;aNÞT, by

ðH†aÞðrÞ ¼ a1h1ðrÞ þ…þ aNhNðrÞ: ð2Þ

The operator from CN to CN defined by HH† corre-
sponds to an N ×N matrix, which we shall also
denote HH†. If the functions hnðrÞ are linearly in-
dependent, then this matrix is positive definite,
therefore invertible.
Given the data vector d, we can solve the system of

linear equations

d ¼ HH†a ð3Þ

for the vector a. Then the function

f 0ðrÞ ¼ ðH†aÞðrÞ ð4Þ

is consistent with the measured data and is the func-
tion in L2ðSÞ of least norm for which this is true. The
function uðrÞ ¼ f ðrÞ − f 0ðrÞ has the property Hu ¼ 0.
It is easy to see that

∥f∥2
2 ¼ ∥f 0∥2

2 þ ∥u∥2
2: ð5Þ

The estimate f 0ðrÞ is the minimum-norm solution,
with respect to the usual L2ðSÞ norm. If we change

the norm on L2ðSÞ, or, equivalently, the inner pro-
duct, then the minimum-norm solution will change.

For any continuous linear operator T on L2ðSÞ, the
adjoint operator, denoted T †, is defined by

hT f ;hi2 ¼ hf ; T †hi2: ð6Þ
The adjoint operator will change when we change the
inner product.

3. Class of Inner Products

Let T be a continuous, linear and invertible operator
on L2ðSÞ. Define the T inner product to be

hf ;hiT ¼ hT −1f ; T −1hi2: ð7Þ
We can then use this inner product to define the pro-
blem to be solved. We now say that

dn ¼ hf ; tniT ; ð8Þ
for known functions tnðrÞ. Using the definition of the
T inner product, we find that

dn ¼ hf ;hni2 ¼ hT f ; T hniT : ð9Þ
The adjoint operator for T , with respect to the T
norm, is denoted T �, and is defined by

hT f ;hiT ¼ hf ; T �hiT : ð10Þ
Therefore,

dn ¼ hf ; T �T hniT : ð11Þ
Lemma 3.1. We have T �T ¼ T T †.
Consequently, we have

dn ¼ hf ; T T †hniT : ð12Þ

4. Minimum-T -Norm Solutions

The function f 1 consistent with the data and having
the smallest T norm has the algebraic form

f 1 ¼
XN
m¼1

cmT T †hm: ð13Þ

Applying the T inner product to both sides of
Eq. (13), we get

dn ¼ hf 1; T T †hniT ð14Þ

¼
XN
m¼1

cmhT T †hm; T T †hniT : ð15Þ

Therefore,
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dn ¼
XN
m¼1

cmhT †hm; T †hni2: ð16Þ

We solve this system for the cm and insert them into
Eq. (13) to get our reconstruction. The Gram matrix
that appears in Eq. (16) is positive definite, but is
often ill conditioned; increasing the main diagonal
by a percent or so usually is sufficient regularization.
We turn now to an important case in which the

measured data are values of the Fourier transform
of the function f .

5. Case of Fourier Transform Data

To illustrate these minimum-T -norm solutions, we
consider the case in which the data are values of
the Fourier transform of f . Specifically, suppose that

dn ¼
Z
S
f ðxÞe−iωnxdx; ð17Þ

for arbitrary values ωn.

A. L2ð�π;πÞ Case
Assume that f ðxÞ ¼ 0, for jxj > π. Then S ¼ ½−π; π�.
The minimum-2-norm solution in L2ðSÞ has the form

f 0ðxÞ ¼
XN
m¼1

ameiωmx; ð18Þ

with

dn ¼
XN
m¼1

am

Z π

−π
eiðωm−ωnÞxdx: ð19Þ

For the equispaced values ωn ¼ n we find that am ¼
dm and the minimum-norm solution is the discrete
Fourier transform

f 0ðxÞ ¼
XN
n¼1

dneinx: ð20Þ

B. Oversampled Case

Suppose that f ðxÞ ¼ 0 for jxj > X, where 0 < X < π.
Then we use L2ð−X ;XÞ as the Hilbert space, and
S ¼ ½−X ;X�. For equispaced data at ωn ¼ n, we have

dn ¼
Z π

−π
f ðxÞχXðxÞe−inxdx; ð21Þ

so that the minimum-norm solution has the form

f 0ðxÞ ¼ χXðxÞ
XN
m¼1

ameimx; ð22Þ

with

dn ¼ 2
XN
m¼1

am
sinXðm − nÞ

m − n
: ð23Þ

The minimum-norm solution is supported on ½−X;X �
and consistent with the Fourier-transform data.

