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6., I. Setting Up First-Order Differential Equations from Word Problems

derivative at each point on a curve and where the curve begins, then you can
reconstruct this solution curve.

1) Translation. Many common words occur which indicate “derivative”,
such as “rate,” “growth” (in biology and population studies), “decay”
(in radioactivity), and ‘“‘marginal” (in economics). Words like *“‘change,”
“varies,” “increase,” and “‘decrease” are signals to look carefully at what is
changing—again, a derivative may be called for. (See Example 5 in the
next section.)

Ask yourself whether any principles or physical laws govern the problem
under consideration. Are you expected to apply a known law, or must you
derive what is appropriate for the problem? Answers to these questions are
important guides on how to proceed. It can be particularly difficult to see
how to begin the solution when you first read a problem in some field with
which you are not familiar. We pay special attention to this in the examples
that follow.

Many problems fall into the following pattern:

net rate rate of rate of

of change input outgo.

If you can recognize this pattern when it occurs (and if you keep the physical
units straight), the differential equation will probably fall out in your lap.

2) The differential equation. The differential equation is an instantaneous
statement, which must be valid at any time. This is the central part of the
mathematical problem. If you have seen the key words indicating derivatives,
you want to find the relation between )’, y, and . Try to focus on the overall
relations in words first, such as “rate = input — outgo.” Write this down,
and then make sure you fill in all the pieces listed.

3) Units. Once you have identified which terms go into the differential
equation, make sure each term has the same physical units (e.g., gal/min or
furlongs/fortnight), for real life (and textbook) exercises do not usually
happen that way by themselves. Attention to the physical units can often
help you out in completing the differential equation itself (as you shall see
in Example 5 below).

4) Given conditions. These are the bits of information about what happens
to the system at a specific time. They are held out of the differential equation.
They are used to evaluate all the constants hanging around after the differ-
ential equation has been solved. These are the constants of proportionality
or whatever in the original differential equation plus the constants of
integration which occur in its solution.

These given conditions should be written with the differential equation in
order to give completely and succinctly the mathematical statement of the
problem. (In Example 2 and 3 they were delayed to illustrate their necessity.)

2. Guidelines 7

5) Conceptual framework. As noted, a bullet (e) signals the key mathe-
matical statements in all our examples, to help you pick up the main steps
that constitute a solution. In a typical problem, the key steps are completed
as you successively obtain the following:

a verbal equation conceptualizing the situation in words;
a statement of any principle or physical law involved;
the differential equation;

the given conditions, initial or otherwise;

solution to the differential equation;

solution with the constants evaluated;

answer to the question of the problem.

You need to look for all of these key steps. We call this collection the
“framework.” The goal at each step in the problem is the completion of the
next framework piece.

The fact that the computational pieces of these applied problems tend to
get lengthier and more complicated as you delve more deeply into the world
of differential equations (DE’s) is what causes unorganized souls to lose the
war with word problems. You can easily spend so many pages on a calcula-
tion that when you finally get it simplified, you have forgotten that it was
only a little piece of the initial question. This is particularly true for higher
order nonhomogeneous linear DE’s, or for systems of DE’s, or for partial
DE’s. So now is the time to learn to be organized.

You want to know at a glance where you are in the problem. It gets
increasingly risky to do pieces in your head, but if you must, a written
framework is important. If you expect others to be able to read your work,
a clearly written framework is essential.

One good way to start a word problem is to write down everything you know
about it. Box in, bullet, or otherwise note the key statements that contribute to
the framework. Then go after the other parts of the framework list.

We have barely mentioned the solution of the differential equations in
these guidelines because that is not the goal of this chapter. We are con-
centrating on translating the applied problem into a form whereby only
routine calculations remain. Our techniques may seem overdone for simpler
problems, but the aim is to help you conquer the tough ones.

This is about all that can be said in general on setting up word
problems requiring first-order differential equations. Keep in mind the five
guidelines—

translate

make an instantaneous statement
match physical units

state given conditions

write a clear framework
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—as you work toward a solution. The only way to get more of a feeling for
the process is to try working problems.

You should be able to dig into the exercises right now. Some examples
are given in the following section which may or may not be helpful at the
places where you get stuck. We can only show one possible train of thought.

3. Examples

You will get the most out of the examples if you will zry them before reading
the solutions. The aim is for you to be able to do word problems, not just
to read one way someone else can do them. You may well create a correct
solution which does not look like ours (asin Exercise 1). The check is whether
you get the same answer to the question. If you do not, try to see what

you forgot to include or where you went wrong. If you have no luck, ask
someone.

EXAMPLE 4. An indoor thermometer, reading 60°, is placed outdoors. In
10 min it reads 70°; in another 10 min it reads 76°. Using no calculations,
guess the outdoor temperature. Then calculate the proper answer, assuming
Newton’s Law of Cooling.

Newton’s Law of Cooling—or Warming—says that when an object at any
temperature T is placed in a surrounding medium at constant temperature
m, then T changes at a rate which is proportional to the difference of T
from the temperature of the surrounding medium. The assumption for this
mathematical model is that the medium is large enough so that m is essen-
tially not disturbed by the introduction of the warmer or colder object.
Experiments have shown that this is a good approximation.

