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Chapter 1

Introduction

1.1 Background

This book is intended as a text for a graduate course that focuses on ap-
plications of linear algebra and on the algorithms used to solve the prob-
lems that arise in those applications. Those of us old enough to have first
studied linear algebra in the 1960’s remember a course devoted largely to
proofs, devoid of applications and computation, and full of seemingly end-
less discussion of the representation of linear transformations with respect
to various bases. With the growth of computer power came the digitization
of many problems formally analyzed in terms of functions of continuous
variables. Partial differential operators became matrices, pictures became
matrices, and the need for fast algorithms to solve large systems of linear
equations turned linear algebra into a branch of applied and computational
mathematics. Old but forgotten topics in linear algebra, such as singular-
value decomposition, were resurrected, and new algorithms, such as the
simplex method and the fast Fourier transform (FFT), revolutionized the
field. As algorithms came increasingly to be applied to real-world data, in
real-world situations, the stability of these algorithms in the presence of
noise became important. New algorithms emerged to answer the special
needs of particular applications, and methods developed in other areas,
such as likelihood maximization for statistical parameter estimation, found
new application in reconstruction of medical and synthetic-aperture-radar
(SAR) images.

1.2 New Uses for Old Methods

The traditional topics of linear algebra, the geometry of Euclidean spaces,
solving systems of linear equations and finding eigenvectors and eigenval-
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6 CHAPTER 1. INTRODUCTION

ues, have not lost their importance, but now have a greater variety of
roles to play. Orthogonal projections onto hyperplanes and convex sets
form the building blocks for algorithms to design protocols for intensity-
modulated radiation therapy. The unitary matrices that arise in discrete
Fourier transformation are inverted quickly using the FFT, making essen-
tially real-time magnetic-resonance imaging possible. In high-resolution
radar and sonar, eigenvalues of certain matrices can tell us how many ob-
jects of interest are out there, while their eigenvectors can tell us where
they are. Maximum-likelihood estimation of mixing probabilities lead to
systems of linear equations to be solved to provide sub-pixel resolution of
SAR images.

1.3 Overview of this Course

We shall focus here on applications that require the solution of systems
of linear equations, often subject to constraints on the variables. These
systems are typically large and sparse, that is, the entries of the matrices
are predominantly zero. Transmission and emission tomography provide
good examples of such applications. Fourier-based methods, such as filtered
back-projection and the Fast Fourier Transform (FFT), are the standard
tools for these applications, but statistical methods involving likelihood
maximization are also employed. Because of the size of these problems and
the nature of the constraints, iterative algorithms are essential.

Because the measured data is typically insufficient to specify a single
unique solution, optimization methods, such as least-squares, likelihood
maximization, and entropy maximization, are often part of the solution
process. In the companion text ”A First Course in Optimization”, we
present the fundamentals of optimization theory, and discuss problems of
optimization, in which optimizing a function of one or several variables is
the primary goal. Here, in contrast, our focus is on problems of inference,
optimization is not our primary concern, and optimization is introduced to
overcome the non-uniqueness of possible solutions.

1.4 Solving Systems of Linear Equations

Many of the problems we shall consider involve solving, as least approxi-
mately, systems of linear equations. When an exact solution is sought and
the number of equations and the number of unknowns are small, meth-
ods such as Gauss elimination can be used. It is common, in applications
such as medical imaging, to encounter problems involving hundreds or even
thousands of equations and unknowns. It is also common to prefer inexact
solutions to exact ones, when the equations involve noisy, measured data.
Even when the number of equations and unknowns is large, there may not
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be enough data to specify a unique solution, and we need to incorporate
prior knowledge about the desired answer. Such is the case with medi-
cal tomographic imaging, in which the images are artificially discretized
approximations of parts of the interior of the body.

1.5 Imposing Constraints

The iterative algorithms we shall investigate begin with an initial guess x0

of the solution, and then generate a sequence {xk}, converging, in the best
cases, to our solution. When we use iterative methods to solve optimiza-
tion problems, subject to constraints, it is necessary that the limit of the
sequence {xk} of iterates obey the constraints, but not that each of the xk

do. An iterative algorithm is said to be an interior-point method if each
vector xk obeys the constraints. For example, suppose we wish to mini-
mize f(x) over all x in RJ having non-negative entries; an interior-point
iterative method would have xk non-negative for each k.

1.6 Operators

Most of the iterative algorithms we shall study involve an operator, that
is, a function T : RJ → RJ . The algorithms begin with an initial guess,
x0, and then proceed from xk to xk+1 = Txk. Ideally, the sequence {xk}
converges to the solution to our optimization problem. In gradient descent
methods with fixed step-length α, for example, the operator is

Tx = x− α∇f(x).

In problems with non-negativity constraints our solution x is required to
have non-negative entries xj . In such problems, the clipping operator T ,
with (Tx)j = max{xj , 0}, plays an important role.

A subset C of RJ is convex if, for any two points in C, the line segment
connecting them is also within C. As we shall see, for any x outside C,
there is a point c within C that is closest to x; this point c is called the
orthogonal projection of x onto C, and we write c = PCx. Operators of the
type T = PC play important roles in iterative algorithms. The clipping
operator defined previously is of this type, for C the non-negative orthant
of RJ , that is, the set

RJ
+ = {x ∈ RJ |xj ≥ 0, j = 1, ..., J}.

1.7 Acceleration

For problems involving many variables, it is important to use algorithms
that provide an acceptable approximation of the solution in a reasonable
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amount of time. For medical tomography image reconstruction in a clinical
setting, the algorithm must reconstruct a useful image from scanning data
in the time it takes for the next patient to be scanned, which is roughly
fifteen minutes. Some of the algorithms we shall encounter work fine on
small problems, but require far too much time when the problem is large.
Figuring out ways to speed up convergence is an important part of iterative
optimization. One approach we shall investigate in some detail is the use
of partial gradient methods.



Chapter 2

An Overview of
Applications

The theory of linear algebra, applications of that theory, and the associ-
ated computations are the three threads that weave their way through this
course. In this chapter we present an overview of the applications we shall
study in more detail later.

2.1 Transmission Tomography

Although transmission tomography (TT) is commonly associated with med-
ical diagnosis, it has scientific uses, such as determining the sound-speed
profile in the ocean, industrial uses, such as searching for faults in girders,
and security uses, such as the scanning of cargo containers for nuclear ma-
terial. Previously, when people spoke of a “CAT scan” they usually meant
x-ray transmission tomography, although the term is now used by lay peo-
ple to describe any of the several scanning modalities in medicine, including
single-photon emission computed tomography (SPECT), positron emission
tomography (PET), ultrasound, and magnetic resonance imaging (MRI).

2.1.1 Brief Description

Computer-assisted tomography (CAT) scans have revolutionized medical
practice. One example of CAT is transmission tomography. The goal here
is to image the spatial distribution of various matter within the body, by
estimating the distribution of radiation attenuation. At least in theory, the
data are line integrals of the function of interest.

In transmission tomography, radiation, usually x-ray, is transmitted
through the object being scanned. The object of interest need not be a

9
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living human being; King Tut has received a CAT-scan and industrial uses
of transmission scanning are common. Recent work [220] has shown the
practicality of using cosmic rays to scan cargo for hidden nuclear material;
tomographic reconstruction of the scattering ability of the contents can
reveal the presence of shielding.

In the simplest formulation of transmission tomography, the beams are
assumed to travel along straight lines through the object, the initial inten-
sity of the beams is known and the intensity of the beams, as they exit the
object, is measured for each line. The goal is to estimate and image the
x-ray attenuation function, which correlates closely with the spatial distri-
bution of attenuating material within the object. Unexpected absence of
attenuation can indicate a broken bone, for example.

As the x-ray beam travels along its line through the body, it is weak-
ened by the attenuating material it encounters. The reduced intensity of
the exiting beam provides a measure of how much attenuation the x-ray
encountered as it traveled along the line, but gives no indication of where
along that line it encountered the attenuation; in theory, what we have
learned is the integral of the attenuation function along the line. It is only
by repeating the process with other beams along other lines that we can
begin to localize the attenuation and reconstruct an image of this non-
negative attenuation function. In some approaches, the lines are all in the
same plane and a reconstruction of a single slice through the object is the
goal; in other cases, a fully three-dimensional scanning occurs. The word
“tomography” itself comes from the Greek “tomos” , meaning part or slice;
the word “atom”was coined to describe something supposed to be “without
parts”.

2.1.2 The Theoretical Problem

In theory, we will have the integral of the attenuation function along every
line through the object. The Radon Transform is the operator that assigns
to each attenuation function its integrals over every line. The mathemat-
ical problem is then to invert the Radon Transform, that is, to recapture
the attenuation function from its line integrals. Is it always possible to
determine the attenuation function from its line integrals? Yes. One way
to show this is to use the Fourier transform to prove what is called the
Central Slice Theorem. The reconstruction is then inversion of the Fourier
transform; various methods for such inversion rely on frequency-domain
filtering and back-projection.

2.1.3 The Practical Problem

Practise, of course, is never quite the same as theory. The problem, as
we have described it, is an over-simplification in several respects, the main
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one being that we never have all the line integrals. Ultimately, we will
construct a discrete image, made up of finitely many pixels. Consequently,
it is reasonable to assume, from the start, that the attenuation function
to be estimated is well approximated by a function that is constant across
small squares (or cubes), called pixels (or voxels), and that the goal is to
determine these finitely many pixel values.

2.1.4 The Discretized Problem

When the problem is discretized in this way, different mathematics begins
to play a role. The line integrals are replaced by finite sums, and the
problem can be viewed as one of solving a large number of linear equations,
subject to side constraints, such as the non-negativity of the pixel values.
The Fourier transform and the Central Slice Theorem are still relevant, but
in discrete form, with the fast Fourier transform (FFT) playing a major
role in discrete filtered back-projection methods. This approach provides
fast reconstruction, but is limited in other ways. Alternatively, we can
turn to iterative algorithms for solving large systems of linear equations,
subject to constraints. This approach allows for greater inclusion of the
physics into the reconstruction, but can be slow; accelerating these iterative
reconstruction algorithms is a major concern, as is controlling sensitivity
to noise in the data.

2.1.5 Mathematical Tools

As we just saw, Fourier transformation in one and two dimensions, and
frequency-domain filtering are important tools that we need to discuss in
some detail. In the discretized formulation of the problem, periodic con-
volution of finite vectors and its implementation using the fast Fourier
transform play major roles. Because actual data is always finite, we con-
sider the issue of under-determined problems that allow for more than one
answer, and the need to include prior information to obtain reasonable
reconstructions. Under-determined problems are often solved using opti-
mization, such as maximizing the entropy or minimizing the norm of the
image, subject to the data as constraints. Constraints are often described
mathematically using the notion of convex sets. Finding an image satisfy-
ing several sets of constraints can often be viewed as finding a vector in the
intersection of convex sets, the so-called convex feasibility problem (CFP).

2.2 Emission Tomography

Unlike transmission tomography, emission tomography (ET) is used only
with living beings, principally humans and small animals. Although this
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modality was initially used to uncover pathologies, it is now used to study
normal functioning, as well. In emission tomography, which includes positron
emission tomography (PET) and single photon emission tomography (SPECT),
the patient inhales, swallows, or is injected with, chemicals to which ra-
dioactive material has been chemically attached [245]. The chemicals are
designed to accumulate in that specific region of the body we wish to im-
age. For example, we may be looking for tumors in the abdomen, weakness
in the heart wall, or evidence of brain activity in a selected region. In some
cases, the chemicals are designed to accumulate more in healthy regions,
and less so, or not at all, in unhealthy ones. The opposite may also be the
case; tumors may exhibit greater avidity for certain chemicals. The patient
is placed on a table surrounded by detectors that count the number of emit-
ted photons. On the basis of where the various counts were obtained, we
wish to determine the concentration of radioactivity at various locations
throughout the region of interest within the patient.

Although PET and SPECT share some applications, their uses are gen-
erally determined by the nature of the chemicals that have been designed
for this purpose, as well as by the half-life of the radionuclides employed.
Those radioactive isotopes used in PET generally have half-lives on the
order of minutes and must be manufactured on site, adding to the expense
of PET. The isotopes used in SPECT have half-lives on the order of many
hours, or even days, so can be manufactured off-site and can also be used
in scanning procedures that extend over some appreciable period of time.

2.2.1 Coincidence-Detection PET

In PET the radionuclide emits individual positrons, which travel, on aver-
age, between 4 mm and 2.5 cm (depending on their kinetic energy) before
encountering an electron. The resulting annihilation releases two gamma-
ray photons that then proceed in essentially opposite directions. Detection
in the PET case means the recording of two photons at nearly the same
time at two different detectors. The locations of these two detectors then
provide the end points of the line segment passing, more or less, through
the site of the original positron emission. Therefore, each possible pair of
detectors determines a line of response (LOR). When a LOR is recorded,
it is assumed that a positron was emitted somewhere along that line. The
PET data consists of a chronological list of LOR that are recorded. Be-
cause the two photons detected at either end of the LOR are not detected
at exactly the same time, the time difference can be used in time-of-flight
PET to further localize the site of the emission to a smaller segment of
perhaps 8 cm in length.
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2.2.2 Single-Photon Emission Tomography

Single-photon computed emission tomography (SPECT) is similar to PET
and has the same objective: to image the distribution of a radionuclide
within the body of the patient. In SPECT the radionuclide emits single
photons, which then travel through the body of the patient and, in some
fraction of the cases, are detected. Detections in SPECT correspond to
individual sensor locations outside the body. The data in SPECT are
the photon counts at each of the finitely many detector locations. Unlike
PET, in SPECT lead collimators are placed in front of the gamma-camera
detectors to eliminate photons arriving at oblique angles. While this helps
us narrow down the possible sources of detected photons, it also reduces
the number of detected photons and thereby decreases the signal-to-noise
ratio.

2.2.3 The Line-Integral Model for PET and SPECT

To solve the reconstruction problem we need a model that relates the count
data to the radionuclide density function. A somewhat unsophisticated,
but computationally attractive, model is taken from transmission tomog-
raphy: to view the count at a particular detector as the line integral of the
radionuclide density function along the line from the detector that is per-
pendicular to the camera face. The count data then provide many such line
integrals and the reconstruction problem becomes the familiar one of esti-
mating a function from noisy measurements of line integrals. Viewing the
data as line integrals allows us to use the Fourier transform in reconstruc-
tion. The resulting filtered back-projection (FBP) algorithm is a commonly
used method for medical imaging in clinical settings.

The line-integral model for PET assumes a fixed set of possible LOR,
with most LOR recording many emissions. Another approach is list-mode
PET, in which detections are recording as they occur by listing the two
end points of the associated LOR. The number of potential LOR is much
higher in list-mode, with most of the possible LOR being recording only
once, or not at all [158, 201, 58].

2.2.4 Problems with the Line-Integral Model

It is not really accurate, however, to view the photon counts at the detectors
as line integrals. Consequently, applying filtered back-projection to the
counts at each detector can lead to distorted reconstructions. There are
at least three degradations that need to be corrected before FBP can be
successfully applied [166]: attenuation, scatter, and spatially dependent
resolution.

In the SPECT case, as in most such inverse problems, there is a trade-off
to be made between careful modeling of the physical situation and compu-
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tational tractability. The FBP method slights the physics in favor of com-
putational simplicity and speed. In recent years, iterative methods, such
as the algebraic reconstruction technique (ART), its multiplicative vari-
ant, MART, the expectation maximization maximum likelihood (MLEM
or EMML) method, and the rescaled block-iterative EMML (RBI-EMML),
that incorporate more of the physics have become competitive.

2.2.5 The Stochastic Model: Discrete Poisson Emit-
ters

In iterative reconstruction we begin by discretizing the problem; that is, we
imagine the region of interest within the patient to consist of finitely many
tiny squares, called pixels for two-dimensional processing or cubes, called
voxels for three-dimensional processing. We imagine that each pixel has its
own level of concentration of radioactivity and these concentration levels
are what we want to determine. Proportional to these concentration levels
are the average rates of emission of photons. To achieve our goal we must
construct a model that relates the measured counts to these concentration
levels at the pixels. The standard way to do this is to adopt the model
of independent Poisson emitters. Any Poisson-distributed random variable
has a mean equal to its variance. The signal-to-noise ratio (SNR) is usually
taken to be the ratio of the mean to the standard deviation, which, in the
Poisson case, is then the square root of the mean. Consequently, the Poisson
SNR increases as the mean value increases, which points to the desirability
(at least, statistically speaking) of higher dosages to the patient.

2.2.6 Reconstruction as Parameter Estimation

The goal is to reconstruct the distribution of radionuclide intensity by es-
timating the pixel concentration levels. The pixel concentration levels can
be viewed as parameters and the data are instances of random variables, so
the problem looks like a fairly standard parameter estimation problem of
the sort studied in beginning statistics. One of the basic tools for statistical
parameter estimation is likelihood maximization, which is playing an in-
creasingly important role in medical imaging. There are several problems,
however.

One problem is that the number of parameters is quite large, as large as
the number of data values, in most cases. Standard statistical parameter
estimation usually deals with the estimation of a handful of parameters.
Another problem is that we do not quite know the relationship between the
pixel concentration levels and the count data. The reason for this is that
the probability that a photon emitted from a given pixel will be detected
at a given detector will vary from one patient to the next, since whether
or not a photon makes it from a given pixel to a given detector depends on



2.3. MAGNETIC RESONANCE IMAGING 15

the geometric relationship between detector and pixel, as well as what is
in the patient’s body between these two locations. If there are ribs or skull
getting in the way, the probability of making it goes down. If there are just
lungs, the probability goes up. These probabilities can change during the
scanning process, when the patient moves. Some motion is unavoidable,
such as breathing and the beating of the heart. Determining good values
of the probabilities in the absence of motion, and correcting for the effects
of motion, are important parts of SPECT image reconstruction.

2.2.7 X-Ray Fluorescence Computed Tomography

X-ray fluorescence computed tomography (XFCT) is a form of emission
tomography that seeks to reconstruct the spatial distribution of elements
of interest within the body [176]. Unlike SPECT and PET, these elements
need not be radioactive. Beams of synchrotron radiation are used to stim-
ulate the emission of fluorescence x-rays from the atoms of the elements of
interest. These fluorescence x-rays can then be detected and the distribu-
tion of the elements estimated and imaged. As with SPECT, attenuation
is a problem; making things worse is the lack of information about the
distribution of attenuators at the various fluorescence energies.

2.3 Magnetic Resonance Imaging

Protons have spin, which, for our purposes here, can be viewed as a charge
distribution in the nucleus revolving around an axis. Associated with the
resulting current is a magnetic dipole moment collinear with the axis of the
spin. In elements with an odd number of protons, such as hydrogen, the
nucleus itself will have a net magnetic moment. The objective in magnetic
resonance imaging (MRI) is to determine the density of such elements in a
volume of interest within the body. The basic idea is to use strong magnetic
fields to force the individual spinning nuclei to emit signals that, while too
weak to be detected alone, are detectable in the aggregate. The signals
are generated by the precession that results when the axes of the magnetic
dipole moments are first aligned and then perturbed.

In much of MRI, it is the distribution of hydrogen in water molecules
that is the object of interest, although the imaging of phosphorus to study
energy transfer in biological processing is also important. There is ongoing
work using tracers containing fluorine, to target specific areas of the body
and avoid background resonance. Because the magnetic properties of blood
change when the blood is oxygenated, increased activity in parts of the
brain can be imaged through functional MRI (fMRI).
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2.3.1 Alignment

In the absence of an external magnetic field, the axes of these magnetic
dipole moments have random orientation, dictated mainly by thermal ef-
fects. When an external magnetic field is introduced, it induces a small
fraction, about one in 105, of the dipole moments to begin to align their
axes with that of the external magnetic field. Only because the number
of protons per unit of volume is so large do we get a significant number
of moments aligned in this way. A strong external magnetic field, about
20, 000 times that of the earth’s, is required to produce enough alignment
to generate a detectable signal.