C. Using a Prior Estimate of f

Suppose that f ðxÞ ¼ 0 for jxj > π again, and that pðxÞ
satisfies

0 < ϵ ≤ pðxÞ ≤ E < þ∞; ð24Þ
for all x in S ¼ ½−π; π�. Define the operator T by
ðT f ÞðxÞ ¼ ffiffiffiffiffiffiffiffiffi

pðxÞp
f ðxÞ. The T norm is then

hf ;hiT ¼
Z π

−π
f ðxÞhðxÞpðxÞ−1dx: ð25Þ

It follows that

dn ¼
Z π

−π
f ðxÞpðxÞe−inxpðxÞ−1dx; ð26Þ

so that the minimum T norm solution is

f 1ðxÞ ¼
XN
m¼1

cmpðxÞeimx ¼ pðxÞ
XN
m¼1

cmeimx; ð27Þ

where

dn ¼
XN
m¼1

cm

Z π

−π
pðxÞeiðm−nÞxdx: ð28Þ

The estimate f 1ðxÞ is f wðxÞ, in the terminology of a
previous section. If we have prior knowledge about
the support of f , or some idea of its shape, we can in-
corporate that prior knowledge into the reconstruc-
tion through the choice of pðxÞ.

The reconstruction in Eq. (27) was presented in [1],
where it was called the PDFT method. The PDFT
was based on an earlier noniterative version of the
Gerchberg–Papoulis band-limited extrapolation pro-
cedure [5]. The PDFT was then applied to image re-
construction problems in [2]. An application of the
PDFT was presented in [6]. In [7] we extended the
PDFT to a nonlinear version, the indirect PDFT, that
generalizes Burg’s maximum entropy spectrum esti-
mation method. The PDFT was applied to the phase
problem in [8] and in [9] both the PDFT and indirect
PDFT were examined in the context of Wiener filter
approximation. More recent work on these topics is
discussed in the book [10].

6. Case of Tomographic Data

The ideal model for transmission tomography is that
the data we have are line integrals through the at-
tenuation function f ðrÞ, fromwhichwemust estimate
f ðrÞ. In practice, of course, what we have measured
will not be precisely line integrals, but more like strip
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integrals, and, in any case, we will have finitely many
of them. We shall consider here only the case D ¼ 2;
that is, the function f ðrÞ is a function of two real vari-
ables.We take eachhnðrÞ to be the characteristic func-
tion of a strip, that is, hnðrÞ ¼ 1 for points rwithin the
strip, and hnðrÞ ¼ 0 for r outside the strip. By a strip
we mean the set of all points that lie within δ > 0 of a
line segment through the domain of f ðrÞ, where δ is
fixed and small. In the examples to be discussed later,
the function f ðrÞ is a simulated slice of a human head.
We take the prior function pðrÞ to have the value 1
within the oval describing the support of the head
slice, and ϵ > 0 outside the support. The use of a small
ϵ > 0 instead of zero serves to introduce a small
amount of regularization and tomake the reconstruc-
tion less sensitive to noise. The function f ðrÞ is discre-
tized into finitely many pixel values, the PDFT is
approximated by theDPDFT, and the algebraic recon-
struction technique (ART) is used to find the mini-
mum-weighted-norm solution.