Solution: Obviously, the first order of business for the word problem is
to find out what Newton’s Law means; that has been provided. So we have
two paragraphs from which to construct our solution.

You should zero in on the key words “‘changes at a rate” in the second
paragraph. That sentence says that d7}dr is proportional to T — m, giving
e dT/dt = k(T — m). Three specific conditions are provided :

* T(0) = 60, T(10) = 70, T(20) = 76,

using minutes for ¢ and degrees for 7. The solution to the differential equa-
tionis e T = 4 ¢ + m, and the three given conditions will be enough to
cvaluate the three constants 4, k, m. (See Exercise 2)

Now what was the question the problem asked? Simply, e what is m?
As we have noted, sufficient information is given. We can also note that,
at least for this problem, you need not bother finding 4 or k (unless you
need them on the way to m). You should note, however, that k must be
negative in order for 7 to approach a constant m as ¢ increases indefinitely,
so it would be smart to confirm that this is indeed the case.

3. bkxamples

EXAMPLE 5. A man eats a diet of 2500 cal/day; 1200 of them go to basal
metabolism (i.e., get used up automatically). He .wvmnﬂm mﬁvnoxuﬁ.mﬁmq
16 cal/kg/day times his body weight (in w:ommmBm.v n ,ﬂﬂmr?mﬂomuoﬂ:on&
exercise. Assume that the storage of calories as fat is H.oo \c.ammn.uﬁ: and that
1 kg fat contains 10,000 cal. Find how his weight varies with time. y

This particular application is probably less familiar to you than the ear Mn
examples. Therefore, it is an excellent one to try by wo:amo:... Cover up the
rest of this example and try working it as vaomam.BBma learning. Whenever
you get stuck, move your covering paper down till you are unstuck and see
i o on from there.
' mexww%s.m. None of our super key ‘‘derivative” words appear, but we can
focus on the final question, which tells us that e we Embﬁ. to get Eo_.mwﬁ
(call it w) as a function of time. If we consider w as a continuous function
of ¢, we can seek a differential equation involving dw/dr.

Time comes into the problem only as “per day,” so you can focus on one
day and try for conceptual statements such as

each day, change in weight = input — outgo; o
input will be net weight intake, above and beyond vmmm: metabolism;
outgo will be loss due to weight-proportional exercise (WPE).

Since we are aiming for a derivative, the above can be combined in a better
conceptual statement :

e change in weight/day = net intake/day — WPE/day.

This has fine form for a framework statement; we can start filling in the
pieces.

daily net intake = 2500 cal/day eaten — 1200 cal/day used in basal

= 1300 cal/day. metabolism
daily net outgo = 16 (cal/kg)/day x wkgin WPE
= léw cal/day.
. . Aw
change in weight/day = A kg/day
dw

= — kg/day, in the limit as At — 0
dt (which is what we need for an
instantaneous statement about
a continuously changing
function w(1)).

As you may have noticed, some of these @cmﬁﬁmm are given in terms of
energy (calories) and others in terms of weight (kilograms). What are woﬁw
going to do about the fact that the units on the _m_m ofthe m,mao%omw wﬁ.mﬁoﬁmww
(kg/day) do not match, those arising on :ﬁ ﬂmg (cal/day)? That is whe
the last sentence of information comes in, giving cal/kg. We can use
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net cal/day

ke/day = 15500 caljkg'
So, filling in all the pieces gives

dw (2500 — 1200) — 16w
o = (1)
dt 10,000

which in physical units checks out as follows:

kg _ cal/day — ((cal/kg)/day)(kg)
day cal/kg .

How many constants are you going to have in your solution? One, from
integration. So how many given conditions would you need to give a
numerical answer for the man’s weight on a given day? One, e.g., that at
e = 0, w = wg, giving his weight at the beginning.

The problem of Example 5 is now completely set up for the routine
calculations to take over, but we shall follow through on the solution to
this problem in order to pursue some questions of interpretation and their
consequences. The differential equation (1) can easily be solved by separation
of variables—go ahead:

dw o
1300 — 16w 10,000

~ L1300 — 16| = e
16

1
10,000

(Physically, we must have intake > outgo, so we can drop absolute value
sign.)!

1300 — 16w = g~ 16/10,000)+¢)
= Qe 16410.000
= (1300 — 16wg) e 161/10.000

(The given condition is an initial one, with t = 0, which makes the constant
especially easy to evaluate.)
Solving for w,

| HwOO | wwOQ »I _.@vcc IpoQHO.ODO WA
*Y= 16 16 ¢ &
Thus we have answered the question posed by the problem, but consider one

likely additional question: “Does the man reach an equilibrium weight ?”

@

! Alternatively, the reader may keep the absolute value sign and show that |1300 — léw| =
_Goo - _@Eo_mvaI 16¢/10,000). From this, one concludes that 1300 — 16w has the sign of
1300 — 16w, since the exponential factor is positive.