2.3.2 Precession

When the axes of the aligned magnetic dipole moments are perturbed,
they begin to precess, like a spinning top, around the axis of the external
magnetic field, at the Larmor frequency, which is proportional to the in-
tensity of the external magnetic field. If the magnetic field intensity varies
spatially, then so does the Larmor frequency. Each precessing magnetic
dipole moment generates a signal; taken together, they contain informa-
tion about the density of the element at the various locations within the
body. As we shall see, when the external magnetic field is appropriately
chosen, a Fourier relationship can be established between the information
extracted from the received signal and this density function.

2.3.3 Slice Isolation

When the external magnetic field is the static field, then the Larmor fre-
quency is the same everywhere. If, instead, we impose an external magnetic
field that varies spatially, then the Larmor frequency is also spatially vary-
ing. This external field is now said to include a gradient field.

2.3.4 Tipping

When a magnetic dipole moment is given a component out of its axis of
alignment, it begins to precess around its axis of alignment, with frequency
equal to its Larmor frequency. To create this off-axis component, we apply
a radio-frequency field (rf field) for a short time. The effect of imposing this
rf field is to tip the aligned magnetic dipole moment axes away from the
axis of alignment, initiating precession. The dipoles that have been tipped
ninety degrees out of their axis of alignment generate the strongest signal.
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2.3.5 Imaging

The information we seek about the proton density function is contained
within the received signal. By carefully adding gradient fields to the ex-
ternal field, we can make the Larmor frequency spatially varying, so that
each frequency component of the received signal contains a piece of the
information we seek. The proton density function is then obtained through
Fourier transformations. Fourier-transform estimation and extrapolation
techniques play a major role in this rapidly expanding field [143].

2.3.6 The Line-Integral Approach

By appropriately selecting the gradient field and the radio-frequency field,
it is possible to create a situation in which the received signal comes pri-
marily from dipoles along a given line in a preselected plane. Performing
an FFT of the received signal gives us line integrals of the density function
along lines in that plane. In this way, we obtain the three-dimensional
Radon transform of the desired density function. The Central Slice Theo-
rem for this case tells us that, in theory, we have the Fourier transform of
the density function.

2.3.7 Phase Encoding

In the line-integral approach, the line-integral data is used to obtain values
of the Fourier transform of the density function along lines through the
origin in Fourier space. It would be more convenient for the FFT if we
have Fourier-transform values on the points of a rectangular grid. We can
obtain this by selecting the gradient fields to achieve phase encoding.

2.4 Intensity Modulated Radiation Therapy

A fairly recent addition to the list of applications using linear algebra and
the geometry of Euclidean space is intensity modulated radiation therapy
(IMRT). Although it is not actually an imaging problem, intensity modu-
lated radiation therapy is an emerging field that involves some of the same
mathematical techniques used to solve the medical imaging problems dis-
cusses previously, particularly methods for solving the convex feasibility
problem.

2.4.1 Brief Description

In IMRT beamlets of radiation with different intensities are transmitted
into the body of the patient. Each voxel within the patient will then
absorb a certain dose of radiation from each beamlet. The goal of IMRT
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is to direct a sufficient dosage to those regions requiring the radiation,
those that are designated planned target volumes (PTV), while limiting the
dosage received by the other regions, the so-called organs at risk (OAR).

2.4.2 The Problem and the Constraints

The intensities and dosages are obviously non-negative quantities. In addi-
tion, there are implementation constraints; the available treatment machine
will impose its own requirements, such as a limit on the difference in in-
tensities between adjacent beamlets. In dosage space, there will be a lower
bound on the acceptable dosage delivered to those regions designated as
the PTV, and an upper bound on the acceptable dosage delivered to those
regions designated as the OAR. The problem is to determine the intensities
of the various beamlets to achieve these somewhat conflicting goals.

2.4.3 Convex Feasibility and IMRT

The CQ algorithm [59, 60] is an iterative algorithm for solving the convex
feasibility problem. Because it is particularly simple to implement in many
cases, it has become the focus of recent work in IMRT. In [77] Censor
et al. extend the CQ algorithm to solve what they call the multiple-set
split feasibility problem (MSSFP) . In the sequel [75] it is shown that the
constraints in IMRT can be modeled as inclusion in convex sets and the
extended CQ algorithm is used to determine dose intensities for IMRT that
satisfy both dose constraints and radiation-source constraints.

2.5 Array Processing

Passive SONAR is used to estimate the number and direction of distant
sources of acoustic energy that have generated sound waves propagat-
ing through the ocean. An array, or arrangement, of sensors, called hy-
drophones, is deployed to measure the incoming waveforms over time and
space. The data collected at the sensors is them processed to provide es-
timates of the waveform parameters being sought. In active SONAR, the
party deploying the array is also the source of the acoustic energy, and
what is sensed are the returning waveforms that have been reflected off of
distant objects. Active SONAR can be used to map the ocean floor, for ex-
ample. Radar is another active array-processing procedure, using reflected
radio waves instead of sound to detect distant objects. Radio astronomy
uses array processing and the radio waves emitted by distant sources to
map the heavens.

To illustrate how array processing operates, consider Figure 2.1. Imag-
ine a source of acoustic energy sufficiently distant from the line of sensors
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that the incoming wavefront is essentially planar. As the peaks and troughs
of the wavefronts pass over the array of sensors, the measurements at the
sensors give the elapsed time between a peak at one sensor and a peak at
the next sensor, thereby giving an indication of the angle of arrival.

Figure 2.1: A uniform line array sensing a plane-wave field.

In practice, of course, there are multiple sources of acoustic energy, so
each sensor receives a superposition of all the plane-wave fronts from all
directions. because the sensors are spread out in space, what each receives
is slightly different from what its neighboring sensors receive, and this slight
difference can be exploited to separate the spatially distinct components of
the signals. What we seek is the function that describes how much energy
came from each direction.
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When we describe the situation mathematically, using the wave equa-
tion, we find that what is received at each sensor is a value of the Fourier
transform of the function we want. Because we have only finitely many
sensors, we have only finitely many values of this Fourier transform. So,
we have the problem of estimating a function from finitely many values of
its Fourier transform.

2.6 A Word about Prior Information

An important point to keep in mind when applying linear-algebraic meth-
ods to measured data is that, while the data is usually limited, the informa-
tion we seek may not be lost. Although processing the data in a reasonable
way may suggest otherwise, other processing methods may reveal that the
desired information is still available in the data. Figure 2.2 illustrates this
point.

The original image on the upper right of Figure 2.2 is a discrete rect-
angular array of intensity values simulating a slice of a head. The data
was obtained by taking the two-dimensional discrete Fourier transform of
the original image, and then discarding, that is, setting to zero, all these
spatial frequency values, except for those in a smaller rectangular region
around the origin. The problem then is under-determined. A minimum-
norm solution would seem to be a reasonable reconstruction method.

The minimum-norm solution is shown on the lower right. It is calcu-
lated simply by performing an inverse discrete Fourier transform on the
array of modified discrete Fourier transform values. The original image
has relatively large values where the skull is located, but the minimum-
norm reconstruction does not want such high values; the norm involves the
sum of squares of intensities, and high values contribute disproportionately
to the norm. Consequently, the minimum-norm reconstruction chooses in-
stead to conform to the measured data by spreading what should be the
skull intensities throughout the interior of the skull. The minimum-norm
reconstruction does tell us something about the original; it tells us about
the existence of the skull itself, which, of course, is indeed a prominent
feature of the original. However, in all likelihood, we would already know
about the skull; it would be the interior that we want to know about.

Using our knowledge of the presence of a skull, which we might have ob-
tained from the minimum-norm reconstruction itself, we construct the prior
estimate shown in the upper left. Now we use the same data as before, and
calculate a minimum-weighted-norm reconstruction, using as the weight
vector the reciprocals of the values of the prior image. This minimum-
weighted-norm reconstruction is shown on the lower left; it is clearly almost
the same as the original image. The calculation of the minimum-weighted
norm solution can be done iteratively using the ART algorithm [222].
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When we weight the skull area with the inverse of the prior image,
we allow the reconstruction to place higher values there without having
much of an effect on the overall weighted norm. In addition, the reciprocal
weighting in the interior makes spreading intensity into that region costly,
so the interior remains relatively clear, allowing us to see what is really
present there.

When we try to reconstruct an image from limited data, it is easy to
assume that the information we seek has been lost, particularly when a
reasonable reconstruction method fails to reveal what we want to know.
As this example, and many others, show, the information we seek is often
still in the data, but needs to be brought out in a more subtle way.
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Figure 2.2: Extracting information in image reconstruction.



Chapter 3

Urn Models for Remote
Sensing

There seems to be a tradition in physics of using simple models or examples
involving urns and marbles to illustrate important principles. In keeping
with that tradition, we give an urn model to illustrate various aspects of
remote sensing, and apply the model to tomography.

3.1 The Urn Model for Remote Sensing

Suppose that we have J urns numbered j = 1, ..., J , each containing mar-
bles of various colors. Suppose that there are I colors, numbered i = 1, ..., I.
Suppose also that there is a box containing N small pieces of paper, and
on each piece is written the number of one of the J urns. Assume that N
is much larger than J . Assume that I know the precise contents of each
urn. My objective is to determine the precise contents of the box, that
is, to estimate the number of pieces of paper corresponding to each of the
numbers j = 1, ..., J .

Out of my view, my assistant removes one piece of paper from the box,
takes one marble from the indicated urn, announces to me the color of the
marble, and then replaces both the piece of paper and the marble. This
action is repeated many times, at the end of which I have a long list of
colors. This list is my data, from which I must determine the contents of
the box.

This is a form of remote sensing; what we have access to is not what
we are really interested in, but only related to it in some way. Sometimes
such data is called “incomplete data” , in contrast to the “complete data” ,
which would be the list of the actual urn numbers drawn from the box.

If all the marbles of one color are in a single urn, the problem is trivial;

23
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when I hear a color, I know immediately which urn contained that marble.
My list of colors is then a list of urn numbers; I have the complete data
now. My best estimate of the number of pieces of paper containing the urn
number j is then simply N times the proportion of draws that resulted in
urn j being selected.

At the other extreme, suppose two urns had identical contents. Then
I could not distinguish one urn from the other and would be unable to
estimate more than the total number of pieces of paper containing either
of the two urn numbers.

Generally, the more the contents of the urns differ, the easier the task
of estimating the contents of the box. In remote sensing applications, these
issues affect our ability to resolve individual components contributing to
the data.

To introduce some mathematics, let us denote by xj the proportion of
the pieces of paper that have the number j written on them. Let Pij be
the proportion of the marbles in urn j that have the color i. Let yi be the
proportion of times the color i occurs on the list of colors. The expected
proportion of times i occurs on the list is E(yi) =

∑J
j=1 Pijxj = (Px)i,

where P is the I by J matrix with entries Pij and x is the J by 1 column
vector with entries xj . A reasonable way to estimate x is to replace E(yi)
with the actual yi and solve the system of linear equations yi =

∑J
j=1 Pijxj ,

i = 1, ..., I. Of course, we require that the xj be nonnegative and sum to
one, so special algorithms may be needed to find such solutions. If there
are two urns, j1 and j2, such that Pij1 and Pij2 are nearly equal for all i,
then we will have a hard time distinguishing xj1 and xj2 .

In a number of applications that fit this model, such as medical tomog-
raphy, the values xj are taken to be parameters, the data yi are statistics,
and the xj are estimated by adopting a probabilistic model and maximiz-
ing the likelihood function. iterative algorithms, such as the expectation
maximization (EMML) algorithm are often used for such problems.

3.2 The Urn Model in Tomography

Now we apply this simple model to transmission and emission tomography.

3.2.1 The Case of SPECT

In the SPECT case, let there be J pixels or voxels, numbered j = 1, ..., J
and I detectors, numbered i = 1, ..., I. Let Pij be the probability that
a photon emitted at pixel j will be detected at detector i; we assume
these probabilities are known to us. Let yi be the proportion of the total
photon count that was recorded at the ith detector. Denote by xj the
(unknown) proportion of the total photon count that was emitted from
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pixel j. Selecting an urn randomly is analogous to selecting which pixel
will be the next to emit a photon. Learning the color of the marble is
analogous to learning where the photon was detected; for simplicity we are
assuming that all emitted photons are detected, but this is not essential.
The data we have, the counts at each detector, constitute the “incomplete
data” ; the “complete data” would be the counts of emissions from each of
the J pixels.

If the pixels numbered j1 and j2 are neighbors, then we would expect
Pij1 and Pij2 to be almost equal, for every i. This makes it difficult to es-
timate accurately the separate quantities xj1 and xj2 , which is a resolution
problem.

We can determine the xj by finding nonnegative solutions of the system
yi =

∑J
j=1 Pijxj ; this is what the various iterative algorithms, such as

MART, EMML and RBI-EMML, seek to do.

3.2.2 The Case of PET

In the PET case, let there be J pixels or voxels, numbered j = 1, ..., J
and I lines of response (LOR), numbered i = 1, ..., I. Let Pij be the
probability that a positron emitted at pixel j will result in a coincidence
detection associated with LOR i; we assume these probabilities are known
to us. Let yi be the proportion of the total detections that was associated
with the ith LOR. Denote by xj the (unknown) proportion of the total
count that was due to a positron emitted from pixel j. Selecting an urn
randomly is analogous to selecting which pixel will be the next to emit a
positron. Learning the color of the marble is analogous to learning which
LOR was detected; again, for simplicity we are assuming that all emitted
positrons are detected, but this is not essential. As in the SPECT case,
we can determine the xj by finding nonnegative solutions of the system
yi =

∑J
j=1 Pijxj .

3.2.3 The Case of Transmission Tomography

Assume that x-ray beams are sent along I line segments, numbered i =
1, ..., I, and that the initial strength of each beam is known. By measuring
the final strength, we determine the drop in intensity due to absorption
along the ith line segment. Associated with each line segment we then
have the proportion of transmitted photons that were absorbed, but we
do not know where along the line segment the absorption took place. The
proportion of absorbed photons for each line is our data, and corresponds to
the proportion of each color in the list. The rate of change of the intensity
of the x-ray beam as it passes through the jth pixel is proportional to the
intensity itself, to Pij , the length of the ith segment that is within the jth
pixel, and to xj , the amount of attenuating material present in the jth
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pixel. Therefore, the intensity of the x-ray beam leaving the jth pixel is
the product of the intensity of the beam upon entering the jth pixel and
the decay term, e−Pijxj .

The “complete data” is the proportion of photons entering the jth pixel
that were absorbed within it; the “incomplete data” is the proportion of
photons sent along each line segment that were absorbed. Selecting the
jth urn is analogous to having an absorption occurring at the jth pixel.
Knowing that an absorption has occurred along the ith line segment does
tell us that an absorption occurred at one of the pixels that intersections
that line segment, but that is analogous to knowing that there are certain
urns that are the only ones that contain the ith color.

The (measured) intensity of the beam at the end of the ith line segment
is e−(Px)i times the (known) intensity of the beam when it began its journey
along the ith line segment. Taking logs, we obtain a system of linear
equations which we can solve for the xj .

3.3 Hidden Markov Models

Hidden Markov models (HMM) are increasingly important in speech pro-
cessing, optical character recognition and DNA sequence analysis. In this
section we illustrate HMM using a modification of the urn model.

Suppose, once again, that we have J urns, indexed by j = 1, ..., J and
I colors of marbles, indexed by i = 1, ..., I. Associated with each of the
J urns is a box, containing a large number of pieces of paper, with the
number of one urn written on each piece. My assistant selects one box,
say the j0th box, to start the experiment. He draws a piece of paper from
that box, reads the number written on it, call it j1, goes to the urn with
the number j1 and draws out a marble. He then announces the color. He
then draws a piece of paper from box number j1, reads the next number,
say j2, proceeds to urn number j2, etc. After N marbles have been drawn,
the only data I have is a list of colors, c = {c1, c2, ..., cN}.

According to the hidden Markov model, the probability that my as-
sistant will proceed from the urn numbered k to the urn numbered j is
bjk, with

∑J
j=1 bjk = 1 for all k, and the probability that the color ci will

be drawn from the urn numbered j is aij , with
∑I

i=1 aij = 1. for all j.
The colors announced are the visible states, while the unannounced urn
numbers are the hidden states.

There are several distinct objectives one can have, when using HMM.
We assume that the data is the list of colors, c.

• Evaluation: For given probabilities aij and bjk, what is the proba-
bility that the list c was generated according to the HMM? Here, the
objective is to see if the model is a good description of the data.
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• Decoding: Given the model, the probabilities and the list c, what
list j = {j1, j2, ..., jN} of potential visited urns is the most likely?
Now, we want to infer the hidden states from the visible ones.

• Learning: We are told that there are J urns and I colors, but are not
told the probabilities aij and bjk. We are given several data vectors
c generated by the HMM; these are the training sets. The objective
is to learn the probabilities.

Once again, the EMML algorithm can play a role in solving these problems
[109].
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Chapter 4

The ART and MART

4.1 Overview

In many applications, such as in image processing, we need to solve a sys-
tem of linear equations that is quite large, often several tens of thousands
of equations in about the same number of unknowns. In these cases, issues
such as the costs of storage and retrieval of matrix entries, the computa-
tion involved in apparently trivial operations, such as matrix-vector prod-
ucts, and the speed of convergence of iterative methods demand greater
attention. At the same time, the systems to be solved are often under-
determined, and solutions satisfying certain additional constraints, such as
non-negativity, are required. The ART and the MART are two iterative
algorithms that are designed to address these issues. In this chapter we
give an overview of these methods; later, we shall revisit them in more
detail.

Both the algebraic reconstruction technique (ART) and the multiplica-
tive algebraic reconstruction technique (MART) were introduced as two
iterative methods for discrete image reconstruction in transmission tomog-
raphy.

Both methods are what are called row-action methods, meaning that
each step of the iteration uses only a single equation from the system. The
MART is limited to non-negative systems for which non-negative solutions
are sought. In the under-determined case, both algorithms find the solution
closest to the starting vector, in the two-norm or weighted two-norm sense
for ART, and in the cross-entropy sense for MART, so both algorithms can
be viewed as solving optimization problems. In the appendix “Geometric
Programming and the MART” we describe the use of MART to solve the
dual geometric programming problem. For both algorithms, the starting
vector can be chosen to incorporate prior information about the desired
solution. In addition,the ART can be employed in several ways to obtain

29
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a least-squares solution, in the over-determined case.

4.2 The ART in Tomography

For i = 1, ..., I, let Li be the set of pixel indices j for which the j-th pixel
intersects the i-th line segment, as shown in Figure 4.1, and let |Li| be the
cardinality of the set Li. Let Aij = 1 for j in Li, and Aij = 0 otherwise.
With i = k(mod I) + 1, the iterative step of the ART algorithm is

xk+1
j = xk

j +
1
|Li|

(bi − (Axk)i), (4.1)

for j in Li, and

xk+1
j = xk

j , (4.2)

if j is not in Li. In each step of ART, we take the error, bi − (Axk)i,
associated with the current xk and the i-th equation, and distribute it
equally over each of the pixels that intersects Li.

A somewhat more sophisticated version of ART allows Aij to include
the length of the i-th line segment that lies within the j-th pixel; Aij is
taken to be the ratio of this length to the length of the diagonal of the
j-pixel.

More generally, ART can be viewed as an iterative method for solving
an arbitrary system of linear equations, Ax = b.

4.3 The ART in the General Case

Let A be a complex matrix with I rows and J columns, and let b be a
member of CI . We want to solve the system Ax = b.

