
Iterative image reconstruction using prior

knowledge

Hsin M. Shieh

Department of Electrical Engineering,

Feng Chia University,

100 Wenhwa Rd., Seatwen, Taichung, Taiwan 40724, R.O.C.

hmshieh@fcu.edu.tw

Charles L. Byrne

Department of Mathematical Sciences,

University of Massachusetts Lowell,

One University Avenue, Lowell, MA 01854, U.S.A.

Charles Byrne@uml.edu

Markus E. Testorf

Thayer School of Engineering,

Dartmouth College,

8000 Cummings Hall, Hanover, NH 03755, U.S.A.

Markus.E.Testorf@Dartmouth.EDU

1



Michael A. Fiddy

Center for Optoelectronics and Optical Communications,

The University of North Carolina at Charlotte,

9201 University City Blvd., Charlotte, NC 28223, U.S.A.

mafiddy@uncc.edu

A method is proposed to reconstruct signals from incomplete data. The

method, which can be interpreted both as a discrete implementation of the

so-called PDFT spectral estimation technique as well as a variant of the al-

gebraic reconstruction technique, allows one to incorporate prior information

about the reconstructed signal to improve the resolution of the signal esti-

mated. The context of diffraction tomography and image reconstruction from

samples of the far field scattering amplitude are used to explore the perfor-

mance of the method. Based on numerical computations the optimum choice

of parameters is determined empirically by comparing image reconstructions

of the non-iterative PDFT algorithm and the proposed iterative scheme.
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1. Introduction

A large number of inverse problems can be described as computing the image of an

object from samples of its Fourier transformation. This includes computerized tomog-

raphy and, diffraction tomography, many variants of radar imaging applications, as

well as the estimate of spectra from a finite time series.
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A significant problem in reconstructing an image f(r) from finitely many projec-

tions is the limited nature of the data, allowing for non-unique solutions. The prior

discrete Fourier transform (PDFT) method [1, 2, 3, 4, 5, 6] incorporates prior infor-

mation about the image, such as support information or profile information, through

the use of a weight function p(r) ≥ 0. The image obtained with the PDFT is a data

consistent member of a finite-parameter family of functions of a continuous variable

r. There are as many parameters as there are data values and the parameters are de-

termined from the data by solving a system of linear equations. The matrix involved

in this system comes from the weight function p(r). The term “PDFT” denotes the

PDFT estimator in the case of Fourier transform data, where the image is computed

as a product of the prior p(r) and a discrete Fourier transformation. However, we

emphasize that the PDFT is not limited to this problem, but can be applied to any

data set which can be interpreted as projections in a Hilbert space which describes

the experimental geometry.

Suppose gm(r) for m = 1, 2, . . . ,M are known functions and the data vector d has

the entries

dm =

∫
f(r) gm(r) dr . (1)
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For n = 1, 2, . . . , M let P be the square matrix with entries

Pmn =

∫
p(r)gn(r)gm(r) dr , (2)

and the vector a satisfy the system d = Pa. Then the PDFT estimate of the image

function f(r) is

f̂PDFT (r) = p(r)
M∑

n=1

angn(r) . (3)

The cumbersome part of using the PDFT is usually the formation of the matrix P,

particularly when M is large. Our purpose, in this paper, is to illustrate how to avoid

the use of this matrix. The following fact about the PDFT is the basis for our new

method.

The PDFT estimate of f(r) is the function consistent with the data whose weighted

norm is minimized, where the squared weighted norm of a function h(r) is defined to

be

||h||2 =

∫
|h(r)|2p−1(r)dr . (4)

It follows from the theory of Hilbert space that the PDFT estimate must have the

form of equation (3).

The discrete PDFT (DPDFT) uses discrete representations of f(r) and p(r) rep-
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resented by finite N by 1 vectors f and p > 0, with N > M . The integration in

equation (1) is replaced by a summation. We have

dm =
N∑

n=1

Amnfn . (5)

with m = 1, ..., M .