3. bExamples i1

This question can be answered from (2) by noting that as 7 — co, the
right-hand term of this expression for w goes to 0, so w — 1300/16 kg.
However, we can also answer this last question directly from the differential
equation (1). At an equilibrium, w does not change, so dw/dr = 0. This
gives very directly that

1300
Wequil = |~I&f Wm
So, if the equilibrium were all we needed to know, we would not have had

to solve the differential equation! We would have been finished one line
after (1).

ExaMPLE 6. What rate of interest payable annually is equivalent to 6%
continuously compounded?

This problem can be solved very quickly using the differential equation
idea, as shown below. However, some people do not find this line of thought
very natural in the context of bank interest. The problem can also be attacked
directly and more traditionally as an extension of simple interest ; this method
is outlined in Exercise 3.

Solution: e Let S(r) be saving at time 7. S(r) includes the interest con-
tinuously compounded. At e t =0, let S = S,, which simply labels the
initial amount of money, the principal.

Now then, what is the question? Behind the scenes, the problem is asking

how much money will have been gained in one year. If at @ r = 1 we let
S = S, then the

. money earned S = 5
e cquivalent annual rate = y == 9,

original amount S,

“Rate of interest” means dS/di, for the instantaneous change per unit time
in savings S is due only to the calculation of the interest at that instant.
Hence, because of the continuous compounding, e dS/dr = 0.06S at any
instant. [Another way of stating this differential equation is as follows:
dS/dt = rate of change for total amount in savings, so the rate per dollar
in the account = 0.06 = (dS/dr)/S.] The differential equation has a general
solution ® S = 4¢”°®. (You can verify this in Exercise 1, letting y = S
and &k = 0.06.)

We need a condition to evaluate 4, which we provided by setting § = S,
at 1 = 0. Plugging in this initial condition gives @ S = S, ¢%°%*. Recall that
we are looking for the annual rate (S; — S;)/S,. First find S, = S,¢%% =
1.0618S,. Then

S, — Sy _ (1.0618 — 1)S,
So So

= 0.0618
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or e 6.187; annual rate. Notice that, for this particular question, we do not
need a value for S,, one of the constants. Mathematically, that is to say
that the answer requested is independent of Sp.

EXAMPLE 7. Human skeletal fragments showing ancient Neanderthal char-
acteristics are found in a Palestinian cave and are brought to a laboratory
for carbon dating. Analysis shows that the proportion of C!* to C!2 is only
6.247%; of the value in living tissue. How long ago did this person live?

(Carbon dating: The carbon in living matter contains a minute proportion
of the radioactive isotope C*. This radiocarbon arises from cosmic ray
bombardment in the upper atmosphere and enters living systems by exchange
processes, reaching an equilibrium concentration in these organisms. This
means that in living matter, the amount of C'* is in constant ratio to the
amount of the stable isotope C'?. After the death of an organism, exchange
stops, and the radiocarbon decreases at the rate of one part in 8000 per yr.)

Solution: Carbon dating enables calculation of the moment when an
organism died; therefore, our question actually means “*how long ago did
this person die?” If we let ® ¢ = year after death, and o y(1) = ratio C'#/C!2
(say in mg C'*/mg C'?), then the last sentence of the carbon datin g paragraph
yields our differential equation (identified by the key word “rate’):

N

o ~ 3000 yr (decreases)

in (mg C'*/mg C*?)/yr. (Another way of stating this property of radioactive
disintegration is that “‘the rate of disintegration of a radioactive substance
is proportional at any instant to the amount of the substance present.” The
constant of proportionality for C'# was given by the “‘one part in 8000/yr.”)

Our solution will have but one constant, from integration, so one given
condition will suffice for evaluation. This can be provided by noting that at
the time of death of the organism, when e 1 = 0,theny = y,.the proportion
of C'* in living matter.

The general solution to the differential equation is

o) = s~_m.\u.\n.:wn_n..c.

Two steps remain; to evaluate k and to answer the question.
The initial condition tells us that k = Yo. 50 we have

—t/8000

®y =)ope
The question asks us to e find r when y = 0.0624y,:
0.0624y, = y,e 8000

—80001n0.0624 ~ e 22,400 yr ago (that is, the
number of years before the
analysis that death occurred).

t

3. Examples 13

Note: Recently, the practice of carbon dating has been questioned—
dates between 2500 and 10,000 years ago have been in discrepancy with
other dating methods. In 1966 Minze Stuiver of the Yale Laboratory and
Hans E. Suess of the University of California at San Diego reported establish-
ment of the nature of errors in carbon dating during this period. Evidently,
cosmic ray activity decreased at the time, with the peak discrepancies
occurring about 6000 years ago. The researchers’ conclusions were the
result of carbon dating of Bristlecone pine wood, which also provided
accurate tree-ring dating. They suggested an apparently successful formula

for correcting the carbon-dating calculation between 2300 and 6000 years
ago?:

true time = C'* yr x 1.4 — 900.

EXAMPLE 8. A right circular cylinder of radius 10 ft and height 20 ft is filled
with water. A small circular hole in the bottom is of 1-in diameter. How
long will it take for the tank to empty?