For each index value i, letHi be the hyperplane of J-dimensional vectors
given by

Hi = {x|(Ax)i = bi}, (4.3)

and Pi the orthogonal projection operator onto Hi. Let x0 be arbitrary
and, for each nonnegative integer k, let i(k) = k(mod I) + 1. The iterative
step of the ART is

xk+1 = Pi(k)x
k. (4.4)

Because the ART uses only a single equation at each step, it has been
called a row-action method. Figures 4.2 and 4.3 illustrate the behavior of
the ART.
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4.3.1 Calculating the ART

Given any vector z the vector inHi closest to z, in the sense of the Euclidean
distance, has the entries

xj = zj +Aij(bi − (Az)i)/
J∑

m=1

|Aim|2. (4.5)

To simplify our calculations, we shall assume, throughout this chapter, that
the rows of A have been rescaled to have Euclidean length one; that is

J∑
j=1

|Aij |2 = 1, (4.6)

for each i = 1, ..., I, and that the entries of b have been rescaled accordingly,
to preserve the equations Ax = b. The ART is then the following: begin
with an arbitrary vector x0; for each nonnegative integer k, having found
xk, the next iterate xk+1 has entries

xk+1
j = xk

j +Aij(bi − (Axk)i). (4.7)

When the system Ax = b has exact solutions the ART converges to the
solution closest to x0, in the 2-norm. How fast the algorithm converges
will depend on the ordering of the equations and on whether or not we use
relaxation. In selecting the equation ordering, the important thing is to
avoid particularly bad orderings, in which the hyperplanes Hi and Hi+1

are nearly parallel.

4.3.2 When Ax = b Has Solutions

For the consistent case, in which the system Ax = b has exact solutions,
we have the following result.

Theorem 4.1 Let Ax̂ = b and let x0 be arbitrary. Let {xk} be generated
by Equation (4.7). Then the sequence {||x̂− xk||2} is decreasing and {xk}
converges to the solution of Ax = b closest to x0.

4.3.3 When Ax = b Has No Solutions

When there are no exact solutions, the ART does not converge to a single
vector, but, for each fixed i, the subsequence {xnI+i, n = 0, 1, ...} converges
to a vector zi and the collection {zi |i = 1, ..., I} is called the limit cycle.

The ART limit cycle will vary with the ordering of the equations, and
contains more than one vector unless an exact solution exists. There are
several open questions about the limit cycle.

Open Question: For a fixed ordering, does the limit cycle depend on the
initial vector x0? If so, how?
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4.3.4 The Geometric Least-Squares Solution

When the system Ax = b has no solutions, it is reasonable to seek an ap-
proximate solution, such as the least squares solution, xLS = (A†A)−1A†b,
which minimizes ||Ax−b||2. It is important to note that the system Ax = b
has solutions if and only if the related system WAx = Wb has solutions,
where W denotes an invertible matrix; when solutions of Ax = b exist, they
are identical to those of WAx = Wb. But, when Ax = b does not have
solutions, the least-squares solutions of Ax = b, which need not be unique,
but usually are, and the least-squares solutions of WAx = Wb need not
be identical. In the typical case in which A†A is invertible, the unique
least-squares solution of Ax = b is

(A†A)−1A†b, (4.8)

while the unique least-squares solution of WAx = Wb is

(A†W †WA)−1A†W †b, (4.9)

and these need not be the same.
A simple example is the following. Consider the system

x = 1

x = 2, (4.10)

which has the unique least-squares solution x = 1.5, and the system

2x = 2

x = 2, (4.11)

which has the least-squares solution x = 1.2.

Definition 4.1 The geometric least-squares solution of Ax = b is the
least-squares solution of WAx = Wb, for W the diagonal matrix whose
entries are the reciprocals of the Euclidean lengths of the rows of A.

In our example above, the geometric least-squares solution for the first
system is found by using W11 = 1 = W22, so is again x = 1.5, while the
geometric least-squares solution of the second system is found by using
W11 = 0.5 and W22 = 1, so that the geometric least-squares solution is
x = 1.5, not x = 1.2.

Open Question: If there is a unique geometric least-squares solution,
where is it, in relation to the vectors of the limit cycle? Can it be calculated
easily, from the vectors of the limit cycle?
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There is a partial answer to the second question. It is known that if
the system Ax = b has no exact solution, and if I = J + 1, then the
vectors of the limit cycle lie on a sphere in J-dimensional space having
the least-squares solution at its center. This is not true more generally,
however.

4.4 The MART

The multiplicative ART (MART) is an iterative algorithm closely related
to the ART. It also was devised to obtain tomographic images, but, like
ART, applies more generally; MART applies to systems of linear equations
Ax = b for which the bi are positive, the Aij are nonnegative, and the so-
lution x we seek is to have nonnegative entries. It is not so easy to see the
relation between ART and MART if we look at the most general formula-
tion of MART. For that reason, we begin with a simpler case, transmission
tomographic imaging, in which the relation is most clearly visible.

4.4.1 A Special Case of MART

We begin by considering the application of MART to the transmission
tomography problem. For i = 1, ..., I, let Li be the set of pixel indices j
for which the j-th pixel intersects the i-th line segment, and let |Li| be the
cardinality of the set Li. Let Aij = 1 for j in Li, and Aij = 0 otherwise.
With i = k(mod I) + 1, the iterative step of the ART algorithm is

xk+1
j = xk

j +
1
|Li|

(bi − (Axk)i), (4.12)

for j in Li, and

xk+1
j = xk

j , (4.13)

if j is not in Li. In each step of ART, we take the error, bi − (Axk)i,
associated with the current xk and the i-th equation, and distribute it
equally over each of the pixels that intersects Li.

Suppose, now, that each bi is positive, and we know in advance that the
desired image we wish to reconstruct must be nonnegative. We can begin
with x0 > 0, but as we compute the ART steps, we may lose nonnegativity.
One way to avoid this loss is to correct the current xk multiplicatively,
rather than additively, as in ART. This leads to the multiplicative ART
(MART).

The MART, in this case, has the iterative step

xk+1
j = xk

j

( bi
(Axk)i

)
, (4.14)
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for those j in Li, and

xk+1
j = xk

j , (4.15)

otherwise. Therefore, we can write the iterative step as

xk+1
j = xk

j

( bi
(Axk)i

)Aij

. (4.16)

4.4.2 The MART in the General Case

Taking the entries of the matrix A to be either one or zero, depending on
whether or not the j-th pixel is in the set Li, is too crude. The line Li

may just clip a corner of one pixel, but pass through the center of another.
Surely, it makes more sense to let Aij be the length of the intersection of
line Li with the j-th pixel, or, perhaps, this length divided by the length of
the diagonal of the pixel. It may also be more realistic to consider a strip,
instead of a line. Other modifications to Aij may made made, in order to
better describe the physics of the situation. Finally, all we can be sure of
is that Aij will be nonnegative, for each i and j. In such cases, what is the
proper form for the MART?

The MART, which can be applied only to nonnegative systems, is a
sequential, or row-action, method that uses one equation only at each step
of the iteration.

Algorithm 4.1 (MART) Let x0 be any positive vector, and i = k(mod I)+
1. Having found xk for positive integer k, define xk+1 by

xk+1
j = xk

j

( bi
(Axk)i

)m−1
i

Aij

, (4.17)

where mi = max {Aij |j = 1, 2, ..., J}.
Some treatments of MART leave out the mi, but require only that the
entries of A have been rescaled so that Aij ≤ 1 for all i and j. The mi is
important, however, in accelerating the convergence of MART.

4.4.3 Cross-Entropy

For a > 0 and b > 0, let the cross-entropy or Kullback-Leibler distance
from a to b be

KL(a, b) = a log
a

b
+ b− a, (4.18)

with KL(a, 0) = +∞, and KL(0, b) = b. Extend to nonnegative vectors
coordinate-wise, so that

KL(x, z) =
J∑

j=1

KL(xj , zj). (4.19)
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Unlike the Euclidean distance, the KL distance is not symmetric; KL(Ax, b)
and KL(b, Ax) are distinct, and we can obtain different approximate so-
lutions of Ax = b by minimizing these two distances with respect to non-
negative x.

4.4.4 Convergence of MART

In the consistent case, by which we mean that Ax = b has nonnegative
solutions, we have the following convergence theorem for MART.

Theorem 4.2 In the consistent case, the MART converges to the unique
nonnegative solution of b = Ax for which the distance

∑J
j=1KL(xj , x

0
j ) is

minimized.

If the starting vector x0 is the vector whose entries are all one, then the
MART converges to the solution that maximizes the Shannon entropy,

SE(x) =
J∑

j=1

xj log xj − xj . (4.20)

As with ART, the speed of convergence is greatly affected by the order-
ing of the equations, converging most slowly when consecutive equations
correspond to nearly parallel hyperplanes.

Open Question: When there are no nonnegative solutions, MART does
not converge to a single vector, but, like ART, is always observed to produce
a limit cycle of vectors. Unlike ART, there is no proof of the existence of
a limit cycle for MART.
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Figure 4.1: Line integrals through a discretized object.
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Figure 4.2: The ART algorithm in the consistent case.
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Figure 4.3: The ART algorithm in the inconsistent case.
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Chapter 5

A Little Matrix Theory

5.1 Matrix Algebra

If A and B are real or complex M by N and N by K matrices, respectively,
then the product C = AB is defined as the M by K matrix whose entry
Cmk is given by

Cmk =
N∑

n=1

AmnBnk. (5.1)

If x is an N -dimensional column vector, that is, x is an N by 1 matrix,
then the product b = Ax is the M -dimensional column vector with entries

bm =
N∑

n=1

Amnxn. (5.2)

Exercise 5.1 Show that, for each k = 1, ...,K, Colk(C), the kth column
of the matrix C = AB, is

Colk(C) = AColk(B).

It follows from this exercise that, for given matrices A and C, every column
of C is a linear combination of the columns of A if and only if there is a
third matrix B such that C = AB.

The matrix A† is the conjugate transpose of the matrix A, that is, the
N by M matrix whose entries are

(A†)nm = Amn (5.3)

When the entries of A are real, A† is just the transpose of A, written AT .

Exercise 5.2 Show that B†A† = (AB)† = C†.

41
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5.2 Bases and Dimension

The notions of a basis and of linear independence are fundamental in linear
algebra. Let V be a vector space.

5.2.1 Linear Independence and Bases

As we shall see shortly, the dimension of a finite-dimensional vector space
will be defined as the number of members of any basis. Obviously, we
first need to see what a basis is, and then to convince ourselves that if a
vector space V has a basis with N members, then every basis for V has N
members.

Definition 5.1 The span of a collection of vectors {u1, ..., uN} in V is the
set of all vectors x that can be written as linear combinations of the un;
that is, for which there are scalars c1, ..., cN , such that

x = c1u
1 + ...+ cNu

N . (5.4)

Definition 5.2 A collection of vectors {w1, ..., wN} in V is called a span-
ning set for a subspace S if the set S is their span.

Definition 5.3 A subset S of a vector space V is called finite dimensional
if it is contained in the span of a finite set of vectors from V .

This definition tells us what it means to be finite dimensional, but does
not tell us what dimension means, nor what the actual dimension of a finite
dimensional subset is; for that we need the notions of linear independence
and basis.

Definition 5.4 A collection of vectors U = {u1, ..., uN} in V is linearly
independent if there is no choice of scalars α1, ..., αN , not all zero, such
that

0 = α1u
1 + ...+ αNu

N . (5.5)

Exercise 5.3 Show that the following are equivalent:

• 1. the set U = {u1, ..., uN} is linearly independent;

• 2. no un is a linear combination of the other members of U ;

• 3. u1 6= 0 and no un is a linear combination of the members of U
that precede it in the list.

Definition 5.5 A collection of vectors U = {u1, ..., uN} in V is called a
basis for a subspace S if the collection is linearly independent and S is their
span.
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Exercise 5.4 Show that

• 1. if U = {u1, ..., uN} is a spanning set for S, then U is a basis for S
if and only if, after the removal of any one member, U is no longer
a spanning set; and

• 2. if U = {u1, ..., uN} is a linearly independent set in S, then U is a
basis for S if and only if, after including in U any new member from
S, U is no longer linearly independent.

5.2.2 Dimension

We turn now to the task of showing that every basis for a finite dimensional
vector space has the same number of members. That number will then be
used to define the dimension of that subspace.

Suppose that S is a subspace of V , that {w1, ..., wN} is a spanning set
for S, and {u1, ..., uM} is a linearly independent subset of S. Beginning
with w1, we augment the set {u1, ..., uM} with wj if wj is not in the span of
the um and the wk previously included. At the end of this process, we have
a linearly independent spanning set, and therefore, a basis, for S (Why?).
Similarly, beginning with w1, we remove wj from the set {w1, ..., wN} if wj

is a linear combination of the wk, k = 1, ..., j − 1. In this way we obtain
a linearly independent set that spans S, hence another basis for S. The
following lemma will allow us to prove that all bases for a subspace S have
the same number of elements.

Lemma 5.1 Let G = {w1, ..., wN} be a spanning set for a subspace S
in RI , and H = {v1, ..., vM} a linearly independent subset of S. Then
M ≤ N .

Proof: Suppose that M > N . Let B0 = G = {w1, ..., wN}. To obtain the
set B1, form the set C1 = {v1, w1, ..., wN} and remove the first member of
C1 that is a linear combination of members of C1 that occur to its left in
the listing; since v1 has no members to its left, it is not removed. Since G
is a spanning set, v1 6= 0 is a linear combination of the members of G, so
that some member of G is a linear combination of v1 and the members of
G to the left of it in the list; remove the first member of G for which this
is true.

We note that the set B1 is a spanning set for S and has N members.
Having obtained the spanning set Bk, with N members and whose first k
members are vk, ..., v1, we form the set Ck+1 = Bk ∪ {vk+1}, listing the
members so that the first k+1 of them are {vk+1, vk, ..., v1}. To get the set
Bk+1 we remove the first member of Ck+1 that is a linear combination of
the members to its left; there must be one, since Bk is a spanning set, and
so vk+1 is a linear combination of the members of Bk. Since the set H is
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linearly independent, the member removed is from the set G. Continuing
in this fashion, we obtain a sequence of spanning sets B1, ..., BN , each with
N members. The set BN is BN = {v1, ..., vN} and vN+1 must then be
a linear combination of the members of BN , which contradicts the linear
independence of H.

Corollary 5.1 Every basis for a subspace S has the same number of ele-
ments.

Definition 5.6 The dimension of a subspace S is the number of elements
in any basis.

5.3 The Geometry of Real Euclidean Space

We denote by RN the real Euclidean space consisting of all N -dimensional
column vectors x = (x1, ..., xN )T with real entries xj ; here the superscript
T denotes the transpose of the 1 by N matrix (or, row vector) (x1, ..., xN ).
We denote by CN the space of all N -dimensional column vectors with
complex entries. For x in CN we denote by x† the N -dimensional row
vector whose entries are the complex conjugates of the entries of x.

5.3.1 Dot Products

For x = (x1, ..., xN )T and y = (y1, ..., yN )T in CN , the dot product x · y is
defined to be

x · y =
N∑

n=1

xnyn. (5.6)

Note that we can write

x · y = y†x, (5.7)

where juxtaposition indicates matrix multiplication. The 2-norm, or Eu-
clidean norm, or Euclidean length, of x is

||x||2 =
√
x · x =

√
x†x. (5.8)

The Euclidean distance between two vectors x and y in CN is ||x − y||2.
These notions also apply to vectors in RN .

The spaces RN and CN , along with their dot products, are examples
of a finite-dimensional Hilbert space.
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Definition 5.7 Let V be a real or complex vector space. The scalar-valued
function 〈u, v〉 is called an inner product on V if the following four prop-
erties hold, for all u, w, and v in V , and all scalars c:

〈u+ w, v〉 = 〈u, v〉+ 〈w, v〉; (5.9)

〈cu, v〉 = c〈u, v〉; (5.10)

〈v, u〉 = 〈u, v〉; (5.11)

and

〈u, u〉 ≥ 0, (5.12)

with equality in Inequality (5.12) if and only if u = 0.

The dot products on RN and CN are examples of inner products.
The properties of an inner product are precisely the ones needed to prove
Cauchy’s Inequality, which then holds for any inner product. We shall fa-
vor the dot product notation u ·v for the inner product of vectors, although
we shall occasionally use the matrix multiplication form, v†u or the inner
product notation 〈u, v〉.

Definition 5.8 A collection of vectors {u1, ..., uN} in an inner product
space V is called orthonormal if ||un||2 = 1, for all n, and 〈um, un〉 = 0,
for m 6= n.

5.3.2 Cauchy’s Inequality

Cauchy’s Inequality, also called the Cauchy-Schwarz Inequality, tells us
that

|〈x, y〉| ≤ ||x||2||y||2, (5.13)

with equality if and only if y = αx, for some scalar α. The Cauchy-Schwarz
Inequality holds for any inner product.

A simple application of Cauchy’s inequality gives us

||x+ y||2 ≤ ||x||2 + ||y||2; (5.14)

this is called the Triangle Inequality. We say that the vectors x and y are
mutually orthogonal if 〈x, y〉 = 0.

The Parallelogram Law is an easy consequence of the definition of the
2-norm:

||x+ y||22 + ||x− y||22 = 2||x||22 + 2||y||22. (5.15)

It is important to remember that Cauchy’s Inequality and the Parallelo-
gram Law hold only for the 2-norm.
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5.4 Vectorization of a Matrix

When the complex M by N matrix A is stored in the computer it is usually
vectorized; that is, the matrix

A =


A11 A12 . . . A1N

A21 A22 . . . A2N

.

.

.
AM1 AM2 . . . AMN



becomes

vec(A) = (A11, A21, ..., AM1, A12, A22, ..., AM2, ..., AMN )T .

Exercise 5.5 (a) Show that the complex dot product vec(A)·vec(B) =
vec(B)†vec(A) can be obtained by

vec(A)·vec(B) = trace (AB†) = tr(AB†),

where, for a square matrix C, trace (C) means the sum of the entries along
the main diagonal of C. We can therefore use the trace to define an inner
product between matrices: < A,B >= trace (AB†).

(b) Show that trace (AA†) ≥ 0 for all A, so that we can use the trace
to define a norm on matrices: ||A||2 = trace (AA†). This norm is the
Frobenius norm

Exercise 5.6 Let B = ULD† be an M by N matrix in diagonalized form;
that is, L is an M by N diagonal matrix with entries λ1, ..., λK on its main
diagonal, where K = min(M,N), and U and V are square matrices. Let
the n-th column of U be denoted un and similarly for the columns of V .
Such a diagonal decomposition occurs in the singular value decomposition
(SVD). Show that we can write

B = λ1u1(v1)† + ...+ λKuK(vK)†.

If B is an N by N Hermitian matrix, then we can take U = V and K =
M = N , with the columns of U the eigenvectors of B, normalized to
have Euclidean norm equal to one, and the λn to be the eigenvalues of
B. In this case we may also assume that U is a unitary matrix; that is,
UU† = U†U = I, where I denotes the identity matrix.
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5.5 Solving Systems of Linear Equations

In this section we discuss systems of linear equations, Gaussian elimination,
and the notions of basic and non-basic variables.

5.5.1 Systems of Linear Equations

Consider the system of three linear equations in five unknowns given by

x1 +2x2 +2x4 +x5 = 0
−x1 −x2 +x3 +x4 = 0
x1 +2x2 −3x3 −x4 −2x5 = 0

. (5.16)

This system can be written in matrix form as Ax = 0, with A the coefficient
matrix

A =

 1 2 0 2 1
−1 −1 1 1 0
1 2 −3 −1 −2

 , (5.17)

and x = (x1, x2, x3, x4, x5)T . Applying Gaussian elimination to this sys-
tem, we obtain a second, simpler, system with the same solutions:

x1 −2x4 +x5 = 0
x2 +2x4 = 0

x3 +x4 +x5 = 0
. (5.18)

From this simpler system we see that the variables x4 and x5 can be freely
chosen, with the other three variables then determined by this system of
equations. The variables x4 and x5 are then independent, the others de-
pendent. The variables x1, x2 and x3 are then called basic variables. To
obtain a basis of solutions we can let x4 = 1 and x5 = 0, obtaining the
solution x = (2,−2,−1, 1, 0)T , and then choose x4 = 0 and x5 = 1 to get
the solution x = (−1, 0,−1, 0, 1)T . Every solution to Ax = 0 is then a
linear combination of these two solutions. Notice that which variables are
basic and which are non-basic is somewhat arbitrary, in that we could have
chosen as the non-basic variables any two whose columns are independent.