Vector f is the discrete image estimate, which satisfies d = Af , and for which the

squared weighted norm reads

||f ||2p =
N∑

n=1

|fn|2/pn . (6)

In closed form the minimum weighted norm solution is given by

f̂DPDFT = W−1A†(AW−1A†)−1d , (7)

where W is the diagonal matrix having the entries 1/pn on the diagonal. Using the

closed form to calculate the solution is not efficient for large data sets. Instead, we

calculate the DPDFT solution using the algebraic reconstruction technique (ART)

[7,8,9,10,11,12]. For the remainder of this paper we shall be concerned with the case

of Fourier transform data.

The main contribution of this paper is to demonstrate that the cumbersome aspects
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of the PDFT can be avoided through the DPDFT, without degrading the image

resolution. It is true that, in certain cases, the matrix P may exhibit special structure,

such as being Toeplitz or block-Toeplitz, and this structure can be exploited to obtain

fast inversion schemes. Nevertheless, it is the actual computation of P that we wish

to avoid.

2. The DPDFT

We consider the problem of estimating f(r) from finitely many Fourier transform

values, F (km) for m = 1, 2, ..., M . The PDFT estimator is given by

f̂PDFT (r) = p(r)
M∑

m=1

amexp(jr · km) , (8)

where p(r) ≥ 0 is the prior function. The coefficients am for m = 1, 2, . . . , M satisfy

the matrix equation

d = P a , (9)

where d = [ F (k1), F (k2), . . . , F (kM) ]T and a = [ a1, a2, . . . , aM ]T are the data and

coefficient column vectors, respectively, and P is the M by M square matrix with

entries P (ki − kj). Here the function P (k) is the Fourier transform of the prior

weighting function p(r).

In many applications calculating the matrix P is challenging, in particular if p(r)

is not available in closed form, and the matrix elements cannot be computed from

6



analytic expression. In addition, solving the system of equation (9) is costly, if not

impractical, for large data sets. In contrast, the DPDFT does not require the matrix

P and it is sufficient to provide p as a set of discrete numerical values.

For specificity we consider the two-dimensional problem in which f(r) = f(x, y)

and finitely many Fourier transform values of f are

F (αm, βm) =

∫∫
f(x, y) exp[−j(xαm + yβm)]dxdy (10)

for m = 1, 2, . . . , M . We approximate the two-dimensional integral in equation (10)

using Riemann sums with dx ≈ ∆x, dy ≈ ∆y for ∆x, ∆y being small enough,

F (αm, βm) ≈
U∑

u=−U

V∑
v=−V

f(u∆x, v∆y) exp[−j(x∆xαm + y∆yβm)]∆x∆y . (11)

The object function f(x, y) is assumed to reside entirely within the reconstructed

image area, i.e. f(x, y) = 0 for |x| > U∆x, |y| > V ∆y. With the vectorization of

the double sum in equation (11), it obtains a matrix equation d = Af . The vector

f contains the values f(u∆x, v∆y) and the matrix A has ∆x∆y times the complex

exponentials in the double sum for its entries.

To incorporate prior knowledge we write

Af = AW− 1
2W

1
2 f = Bg . (12)
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Instead of solving it in closed form, we calculate the minimum norm solution ĝ of

d = Bg using the ART. Beginning with the initial vector g0, the ART iterative step

we set up to solve for ĝ in equation d = Bg is given by

gk+1
n = gk

n +
Bmn

(
dm −

∑N
i=1 Bmig

k
i

)

∑N
i=1 |Bmi|2

(13)

where m = mod(k, M) + 1. The ART algorithm in equation (13) converges to g∞

for which ‖g − ĝ‖ is minimized if there exist solutions for the system of equations

d = Bg. Our estimate of f is then f̂ = W− 1
2 ĝ,

fk+1
n = fk

n + pn

Amn

(
dm −

∑N
i=1 Amif

k
i

)

∑N
i=1 pi|Ami|2

. (14)

The estimator of equation (14) is the so-called DPDFT.