We need a physical assumption about the velocity with which the water
leaves the hole. Even if you feel far removed from physics, consider the
following. It certainly is reasonable to assume this velocity will depend on
h(1), the height of the water remaining in the tank at time 7. After all, the
water will flow faster when the tank is full than when it is nearly empty
(the greater depth of water exerts more pressure to push water out of the
hole). Furthermore, if one assumes no energy loss, then the potential energy
lost at the top when a small amount of water has left the tank must equal
the kinetic energy of an equal amount of water leaving the bottom of the
tank through the hole. That is,

mgh = tmy?,
at any instant, so
ev = ,/2gh,

where g is the acceleration due to gravity, which is exactly the relation cited
in physics as Torricelli’s Law. Physically, this model may be an oversimpli-
fication for the situation in question, but at the very least we can agree that
the dependence on height seems reasonable. Further physical argument
might possibly produce a better formula for velocity, but it would not other-
wise change the mathematical analysis, which proceeds as follows.

* An interesting, readable, and detailed account of dating procedures is contained in Louis
Brennan's American Dawn, 4 New Model of American Prehistory; (New York: Macmillan,
1970, ch. 3). Stuiver and Suess originally reported their work in the professional journal Radio-
carbon; the results are summarized in American Antiquity, July, 1966. For our purposes, we
merely take note of the reassurance that for dating more than 10,000 years or less than 2500,
the carbon dating model of this Example is found to be quite accurate (that is, within 200
years),
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Solution: The situation says to look at polumes. The volume of water in
the tank decreases by the volume which escapes through the hole. Letting 4
be the horizontal area of the tank and B be the horizontal area of the hole,

—Adh = +Bds
(volume in  (volume leaving
tank decreases) tank increases)

in any interval d¢. Now what is our question? @ When (i.e., at what 1) does
h = 0? Therefore, we want to find h(r). So far we have but one relation,

which can be rewritten dh = —(B/A)ds. We can calculate 4 and B, but
what can we do with ds?

The other information we have is the velocity creating ds, so we can make
the following substitution :

ds
ds = &) gr =
A) ” t vdt

which gives

e dh = \,\Mcaq.

A
We can calculate the following:
A = n(10)* ft?
B = n(1/24)* ft?

J2gh = J2032)h = 8h2 fis,

Substitution and separation of variables gives

—8(1/24)%
(10)?

I

v

o h™'2dh = dt

Exercises 15
80
—8(1/24)?

2P = — 2y LK

! (102
Whenet = 0, h = 20,50 K = 2,/20. We want r when h = 0, so

t = lﬁloov’@z\&v ~ @ 18 hours (or 64,800 s).
8(1/24)2

Exercises

(The most challenging exercises are denoted by a dagger.)

1. Fill in the following details of Example 3:
a) Solve dy/di = ky (by separation of variables) to get y = A4 ¢t
b) Show that y(24) = 400 implies that & = (In 4)/24.
c) Show that y(12) = 200.
d) Show that you get the same answer of population = 200 after 12 h if you let
the unit of time be one day.

2. Fill in the following details of Example 4:
a) Solve dT|dr = k(T — m)toget T = A + m.
b) Using the three given conditions, find m.

3. Try another method to handle Example 6. Again, let S(t) be savings as a function

of time 1, measured in years.

a) Then simple interest, payable annually, at rate r would mean S =8 + rS,.
Show that after n years S, = (1 + r)"S,.

b) Interest compounded guarterly at an annual rate r would mean after one
quarter that S(1/4) = S, + (r/4)S,. Show that after n quarters, S(n/4) =
(1 + r/4)S,.

c) Interest compounded daify at an annual rate r would mean after one day that
S(1/365) = S, + (r/365)S,. Show that after ndays, S(n/365) = (1 + r{365)"S,.

d) Interest continuously compounded at a rate r is computed by lim S(n/m). Show

m=aog
that this implies, at an instant when 1 = n/m, that S(nfm) = (e)"mS,, i.e., that
S(r) = Sye™.

4. What is the half-life of C'*? (See Example 7. Half-life is the time required for
half the amount of the radioactive isotope to disintegrate.)

5. At Cro Magnon, France, human skeletal remains were discovered in 1868 in a
cave where a railway was being dug. Philip van Doren Stern, in a book entitled
Prehistoric Europe, from Stone Age Man to the Early Greeks (New York: W. W.
Norton, 1969), asserts that the best estimates of the age of these remains range
from 30,000 to 20,000 B.C. What range of laboratory C'* to C'2 ratios would be
represented by that range of dates? (See Example 7.)

O




10

19

10

11.

12

13

"14.

I. Seting Up First-Order Differential Equations from Word Problems

. By Newton’s law, the rate of cooling of some body in air is proportional to the

difference between the temperature of the body and the temperature of the air.
If the temperature of the air is 20°C and boiling water cools in 20 min to 60°C,
how long will it take for the water to drop in temperature to 30°C?

A fussy coffee brewer wants his water at 185°F, but he almost always forgets and
lets it boil. Having broken his thermometer, he asks you to calculate how long he
should wait for it to cool from 212° to 185°. Can you solve his problem? If you
answer “yes,”” do so. If “no,” explain why.