Having decided that x4 and x5 are the non-basic variables, we can write
the original matrix A as A = [B N ], where B is the square invertible
matrix

B =

 1 2 0
−1 −1 1
1 2 −3

 , (5.19)

and N is the matrix

N =

 2 1
1 0
−1 −2

 . (5.20)
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With xB = (x1, x2, x3)T and xN = (x4, x5)T we can write

Ax = BxB +NxN = 0, (5.21)

so that

xB = −B−1NxN . (5.22)

Exercise 5.7 Let G = {w1, ..., wN} be a spanning set for a subspace S in
RI , and H = {v1, ..., vM} a linearly independent subset of S. Let A be the
I by M matrix whose columns are the vectors vm and B the I by N matrix
whose columns are the wn. Prove that there is an N by M matrix C such
that A = BC. Prove Lemma 5.1 by showing that, if M > N , then there is
a non-zero vector x with Cx = 0.

Definition 5.9 The dimension of a subspace S is the number of elements
in any basis.

5.5.2 Rank of a Matrix

We rely on the following lemma to define the rank of a matrix.

Lemma 5.2 For any matrix A, the maximum number of linearly indepen-
dent rows equals the maximum number of linearly independent columns.

Proof: Suppose that A is an I by J matrix, and that K ≤ J is the
maximum number of linearly independent columns of A. Select K linearly
independent columns of A and use them as the K columns of an I by K
matrix U . Since every column of A must be a linear combination of these
K selected ones, there is a K by J matrix M such that A = UM . From
AT = MTUT we conclude that every column of AT is a linear combination
of the K columns of the matrix MT . Therefore, there can be at most K
linearly independent columns of AT .

Definition 5.10 The rank of A is the maximum number of linearly inde-
pendent rows or of linearly independent columns of A.

Exercise 5.8 Let A and B be M by N matrices, P an invertible M by M
matrix, and Q an invertible N by N matrix, such that B = PAQ, that is,
the matrices A and B are equivalent. Show that the rank of B is the same
as the rank of A. Hint: show that A and AQ have the same rank.
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5.5.3 Real and Complex Systems of Linear Equations

A system Ax = b of linear equations is called a complex system, or a real
system if the entries of A, x and b are complex, or real, respectively. For any
matrix A, we denote by AT and A† the transpose and conjugate transpose
of A, respectively.

Any complex system can be converted to a real system in the following
way. A complex matrix A can be written as A = A1 + iA2, where A1 and
A2 are real matrices and i =

√
−1. Similarly, x = x1 + ix2 and b = b1 + ib2,

where x1, x2, b1 and b2 are real vectors. Denote by Ã the real matrix

Ã =
[
A1 −A2

A2 A1

]
, (5.23)

by x̃ the real vector

x̃ =
[
x1

x2

]
, (5.24)

and by b̃ the real vector

b̃ =
[
b1

b2

]
. (5.25)

Then x satisfies the system Ax = b if and only if x̃ satisfies the system
Ãx̃ = b̃.

Definition 5.11 A square matrix A is symmetric if AT = A and Hermi-
tian if A† = A.

Definition 5.12 A non-zero vector x is said to be an eigenvector of the
square matrix A if there is a scalar λ such that Ax = λx. Then λ is said
to be an eigenvalue of A.

If x is an eigenvector of A with eigenvalue λ, then the matrix A − λI
has no inverse, so its determinant is zero; here I is the identity matrix with
ones on the main diagonal and zeros elsewhere. Solving for the roots of the
determinant is one way to calculate the eigenvalues of A. For example, the
eigenvalues of the Hermitian matrix

B =
[

1 2 + i
2− i 1

]
(5.26)

are λ = 1 +
√

5 and λ = 1 −
√

5, with corresponding eigenvectors u =
(
√

5, 2 − i)T and v = (
√

5, i − 2)T , respectively. Then B̃ has the same
eigenvalues, but both with multiplicity two. Finally, the associated eigen-
vectors of B̃ are [

u1

u2

]
, (5.27)
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and [
−u2

u1

]
, (5.28)

for λ = 1 +
√

5, and [
v1

v2

]
, (5.29)

and [
−v2

v1

]
, (5.30)

for λ = 1−
√

5.

5.6 Solutions of Under-determined Systems
of Linear Equations

Suppose that Ax = b is a consistent linear system of M equations in
N unknowns, where M < N . Then there are infinitely many solutions.
A standard procedure in such cases is to find that solution x having the
smallest norm

||x|| =

√√√√ N∑
n=1

|xn|2.

As we shall see shortly, the minimum norm solution of Ax = b is a vector
of the form x = A†z, where A† denotes the conjugate transpose of the
matrix A. Then Ax = b becomes AA†z = b. Typically, (AA†)−1 will
exist, and we get z = (AA†)−1b, from which it follows that the minimum
norm solution is x = A†(AA†)−1b. When M and N are not too large,
forming the matrix AA† and solving for z is not prohibitively expensive
and time-consuming. However, in image processing the vector x is often a
vectorization of a two-dimensional (or even three-dimensional) image and
M and N can be on the order of tens of thousands or more. The ART
algorithm gives us a fast method for finding the minimum norm solution
without computing AA†.

We begin by describing the minimum-norm solution of a consistent
system Ax = b.

Theorem 5.1 The minimum norm solution of Ax = b has the form x =
A†z for some M -dimensional complex vector z.
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Proof: Let the null space of the matrix A be all N -dimensional complex
vectors w with Aw = 0. If Ax = b then A(x + w) = b for all w in the
null space of A. If x = A†z and w is in the null space of A, then

||x + w||2 = ||A†z + w||2 = (A†z + w)†(A†z + w)

= (A†z)†(A†z) + (A†z)†w + w†(A†z) + w†w

= ||A†z||2 + (A†z)†w + w†(A†z) + ||w||2

= ||A†z||2 + ||w||2,

since
w†(A†z) = (Aw)†z = 0†z = 0

and
(A†z)†w = z†Aw = z†0 = 0.

Therefore, ||x + w|| = ||A†z + w|| > ||A†z|| = ||x|| unless w = 0. This
completes the proof.

Exercise 5.9 Show that if z = (z1, ..., zN )T is a column vector with com-
plex entries and H = H† is an N by N Hermitian matrix with com-
plex entries then the quadratic form z†Hz is a real number. Show that
the quadratic form z†Hz can be calculated using only real numbers. Let
z = x + iy, with x and y real vectors and let H = A + iB, where A and
B are real matrices. Then show that AT = A, BT = −B, xTBx = 0 and
finally,

z†Hz = [xT yT ]
[
A −B
B A

] [
x
y

]
.

Use the fact that z†Hz is real for every vector z to conclude that the eigen-
values of H are real.

5.6.1 Matrix Inverses

A square matrix A is said to have inverse A−1 provided that

AA−1 = A−1A = I,

where I is the identity matrix. The 2 by 2 matrix A =
[
a b
c d

]
has an

inverse

A−1 =
1

ad− bc

[
d −b
−c a

]
whenever the determinant of A, det(A) = ad− bc is not zero. More gener-
ally, associated with every complex square matrix is the complex number
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called its determinant, which is obtained from the entries of the matrix
using formulas that can be found in any text on linear algebra. The sig-
nificance of the determinant is that the matrix is invertible if and only
if its determinant is not zero. This is of more theoretical than practical
importance, since no computer can tell when a number is precisely zero.
A matrix A that is not square cannot have an inverse, but does have a
pseudo-inverse, which is found using the singular-value decomposition.

5.6.2 The Sherman-Morrison-Woodbury Identity

In a number of applications, stretching from linear programming to radar
tracking, we are faced with the problem of computing the inverse of a
slightly modified version of a matrix B, when the inverse of B itself has
already been computed. For example, when we use the simplex algorithm
in linear programming, the matrix B consists of some, but not all, of the
columns of a larger matrix A. At each step of the simplex algorithm, a new
Bnew is formed from B = Bold by removing one column of B and replacing
it with another column taken from A.

Then Bnew differs from B in only one column. Therefore

Bnew = Bold − uvT , (5.31)

where u is the column vector that equals the old column minus the new one,
and v is the column of the identity matrix corresponding to the column of
Bold being altered. The inverse of Bnew can be obtained fairly easily from
the inverse of Bold using the Sherman-Morrison-Woodbury Identity:

The Sherman-Morrison-Woodbury Identity:

(B − uvT )−1 = B−1 + α(B−1u)(vTB−1), (5.32)

where
α =

1
1− vTB−1u

.

5.7 LU Factorization

The matrix

A =

 2 1 1
4 1 0
−2 2 1


can be reduced to the upper triangular matrix

U =

 2 1 1
0 −1 −2
0 0 −4


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through three elementary row operations: first, add −2 times the first
row to the second row; second, add the first row to the third row; finally,
add three times the new second row to the third row. Each of these row
operations can be viewed as the result of multiplying on the left by the
matrix obtained by applying the same row operation to the identity matrix.
For example, adding −2 times the first row to the second row can be
achieved by multiplying A on the left by the matrix

L1 =

 1 0 0
−2 1 0
0 0 1

 ;

note that the inverse of L1 is

L−1
1 =

 1 0 0
2 1 0
0 0 1

 .
We can write

L3L2L1A = U,

where L1, L2, and L3 are the matrix representatives of the three elementary
row operations. Therefore, we have

A = L−1
1 L−1

2 L−1
3 U = LU.

This is the LU factorization of A. As we just saw, the LU factorization
can be obtained along with the Gauss elimination.

The entries of the main diagonal of L will be all ones. If we want
the same to be true of U , we can rescale the rows of U and obtain the
factorization A = LDU , where D ia a diagonal matrix.

Note that it may not be possible to obtain A = LDU without first
permuting the rows of A; in such cases we obtain PA = LDU , where P is
obtained from the identity matrix by permuting rows.

Suppose that we have to solve the system of linear equations Ax = b.
Once we have the LU factorization, it is a simple matter to find x: first,
we solve the system Lz = b, and then solve Ux = z. Because both L and
U are triangular, solving these systems is a simple matter. Obtaining the
LU factorization is often better than finding A−1; when A is banded, that
is, has non-zero values only for the main diagonal and a few diagonals on
either side, the L and U retain that banded property, while A−1 does not.

If A is real and symmetric, and if A = LDU , then U = LT , so we have
A = LDLT . If, in addition, the non-zero entries of D are positive, then we
can write

A = (L
√
D)(L

√
D)T ,

which is the Cholesky Decomposition of A.
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Exercise 5.10 Show that the symmetric matrix

H =
[

0 1
1 0

]
cannot be written as H = LDLT .

5.8 Eigenvalues and Eigenvectors

Given N by N complex matrix A, we say that a complex number λ is an
eigenvalue of A if there is a nonzero vector u with Au = λu. The column
vector u is then called an eigenvector of A associated with eigenvalue λ;
clearly, if u is an eigenvector of A, then so is cu, for any constant c 6= 0.
If λ is an eigenvalue of A, then the matrix A− λI fails to have an inverse,
since (A − λI)u = 0 but u 6= 0. If we treat λ as a variable and compute
the determinant of A − λI, we obtain a polynomial of degree N in λ. Its
roots λ1, ..., λN are then the eigenvalues of A. If ||u||2 = u†u = 1 then
u†Au = λu†u = λ.

It can be shown that it is possible to find a set of N mutually orthogonal
norm-one eigenvectors of the Hermitian matrix H; call them {u1, ...,uN}.
The matrix H can then be written as

H =
N∑

n=1

λnun(un)†,

a linear superposition of the dyad matrices un(un)†. We can also write
H = ULU†, where U is the matrix whose nth column is the column vector
un and L is the diagonal matrix with the eigenvalues down the main di-
agonal and zero elsewhere. This is the well known eigenvalue-eigenvector
decomposition of the matrix H. Not every square matrix has such a de-
composition, which is why we focus on Hermitian H. The singular-value
decomposition, which we discuss shortly, provides a similar decomposition
for an arbitrary, possibly non-square, matrix.

The matrix H is invertible if and only if none of the λ are zero and its
inverse is

H−1 =
N∑

n=1

λ−1
n un(un)†.

We also have H−1 = UL−1U†.
A Hermitian matrix Q is said to be nonnegative-definite (positive-

definite) if all the eigenvalues of Q are nonnegative (positive). The matrix
Q is a nonnegative-definite matrix if and only if there is another matrix
C such that Q = C†C. Since the eigenvalues of Q are nonnegative, the
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diagonal matrix L has a square root,
√
L. Using the fact that U†U = I,

we have
Q = ULU† = U

√
LU†U

√
LU†;

we then take C = U
√
LU†, so C† = C. Then z†Qz = z†C†Cz = ||Cz||2,

so that Q is positive-definite if and only if C is invertible. The matrix C is
called the Hermitian square-root of Q.

Exercise 5.11 Let A be an M by N matrix with complex entries. View
A as a linear function with domain CN , the space of all N -dimensional
complex column vectors, and range contained within CM , via the expression
A(x) = Ax. Suppose that M > N . The range of A, denoted R(A), cannot
be all of CM . Show that every vector z in CM can be written uniquely in
the form z = Ax + w, where A†w = 0. Show that ‖z‖2 = ‖Ax‖2 + ‖w‖2,
where ‖z‖2 denotes the square of the norm of z.

Hint: If z = Ax + w then consider A†z. Assume A†A is invertible.

5.9 The Singular Value Decomposition (SVD)

The year 1965 was a good one for the discovery of important algorithms.
In that year, Cooley and Tukey [93] introduced the fast Fourier transform
(FFT) and Golub and Kahan [136] the singular-value decomposition (SVD).

We have just seen that an N by N Hermitian matrix H can be written
in terms of its eigenvalues and eigenvectors as H = ULU† or as

H =
N∑

n=1

λnun(un)†.

The singular value decomposition (SVD) is a similar result that applies to
any rectangular matrix. It is an important tool in image compression and
pseudo-inversion.

Let C be any N by K complex matrix. In presenting the SVD of C
we shall assume that K ≥ N ; the SVD of C† will come from that of C.
Let A = C†C and B = CC†; we assume, reasonably, that B, the smaller
of the two matrices, is invertible, so all the eigenvalues λ1, ..., λN of B are
positive. Then, write the eigenvalue/eigenvector decomposition of B as
B = ULU†.

Exercise 5.12 Show that the nonzero eigenvalues of A = C†C and B =
CC† are the same.
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Let V be the K by K matrix whose first N columns are those of the
matrix C†UL−1/2 and whose remaining K −N columns are any mutually
orthogonal norm-one vectors that are all orthogonal to each of the first
N columns. Let M be the N by K matrix with diagonal entries Mnn =√
λn for n = 1, ..., N and whose remaining entries are zero. The nonzero

entries of M ,
√
λn, are called the singular values of C. The singular value

decomposition (SVD) of C is C = UMV †. The SVD of C† is C† = VMTU†.

Exercise 5.13 Show that UMV † equals C.

Using the SVD of C we can write

C =
N∑

n=1

√
λnun(vn)†,

where vn denotes the nth column of the matrix V .
In image processing, matrices such as C are used to represent discrete

two-dimensional images, with the entries of C corresponding to the grey
level or color at each pixel. It is common to find that most of the N singular
values of C are nearly zero, so that C can be written approximately as a
sum of far fewer than N dyads; this is SVD image compression.

We have obtained the SVD of C using the eigenvectors and eigenvalues
of the Hermitian matrices A = C†C and B = CC†; for large matrices, this
is not an efficient way to get the SVD. The Golub-Kahan algorithm [136]
calculates the SVD of C without forming the matrices A and B.

If N 6= K then C cannot have an inverse; it does, however, have a
pseudo-inverse, C∗ = VM∗U†, where M∗ is the matrix obtained from M
by taking the inverse of each of its nonzero entries and leaving the remaining
zeros the same. The pseudo-inverse of C† is

(C†)∗ = (C∗)† = U(M∗)TV † = U(M†)∗V †.

Some important properties of the pseudo-inverse are the following:

1. CC∗C = C,

2. C∗CC∗ = C∗,

3. (C∗C)† = C∗C,

4. (CC∗)† = CC∗.

The pseudo-inverse of an arbitrary I by J matrix G can be used in much
the same way as the inverse of nonsingular matrices to find approximate or
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exact solutions of systems of equations Gx = d. The following examples
illustrate this point.

Exercise 5.14 If I > J the system Gx = d probably has no exact solution.
Show that whenever G†G is invertible the pseudo-inverse of G is G∗ =
(G†G)−1G† so that the vector x = G∗d is the least squares approximate
solution.

Exercise 5.15 If I < J the system Gx = d probably has infinitely many
solutions. Show that whenever the matrix GG† is invertible the pseudo-
inverse of G is G∗ = G†(GG†)−1, so that the vector x = G∗d is the exact
solution of Gx = d closest to the origin; that is, it is the minimum norm
solution.

5.10 Principle-Component Analysis and the
SVD

The singular-value decomposition has many uses. One of the most impor-
tant is as a tool for revealing information hidden in large amounts of data.
A good illustration of this is principle-component analysis (PCA).

5.10.1 An Example

Suppose, for example, that D is an M by N matrix, that each row of D
corresponds to particular applicant to the university, and that each column
of D corresponds to a particular measurement of a student’s ability or
aptitude. One column of D could be SAT mathematics score, another
could be IQ, and so on. To permit cross-measurement correlation, the
actual scores are not stored, but only the difference between the actual
score and the group average; if the average IQ for the group is 110 and
John has an IQ of 103, then −7 is entered in the IQ column for John’s row.
We shall assume that M is greater than N .

The matrix 1
MD†D is the covariance matrix, each entry describing how

one measurement category is related to a second. We shall focus on the
matrix D†D, although proper statistical correlation would require that we
normalize to remove the distortions coming from the use of scores that are
not all on the same scale. How do we compare twenty points of difference
in IQ with one hundred points of difference in SAT score? Once we have
calculated D†D, we may find that this N by N matrix is not diagonal,
meaning that there is correlation between different measurement categories.
Although CS(D), the column space of D in the space CM , is probably of
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dimension N , it may well be the case that CS(D) is nearly spanned by a
much smaller set of its members. The goal of principle-component analysis
is to find such a smaller set.

5.10.2 Decomposing D†D

The matrix B = D†D is Hermitian and non-negative definite; almost cer-
tainly, all of its eigenvalues are positive. We list these eigenvalues as follows:

λ1 ≥ λ2 ≥ ... ≥ λN > 0,

and assume that λJ+k is nearly zero, for k = 1, 2, ..., N − J . With uj , j =
1, ..., J denoting the orthonormal eigenvectors of D†D corresponding to the
first J eigenvalues, we see that the matrix D†D is nearly equal to the sum
of J dyads:

D†D ≈
J∑

j=1

λju
j(uj)†. (5.33)

5.10.3 Decomposing D Itself

Let E be the N by J matrix whose J columns are the vectors uj and R be
the J by J diagonal matrix whose entries are λ−1/2

j , for j = 1, ..., J . Let W
be the M by J matrix W = DER. The matrix D is then approximately
equal to the sum of J dyads:

D ≈
J∑

j=1

√
λjw

j(uj)†, (5.34)

where wj denotes the jth column of the matrix W . The approximation
is with respect to the Frobenius norm. The columns of W lie in CS(D)
and the span of the wj is nearly all of CS(D). The wj are the principle-
component vectors.