3. Convergence of the ART

The DPDFT requires finding the minimum weighted norm solution of an underdeter-

mined system of linear equations. There are many ways to do this. In our simulations

we have chosen to use the ART. We make no claims here about the best algorithm

to use, but merely wish to point out the improvements in ART that can be achieved

through the use of relaxation, regularization, and attention to the ordering of the

equations. It is important to note that in many applications of iterative methods in

image reconstruction in which time is important, only a few iterations of an iterative
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algorithm may be used. Therefore, how long it takes an algorithm to converge may

be less significant than how good a job it does in the first few iterative steps.

The ART algorithm can be slow to converge when the equations are ordered in

an unfavorable sequence. To improve it, there have been proposals for rearranging

the order in which data are accessed. By randomizing the order in which data are

accessed, or by optimizing the selection order in some sense, the convergence rate

can be improved dramatically [13,14,15]. In addition, this slow convergence can also

be improved by using the relaxation method [16, 17] which provides flexibility for

choosing the new estimate at each iteration during the iterative process. Applying

the relaxation in the ART is that adding an adjustable parameter to the second term

(projection) on the right hand side of equation (13). For the DPDFT, this manner

can be written as

fk+1
n = fk

n + λkpn

Amn

(
dm −

∑N
i=1 Amif

k
i

)

∑N
i=1 pi|Ami|2

, (15)

where λk is the relaxation parameter for the k-th projection step.

To investigate the impact of rearranging and relaxation on the convergence perfor-

mance of the DPDFT algorithm, we consider a two-dimensional problem of recon-

structing an object function from its Fourier transform values. This demonstration

particularly concentrates on one of our primary interests in developing the DPDFT

algorithm for applications related to diffraction tomography. The data map in figure
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1 is interpreted as the map of Fourier data which would be obtained from a bistatic

radar experiment. The sampling points are equivalent to a radar frequency of 10GHz,

incident angles varying between 0o and 355o, and scattered field angles ranging from

0o to 175o, both sampled with an increment of 5o. We emphasize, however, that only

computed Fourier transform data were used to evaluate the convergence performance

of the DPDFT under different environments, without the necessity to take imperfec-

tions of an experimental data acquisition step into account.

For the reconstruction we used a a circular prior function of a radius 5 cm (Figure

2(c)). The PDFT estimate in Figure 2(d) shows better resolution than the DFT

estimate in Figure 2(b). The DPDFT estimate improves gradually at each iteration

in accordance with the convergence characteristic of the ART [17, 18]. The DPDFT

estimate after 6 iterations is shown in Figure 2(e) which is better resolved than the

DFT estimate in Figure 2(b), however qualitatively the PDFT is superior. After 15

iterations the DPDFT estimate in Figure 2(f) has improved significantly and shows

similar quality as compared to the PDFT estimate.

For a quantitative evaluation, we take the root mean square error (RMSE) be-

tween the object function and its estimate as a measure of the accuracy of the image

reconstruction

RMSE =

√√√√ 1

N

N∑
n=1

|on − rn|2 , (16)

where N is the total number of pixels, and, on and rn each represents the pixel
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value of the object and the image, respectively. For the example in Figure 2, the

RMSEs between the object and the PDFT estimate and between the object and

the DPDFT estimates are shown in Figure 3(a). The characteristic of the DPDFT

estimate (solid line) converges monotonically to the better solution as the number

of iterations increases. In terms of computational efficiency the DPDFT avoids the

costly creation and inversion of a 2521× 2521 complex P matrix needed to compute

the PDFT, but the DPDFT cannot obtain a comparable resolution like the PDFT

estimate unless it completes 15 iteration or more. The iterative process of the DPDFT

is typically subject to the problem of the slow convergence observed in Figure 3(a),

which may outweigh the cost in time and memory associated with the setup and

inversion of the P-matrix.

For the same data used for the example in Figure 2, we computed the image by im-

plementing the random permutation scheme (RPS) and the Herman-Meyer scheme

(HMS) [14] to adjust the data access order for the DPDFT. It is remarkable that

the DPDFT estimate after one iteration with RPS reordering, in Figure 4(a), and

with HMS reordering, in Figure 4(b), show comparable resolution as compared to

the DPDFT estimate after 15 iterations and without reordering, in Figure 2(f). The

quantitative improvement of the DPDFT by using either the RPS, or the HMS re-

ordering is illustrated in Figure 3(b) and Figure 3(c) respectively. As compared with

Figure 3(a), Figure 3(b) and Figure 3(c), improves the convergence rate dramatically

essentially approaching the final accuarcy after about three iterations. However, the
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in both cases the RMSE remains slightly above the value for the PDFT estimate.