Water at temperature 100°C cools in 3 min to 90°C, in a chamber at 60°C. Tem-
perature changes most rapidly when the temperature difference between the water
and the room is the greatest. Experiments show the rate of change is linearly
proportional to this difference.

a) Find the water temperature after 6 min.

b) When is the temperature 75°C? 61°C?

One ounce of water at 90°C is set afloat in a plastic cup in a photographer’s chemical
solution of exactly 100 oz at 10°C. This is an effort to warm the solution without
diluting it.

a) Express the temperature of the solution as a function of time.

b) Reconcile your model with the temperature model used in Example 4.

A spherical raindrop evaporates at a rate proportional to its surface area. Find a
formula for its volume ¥ as a function of time.

A 100-gal tank is filled with water and 20 b of salt. Fresh water is pumped in at
arate of 2 gal/min. The mixture is continuously stirred, and overflows to keep the

tank at the 100-gal level. How much has the concentration of salt been diluted
after one hour?

Water pollution can be diminished by treatment of raw sewage before it reaches
the water supply. A common method is to use an activated sludge aeration tank
containing a concentration ¢ (which varies with time) of pollutant. Raw sewage
containing a greater concentration ¢, of the pollutant enters the tank, bacteria
digest some of the sewage, and the resultant cleaner mixture is dumped into a
water body. The concentration of pollutant in the discharge must not exceed a
certain safe level, say 0.30c,, so the problem is to find the time when that level is
reached. In practice, at that ¢ the raw sewage can be diverted to another tank,
while this one is aerated to reduce ¢ to ¢, the reasonable minimal level, Assume
that the tank receives input at a rate of r, gal/min and the effluent leaves at a rate
of r; gal/min. At = 0 the tank holds ¥, gal of sewage containing z, 1b of pollutant.
Set up the problem for a mathematician to solve in order to find the time at which
this tank should be bypassed.

If a savings account, with interest continuously compounded, doubles in 16 yr,
what is the interest rate?

A college education fund is begun with $P invested to grow at a rate r continuously
compounded. In addition, new capital is added every year on the anniversary of

the opening of the account, at a rate of $4/yr. Find the accumulated amount
after ¢ yr.

Exercises 17

135.

8.

20.

21.

22

A tank is filled with 10 gal of brine in which 5 Ib of salt is dissolved. Brine having
2 1b of salt per gallon enters the tank at 3 gal/min, and the well-stirred mixture
leaves at the same rate. .

a) What is the concentration of salt in the water leaving the tank after 8 min?

b) How much salt is in the tank after a long time?

Neutrons in an atomic pile increase at a rate proportional to the number of neutrons
present at any instant (due to nuclear fission). If N, neutrons are initially present
and N, and N, neutrons are present at times 7, and T, respectively, show that

Zuﬁ 2_5
No) — \No)

Water containing 2 oz of pollutant/gal flows through a treatment tank at a rate of

500 gal/min. In the tank, the treatment removes 2% of the pollutant per minute,

and the water is thoroughly stirred. The tank holds 10,000 gal of water. On the

day the treatment plant opens, the tank is filled with pure water. Find the function

which gives the concentration of pollutant in the outflow.

During what time r will the water flow out of an opening 0.5 cm? at the bottom
of a conic funnel 10 cm high, with the vertex angle § = 60°?

. Attime 1 = 0, two tanks each contain 100 gallons of brine, the concentration of

which then is one half pound of salt per gallon. Pure water is piped into the first
tank at 2 gal/min, and the mixture, kept uniform by stirring, is piped into the
second tank at 2 gal/min. The mixture in the second tank, again kept uniform by
stirring, is piped away at 1 gal/min. How much salt is in the water leaving the
second tank at any time ¢ > 07?

Modeling glucose concentration in the body after glucose infusion: Infusion is the
process of admitting a substance into the veins at a steady rate [ this is what happens
during intravenous feeding from a hanging bottle by a hospital bed]. As glucose
is admitted, there is a drop in the concentration of free glucose (brought about
mainly by its combination with phosphorous); the concentration will decrease at
a rate proportional to the amount of glucose. Denote by G the concentration of
glucose, by 4 the amount of glucose admitted (in mg/min), and by B the volume
of liquid in the body (in the blood vessels). Find whether and how the glucose
concentration reaches an equilibrium level.

A criticism of the model of Exercise 20 is that it assumes a constant volume of
liquid in the body. However, since the human body contains about 8 pt of blood,
infusion of a pint of glucose solution would change this volume significantly. How
would you change this model to account for variable volume? Le., how would you
change the differential equation? Will this affect your answer about an equilibrium
level? How? What are the limitations of this model? (Aside from the fact you may
have a differential equation which is hideous to solve or analyze, what criticisms
or limitations do you see physically to the variable volume idea?) What sort of
questions might you ask of a doctor or a biologist in order to work further on this
problem?