5.10.4 Using the SVD in PCA

In the previous subsection, we obtained a decomposition of the matrix D
using the eigenvectors and eigenvalues of the Hermitian matrix D†D. This
is not an efficient way to proceed. Instead, we can use the SVD.

Let C = D†. As we saw previously, the singular-value decomposition
of C is

C = UMV †,
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so that the SVD of the matrix D is

D = VM†U† =
N∑

j=1

√
λjv

j(uj)†.

The first J columns of the matrix V are the wj defined above, so the
Golub-Kahan SVD algorithm [136] can then be used to obtain the principle-
component vectors of the data matrix D.

5.11 The PCA and Factor Analysis

Principal-component analysis has as one of its goals the approximation of
a covariance matrix D†D by nonnegative-definite matrices of lower rank.
A related area is factor analysis, which attempts to describe an arbitrary
N by N Hermitian positive-definite matrix Q as Q = G†G + K, where
G is some N by J matrix, for some J < N , and K is diagonal. Factor
analysis views Q as a covariance matrix, Q = E(vv†), where v is a random
column vector with mean zero, and attempts to account for the off-diagonal
correlated components of Q using the lower-rank matrix G†G. Underlying
this is the following model for the random vector v:

v = Gx+ w,

where both x and w are uncorrelated. The entries of the random vector
x are the common factors that affect each entry of v while those of w are
the special factors, each associated with a single entry of v. Factor analysis
plays an increasingly prominent role in signal and image processing [33] as
well as in the social sciences.

In [230] Gil Strang points out that, from a linear algebra standpoint,
factor analysis raises some questions. As his example shows, the represen-
tation of Q as Q = G†G+K is not unique. The matrix Q does not uniquely
determine the size of the matrix G:

Q =


1 .74 .24 .24
.74 1 .24 .24
.24 .24 1 .74
.24 .24 .74 1

 =


.7 .5
.7 .5
.7 −.5
.7 −.5

[ .7 .7 .7 .7
.5 .5 −.5 −.5

]
+ .26I

and

Q =


.6

√
.38 0

.6
√
.38 0

.4 0
√
.58

.4 0
√
.58


 .6 .6 .4 .4√

.38
√
.38 0 0

0 0
√
.58

√
.58

+ .26I.

It is also possible to represent Q with different diagonal components K.
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5.12 Singular Values of Sparse Matrices

In image reconstruction from projections the M by N matrix A is usually
quite large and often ε-sparse; that is, most of its elements do not exceed ε
in absolute value, where ε denotes a small positive quantity. In transmission
tomography each column of A corresponds to a single pixel in the digitized
image, while each row of A corresponds to a line segment through the
object, along which an x-ray beam has traveled. The entries of a given
row of A are nonzero only for those columns whose associated pixel lies on
that line segment; clearly, most of the entries of any given row of A will
then be zero. In emission tomography the I by J nonnegative matrix P
has entries Pij ≥ 0; for each detector i and pixel j, Pij is the probability
that an emission at the jth pixel will be detected at the ith detector.
When a detection is recorded at the ith detector, we want the likely source
of the emission to be one of only a small number of pixels. For single
photon emission tomography (SPECT), a lead collimator is used to permit
detection of only those photons approaching the detector straight on. In
positron emission tomography (PET), coincidence detection serves much
the same purpose. In both cases the probabilities Pij will be zero (or
nearly zero) for most combinations of i and j. Such matrices are called
sparse (or almost sparse). We discuss now a convenient estimate for the
largest singular value of an almost sparse matrix A, which, for notational
convenience only, we take to be real.

In [59] it was shown that if A is normalized so that each row has length
one, then the spectral radius of ATA, which is the square of the largest
singular value of A itself, does not exceed the maximum number of nonzero
elements in any column of A. A similar upper bound on ρ(ATA) can be
obtained for non-normalized, ε-sparse A.

Let A be an M by N matrix. For each n = 1, ..., N , let sn > 0 be
the number of nonzero entries in the nth column of A, and let s be the
maximum of the sn. Let G be the M by N matrix with entries

Gmn = Amn/(
N∑

l=1

slA
2
ml)

1/2.

Lent has shown that the eigenvalues of the matrix GTG do not exceed one
[180]. This result suggested the following proposition, whose proof was
given in [59].

Proposition 5.1 Let A be an M by N matrix. For each m = 1, ...,M let
νm =

∑N
n=1A

2
mn > 0. For each n = 1, ..., N let σn =

∑M
m=1 emnνm, where

emn = 1 if Amn 6= 0 and emn = 0 otherwise. Let σ denote the maximum
of the σn. Then the eigenvalues of the matrix ATA do not exceed σ. If A
is normalized so that the Euclidean length of each of its rows is one, then
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the eigenvalues of ATA do not exceed s, the maximum number of nonzero
elements in any column of A.

Proof: For simplicity, we consider only the normalized case; the proof for
the more general case is similar.

Let ATAv = cv for some nonzero vector v. We show that c ≤ s. We
have AATAv = cAv and so wTAAT w = vTATAATAv = cvTATAv =
cwT w, for w = Av. Then, with emn = 1 if Amn 6= 0 and emn = 0
otherwise, we have

(
M∑

m=1

Amnwm)2 = (
M∑

m=1

Amnemnwm)2

≤ (
M∑

m=1

A2
mnw

2
m)(

M∑
m=1

e2mn) =

(
M∑

m=1

A2
mnw

2
m)sj ≤ (

M∑
m=1

A2
mnw

2
m)s.

Therefore,

wTAAT w =
N∑

n=1

(
M∑

m=1

Amnwm)2 ≤
N∑

n=1

(
M∑

m=1

A2
mnw

2
m)s,

and

wTAAT w = c

M∑
m=1

w2
m = c

M∑
m=1

w2
m(

N∑
n=1

A2
mn)

= c
M∑

m=1

N∑
n=1

w2
mA

2
mn.

The result follows immediately.
If we normalize A so that its rows have length one, then the trace of the

matrix AAT is tr(AAT ) = M , which is also the sum of the eigenvalues of
ATA. Consequently, the maximum eigenvalue of ATA does not exceed M ;
this result improves that upper bound considerably, if A is sparse and so
s << M . A more general theorem along the same lines is Theorem 15.1.

In image reconstruction from projection data that includes scattering we
often encounter matrices A most of whose entries are small, if not exactly
zero. A slight modification of the proof provides us with a useful upper
bound for L, the largest eigenvalue of ATA, in such cases. Assume that
the rows of A have length one. For ε > 0 let s be the largest number of
entries in any column of A whose magnitudes exceed ε. Then we have

L ≤ s+MNε2 + 2ε(MNs)1/2.

The proof of this result is similar to that for Proposition 5.1.
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Chapter 6

Metric Spaces and Norms

The inner product on RJ or CJ can be used to define the Euclidean norm
‖x‖2 of a vector x, which, in turn, provides a metric, or a measure of
distance between two vectors, d(x, y) = ‖x − y‖2. The notions of metric
and norm are actually more general notions, with no necessary connection
to the inner product. Throughout this chapter the superscript † denotes
the conjugate transpose of a matrix or vector.

6.1 Metric Spaces

We begin with the basic definitions.

Definition 6.1 Let S be a non-empty set. We say that the function d :
S × S → [0,+∞) is a metric if the following hold:

d(s, t) ≥ 0, (6.1)

for all s and t in S;

d(s, t) = 0 (6.2)

if and only if s = t;

d(s, t) = d(t, s), (6.3)

for all s and t in S; and, for all s, t, and u in S,

d(s, t) ≤ d(s, u) + d(u, t). (6.4)

The pair {S, d} is a metric space.

The last inequality is the Triangle Inequality for this metric.

63
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6.2 Analysis in Metric Space

Analysis is concerned with issues of convergence and limits.

Definition 6.2 A sequence {sk} in the metric space (S, d) is said to have
limit s∗ if

lim
k→+∞

d(sk, s∗) = 0. (6.5)

Any sequence with a limit is said to be convergent.

A sequence can have at most one limit.

Definition 6.3 The sequence {sk} is said to be a Cauchy sequence if, for
any ε > 0, there is positive integer m, such that, for any nonnegative integer
n,

d(sm, sm+n) ≤ ε. (6.6)

Every convergent sequence is a Cauchy sequence.

Definition 6.4 The metric space (S, d) is said to be complete if every
Cauchy sequence is a convergent sequence.

The finite-dimensional spaces RJand CJ are complete metric spaces,
with respect to the usual Euclidean distance.

Definition 6.5 An infinite sequence {sk} in S is said to be bounded if
there is an element a and a positive constant b > 0 such that d(a, sk) ≤ b,
for all k.

Definition 6.6 A subset K of the metric space is said to be closed if, for
every convergent sequence {sk} of elements in K, the limit point is again
in K. The closure of a set K is the smallest closed set containing K.

For example, in RJ = R, the set K = (0, 1] is not closed, because it does
not contain the point s = 0, which is the limit of the sequence {sk = 1

k};
the set K = [0, 1] is closed and is the closure of the set (0, 1], that is, it is
the smallest closed set containing (0, 1].

Definition 6.7 For any bounded sequence {xk} in RJ , there is at least one
subsequence, often denoted {xkn}, that is convergent; the notation implies
that the positive integers kn are ordered, so that k1 < k2 < .... The limit
of such a subsequence is then said to be a cluster point of the original
sequence.

When we investigate iterative algorithms, we will want to know if the
sequence {xk} generated by the algorithm converges. As a first step, we
will usually ask if the sequence is bounded? If it is bounded, then it will
have at least one cluster point. We then try to discover if that cluster point
is really the limit of the sequence. We turn now to metrics that come from
norms.
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6.3 Norms

The metric spaces that interest us most are those for which the metric
comes from a norm, which is a measure of the length of a vector.

Definition 6.8 We say that ‖ · ‖ is a norm on CJ if

‖x‖ ≥ 0, (6.7)

for all x,

‖x‖ = 0 (6.8)

if and only if x = 0,

‖γx‖ = |γ| ‖x‖, (6.9)

for all x and scalars γ, and

‖x+ y‖ ≤ ‖x‖+ ‖y‖, (6.10)

for all vectors x and y.

Lemma 6.1 The function d(x, y) = ‖x− y‖ defines a metric on CJ .

It can be shown that RJ and CJ are complete for any metric arising from
a norm.

6.3.1 Some Common Norms on CJ

We consider now the most common norms on the space CJ . These notions
apply equally to RJ .

The 1-norm

The 1-norm on CJ is defined by

‖x‖1 =
J∑

j=1

|xj |. (6.11)

The ∞-norm

The ∞-norm on CJ is defined by

‖x‖∞ = max{|xj | |j = 1, ..., J}. (6.12)
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The 2-norm

The 2-norm, also called the Euclidean norm, is the most commonly used
norm on CJ . It is the one that comes from the inner product:

‖x‖2 =
√
〈x, x〉 =

√
x†x. (6.13)

Weighted 2-norms

Let A be an invertible matrix and Q = A†A. Define

‖x‖Q = ‖Ax‖2 =
√
x†Qx, (6.14)

for all vectors x. If Q is the diagonal matrix with diagonal entries Qjj > 0,
then

‖x‖Q =

√√√√ J∑
j=1

Qjj |xj |2; (6.15)

for that reason we speak of ‖x‖Q as the Q-weighted 2-norm of x.

6.4 Matrix Norms

Any matrix can be turned into a vector by vectorization. Therefore, we can
define a norm for any matrix by simply vectorizing the matrix and taking
a norm of the resulting vector; the 2-norm of the vectorized matrix is the
Frobenius norm of the matrix itself. Such norms for matrices may not be
compatible with the role of a matrix as representing a linear transformation.
For that reason, we consider norms on matrices that are induced by the
norms of the vectors on which the matrices operate.

6.4.1 Induced Matrix Norms

One way to obtain a compatible norm for matrices is through the use of
an induced matrix norm.

Definition 6.9 Let ‖x‖ be any norm on CJ , not necessarily the Euclidean
norm, ‖b‖ any norm on CI , and A a rectangular I by J matrix. The
induced matrix norm of A, simply denoted ‖A‖, derived from these two
vectors norms, is the smallest positive constant c such that

‖Ax‖ ≤ c‖x‖, (6.16)

for all x in CJ . This induced norm can be written as

‖A‖ = max
x6=0

{‖Ax‖/‖x‖}. (6.17)
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We study induced matrix norms in order to measure the distance ‖Ax−
Az‖, relative to the distance ‖x− z‖:

‖Ax−Az‖ ≤ ‖A‖ ‖x− z‖, (6.18)

for all vectors x and z and ‖A‖ is the smallest number for which this
statement can be made.

6.4.2 Condition Number of a Square Matrix

Let S be a square, invertible matrix and z the solution to Sz = h. We
are concerned with the extent to which the solution changes as the right
side, h, changes. Denote by δh a small perturbation of h, and by δz the
solution of Sδz = δh. Then S(z+ δz) = h+ δh. Applying the compatibility
condition ‖Ax‖ ≤ ‖A‖‖x‖, we get

‖δz‖ ≤ ‖S−1‖‖δh‖, (6.19)

and

‖z‖ ≥ ‖h‖/‖S‖. (6.20)

Therefore

‖δz‖
‖z‖

≤ ‖S‖ ‖S−1‖‖δh‖
‖h‖

. (6.21)

Definition 6.10 The quantity c = ‖S‖‖S−1‖ is the condition number of
S, with respect to the given matrix norm.

Note that c ≥ 1: for any non-zero z, we have

‖S−1‖ ≥ ‖S−1z‖/‖z‖ = ‖S−1z‖/‖SS−1z‖ ≥ 1/‖S‖. (6.22)

When S is Hermitian and positive-definite, the condition number of S, with
respect to the matrix norm induced by the Euclidean vector norm, is

c = λmax(S)/λmin(S), (6.23)

the ratio of the largest to the smallest eigenvalues of S.

6.4.3 Some Examples of Induced Matrix Norms

If we choose the two vector norms carefully, then we can get an explicit
description of ‖A‖, but, in general, we cannot.

For example, let ‖x‖ = ‖x‖1 and ‖Ax‖ = ‖Ax‖1 be the 1-norms of the
vectors x and Ax, where

‖x‖1 =
J∑

j=1

|xj |. (6.24)
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Lemma 6.2 The 1-norm of A, induced by the 1-norms of vectors in CJ

and CI , is

‖A‖1 = max {
I∑

i=1

|Aij | , j = 1, 2, ..., J}. (6.25)

Proof: Use basic properties of the absolute value to show that

‖Ax‖1 ≤
J∑

j=1

(
I∑

i=1

|Aij |)|xj |. (6.26)

Then let j = m be the index for which the maximum column sum is reached
and select xj = 0, for j 6= m, and xm = 1.

The infinity norm of the vector x is

‖x‖∞ = max {|xj | , j = 1, 2, ..., J}. (6.27)

Lemma 6.3 The infinity norm of the matrix A, induced by the infinity
norms of vectors in RJ and CI , is

‖A‖∞ = max {
J∑

j=1

|Aij | , i = 1, 2, ..., I}. (6.28)

The proof is similar to that of the previous lemma.

Lemma 6.4 Let M be an invertible matrix and ‖x‖ any vector norm. De-
fine

‖x‖M = ‖Mx‖. (6.29)

Then, for any square matrix S, the matrix norm

‖S‖M = max
x6=0

{‖Sx‖M/‖x‖M} (6.30)

is

‖S‖M = ‖MSM−1‖. (6.31)

In [7] this result is used to prove the following lemma:

Lemma 6.5 Let S be any square matrix and let ε > 0 be given. Then
there is an invertible matrix M such that

‖S‖M ≤ ρ(S) + ε. (6.32)
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6.4.4 The Euclidean Norm of a Square Matrix

We shall be particularly interested in the Euclidean norm (or 2-norm) of
the square matrix A, denoted by ‖A‖2, which is the induced matrix norm
derived from the Euclidean vector norms.

From the definition of the Euclidean norm of A, we know that

‖A‖2 = max{‖Ax‖2/‖x‖2}, (6.33)

with the maximum over all nonzero vectors x. Since

‖Ax‖2
2 = x†A†Ax, (6.34)

we have

‖A‖2 =

√
max {x

†A†Ax

x†x
}, (6.35)

over all nonzero vectors x.

Proposition 6.1 The Euclidean norm of a square matrix is

‖A‖2 =
√
ρ(A†A); (6.36)

that is, the term inside the square-root in Equation (6.35) is the largest
eigenvalue of the matrix A†A.

Proof: Let

λ1 ≥ λ2 ≥ ... ≥ λJ ≥ 0 (6.37)

and let {uj , j = 1, ..., J} be mutually orthogonal eigenvectors of A†A with
‖uj‖2 = 1. Then, for any x, we have

x =
J∑

j=1

[(uj)†x]uj , (6.38)

while

A†Ax =
J∑

j=1

[(uj)†x]A†Auj =
J∑

j=1

λj [(uj)†x]uj . (6.39)

It follows that

‖x‖2
2 = x†x =

J∑
j=1

|(uj)†x|2, (6.40)
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and

‖Ax‖2
2 = x†A†Ax =

J∑
j=1

λj |(uj)†x|2. (6.41)

Maximizing ‖Ax‖2
2/‖x‖2

2 over x 6= 0 is equivalent to maximizing ‖Ax‖2
2,

subject to ‖x‖2
2 = 1. The right side of Equation (6.41) is then a con-

vex combination of the λj , which will have its maximum when only the
coefficient of λ1 is non-zero.

According to Corollary 15.1, we have the inequality

‖A‖2
2 ≤ ‖A‖1‖A‖∞ = c1r1.

If S is not Hermitian, then the Euclidean norm of S cannot be calculated
directly from the eigenvalues of S. Take, for example, the square, non-
Hermitian matrix

S =
[
i 2
0 i

]
, (6.42)

having eigenvalues λ = i and λ = i. The eigenvalues of the Hermitian
matrix

S†S =
[

1 −2i
2i 5

]
(6.43)

are λ = 3 + 2
√

2 and λ = 3− 2
√

2. Therefore, the Euclidean norm of S is

‖S‖2 =
√

3 + 2
√

2. (6.44)

6.4.5 Diagonalizable Matrices

Definition 6.11 A square matrix S is diagonalizable if CJ has a basis of
eigenvectors of S.

In the case in which S is diagonalizable, with V be a square matrix
whose columns are linearly independent eigenvectors of S and L the diag-
onal matrix having the eigenvalues of S along its main diagonal, we have
SV = V L, or V −1SV = L. Let T = V −1 and define ‖x‖T = ‖Tx‖2, the
Euclidean norm of Tx. Then the induced matrix norm of S is ‖S‖T = ρ(S).
We see from this that, for any diagonalizable matrix S, in particular, for
any Hermitian matrix, there is a vector norm such that the induced matrix
norm of S is ρ(S). In the Hermitian case we know that, if the eigen-
vector columns of V are scaled to have length one, then V −1 = V † and
‖Tx‖2 = ‖V †x‖2 = ‖x‖2, so that the required vector norm is just the
Euclidean norm, and ‖S‖T is just ‖S‖2, which we know to be ρ(S).
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6.4.6 Gerschgorin’s Theorem

Gerschgorin’s theorem gives us a way to estimate the eigenvalues of an
arbitrary square matrix A.

Theorem 6.1 Let A be J by J . For j = 1, ..., J , let Cj be the circle in the
complex plane with center Ajj and radius rj =

∑
m6=j |Ajm|. Then every

eigenvalue of A lies within one of the Cj.

Proof: Let λ be an eigenvalue of A, with associated eigenvector u. Let
uj be the entry of the vector u having the largest absolute value. From
Au = λu, we have

(λ−Ajj)uj =
∑
m6=j

Ajmum, (6.45)

so that

|λ−Ajj | ≤
∑
m6=j

|Ajm||um|/|uj | ≤ rj . (6.46)

This completes the proof.