Since our implementation of the PDFT algorithms incorporates a Miller-Tikhonov

regularization [19] step, the solution does not represent the minimum weighted norm

approximation in a rigorous sense and a small deviation between the reconstructions

computed with DPDFT and PDFT is expected.

From the image in Figure 4(d), we see that by choosing a relaxation parameter

of 0.09 the DPDFT estimate requires only 3 iterations to improve to a resolution

comparable to the DPDFT estimate after 15 iterations, but with no reordering and no

relaxation (Figure 2(f)). If we apply one of the schemes to change the data access order

simultaneously to applying the relaxation parameter, we obtain a solution comparable

to the ones in Figures 2(f) and 4(d) after only one iteration. In addition, we found

that the use of reordering schemes extends the range for the relaxation parameter for

which we obtain optimum performance (Figure 5). In practice, this yields significantly

higher stability, since the results obtained with the DPDFT are less sensitive to choice

of the regularization parameter.

4. Regularization of the DPDFT

If the measured data are noisy, the iterative process of the DPDFT will typically

converge to a poor solution of very large energy. For explanation, we consider the

same example in Figure 2, but using noisy Fourier data. The noise sources considered

here are simulated by Gaussian white noise. Leaving all other parameters unchanged
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the PDFT estimate must be regularized to recover a good estimate. For the PDFT

algorithm with a Miller-Tikhonov regularization, the diagonal of the P-matrix is mul-

tiplied with a factor ε = 1 + κ, with κ ¿ 1 typically. Among all computed PDFT

results we found the regularization value κ = 0.5 to yield the smallest RMSE. The

corresponding image estimate is shown in Figure 6(a).

Likewise, in the case of noisy data the DPDFT cannot give a good estimate without

regularization. The RMSEs between the object and the DPDFT estimates are shown

in Figure 7(a). The resolution of the DPDFT estimates improves gradually as the

number of iterations increases. For more than 8 iterations, however, the RMSE again

increases. Both the DPDFT estimate after 8 iterations (Figure 6(b)), and the DPDFT

estimate after 20 iterations (Figure 6(c)) show poor resolution, which highlight the

impact of noise on the performance of the DPDFT. The poor convergence due to

noise can be addressed with suitable regularization methods. We now summarize a

method for regularizing the DPDFT algorithm.

The underdetermined system of linear equations Bg = d always has multiple solu-

tions, even with noiseless data. Usually, the minimum norm solution is used to select

a unique solution. It was shown that the ART converges to the minimum norm so-

lution of the system of equations, if it is implemented with a sequence of relaxation

parameters λk ∈ (0, 2) converging to zero and the initial vector f0 is in S(AT ) [17,18].
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Mathematically, S(AT ) can be represented as

S(AT ) = {v|v =
N∑

n=1

αn(AT )n−col, for some arbitrary real numbers αn} , (17)

where (AT )n−col denotes the n-th column vector of the matrix AT . Typically, the

origin is chosen as the initial vector, i.e. f0 = 0. However, in the presence of noisy

data, even this minimum norm solution can have a large norm and does not correspond

to a useful reconstruction. Regularizing this scheme typically involves rejecting exact

solutions of Af = d and seeking instead a vector f̂ , which minimizes the function

‖Af−d‖2 +ε2‖f‖2, with ε > 0 being small [20]. The method due to the regularization

uses the ART to solve the system of equations given in the matrix equation by

[
A εI

]



f

v


 = d . (18)

For the ART iterative process of equation (18), we begin at f0 = 0 and v0 = 0, then

the limit for its upper component f∞ = f̂ . The iterative step can be represented as

fk+1
n = fk

n + pnAmn

(
dm −

∑N
i=1 Amif

k
i − εvk

m

ε2 +
∑N

i=1 pi|Ami|2

)
(19)

vk+1
m = vk

m + ε

(
dm −

∑N
i=1 Amif

k
i − εvk

m

ε2 +
∑N

i=1 pi|Ami|2

)
, (20)
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where

vk+1
j = vk

j for j 6= mod(k, M) + 1 . (21)

Then the reconstructed image is the limit of the sequence {fk}.