A chemical 4 in a solution breaks down to form chemical B at a rate proportional
to the concentration of uncoverted 4. Half of A is converted in 20 min. Express
the concentration y of B as a function of time and plot it.
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23. A limnology class is presented with a laboratory exercise concerning continuous d)  y= A*eM
culture of algae in a chemostat. The apparatus consists of a culture vessel (with a »0) = 100 = 4* = 100
constant level overflow tube to keep the volume at 8 liters) into which a fresh culture y(1) = 400 = 400 = 100¢" = ¢ = 4 = k* = In4
medium is continuously fed by a constant metered gas flow. A page of instructions y(3) = 100M3% = 100(e" )2 = 100(4)1* = 200.
e i o g S, o - 7 — i,y can et o comor s o,
[dT/(T — m)] + K dr works very nicely.
“With the pumping of a fresh culture medium into the culture chamber, it is b) m = 85°.
possible to calculate the theoretical percentage concentration of the medium
created in the culture chamber after any given number of hours. The following 3oa) S(1) =Sy +rS = (L + 1S
mathematical relationships are used for the calculations: SQ) =8 +rS ={14+nS =01+ r?5
where :
— = = "So-
Cr=Cy + (C = Cp)(1 — ¢~/ T-Tol®/m Sy =S,y + 1S =1+ 15, =+ 1S,
C; = outflow concentration at an arbitrary moment " mﬁizr (1. n s,
Cy = concentrationat T = T, m m
C; = concentration of inflow ,
R = flow rate (ml/h) . n . AT
V' = volume o»mn:_“:d_umm (ml) a_.w.mu 5 mﬂ B hrﬁ b m So
T = time at arbitrary moment - e
T, = starting time.” = ,,_Mmo (€)*" S5,
Show that you can rather easily Justify this somewhat horrendous *“out-of-the- . 50 S(1) = Sp e
magic-hat” formula.
. . : 4. Yo _ Yo o~ 1/8000
'24. A snowfall begins sometime in the forenoon, and snows steadily on into the after- 2
noon. At noon a man begins to clear the sidewalk on a certain street, shoveling at
. . \ In0.5 = —¢/8000
a constant rate (in cubic feet per hour) and at a constant width, He shovels two 3 —
blocks by 2 p.m. and one block more by 4 p.m. At what time did the snow begin § =0.7
to fall? (You may assume he does not go back to clear the snow that has fallen ;

behind him.) so e 1 & 5600 yr.

5. ylye = e7"%%% In 1868, + = 31,868 represents 30,000 B.C., 1 = 21,868 represents

: 20,000 B.C.
Solutions
o~ 31.868/8000 _mv.k < g~ 21.8688000
1. a) dyjdr = ky, so 7o
dy ) oo 3.9835 o up Y -2.733s
ﬂ = kdt (separating variables) Yo

Iny = kt + C (integrating both sides)

Y |
p = eM*C (expressing exponentially) e approx. 0.019 < lab. M < approx. 0.065.
=efet 1.9% 6.5%
kt e
e (renasming single constand). 6. T =20 + 80(})"*°. @« When T = 30°, r = 60 min. (Assuming boiling 7" = 100° at
b) y(24) = 100 mw; = 400 £=0,T=60°at t = 20,)
4k _ . : R
MA» M “1_ MMMHE_M Wﬁom. 4:: X 7. First you will have to ask your friend the room temperature R. Then d7T/d: =
g In both sides) : . or P =
In4 —k(T — R)whichhassolutione T — R = Ce ™™ Atr =0,T=212,30T — R =
ok = 4 21278 At = 2, T = 185, but you are still stuck because you do not know k.
In4 You will have to ask him for one more bit of information. Unless he can recall
c) ¥(12) = Bommmﬁmwv

something like “'the day I was on the phone for half an hour, the stupid water cooled
down to 95° ..., you are probably best off fetching him a new thermometer.

100(e™*)M2 = 100(4)12 = 200.
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8. a) After 6 min, T = 82.5°C.
b) at 75°, T = 10.2 min.
at 61°, T = 38.5 minutes.

T = 60 + 40(H)°.

9. Obviously, this is nor a situation in which the surrounding medium remains at a
constant temperature, so we need a modification of Newton’s Law of Cooling as
seen in Example 4. If you are not an expert in physics, all is nor lost—think a bit
about what might make sense. You should realize that the volume of the objects is
somehow involved, for the small one (the ounce of hot water) will obviously
(intuitively) cool off more than the large one (the 100-0z solution) will warm up.
You can make a proposal based on this, and one way to check it will be to see
if it reduces to the Newton model of Example 4 in the case where the surrounding
medium is large enough to remain at constant temperature.

Heat flow is what is conserved in a situation where objects of finite volume and
different temperatures meet. Hear flow is what is experimentally found to be
linearly proportional to the temperature difference.

This means mﬁ:-M“\_ T = IM 2T, = k(T — T)).
T, going down; T, going up:
R .,.,,.ﬁ deriv. will be deriv. will
s negative be positive

If this did not occur to you, do you agree that it sounds reasonable? You should
be able to find a convincing argument in any elementary physics text, under heat
flow or heat transfer.

" Inthis problem, V; = 1 oz and I, = 100 oz; both are constant. So we have

4T, _ g0 dTa

dt dr

-

= K(T, — T)).