6.4.7 Strictly Diagonally Dominant Matrices

Definition 6.12 A square I by I matrix S is said to be strictly diagonally
dominant if, for each i = 1, ..., I,

|Sii| > ri =
∑
m6=i

|Sim|. (6.47)

When the matrix S is strictly diagonally dominant, all the eigenvalues of S
lie within the union of the spheres with centers Sii and radii Sii. With D
the diagonal component of S, the matrix D−1S then has all its eigenvalues
within the circle of radius one, centered at (1, 0). Then ρ(I −D−1S) < 1.
This result is used discussing the Jacobi splitting method [63].

6.5 Exercises

Exercise 6.1 Show that every convergent sequence is a Cauchy sequence.

Exercise 6.2 Let S be the set of rational numbers, with d(s, t) = |s − t|.
Show that (S, d) is a metric space, but not a complete metric space.

Exercise 6.3 Show that any convergent sequence in a metric space is
bounded. Find a bounded sequence of real numbers that is not convergent.
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Exercise 6.4 Show that, if {sk} is bounded, then, for any element c in the
metric space, there is a constant r > 0, with d(c, sk) ≤ r, for all k.

Exercise 6.5 Show that your bounded, but not convergent, sequence found
in Exercise 6.3 has a cluster point.

Exercise 6.6 Show that, if x is a cluster point of the sequence {xk}, and
if d(x, xk) ≥ d(x, xk+1), for all k, then x is the limit of the sequence.

Exercise 6.7 Show that the 1-norm is a norm.

Exercise 6.8 Show that the ∞-norm is a norm.

Exercise 6.9 Show that the 2-norm is a norm. Hint: for the triangle
inequality, use the Cauchy Inequality.

Exercise 6.10 Show that the Q-weighted 2-norm is a norm.

Exercise 6.11 Show that ρ(S2) = ρ(S)2.

Exercise 6.12 Show that, if S is Hermitian, then every eigenvalue of S
is real. Hint: suppose that Sx = λx. Then consider x†Sx.

Exercise 6.13 Use the SVD of A to obtain the eigenvalue/eigenvector de-
compositions of B and C:

B =
N∑

i=1

λiu
i(ui)†, (6.48)

and

C =
N∑

i=1

λiv
i(vi)†. (6.49)

Exercise 6.14 Show that, for any square matrix S and any induced matrix
norm ‖S‖, we have ‖S‖ ≥ ρ(S). Consequently, for any induced matrix
norm ‖S‖,

‖S‖ ≥ |λ|, (6.50)

for every eigenvalue λ of S. So we know that

ρ(S) ≤ ‖S‖, (6.51)

for every induced matrix norm, but, according to Lemma 6.5, we also have

‖S‖M ≤ ρ(S) + ε. (6.52)

Exercise 6.15 Show that, if ρ(S) < 1, then there is a vector norm on CJ

for which the induced matrix norm of S is less than one.

Exercise 6.16 Show that, if S is Hermitian, then ‖S‖2 = ρ(S). Hint: use
Exercise (6.11).



Chapter 7

Linear Algebra

Linear algebra is the study of linear transformations between vector spaces.
Although the subject is not simply matrix theory, there is a close con-
nection, stemming from the role of matrices in representing linear trans-
formations. Throughout this section we shall limit discussion to finite-
dimensional vector spaces.

7.1 Representing a Linear Transformation

Let A = {a1, a2, ..., aN} be a basis for the finite-dimensional complex vector
space V . Now that the basis for V is specified, there is a natural association,
an isomorphism, between V and the vector space CN of N -dimensional
column vectors with complex entries. Any vector v in V can be written as

v =
N∑

n=1

γna
n. (7.1)

The column vector γ = (γ1, ..., γN )T is uniquely determined by v and the
basis A and we denote it by [v]A. Notice that the ordering of the list of
members of A matters, so we shall always assume that the ordering has
been fixed.

Let W be a second finite-dimensional vector space, and let T be any
linear transformation from V to W . Let B = {b1, b2, ..., bM} be a basis for
W . For n = 1, ..., N , let

Tan = A1nb
1 +A2nb

2 + ...+AMnb
M . (7.2)

Then the M by N matrix A having the Amn as entries is said to represent
T , with respect to the bases A and B, and we write A = [T ]BA.

Exercise 7.1 Show that [Tv]B = A[v]A.

73
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Exercise 7.2 Suppose that V , W and Z are vector spaces, with bases A, B
and C, respectively. Suppose also that T is a linear transformation from V
to W and U is a linear transformation from W to Z. Let A represent T with
respect to the bases A and B, and let B represent U with respect to the bases
B and C. Show that the matrix BA represents the linear transformation
UT with respect to the bases A and C.

7.2 Linear Operators on V

When W = V , we say that the linear transformation T is a linear operator
on V . In this case, we can also take the basis B to be A, and say that the
matrix A represents the linear operator T , with respect to the basis A. We
then write A = [T ]A.

Exercise 7.3 Suppose that Ã is a second basis for V and Ã = [T ]Ã. Show
that there is a unique invertible N by N matrix Q having the property that
the matrix Ã = QAQ−1, so we can write

[T ]Ã = Q[T ]AQ−1.

Hint: the matrix Q is the change-of-basis matrix, which means that Q
represents the identity operator I, with respect to the bases A and Ã; that
is, Q = [I]ÃA.

7.3 Similarity and Equivalence of Matrices

Let A and Ã = {ã1, ..., ãN} be bases for V , and B and B̃ = {b̃1, ..., b̃M} be
bases for W . Let Q = [I]ÃA and R = [I]B̃B be the change-of-bases matrices
in V and W , respectively. As we just saw, for any linear operator T on V ,
the matrices Ã = [T ]Ã and A = [T ]A are related according to

A = Q−1ÃQ. (7.3)

We describe the relationship in Equation (7.3) by saying that the matrices
A and Ã are similar.

Let S be a linear transformation from V to W . Then we have

[S]BA = R−1[S]B̃ÃQ. (7.4)

With G = [S]BA and G̃ = [S]B̃Ã, we have

G = R−1G̃Q. (7.5)

Definition 7.1 Two M by N matrices A and B are said to be equivalent
if there are invertible matrices P and Q such that B = PAQ.
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We can therefore describe the relationship in Equation (7.5) by saying that
the matrices G and G̃ are equivalent.

Exercise 7.4 Show that A and B are equivalent if B can be obtained from
A by means of elementary row and column operations.

Exercise 7.5 Prove that two equivalent matrices A and B must have the
same rank, and so two similar matrices must also have the same rank.
Hint: show that A and AQ have the same rank.

Exercise 7.6 Prove that any two M by N matrices with the same rank r
are equivalent. Hints: Let A be an M by N matrix, which we can also view
as inducing, by multiplication, a linear transformation T from V = CN to
W = CM . Therefore, A represents T in the usual bases of CN and CM .
Now construct a basis A for CN , such that

A = {a1, ..., aN},

with {ar+1, ..., aN} forming a basis for the null space of A. Show that the
set {Aa1, ..., Aar} is linearly independent and can therefore be extended to
a basis B for CM . Show that the matrix D that represents T with respect
to the bases A and B is the M by N matrix with the r by r identity matrix
in the upper left corner, and all the other entries are zero. Since A is then
equivalent to this matrix D, so is the matrix B; therefore A and B are
equivalent to each other. Another way to say this is that both A and B can
be reduced to D using elementary row and column operations.

7.4 Linear Functionals and Duality

When the second vector space W is just the space C of complex numbers,
any linear transformation from V to W is called a linear functional. The
space of all linear functionals on V is denoted V ∗ and called the dual space
of V . The set V ∗ is itself a finite-dimensional vector space, so it too has a
dual space, (V ∗)∗ = V ∗∗.

Exercise 7.7 Show that the dimension of V ∗ is the same as that of V .
Hint: let A = {a1, ..., aN} be a basis for V , and for each m = 1, ..., N ,
let fm(an) = 0, if m 6= n, and fm(am) = 1. Show that the collection
{f1, ..., fN} is a basis for V ∗.

There is a natural identification of V ∗∗ with V itself. For each v in V ,
define Jv(f) = f(v) for each f in V ∗. Then it is easy to establish that Jv

is in V ∗∗ for each v in V . The set JV of all members of V ∗∗ of the form Jv

for some v is a subspace of V ∗∗.
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Exercise 7.8 Show that the subspace JV has the same dimension as V ∗∗

itself, so that it must be all of V ∗∗.

We shall see later that once V has been endowed with an inner product,
there is a simple way to describe every linear functional on V : for each f
in V ∗ there is a unique vector vf in V with f(v) = 〈v, vf 〉, for each v in V .
As a result, we have an identification of V ∗ with V itself.

7.5 Diagonalization

Let T : V → V be a linear operator, A a basis for V , and A = [T ]A. As we
change the basis, the matrix representing T also changes. We wonder if it
is possible to find some basis B such that B = [T ]B is a diagonal matrix L.
Let P = [I]AB be the change-of basis matrix from B to A. We would then
have P−1AP = L, or A = PLP−1. When this happens, we say that A has
been diagonalized by P .

Suppose that the basis B = {b1, ..., bN} is such that B = [T ]B = L,
where L is the diagonal matrix L = diag {λ1, ..., λN}. Then we have AP =
PL, which tells us that pn, the n-th column of P , is an eigenvector of the
matrix A, with λn as its eigenvalue. Since pn = [bn]A, we have

0 = (A− λnI)pn = (A− λnI)[bn]A = [(T − λnI)bn]A,

from which we conclude that

(T − λnI)bn = 0,

or
Tbn = λnb

n;

therefore, bn is an eigenvector of the linear operator T .

7.6 Using Matrix Representations

The matrix A has eigenvalues λn, n = 1, ..., N , precisely when these λn are
the roots of the characteristic polynomial

P (λ) = det (A− λI).

We would like to be able to define the characteristic polynomial of T itself
to be P (λ); the problem is that we do not yet know that different matrix
representations of T have the same characteristic polynomial.

Exercise 7.9 Use the fact that det(GH)=det(G)det(H) for any square
matrices G and H to show that

det([T ]B − λI) = det([T ]C − λI),

for any bases B and C for V .
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7.7 An Inner Product on V

For any two column vectors x = (x1, ..., xN )T and y = (y1, ..., yn)T in CN ,
their complex dot product is defined by

x · y =
N∑

n=1

xnyn = y†x,

where y† is the conjugate transpose of the vector y, that is, y† is the row
vector with entries yn.

The association of the elements v in V with the complex column vector
[v]A can be used to obtain an inner product on V . For any v and w in V ,
define

〈v, w〉 = [v]A · [w]A, (7.6)

where the right side is the ordinary complex dot product in CN . Note that,
with respect to this inner product, the basis A becomes an orthonormal
basis.

7.8 Representing Linear Functionals

Let f : V → C be a linear functional on the inner-product space V and
let A = {a1, ..., aN} be the basis for V used to define the inner product, as
in Equation (7.6). The singleton set {1} is a basis for the space W = C,
and the matrix A that represents T = f is a 1 by N matrix, or row vector,
A = Af with entries f(an). Therefore, for each

v =
N∑

n=1

αna
n,

in V , we have

f(v) = Af [v]A =
N∑

n=1

f(an)αn.

Consequently, we can write

f(v) = 〈v, yf 〉,

for the vector yf with Af = [yf ]†A, or

yf =
N∑

n=1

f(an)an.
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So we see that once V has been given an inner product, each linear func-
tional f on V can be thought of as corresponding to a vector yf in V , so
that

f(v) = 〈v, yf 〉.

Exercise 7.10 Show that the vector yf associated with the linear func-
tional f is unique by showing that

〈v, y〉 = 〈v, w〉,

for every v in V implies that y = w.

7.9 The Adjoint of a Linear Transformation

Let T : V → W be a linear transformation from a vector space V to a
vector space W . The adjoint of T is the linear operator T ∗ : W ∗ → V ∗

defined by

(T ∗g)(v) = g(Tv), (7.7)

for each g ∈W ∗ and v ∈ V .
Once V and W have been given inner products, and V ∗ and W ∗ have

been identified with V and W , respectively, the operator T ∗ can be defined
as a linear operator from W to V as follows. Let T : V → W be a linear
transformation from an inner-product space V to an inner-product space
W . For each fixed w in W , define a linear functional f on V by

f(v) = 〈Tv,w〉.

By our earlier discussion, f has an associated vector yf in V such that

f(v) = 〈v, yf 〉.

Therefore,

〈Tv,w〉 = 〈v, yf 〉,

for each v in V . The adjoint of T is the linear transformation T ∗ from W
to V defined by T ∗w = yf .

When W = V , and T is a linear operator on V , then so is T ∗. In
this case, we can ask whether or not T ∗T = TT ∗, that is, whether or not
T is normal, and whether or not T = T ∗, that is, whether or not T is
self-adjoint.
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7.10 Quadratic Forms and Conjugate Matri-
ces

7.10.1 Sesquilinear Forms

A sesquilinear functional φ(x, y) of two vector variables is linear in the first
variable and conjugate-linear in the second; that is,

φ(x, α1y
1 + α2y

2) = α1φ(x, y1) + α2φ(x, y2);

the term sesquilinear means one and one-half linear.

7.10.2 Quadratic Forms

Any sesquilinear functional has an associated quadratic form given by

φ̂(x) = φ(x, x).

If P is any invertible linear operator on V , we can define a new quadratic
form by

φ̂1(x) = φ(Px, Px).

7.10.3 Conjugate Matrices

Let A be a linear operator on an inner product space V . Then A can be
used to define a sesquilinear functional φ(x, y) according to

φA(x, y) = 〈Ax, y〉. (7.8)

Then, for this sesquilinear functional, we have

φ̂1(x) = φA(Px, Px) = 〈APx, Px〉 = 〈P ∗APx, x〉.

We say that a square matrix B is conjugate to A if there is an invertible P
with B = P ∗AP .

7.10.4 Does φA Determine A?

Is it possible for
〈Ax, x〉 = 〈Bx, x〉,

for all x in the inner product space V , and yet have A 6= B? As we shall
see, the answer is “No”. First, we answer a simpler question. Is it possible
for

〈Ax, y〉 = 〈Bx, y〉,

for all x and y, with A 6= B? The answer is “No”.
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Exercise 7.11 Show that

〈Ax, y〉 = 〈Bx, y〉,

for all x and y, implies that A = B.

We can use the result of the exercise to answer our first question, but first,
we need the polarization identity.

Exercise 7.12 Establish the polarization identity:

〈Ax, y〉 =
1
4
〈A(x+ y), x+ y〉 − 1

4
〈A(x− y), x− y〉

+
i

4
〈A(x+ iy), x+ iy〉 − i

4
〈A(x− iy), x− iy〉.

Exercise 7.13 Show that the answer to our first question is “No”; the
quadratic form determines the matrix.

7.10.5 A New Sesquilinear Functional

Given a sesquilinear functional φ(x, y) and two linear operators P and Q
on V , we can define a second sesquilinear functional

ψ(x, y) = φ(Px,Qy).

For this sesquilinear functional, we have

ψ(x, y) = φ(Px,Qy) = 〈APx,Qy〉 = 〈Q∗APx, y〉.

7.11 Orthogonality

Two vectors v and w in the inner-product space V are said to be orthogonal
if 〈v, w〉 = 0. A basis U = {u1, u2, ..., uN} is called an orthogonal basis if
every two vectors in U are orthogonal, and orthonormal if, in addition,
‖un‖ = 1, for each n.

Exercise 7.14 Let U and V be orthonormal bases for the inner-product
space V , and let Q be the change-of-basis matrix satisfying

[v]U = Q[v]V .

Show that Q−1 = Q†, so that Q is a unitary matrix.

Exercise 7.15 Let U be an orthonormal basis for the inner-product space
V and T a linear operator on V . Show that

[T ∗]U = ([T ]U )†. (7.9)
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7.12 Normal and Self-Adjoint Operators

Let T be a linear operator on an inner-product space V . We say that T is
normal if T ∗T = TT ∗, and self-adjoint if T ∗ = T . A square matrix A is
said to be normal if A†A = AA†, and Hermitian if A† = A.

Exercise 7.16 Let U be an orthonormal basis for the inner-product space
V . Show that T is normal if and only if [T ]U is a normal matrix, and T is
self-adjoint if and only if [T ]U is Hermitian. Hint: use Exercise (7.2).

Exercise 7.17 Compute the eigenvalues for the real square matrix

A =
[

1 2
−2 1

]
. (7.10)

Note that the eigenvalues are complex, even though the entries of A are
real. The matrix A is not Hermitian.

Exercise 7.18 Show that the eigenvalues of the complex matrix

B =
[

1 2 + i
2− i 1

]
(7.11)

are the real numbers λ = 1 +
√

5 and λ = 1 −
√

5, with corresponding
eigenvectors u = (

√
5, 2− i)T and v = (

√
5, i− 2)T , respectively.

Exercise 7.19 Show that the eigenvalues of the real matrix

C =
[

1 1
0 1

]
(7.12)

are both equal to one, and that the only eigenvectors are non-zero multiples
of the vector (1, 0)T . Compute CTC and CCT . Are they equal?

7.13 It is Good to be “Normal”

For a given linear operator, when does there exist an orthonormal basis for
V consisting of eigenvectors of T? The answer is: When T is normal.

Consider an N by N matrix A. We use A to define a linear operator T
on the space of column vectors V = CN by Tv = Av, that is, the operator
T works by multiplying each column vector v in CN by the matrix A.
Then A represents T with respect to the usual orthonormal basis A for
CN . Suppose now that there is an orthonormal basis U = {u1, ..., uN} for
CN such that

Aun = λnu
n,
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for each n. The matrix representing T in the basis U is the matrix B =
Q−1AQ, where Q is the change-of-basis matrix with

Q[v]U = [v]A.

But we also know that B is the diagonal matrix B = L =diag(λ1, ..., λN ).
Therefore, L = Q−1AQ, or A = QLQ−1.

As we saw in Exercise (7.14), the matrixQ is unitary, that is, Q−1 = Q†.
Therefore, A = QLQ†. Then we have

A†A = QL†Q†QLQ† = QL†LQ†

= QLL†Q† = QLQ†QL†Q† = AA†,

so that
A†A = AA†,

and A is normal.
Two fundamental results in linear algebra are the following, which we

discuss in more detail in the chapter “Hermitian and Normal Linear Oper-
ators”.

Theorem 7.1 For a linear operator T on a finite-dimensional complex
inner-product space V there is an orthonormal basis of eigenvectors if and
only if T is normal.

Corollary 7.1 A self-adjoint linear operator T on a finite-dimensional
complex inner-product space V has an orthonormal basis of eigenvectors.

Exercise 7.20 Show that the eigenvalues of a self-adjoint linear operator
T on a finite-dimensional complex inner-product space are real numbers.
Hint: consider Tu = λ1u, and begin with λ〈u, u〉 = 〈Tu, u〉.

Combining the various results obtained so far, we can conclude the follow-
ing.

Corollary 7.2 Let T be a linear operator on a finite-dimensional real
inner-product space V . Then V has an orthonormal basis consisting of
eigenvectors of T if and only if T is self-adjoint.



Chapter 8

Hermitian and Normal
Linear Operators

8.1 The Diagonalization Theorem

In this chapter we present a proof of the following theorem.

Theorem 8.1 For a linear operator T on a finite-dimensional complex
inner-product space V there is an orthonormal basis of eigenvectors if and
only if T is normal.

We saw previously that if V has an orthonormal basis of eigenvectors
of T , then T is a normal operator. We need to prove the converse: if T is
normal, then V has an orthonormal basis consisting of eigenvectors of T .