To illustrate this, we again consider the same example as used in Figure 6, where

the DPDFT did not converge significantly during the first 8 iterations, but diverged

as the number of iterations increased. The result after 8 iterations still looks poor as

compared to the PDFT estimate in Figure 6(a).

When we apply the regularization method (Figure 6(d)), the DPDFT clearly con-

verges after 10 iterations and the resulting image is comparable to the PDFT estimate

in Figure 6(e). The RMSEs as shown in Figure 7(b) confirms the superior convergence

of the DPDFT using regularization.

Further improvement is again observed by combining the regularization method

with a changed data access order. The resulting RMS values are plotted in Figure

Figures 8(a) and 8(b). The convergence is significantly improved. Equally remarkable,

the final RMS value is slightly better than that of the PDFT estimate. The corre-

sponding image estimates are shown in Figures 6(e) and (f), which confirm an image

quality comparable to the PDFT estimate in Figure 6(a) and the DPDFT estimate

in Figure 6(d).
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5. Conclusion

We described the discrete implementation of the PDFT algorithm. The PDFT al-

gorithm and its discrete counterpart, the DPDFT algorithm, are typically used to

compute image estimates from projection data. Both algorithms allow one to in-

corporate prior knowledge about the imaging problem to improve the reconstructed

image.

The DPDFT algorithm was primarily implemented as a substitute for the well-

explored PDFT algorithm, which does not require the inversion of the P-matrix. If

the optimum reconstruction can be obtained with a few iterations of the DPDFT

this invariably provides a speed-up as compared to the implementation of the PDFT

algorithm, which increases with the size of the data set. However, the more important

application of the DPFT is with respect to data sets which are too large to allows for

the inversion of the corresponding P-matrix.

In addition, we emphasize that the DPDFT algorithm eliminates the need to com-

pute the Fourier transformation of the prior in order to obtain a reconstruction of

the object. This property is particularly useful, if the prior is not given in analytic

form, but is the result of a pre-processing step and is only available in discrete form.

In this case the DPDFT algorithm is the method of choice to obtain a constraint

image estimate of the object. It is noted, however, that even if the prior is avail-

able in analytic form the computation of the P-matrix can contribute significantly to
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the computational burden of the PDFT algorithm, and the DPFT provides a more

efficient use of the prior information.

In our examples, the DPDFT was implemented using the ART algorthm, although

this is not essential, and we make no assertions for or against the ART. We demon-

strated that the convergence speed can be improved by reordering, which was suc-

cessfully applied to ART related reconstruction schemes in the past. In particular, we

investigated changing the access order of individual elements of the system of linear

equations which needs to be solved. Independently of the access order scheme chosen,

we found significant improvement of the convergence.

For noisy data it proved necessary to implement a suitable regularization method.

Again, the behavior of the DPDFT algorithm proved sufficiently similar to previously

described variants of the ART to adapt a known regularization scheme for use with

the DPDFT algorithm. Our results show that this allows us to address noise related

imaging problems effectively.
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List of Figure Captions

Fig. 1. Illustration of the Fourier spaces mapping of the simulated data.

Fig. 2. The reconstruction of an object of compact support: (a) the object, (b) the

discrete Fourier transform estimate, (c) circular flat-top used as prior function, (d)

the PDFT estimate, (e) the DPDFT estimate after 6 iterations, and (f) the DPDFT

estimate after 15 iterations.

Fig. 3. The RMSEs between the original and the reconstructed image for simulated

noiseless Fourier data: (a) the RMSEs for the PDFT and the DPDFT after 1-20

iterations, (b) same as in (a) applying the RPS reordering, and (c) same as in (a)

applying HMS reordering.