Since T, and T; are both functions of 1, this is a simple syszem of two differential
equations in T;(f) and T,(r). Details of solving such a system are beyond
the scope of this chapter (though setting up the system is not). The answer is
T, = (1090/101)(1 — &™) + 107,

10. Volume depends on r*, surface area on r?. Therefore, surface area depends on

VB V=kir'y S=ky* = ky(JV]k)? = KV, Differentiating, dV/di =
~cV# (negative to show decrease in ). By separation of variables,

WP = —ct+ Q

—ct + 0\
—5 ]

V=

, 3
Att=0,V=V,s08V = |WH + s
11. Let S = amount of salt; rate = input — outgo.

dS _ (310 (yeal) _ (St (gl _S
dt gal min 100 gal min 50

S = ke P aty = 0,5 = 20, s0

solutions 21

S = NOm\o.oMq
e S(60) = 20712,

dz input — outgo = 3m|m.: b 2 mm.; zlo
dt min gal min/ \Vy + (r, — ry)¢ gal

P
|
I

z

rsz
Vo + (ry — ra)t

w.—hj_ -

Attt =0,z = C,. Use to evaluate constant of integration. The question asks for

z

Vo + (ry — ra)t
e ——
concentration

of effluent

e t when = 0.30C.

13. dSfdt = rS, § = Spe™. When savings double, ¢ = 16 implies
25, = Sye'tr
2= 't

r= ﬁ = 0.0433 = e 4.33%.

14. Both the differential equation and its solution are going to have discontinuities
every time that 1 = an integer number of years.
dS rs, forr #n

dr rS+ A, forr=n
1 1 1 1

Sy = Spet + det[— 4+ =+ - +
€ € € e

where & 1s the greatest integer less thanrand t > | (for0 < r < 1, S = Sye™). (See
Fig. 1.2).

15. § = amount of salt,
dS/dr = input — outflow

m;_tv[ mm‘m: s b gal

—|—=—]13
gal min 10 gal min
6— S

S=20(1 — Ce ¥ S0) = 5,50 C =2, e85 = 20(1 — (3/4) e 13101
a) After 8 min, concentration = S(8)/10 = 2(1 — (3/4)e™**)lb/gal.
b) Longterm, as t — oo, S — 20 1b in tank.

16. Let N(f) = number of neutrons present. Then dN/dt = kN, so N(f) = Nye“.
Then

u\.<|~. " S E n — nm.»....wvﬁ = Ty — T\wwﬂ_vﬁ —

N\
Ny N, )

No
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graph of 5(7) for this account,
with 4£0.

(each vertical jump = 4)

regular compound interest

account if 4 =0,

(no annual increase
So

in principal)

Figure 1.2. The lower curve shows regular compound interest account if 4 = 0 (no

annual increase in principal). The stepped curves above show the graph of S(¢) for this
account, with 4 # 0. Each vertical jump = A.

17. Let P(7) = amount of pollutant in tank,

ar _ input — outgo
dr P g
oz gal Poz gal oz
= 12— [500=—) — | ——2—) (50022 ) — pozp %%
A mmwv A :.;nv Tc.ooo mmb h min 0 min
: N ———
inflow outflow treatment
So dP/dt = 1000 — 0.07P and P = (100,000/7)(1 — ce™ 07 At 1 =0, P = 0,
soC = 1.

18. As in Example 8,

area of surface
of water area of hole

2
Iamu.z\“wv dh = 0.5/ 2ghdr

12 dh

Ve
0 _m T

B dh = |ﬂ§% dr
0

10

1.5
B0 = -2 s

Figure 1.3

(A7)

T=-—2 (0,

7529

Solutions 23

19. Let y (1) and y,(7) be the amount of salt, in pounds, in the first and second vats,
respectively, at time 1.

First tank: Wm% = input — outgo
= o.ﬁ w@ _ (b mm_wwv
gal min 100 gal min
- N
50
yi=Ce ™% p(0) = 50; ey, = 50715,
4y

Second tank: = input — outgo

_ TC;WV TWINJ _ AFv Mmﬁv
100 gal min (100 + t) gal min

=m0 Y2

100 + ¢

dt

Solving as linear equation with integrating factor,
Y2 =k — 50(150 + rye "0,
¥2(0) = 50,50k = 12,500. @ The concentration of salt in water leaving second tank :

Eus.mooimoaofwéo.
100 + 1 100 + ¢ 100 + ¢

20. G(1) = concentration of glucose,
A = rate at which glucose is admitted, in mg/min,
rate = input — outgo,
dG A

o - oo KG  (decrease proportional to G)

T 1 ™~

mg/em®  mg/min m 1 VE

I

min cm?® min/ cm?’
It is not necessary to solve this differential equation to answer the question of the
problem. An equilibrium level will be a constant concentration G such that G no
longer changes, i.e., dG/di = 0.

4G _4 -0

dt v
where G = A/KV is equilibrium concentration. Still without solving, you can see
from the differential equation that

G > m\ gives negative M\% (decreasing G)
G < Mﬂ\ gives positive s% (increasing G).
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3
?

KV

5

Figure 1.4

The solutions for G(z) must look like those in Fig. 1.4 (with different values of the

constant arising from integration corresponding to different solution curves). These
solution curves are further confirmed by noting that if

dG A
— == — KG,
dt V KG,

then

d*G dG A
=k = k(2 _kG),
dr* di km“\ G

positive if G > A/KV (then G is concave up), negative if G < 4/KV (then G is
concave down) (Actual solution: G = (4/KV)(1 — ¢7%).)