8.2 Invariant Subspaces

A subspace W of V is said to be T -invariant if Tw is in W whenever w is
in W . For any T -invariant subspace W , the restriction of T to W , denoted
TW , is a linear operator on W .

For any subspace W , the orthogonal complement of W is the space
W⊥ = {v|〈w, v〉 = 0, for allw ∈W}.

Proposition 8.1 Let W be a T -invariant subspace of V . Then

• (a) if T is self-adjoint, so is TW ;

• (b) W⊥ is T ∗-invariant;

• (c) if W is both T - and T ∗-invariant, then (TW )∗ = (T ∗)W ;
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• (d) if W is both T - and T ∗-invariant, and T is normal, then TW is
normal.

• (e) if T is normal and Tx = λx, then T ∗x = λx.

Exercise 8.1 Prove Proposition (8.1).

Proposition 8.2 If T is normal, Tu1 = λ1u
1, Tu2 = λ2u

2, and λ1 6= λ2,
then 〈u1, u2〉 = 0.

Exercise 8.2 Prove Proposition 8.2. Hint: use (e) of Proposition 8.1.

8.3 Proof of the Diagonalization Theorem

We turn now to the proof of the theorem.

Proof of Theorem 8.1 The proof is by induction on the dimension of the
inner-product space V . To begin with, let N = 1, so that V is simply the
span of some unit vector x. Then any linear operator T on V has Tx = λx,
for some λ, and the set {x} is an orthonormal basis for V .

Now suppose that the theorem is true for every inner-product space of
dimension N − 1. We know that every linear operator T on V has at least
one eigenvector, say x1, since its characteristic polynomial has at least one
distinct eigenvalue λ1 in C. Take x1 to be a unit vector. Let W be the
span of the vector x1, and W⊥ the orthogonal complement of W . Since
Tx1 = λ1x

1 and T is normal, we know that T ∗x1 = λ1x
1. Therefore, both

W and W⊥ are T - and T ∗-invariant. Therefore, TW⊥ is normal on W⊥.
By the induction hypothesis, we know that W⊥ has an orthonormal basis
consisting of N − 1 eigenvectors of TW , and, therefore, of T . Augmenting
this set with the original x1, we get an orthonormal basis for all of V .

8.4 Corollaries

The theorem has several important corollaries.

Corollary 8.1 A self-adjoint linear operator T on a finite-dimensional
complex inner-product space V has an orthonormal basis of eigenvectors.

Corollary 8.2 Let T be a linear operator on a finite-dimensional real
inner-product space V . Then V has an orthonormal basis consisting of
eigenvectors of T if and only if T is self-adjoint.
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Proving the existence of the orthonormal basis uses essentially the same
argument as the induction proof given earlier. The eigenvalues of a self-
adjoint linear operator T on a finite-dimensional complex inner-product
space are real numbers. If T be a linear operator on a finite-dimensional real
inner-product space V and V has an orthonormal basis U = {u1, ..., uN}
consisting of eigenvectors of T , then we have

Tun = λnu
n = λnu

n = T ∗un,

so, since T = T ∗ on each member of the basis, these operators are the same
everywhere, so T = T ∗ and T is self-adjoint.

Definition 8.1 A linear operator P on a finite-dimensional inner-product
space is a perpendicular projection if

P 2 = P = P ∗.

Corollary 8.3 (The Spectral Theorem) Let T be a normal operator
on a finite-dimensional inner-product space. Then T can be written as

T =
M∑

m=1

λmPm, (8.1)

where λm, m = 1, ...,M are the distinct eigenvalues of T , Pm is the per-
pendicular projection

Pm =
∑

n∈Im

un(un)†, (8.2)

and
Im = {n|λn = λm}.

Corollary 8.4 Let T be a normal operator on a finite-dimensional inner-
product space. Then there is a complex polynomial f(z) such that

T ∗ = f(T ).

Proof: Let f(z) be any polynomial such that f(λm) = λm, for each m =
1, ...,M . The assertion then follows, since

T ∗ =
M∑

m=1

λmPm,

and PmPk = 0, for m 6= k.
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8.5 A Counter-Example

We present now an example of a real 2 by 2 matrix A with ATA = AAT ,
but with no eigenvectors in R2. Take 0 < θ < π and A to be the matrix

A =
[

cos θ − sin θ
sin θ cos θ

]
. (8.3)

This matrix represents rotation through an angle of θ in R2. Its transpose
represents rotation through the angle −θ. These operations obviously can
be done in either order, so the matrix A is normal. But there is no non-zero
vector in R2 that is an eigenvector. Clearly, A is not symmetric.

8.6 Simultaneous Diagonalization

Any linear operator T on a finite-dimensional inner-product space can be
written as T = R+iS, where both R and S are Hermitian linear operators;
simply take R = 1

2 (T + T ∗) and S = 1
2i (T − T ∗).

Exercise 8.3 Show that T is a normal operator if and only if RS = SR.

Theorem 8.2 Let T and U be commuting normal linear operators on a
finite-dimensional inner-product space V . There there is an orthonormal
basis for V consisting of vectors that are simultaneously eigenvectors for T
and for U .

Proof: For each m let Wm be the range of the perpendicular projection
Pm in the spectral theorem expansion for T ; that is,

Wm = {x ∈ V |Tx = λmx}.

It is easy to see that, for each x in Wm, the vector Ux is in Wm; therefore,
the sets Wm are T - and U -invariant. It follows along the lines of our proof
of the spectral theorem that the restriction of U to each of the subspaces
Wm is a normal operator. Therefore, each Wm has an orthonormal basis
consisting of eigenvectors of U . Combining these bases for the Wm gives
the desired basis for V .

When T is normal, we have RS = SR, so there is an orthonormal
basis for V consisting of simultaneous eigenvectors for R and S. It fol-
lows that these basis vectors are eigenvectors for T as well. This shows
that the spectral theorem for normal operators can be derived from the
spectral theorem for Hermitian operators, once we have the simultaneous-
diagonalization theorem for commuting Hermitian operators.

It can be shown that, for any family of commuting normal operators on
V , there is an orthonormal basis of simultaneous eigenvectors. The recent
article by Bouten, van Handel and James [24] describes the use of this
result in quantum filtering.
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Algorithms
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Chapter 9

Fixed-Point Methods

9.1 Chapter Summary

In a broad sense, all iterative algorithms generate a sequence {xk} of vec-
tors. The sequence may converge for any starting vector x0, or may con-
verge only if the x0 is sufficiently close to a solution. The limit, when it
exists, may depend on x0, and may, or may not, solve the original problem.
Convergence to the limit may be slow and the algorithm may need to be
accelerated. The algorithm may involve measured data. The limit may be
sensitive to noise in the data and the algorithm may need to be regularized
to lessen this sensitivity. The algorithm may be quite general, applying
to all problems in a broad class, or it may be tailored to the problem at
hand. Each step of the algorithm may be costly, but only a few steps gen-
erally needed to produce a suitable approximate answer, or, each step may
be easily performed, but many such steps needed. Although convergence
of an algorithm is important, theoretically, sometimes in practice only a
few iterative steps are used. In this chapter we consider several classes of
operators that play important roles in applied linear algebra.

9.2 Operators

A function T : RJ → RJ is often called an operator on RJ . For most of
the iterative algorithms we shall consider, the iterative step is

xk+1 = Txk, (9.1)

for some operator T . If T is a continuous operator (and it usually is), and
the sequence {T kx0} converges to x̂, then T x̂ = x̂, that is, x̂ is a fixed point
of the operator T . We denote by Fix(T ) the set of fixed points of T . The

89
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convergence of the iterative sequence {T kx0} will depend on the properties
of the operator T .

9.3 Contractions

Contraction operators are perhaps the best known class of operators asso-
ciated with iterative algorithms.

9.3.1 Lipschitz Continuity

Definition 9.1 An operator T on RJ is Lipschitz continuous, with respect
to a vector norm || · ||, or L-Lipschitz, if there is a positive constant L such
that

||Tx− Ty|| ≤ L||x− y||, (9.2)

for all x and y in RJ .

For example, if f : RJ → R is differentiable and ‖∇f(x)‖2 ≤ L, for all
x, then T = ∇f is L-Lipschitz, with respect to the 2-norm.

9.3.2 Non-expansive Operators

Definition 9.2 If L = 1, then T is said to be non-expansive (ne), with
respect to the given norm.

Lemma 9.1 Let T : RJ → RJ be a non-expansive operator, with respect
to the 2-norm. Then the set F of fixed points of T is a convex set.

Proof: Select two distinct points a and b in F , a scalar α in the open
interval (0, 1), and let c = αa+ (1− α)b. We show that Tc = c. Note that

a− c =
1− α

α
(c− b).

We have

‖a−b‖ = ‖a−Tc+Tc−b‖ ≤ ‖a−Tc‖+‖Tc−b‖ = ‖Ta−Tc‖+‖Tc−Tb‖

≤ ‖a− c‖+ ‖c− b‖ = ‖a− b‖;

the last equality follows since a− c is a multiple of (c− b). From this, we
conclude that

‖a− Tc‖ = ‖a− c‖,

‖Tc− b‖ = ‖c− b‖,
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and that a− Tc and Tc− b are positive multiples of one another, that is,
there is β > 0 such that

a− Tc = β(Tc− b),

or
Tc =

1
1 + β

a+
β

1 + β
b = γa+ (1− γ)b.

Then inserting c = αa+ (1− α)b and Tc = γa+ (1− γ)b into

‖Tc− b‖ = ‖c− b‖,

we find that γ = α and so Tc = c.
We want to find properties of an operator T that guarantee that the

sequence of iterates {T kx0} will converge to a fixed point of T , for any
x0, whenever fixed points exist. Being non-expansive is not enough; the
non-expansive operator T = −I, where Ix = x is the identity operator, has
the fixed point x = 0, but the sequence {T kx0} converges only if x0 = 0.

9.3.3 Strict Contractions

One property that guarantees not only that the iterates converge, but that
there is a fixed point is the property of being a strict contraction.

Definition 9.3 An operator T on RJ is a strict contraction (sc), with
respect to a vector norm || · ||, if there is r ∈ (0, 1) such that

||Tx− Ty|| ≤ r||x− y||, (9.3)

for all vectors x and y.

For example, if the operator T is L-Lipschitz for some L < 1, then
T is a strict contraction. Therefore, if f : RJ → R is differentiable and
‖f(x)‖2 ≤ L < 1, for all x, then T = ∇f is a strict contraction.

For strict contractions, we have the Banach-Picard Theorem [111]:

Theorem 9.1 Let T be sc. Then, there is a unique fixed point of T and,
for any starting vector x0, the sequence {T kx0} converges to the fixed point.

The key step in the proof is to show that {xk} is a Cauchy sequence,
therefore, it has a limit.

9.3.4 Eventual Strict Contractions

Consider the problem of finding x such that x = e−x. We can see from
the graphs of y = x and y = e−x that there is a unique solution, which we
shall denote by z. It turns out that z = 0.56714329040978.... Let us try
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to find z using the iterative sequence xk+1 = e−xk , starting with some real
x0. Note that we always have xk > 0 for k = 1, 2, ..., even if x0 < 0. The
operator here is Tx = e−x, which, for simplicity, we view as an operator
on the non-negative real numbers.

Since the derivative of the function f(x) = e−x is f ′(x) = −e−x, we
have |f ′(x)| ≤ 1, for all non-negative x, so T is non-expansive. But we do
not have |f ′(x)| ≤ r < 1, for all non-negative x; therefore, T is a not a
strict contraction, when considered as an operator on the non-negative real
numbers.

If we choose x0 = 0, then x1 = 1, x2 = 0.368, approximately, and so
on. Continuing this iteration a few more times, we find that after about
k = 14, the value of xk settles down to 0.567, which is the answer, to
three decimal places. The same thing is seen to happen for any positive
starting points x0. It would seem that T has another property, besides
being non-expansive, that is forcing convergence. What is it?

From the fact that 1− e−x ≤ x, for all real x, with equality if and only
if x = 0, we can show easily that, for r = max{e−x1 , e−x2},

|z − xk+1| ≤ r|z − xk|,

for k = 3, 4, .... Since r < 1, it follows, just as in the proof of the Banach-
Picard Theorem, that {xk} is a Cauchy sequence and therefore converges.
The limit must be a fixed point of T , so the limit must be z.

Although the operator T is not a strict contraction, with respect to the
non-negative numbers, once we begin to calculate the sequence of iterates
the operator T effectively becomes a strict contraction, with respect to the
vectors of the particular sequence being constructed, and so the sequence
converges to a fixed point of T . We cannot conclude from this that T has
a unique fixed point, as we can in the case of a strict contraction; we must
decide that by other means.

9.3.5 Instability

Suppose we rewrite the equation e−x = x as x = − log x, and define Tx =
− log x, for x > 0. Now our iterative scheme becomes xk+1 = Txk =
− log xk. A few calculations will convince us that the sequence {xk} is
diverging away from the correct answer, not converging to it. The lesson
here is that we cannot casually reformulate our problem as a fixed-point
problem and expect the iterates to converge to the answer. What matters
is the behavior of the operator T .

9.4 Two Useful Identities

The identities in the next two lemmas relate an arbitrary operator T to
its complement, G = I − T , where I denotes the identity operator. These



9.5. ORTHOGONAL PROJECTION OPERATORS 93

identities will allow us to transform properties of T into properties of G
that may be easier to work with. A simple calculation is all that is needed
to establish the following lemma.

Lemma 9.2 Let T be an arbitrary operator T on RJ and G = I−T . Then

||x− y||22 − ||Tx− Ty||22 = 2(〈Gx−Gy, x− y〉) − ||Gx−Gy||22. (9.4)

Lemma 9.3 Let T be an arbitrary operator T on RJ and G = I−T . Then

〈Tx− Ty, x− y〉 − ||Tx− Ty||22 =

〈Gx−Gy, x− y〉 − ||Gx−Gy||22. (9.5)

Proof: Use the previous lemma.

9.5 Orthogonal Projection Operators

If C is a closed, non-empty convex set in RJ , and x is any vector, then, as
we have seen, there is a unique point PCx in C closest to x, in the sense
of the Euclidean distance. This point is called the orthogonal projection
of x onto C. If C is a subspace, then we can get an explicit description
of PCx in terms of x; for general convex sets C, however, we will not be
able to express PCx explicitly, and certain approximations will be needed.
Orthogonal projection operators are central to our discussion, and, in this
overview, we focus on problems involving convex sets, algorithms involving
orthogonal projection onto convex sets, and classes of operators derived
from properties of orthogonal projection operators.

9.5.1 Properties of the Operator PC

Although we usually do not have an explicit expression for PCx, we can,
however, characterize PCx as the unique member of C for which

〈PCx− x, c− PCx〉 ≥ 0, (9.6)

for all c in C; see Proposition 32.4.

PC is Non-expansive

Recall that an operator T is non-expansive (ne), with respect to a given
norm, if, for all x and y, we have

||Tx− Ty|| ≤ ||x− y||. (9.7)
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Lemma 9.4 The orthogonal projection operator T = PC is non-expansive,
with respect to the Euclidean norm, that is,

||PCx− PCy||2 ≤ ||x− y||2, (9.8)

for all x and y.

Proof: Use Inequality (9.6) to get

〈PCy − PCx, PCx− x〉 ≥ 0, (9.9)

and

〈PCx− PCy, PCy − y〉 ≥ 0. (9.10)

Add the two inequalities to obtain

〈PCx− PCy, x− y〉 ≥ ||PCx− PCy||22, (9.11)

and use the Cauchy Inequality.
Because the operator PC has multiple fixed points, PC cannot be a

strict contraction, unless the set C is a singleton set.

PC is Firmly Non-expansive

Definition 9.4 An operator T is said to be firmly non-expansive (fne) if

〈Tx− Ty, x− y〉 ≥ ||Tx− Ty||22, (9.12)

for all x and y in RJ .

Lemma 9.5 An operator T is fne if and only if G = I − T is fne.

Proof: Use the identity in Equation (9.5).
From Equation (9.11), we see that the operator T = PC is not simply

ne, but fne, as well. A good source for more material on these topics is the
book by Goebel and Reich [134].

The Search for Other Properties of PC

The class of non-expansive operators is too large for our purposes; the
operator Tx = −x is non-expansive, but the sequence {T kx0} does not
converge, in general, even though a fixed point, x = 0, exists. The class
of firmly non-expansive operators is too small for our purposes. Although
the convergence of the iterative sequence {T kx0} to a fixed point does
hold for firmly non-expansive T , whenever fixed points exist, the product
of two or more fne operators need not be fne; that is, the class of fne
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operators is not closed to finite products. This poses a problem, since, as
we shall see, products of orthogonal projection operators arise in several of
the algorithms we wish to consider. We need a class of operators smaller
than the ne ones, but larger than the fne ones, closed to finite products,
and for which the sequence of iterates {T kx0} will converge, for any x0,
whenever fixed points exist. The class we shall consider is the class of
averaged operators.

9.6 Averaged Operators

The term ‘averaged operator’ appears in the work of Baillon, Bruck and
Reich [31, 9]. There are several ways to define averaged operators. One
way is in terms of the complement operator.

Definition 9.5 An operator G on RJ is called ν-inverse strongly mono-
tone (ν-ism)[135] (also called co-coercive in [90]) if there is ν > 0 such
that

〈Gx−Gy, x− y〉 ≥ ν||Gx−Gy||22. (9.13)

Lemma 9.6 An operator T is ne if and only if its complement G = I − T
is 1

2 -ism, and T is fne if and only if G is 1-ism, and if and only if G is
fne. Also, T is ne if and only if F = (I + T )/2 is fne. If G is ν-ism and
γ > 0 then the operator γG is ν

γ -ism.

Definition 9.6 An operator T is called averaged (av) if G = I−T is ν-ism
for some ν > 1

2 . If G is 1
2α -ism, for some α ∈ (0, 1), then we say that T is

α-av.

It follows that every av operator is ne, with respect to the Euclidean norm,
and every fne operator is av.

The averaged operators are sometimes defined in a different, but equiv-
alent, way, using the following characterization of av operators.

Lemma 9.7 An operator T is av if and only if, for some operator N that
is non-expansive in the Euclidean norm, and α ∈ (0, 1), we have

T = (1− α)I + αN.

Consequently, the operator T is av if and only if, for some α in (0, 1), the
operator

N =
1
α
T − 1− α

α
I = I − 1

α
(I − T ) = I − 1

α
G

is non-expansive.
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Proof: We assume first that there is α ∈ (0, 1) and ne operator N such
that T = (1 − α)I + αN , and so G = I − T = α(I − N). Since N is ne,
I − N is 1

2 -ism and G = α(I − N) is 1
2α -ism. Conversely, assume that G

is ν-ism for some ν > 1
2 . Let α = 1

2ν and write T = (1 − α)I + αN for
N = I − 1

αG. Since I −N = 1
αG, I −N is αν-ism. Consequently I −N is

1
2 -ism and N is ne.

An averaged operator is easily constructed from a given ne operator
N by taking a convex combination of N and the identity I. The beauty
of the class of av operators is that it contains many operators, such as
PC , that are not originally defined in this way. As we shall see shortly,
finite products of averaged operators are again averaged, so the product of
finitely many orthogonal projections is av.

We present now the fundamental properties of averaged operators, in
preparation for the proof that the class of averaged operators is closed to
finite products.

Note that we can establish that a given operator is av by showing that
there is an α in the interval (0, 1) such that the operator

1
α

(A− (1− α)I) (9.14)

is ne. Using this approach, we can easily show that if T is sc, then T is av.

Lemma 9.8 Let T = (1−α)A+αN for some α ∈ (0, 1). If A is averaged
and N is non-expansive then T is averaged.

Proof: Let A = (1 − β)I + βM for some β ∈ (0, 1) and ne operator M .
Let 1− γ = (1− α)(1− β). Then we have

T = (1− γ)I + γ[(1− α)βγ−1M + αγ−1N ]. (9.15)

Since the operator K = (1− α)βγ−1M + αγ−1N is easily shown to be ne
and the convex combination of two ne operators is again ne, T is averaged.