Fig. 4. The reconstruction of an object with compact support using the DPDFT

with reordering and relaxation (a) 1-iteration DPDFT estimate with RPS reordering,

and (b) 1-iteration DPDFT estimate with HMS reordering, (c) 1-iteration DPDFT

estimate with the relaxation parameter 0.07, and (d) 3-iteration DPDFT estimate

with the relaxation parameter 0.09.

Fig. 5. Impact of the relaxation parameter on the RMSEs: (a) the RMSEs for the

PDFT and the DPDFT after three iterations with no reordering, (b) same for the

DPDFT after one iteration with RPS reordering, and (c) same for the DPDFT after

one iteration with HMS reordering.

Fig. 6. The reconstruction of an object of compact support from the noisy data: (a) the
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PDFT estimate with regularization value of κ = 0.5, (b) the DPDFT estimate after

8 iterations, (c) the DPDFT estimate after 20 iterations, (d) the DPDFT estimate

after 10 iterations with regularization value of ε = 0.7, (e) the DPDFT estimate after

one iteration with regularization value of ε = 0.7 and RPS reordering, and (f) the

DPDFT estimate after one iteration with regularization value of ε = 0.7 and HMS

reordering.

Fig. 7. The RMSEs between object and image computed from simulated noisy data:

(a) the DPDFT estimate without regularization, (b) the DPDFT estimate with reg-

ularization value of ε = 0.7.

Fig. 8. The RMSEs between object and image for simulated noisy data: (a) RPS

reordering and regularization value of ε = 0.7, and (b) HMS reordering and regular-

ization value of ε = 0.7.
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Fig. 1. Illustration of the Fourier spaces mapping of the simulated data.
Shieh fmap.eps
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( a ) ( b )

( c ) ( d )

( e ) ( f )

Fig. 2. The reconstruction of an object of compact support: (a) the object,
(b) the discrete Fourier transform estimate, (c) circular flat-top used as prior
function, (d) the PDFT estimate, (e) the DPDFT estimate after 6 iterations,
and (f) the DPDFT estimate after 15 iterations. Shieh estimate01.eps
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Fig. 3. The RMSEs between the original and the reconstructed image for sim-
ulated noiseless Fourier data: (a) the RMSEs for the PDFT and the DPDFT
after 1-20 iterations, (b) same as in (a) applying the RPS reordering, and (c)
same as in (a) applying HMS reordering. Shieh ed01.eps
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( a ) ( b )

( c ) ( d )

Fig. 4. The reconstruction of an object with compact support using the
DPDFT with reordering and relaxation (a) 1-iteration DPDFT estimate with
RPS reordering, and (b) 1-iteration DPDFT estimate with HMS reorder-
ing, (c) 1-iteration DPDFT estimate with the relaxation parameter 0.07,
and (d) 3-iteration DPDFT estimate with the relaxation parameter 0.09.
Shieh estimate02.eps
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Fig. 5. Impact of the relaxation parameter on the RMSEs: (a) the RMSEs for
the PDFT and the DPDFT after three iterations with no reordering, (b) same
for the DPDFT after one iteration with RPS reordering, and (c) same for the
DPDFT after one iteration with HMS reordering. Shieh ed02.eps
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( a ) ( b )

( c ) ( d )

( e ) ( f )

Fig. 6. The reconstruction of an object of compact support from the noisy data:
(a) the PDFT estimate with regularization value of κ = 0.5, (b) the DPDFT
estimate after 8 iterations, (c) the DPDFT estimate after 20 iterations, (d) the
DPDFT estimate after 10 iterations with regularization value of ε = 0.7, (e)
the DPDFT estimate after one iteration with regularization value of ε = 0.7
and RPS reordering, and (f) the DPDFT estimate after one iteration with
regularization value of ε = 0.7 and HMS reordering. Shieh estimate03.eps
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Fig. 7. The RMSEs between object and image computed from simulated noisy
data: (a) the DPDFT estimate without regularization, (b) the DPDFT esti-
mate with regularization value of ε = 0.7. Shieh ed03.eps
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Fig. 8. The RMSEs between object and image for simulated noisy data: (a)
RPS reordering and regularization value of ε = 0.7, and (b) HMS reordering
and regularization value of ε = 0.7. Shieh ed04.eps
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