Possible variable volume model: ' is no longer constant, Sis the volume of solution
per minute being infused;

o V= J,+ St.

There is a relation between S and A4

° - = glucose solution = = C,

m Em___::n Em
S cm?®/min cm?®

is the constant concentration of glucose in solution being infused. So V' = J;, +
(1/c)At, and the differential equation of Exercise 20 becomes

dG A

There now is no equilibrium level of G because no constant G produces dG/dr = 0.
This model appears messy either to solve or to sketch solutions as we did in
Exercise 20. As with many differential equations, a numerical approach to a

Solutions 2>

22,

solution seems the only sensible one, but at this point you might easily question
the value of the whole variable volume consideration, since it has not produced
any immediate physical insights.

Thinking about variable volume further, you would realize that B cannot
physically increase this way for very long—the body does not have unlimited
capacity for increasing volume of liquid in the veins. Other mechanisms such as
urination will work to keep the volume in line, so you would want to ask the medical
and biological experts about the realistic limits of variation in volume; how long
a glucose solution may be steadily infused ; whether an equilibrium concentration
is actually observed, etc. One reference on this topic which provides some actual
data is Defares and Sneddon, The Mathematics of Medicine and Biology (Chicago:
1961).2

Let y be the concentration of B and A4, be the initial concentration of A:

A
Yoty - ) ¥(0) = 0;y(20) = 22
dt
—In|dy — y|=ct + K
always Ay —y=Qe 0 =dg; e =14
positive . In2
20
oy = Ay(1 — (1))
Y= (4o M ») always
nwm pos positive
Vo= =y = —cHdo — )
neg. pos.
——
always negative;
y concave down
Y
~
Ayt —~—==—r——m—————— — ==

> 7
I
d
family of solutions to M.“.n =c(dyy)

Figure 1.5

The family of solutions to y* = ¢(A4, — y) is shown in Fig. 1.5.

3 They refer to S. G. Jokipii et al., J. Clin. Invest., vol. 34, 1954, pp. 331, 452, 458,
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23. Cr = concentration in the outflow,

24,

= concentration of the medium in the vessel at any moment T,
Therefore, ¥Cr = amount of the medium in the vessel at T.
Rate of change = input — outflow

Livey = (R™) (™) _ (gl (VCrme
&:\Q:hxwv?a_v hm:uhlﬂq@sv.

V, R, and C, are all constant, so

d
H\‘Hﬁuﬂ - xﬁ.‘ - hqﬂ
or
d R
.M&Mﬁ,ﬂ. = iwwﬁﬁu —_ m.q.u

Solution by separation of variables (the use of 7 — Tj in the “formula” is a clue
that definite integrals may lead us most quickly to the result):

,—.ﬁa dCy B .‘,HMWQH
Cy n.h m_ _ .—’QHV T v

C. °

cr T
—In Img HWNH_
D ...JD W\q .uac
C C, R
Inj1 -2 =Sl Ry
C n C. _\AH T,)
T B Wm R
llm Haxvﬁrﬂﬁ,l )]
C.

i

Because of the absolute value signs, the resulting formula is only valid if Cr > C,
and Cy < Ciorif Cp < C and Cy < C,. This does not seem to be required of the
chemostat, but perhaps in practice it is the case.

G = Cr = (G = Gexp ﬁwa - i

Cr =G — (G - Co)exp ﬁlwq - i

which can indeed be shown to equal

Co + (C, — @o — exp ﬁlwq - Q@.

Hint: Look at the velocity at which the shoveler rravels, which is inversely propor-

tional to the volume of snow that has fallen on any spot at any instant. Answer:
/\w — 1 h before noon.

INotes 1or the instructor 21

Notes for the Instructor

Objectives. Applied problems requiring differential equations seem to be
harder for many students to translate into mathematical terms than problems
met heretofore. Extra attention is needed to the following facts.

(1) The differential equation is an instantaneous statement, which must be
valid at any time.

(2) Not all the numbers given in a problem go into the differential equation.
Some must be held out to provide the conditions necessary to evaluate
the constants of integration, or other parameters, such as those of
proportionality.

(3) Matching physical dimensions for each term of the differential equation
is essential and not usually automatic.

(4) An organized and clearly written framework is helpful to the student
and necessary for those who read his work.

Prerequisites. Elementary calculus, specifically

(1) familiarity with differentiation and basic integration,
(2) some experience with simple differential equations and their solutions.

Time. Part of one class hour should suffice for the introduction of a few
varied examples. A later recitation, after students have worked on the exer-
cises, can discuss those problems where they have encountered difficulties.

Remark. This module has been developed within our third semester course
in calculus and differential equations which attends to the applicability of
the mathematics. We have written especially for students who may be
majoring in biological or social sciences and who may not feel agile with
mathematics or physics. The module was written primarily for independent
use by the students. It has focused on serting up the mathematical models,
not on the subsequent solutions; some more difficult exercises (denoted by
dagger) are included for this purpose.