7. The Discrete PDFT

The basic idea in the discrete PDFT (DPDFT)
approach is to discretize the functions f ðrÞ, hnðrÞ,
and pðrÞ, replacing the function f ðrÞ with the J by
one vector f with entries f j, hnðrÞ with the J
by one vector hn with entries hn

j , and pðrÞ with the
J by one vector p with entries pj > 0. Then the data
values dn are related to the vector f by

dn ¼
XJ
j¼1

f jhn
j : ð29Þ

In matrix notation, we write this system as Af ¼ d,
where Anj ¼ hn

j , and the entries of d are the dn. We
take J > N, so that this system of equations is under-
determined. By analogy with the PDFT, we now seek
the vector f, satisfying the system in Eq. (29), for
which the norm

∥f∥w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXJ
j¼1

jf jj2p−1
j

vuut ð30Þ

is minimized.
Let gj ¼ f j=

ffiffiffiffiffipj
p and Bnj ¼ Anj

ffiffiffiffiffipj
p . Then Bg ¼

Af ¼ d, and we seek the minimum Euclidean norm
solution of the system Bg ¼ d. Iterative algorithms
such as the ART produce this minimum-norm solu-
tion when the system is underdetermined and the in-
itial vector is zero. Notice that we no longer need to
calculate the Gram matrix, and the solution to the
system is approximated iteratively, which is compu-
tationally feasible, even for large N.

8. Simulations

To test our algorithm we applied it to simulated
transmission-tomographic data. For the purpose of
accommodating more realistic computerized tomo-
graphic imaging applications, a simulated head
phantom in Fig. 1(a) is considered as the object func-

tion to be reconstructed in the simulation. The super-
ior of the PDFT over the filtered backprojection
(FBP) and the ART methods is especially evident.

In the data collection we sampled 151 projection-
data values at a uniform interval for each angle,
and there were 90 different angles taken from 0°
to 0 to 180°, with a uniform step angle of 2°. The
FBP estimate and the ART estimate after one itera-
tion are shown in Figs. 1(b) and 1(c), respectively. In
this example the PDFT cannot be calculated directly
by using a personal computer because of the process
of solving a large system of linear equations, like
most realistic applications. Therefore, we turn to
the iterative DPDFT algorithm. With the prior in
Fig. 1(c), the DPDFT estimate after one iteration
in Fig. 1(d) gives a better resolution than the FBP
and ART estimates. To avoid what might otherwise
be slow convergence of the iteration, a random access
order of the equations is used to obtain the image re-
sults in Fig. 1(c) and 1(d) [4]. It is important to note
that only a single pass through the equations was
used to obtain the DPDFT images, which makes this
approach even more computationally attractive.

For a quantitative evaluation, the root mean
square error between the object function and its es-
timate can be essentially considered ameasure of the
accuracy of the image reconstruction. Since the
DPDFT reconstructs the image only within the prior
function’s domain, the root mean square error calcu-
lated from the whole picture is not appropriate to be
used for the comparison, and we take the root mean
square error over the object function’s true domain
(RMSEOFTD) instead:

RMSEOFTD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

X
D

jon − rnj2
s

;

where N is the total number of pixels over the object
function’s true domain D, and on and rn each repre-
sents the pixel value of the object and the image, re-
spectively. For the example in Fig. 1, RMSEOFTD for
the FBP, ART, and DPDFT estimates is 63.036,
24.457, and 19.547, respectively.

9. Conclusions

It has been known for some time that reconstruction
from limited data can be improved through the use
of prior information about the object being recon-
structed. The PDFT is one effective way in which to
incorporateprior information.Difficultieswith imple-
menting the PDFT on realistically large tomographic
problems have been overcome through the use of the
DPDFTapproximationmethod. The DPDFT involves
the calculation of a weighted-minimum-norm solu-
tion of a large system of linear equations, for which
we have chosen to use the ART method. The ART it-
self was originally proposed for tomographic recon-
struction [11]. The novelty here is in the use of the
inverse of the prior estimate of the object as a weight
in redefining the norm to be minimized.
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Fig. 1. Image reconstruction from 90-angle projection data, 151 sampled values for each angle. (a) Object function, (b) estimate by
the FBP, (c) estimate by the ART after one iteration using the data access order of random permutation, (d) prior function, (e) estimate
by the DPDFT after one iteration using the data access order of random permutation and the prior in (d).
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