Corollary 9.1 If A and B are av and α is in the interval [0, 1], then the
operator T = (1 − α)A + αB formed by taking the convex combination of
A and B is av.

Corollary 9.2 Let T = (1 − α)F + αN for some α ∈ (0, 1). If F is fne
and N is Euclidean-ne then T is averaged.

The orthogonal projection operators PH onto hyperplanes H = H(a, γ)
are sometimes used with relaxation, which means that PH is replaced by
the operator

T = (1− ω)I + ωPH , (9.16)
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for some ω in the interval (0, 2). Clearly, if ω is in the interval (0, 1), then T
is av, by definition, since PH is ne. We want to show that, even for ω in the
interval [1, 2), T is av. To do this, we consider the operator RH = 2PH −I,
which is reflection through H; that is,

PHx =
1
2
(x+RHx), (9.17)

for each x.

Lemma 9.9 The operator RH = 2PH − I is an isometry; that is,

||RHx−RHy||2 = ||x− y||2, (9.18)

for all x and y, so that RH is ne.

Lemma 9.10 For ω = 1 + γ in the interval [1, 2), we have

(1− ω)I + ωPH = αI + (1− α)RH , (9.19)

for α = 1−γ
2 ; therefore, T = (1− ω)I + ωPH is av.

The product of finitely many ne operators is again ne, while the product
of finitely many fne operators, even orthogonal projections, need not be fne.
It is a helpful fact that the product of finitely many av operators is again
av.

If A = (1− α)I + αN is averaged and B is averaged then T = AB has
the form T = (1 − α)B + αNB. Since B is av and NB is ne, it follows
from Lemma 9.8 that T is averaged. Summarizing, we have

Proposition 9.1 If A and B are averaged, then T = AB is averaged.

Proposition 9.2 An operator F is firmly non-expansive if and only if
F = 1

2 (I +N), for some non-expansive operator N .

9.6.1 Gradient Operators

Another type of operator that is averaged can be derived from gradient
operators.

Definition 9.7 An operator T on RJ is monotone if

〈Tx− Ty, x− y〉 ≥ 0, (9.20)

for all x and y.
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Firmly non-expansive operators on RJ are monotone operators. Let g(x) :
RJ → R be a differentiable convex function and f(x) = ∇g(x) its gradient.
The operator ∇g is also monotone. If ∇g is non-expansive, then it can
be shown that ∇g is fne . If, for some L > 0, ∇g is L-Lipschitz, for the
2-norm, that is,

||∇g(x)−∇g(y)||2 ≤ L||x− y||2, (9.21)

for all x and y, then 1
L∇g is ne, therefore fne, and the operator T = I−γ∇g

is av, for 0 < γ < 2
L .

9.6.2 The Krasnoselskii-Mann Theorem

For any operator T that is averaged, convergence of the sequence {T kx0}
to a fixed point of T , whenever fixed points of T exist, is guaranteed by
the Krasnoselskii-Mann (KM) Theorem [186]:

Theorem 9.2 Let T be averaged. Then the sequence {T kx0} converges to
a fixed point of T , whenever Fix(T ) is non-empty.

Proof: Let z be a fixed point of non-expansive operator N and let α ∈
(0, 1). Let T = (1− α)I + αN , so the iterative step becomes

xk+1 = Txk = (1− α)xk + αNxk. (9.22)

The identity in Equation (9.4) is the key to proving Theorem 9.2.
Using Tz = z and (I − T )z = 0 and setting G = I − T we have

||z − xk||22 − ||Tz − xk+1||22 = 2〈Gz −Gxk, z − xk〉 − ||Gz −Gxk||22.
(9.23)

Since, by Lemma 9.7, G is 1
2α -ism, we have

||z − xk||22 − ||z − xk+1||22 ≥ (
1
α
− 1)||xk − xk+1||22. (9.24)

Consequently the sequence {xk} is bounded, the sequence {||z − xk||2} is
decreasing and the sequence {||xk−xk+1||2} converges to zero. Let x∗ be a
cluster point of {xk}. Then we have Tx∗ = x∗, so we may use x∗ in place of
the arbitrary fixed point z. It follows then that the sequence {||x∗−xk||2}
is decreasing; since a subsequence converges to zero, the entire sequence
converges to zero. The proof is complete.

A version of the KM Theorem 9.2, with variable coefficients, appears
in Reich’s paper [213].
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9.7 Affine Linear Operators

It may not always be easy to decide if a given operator is averaged. The
class of affine linear operators provides an interesting illustration of the
problem.

The affine operator Tx = Bx + d will be ne, sc, fne, or av precisely
when the linear operator given by multiplication by the matrix B is the
same.

9.7.1 The Hermitian Case

When B is Hermitian, we can determine if B belongs to these classes by
examining its eigenvalues λ:

• B is non-expansive if and only if −1 ≤ λ ≤ 1, for all λ;

• B is averaged if and only if −1 < λ ≤ 1, for all λ;

• B is a strict contraction if and only if −1 < λ < 1, for all λ;

• B is firmly non-expansive if and only if 0 ≤ λ ≤ 1, for all λ.

Affine linear operators T that arise, for instance, in splitting methods
for solving systems of linear equations, generally have non-Hermitian linear
part B. Deciding if such operators belong to these classes is more difficult.
Instead, we can ask if the operator is paracontractive, with respect to some
norm.

9.8 Paracontractive Operators

By examining the properties of the orthogonal projection operators PC ,
we were led to the useful class of averaged operators. The orthogonal
projections also belong to another useful class, the paracontractions.

Definition 9.8 An operator T is called paracontractive (pc), with respect
to a given norm, if, for every fixed point y of T , we have

||Tx− y|| < ||x− y||, (9.25)

unless Tx = x.

Paracontractive operators are studied by Censor and Reich in [80].

Proposition 9.3 The operators T = PC are paracontractive, with respect
to the Euclidean norm.
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Proof: It follows from Cauchy’s Inequality that

||PCx− PCy||2 ≤ ||x− y||2,

with equality if and only if

PCx− PCy = α(x− y),

for some scalar α with |α| = 1. But, because

0 ≤ 〈PCx− PCy, x− y〉 = α||x− y||22,

it follows that α = 1, and so

PCx− x = PCy − y.

When we ask if a given operator T is pc, we must specify the norm.
We often construct the norm specifically for the operator involved. To
illustrate, we consider the case of affine operators.

9.8.1 Linear and Affine Paracontractions

Let the matrix B be diagonalizable and let the columns of V be an eigen-
vector basis. Then we have V −1BV = D, where D is the diagonal matrix
having the eigenvalues of B along its diagonal.

Lemma 9.11 A square matrix B is diagonalizable if all its eigenvalues are
distinct.

Proof: Let B be J by J . Let λj be the eigenvalues of B, Bxj = λjx
j , and

xj 6= 0, for j = 1, ..., J . Let xm be the first eigenvector that is in the span
of {xj |j = 1, ...,m− 1}. Then

xm = a1x
1 + ...am−1x

m−1, (9.26)

for some constants aj that are not all zero. Multiply both sides by λm to
get

λmx
m = a1λmx

1 + ...am−1λmx
m−1. (9.27)

From

λmx
m = Axm = a1λ1x

1 + ...am−1λm−1x
m−1, (9.28)

it follows that

a1(λm − λ1)x1 + ...+ am−1(λm − λm−1)xm−1 = 0, (9.29)
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from which we can conclude that some xn in {x1, ..., xm−1} is in the span
of the others. This is a contradiction.

We see from this Lemma that almost all square matrices B are diago-
nalizable. Indeed, all Hermitian B are diagonalizable. If B has real entries,
but is not symmetric, then the eigenvalues of B need not be real, and the
eigenvectors of B can have non-real entries. Consequently, we must con-
sider B as a linear operator on CJ , if we are to talk about diagonalizability.
For example, consider the real matrix

B =
[

0 1
−1 0

]
. (9.30)

Its eigenvalues are λ = i and λ = −i. The corresponding eigenvectors are
(1, i)T and (1,−i)T . The matrix B is then diagonalizable as an operator
on C2, but not as an operator on R2.

When B is not Hermitian, it is not as easy to determine if the affine
operator T is sc with respect to a given norm. Instead, we often tailor the
norm to the operator T . Suppose that B is a diagonalizable matrix, that
is, there is a basis for RJ consisting of eigenvectors of B. Let {u1, ..., uJ}
be such a basis, and let Buj = λju

j , for each j = 1, ..., J . For each x in
RJ , there are unique coefficients aj so that

x =
J∑

j=1

aju
j . (9.31)

Then let

||x|| =
J∑

j=1

|aj |. (9.32)

Lemma 9.12 The expression || · || in Equation (9.32) defines a norm on
RJ . If ρ(B) < 1, then the affine operator T is sc, with respect to this norm.

It is known that, for any square matrix B and any ε > 0, there is a vector
norm for which the induced matrix norm satisfies ||B|| ≤ ρ(B) + ε. There-
fore, if B is an arbitrary square matrix with ρ(B) < 1, there is a vector
norm with respect to which B is sc.

Proposition 9.4 Let T be an affine linear operator whose linear part B is
diagonalizable, and |λ| < 1 for all eigenvalues λ of B that are not equal to
one. Then the operator T is pc, with respect to the norm given by Equation
(9.32).

Proof: This is Exercise 9.8.
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We see from Proposition 9.4 that, for the case of affine operators T
whose linear part is not Hermitian, instead of asking if T is av, we can ask
if T is pc; since B will almost certainly be diagonalizable, we can answer
this question by examining the eigenvalues of B.

Unlike the class of averaged operators, the class of paracontractive op-
erators is not necessarily closed to finite products, unless those factor op-
erators have a common fixed point.

9.8.2 The Elsner-Koltracht-Neumann Theorem

Our interest in paracontractions is due to the Elsner-Koltracht-Neumann
(EKN) Theorem [114]:

Theorem 9.3 Let T be pc with respect to some vector norm. If T has
fixed points, then the sequence {T kx0} converges to a fixed point of T , for
all starting vectors x0.

We follow the development in [114].

Theorem 9.4 Suppose that there is a vector norm on RJ , with respect to
which each Ti is a pc operator, for i = 1, ..., I, and that F = ∩I

i=1Fix(Ti)
is not empty. For k = 0, 1, ..., let i(k) = k(mod I)+1, and xk+1 = Ti(k)x

k.
The sequence {xk} converges to a member of F , for every starting vector
x0.

Proof: Let y ∈ F . Then, for k = 0, 1, ...,

||xk+1 − y|| = ||Ti(k)x
k − y|| ≤ ||xk − y||, (9.33)

so that the sequence {||xk − y||} is decreasing; let d ≥ 0 be its limit. Since
the sequence {xk} is bounded, we select an arbitrary cluster point, x∗.
Then d = ||x∗ − y||, from which we can conclude that

||Tix
∗ − y|| = ||x∗ − y||, (9.34)

and Tix
∗ = x∗, for i = 1, ..., I; therefore, x∗ ∈ F . Replacing y, an arbitrary

member of F , with x∗, we have that ||xk − x∗|| is decreasing. But, a
subsequence converges to zero, so the whole sequence must converge to
zero. This completes the proof.

Corollary 9.3 If T is pc with respect to some vector norm, and T has
fixed points, then the iterative sequence {T kx0} converges to a fixed point
of T , for every starting vector x0.

Corollary 9.4 If T = TITI−1 · · ·T2T1, and F = ∩I
i=1Fix (Ti) is not empty,

then F = Fix (T ).



9.9. EXERCISES 103

Proof: The sequence xk+1 = Ti(k)x
k converges to a member of Fix (T ), for

every x0. Select x0 in F .

Corollary 9.5 The product T of two or more pc operators Ti, i = 1, ..., I
is again a pc operator, if F = ∩I

i=1Fix (Ti) is not empty.

Proof: Suppose that for T = TITI−1 · · · T2T1, and y ∈ F = Fix (T ), we
have

||Tx− y|| = ||x− y||. (9.35)

Then, since

||TI(TI−1 · · · T1)x− y|| ≤ ||TI−1 · · · T1x− y|| ≤ ... ≤ ||T1x− y|| ≤ ||x− y||,(9.36)

it follows that

||Tix− y|| = ||x− y||, (9.37)

and Tix = x, for each i. Therefore, Tx = x.

9.9 Exercises

Exercise 9.1 Show that a strict contraction can have at most one fixed
point.

Exercise 9.2 Let T be sc. Show that the sequence {T kx0} is a Cauchy
sequence. Hint: consider

||xk − xk+n|| ≤ ||xk − xk+1||+ ...+ ||xk+n−1 − xk+n||, (9.38)

and use

||xk+m − xk+m+1|| ≤ rm||xk − xk+1||. (9.39)

Since {xk} is a Cauchy sequence, it has a limit, say x̂. Let ek = x̂ − xk.
Show that {ek} → 0, as k → +∞, so that {xk} → x̂. Finally, show that
T x̂ = x̂.

Exercise 9.3 Suppose that we want to solve the equation

x =
1
2
e−x.

Let Tx = 1
2e
−x for x in R. Show that T is a strict contraction, when re-

stricted to non-negative values of x, so that, provided we begin with x0 > 0,
the sequence {xk = Txk−1} converges to the unique solution of the equa-
tion. Hint: use the mean value theorem from calculus.
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Exercise 9.4 Prove Lemma 9.12.

Exercise 9.5 Show that, if the operator T is α-av and 1 > β > α, then T
is β-av.

Exercise 9.6 Prove Lemma 9.6.

Exercise 9.7 Prove Proposition 9.2.

Exercise 9.8 Prove Proposition 9.4.

Exercise 9.9 Show that, if B is a linear av operator, then |λ| < 1 for all
eigenvalues λ of B that are not equal to one.

9.10 Course Homework

Do all the exercises in this chapter.



Chapter 10

Jacobi and Gauss-Seidel
Methods

Linear systems Ax = b need not be square but can be associated with
two square systems, A†Ax = A†b, the so-called normal equations, and
AA†z = b, sometimes called the Björck-Elfving equations [99]. In this chap-
ter we consider two well known iterative algorithms for solving square sys-
tems of linear equations, the Jacobi method and the Gauss-Seidel method.
Both these algorithms are easy to describe and to motivate. They both
require not only that the system be square, that is, have the same num-
ber of unknowns as equations, but satisfy additional constraints needed for
convergence.

Both the Jacobi and the Gauss-Seidel algorithms can be modified to
apply to any square system of linear equations, Sz = h. The resulting
algorithms, the Jacobi overrelaxation (JOR) and successive overrelaxation
(SOR) methods, involve the choice of a parameter. The JOR and SOR will
converge for more general classes of matrices, provided that the parameter
is appropriately chosen.

When we say that an iterative method is convergent, or converges, under
certain conditions, we mean that it converges for any consistent system of
the appropriate type, and for any starting vector; any iterative method will
converge if we begin at the right answer.

10.1 The Jacobi and Gauss-Seidel Methods:
An Example

Suppose we wish to solve the 3 by 3 system

S11z1 + S12z2 + S13z3 = h1

105
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S21z1 + S22z2 + S23z3 = h2

S31z1 + S32z2 + S33z3 = h3, (10.1)

which we can rewrite as

z1 = S−1
11 [h1 − S12z2 − S13z3]

z2 = S−1
22 [h2 − S21z1 − S23z3]

z3 = S−1
33 [h3 − S31z1 − S32z2], (10.2)

assuming that the diagonal terms Smm are not zero. Let z0 = (z0
1 , z

0
2 , z

0
3)T

be an initial guess for the solution. We then insert the entries of z0 on the
right sides and use the left sides to define the entries of the next guess z1.
This is one full cycle of Jacobi’s method.

The Gauss-Seidel method is similar. Let z0 = (z0
1 , z

0
2 , z

0
3)T be an initial

guess for the solution. We then insert z0
2 and z0

3 on the right side of the
first equation, obtaining a new value z1

1 on the left side. We then insert
z0
3 and z1

1 on the right side of the second equation, obtaining a new value
z1
2 on the left. Finally, we insert z1

1 and z1
2 into the right side of the third

equation, obtaining a new z1
3 on the left side. This is one full cycle of the

Gauss-Seidel (GS) method.

10.2 Splitting Methods

The Jacobi and the Gauss-Seidel methods are particular cases of a more
general approach, known as splitting methods. Splitting methods apply
to square systems of linear equations. Let S be an arbitrary N by N
square matrix, written as S = M−K. Then the linear system of equations
Sz = h is equivalent to Mz = Kz + h. If M is invertible, then we can also
write z = M−1Kz+M−1h. This last equation suggests a class of iterative
methods for solving Sz = h known as splitting methods. The idea is to
select a matrix M so that the equation

Mzk+1 = Kzk + h (10.3)

can be easily solved to get zk+1; in the Jacobi method M is diagonal, and
in the Gauss-Seidel method, M is triangular. Then we write

zk+1 = M−1Kzk +M−1h. (10.4)

From K = M − S, we can write Equation (10.4) as

zk+1 = zk +M−1(h− Szk). (10.5)
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Suppose that S is invertible and ẑ is the unique solution of Sz = h. The
error we make at the k-th step is ek = ẑ − zk, so that ek+1 = M−1Kek.
We want the error to decrease with each step, which means that we should
seek M and K so that ||M−1K|| < 1. If S is not invertible and there are
multiple solutions of Sz = h, then we do not want M−1K to be a strict
contraction, but only av or pc. The operator T defined by

Tz = M−1Kz +M−1h = Bz + d (10.6)

is an affine linear operator and will be a sc or av operator whenever B =
M−1K is.

It follows from our previous discussion concerning linear av operators
that, if B = B† is Hermitian, then B is av if and only if

−1 < λ ≤ 1, (10.7)

for all (necessarily real) eigenvalues λ of B.
In general, though, the matrix B = M−1K will not be Hermitian, and

deciding if such a non-Hermitian matrix is av is not a simple matter. We
do know that, if B is av, so is B†; consequently, the Hermitian matrix
Q = 1

2 (B+B†) is also av. Therefore, I−Q = 1
2 (M−1S+(M−1S)†) is ism,

and so is non-negative definite. We have −1 < λ ≤ 1, for any eigenvalue λ
of Q.

Alternatively, we can use Theorem 9.3. According to that theorem, if
B has a basis of eigenvectors, and |λ| < 1 for all eigenvalues λ of B that are
not equal to one, then {zk} will converge to a solution of Sz = h, whenever
solutions exist.

In what follows we shall write an arbitrary square matrix S as

S = L+D + U, (10.8)

where L is the strictly lower triangular part of S, D the diagonal part, and
U the strictly upper triangular part. When S is Hermitian, we have

S = L+D + L†. (10.9)

We list now several examples of iterative algorithms obtained by the split-
ting method. In the remainder of the chapter we discuss these methods in
more detail.

10.3 Some Examples of Splitting Methods

As we shall now see, the Jacobi and Gauss-Seidel methods, as well as their
overrelaxed versions, JOR and SOR, are splitting methods.
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Jacobi’s Method: Jacobi’s method uses M = D and K = −L−U , under
the assumption that D is invertible. The matrix B is

B = M−1K = −D−1(L+ U). (10.10)

The Gauss-Seidel Method: The Gauss-Seidel (GS) method uses the
splitting M = D + L, so that the matrix B is

B = I − (D + L)−1S. (10.11)

The Jacobi Overrelaxation Method (JOR): The JOR uses the split-
ting

M =
1
ω
D (10.12)

and

K = M − S = (
1
ω
− 1)D − L− U. (10.13)

The matrix B is

B = M−1K = (I − ωD−1S). (10.14)

The Successive Overrelaxation Method (SOR): The SOR uses the
splitting M = ( 1

ωD + L), so that

B = M−1K = (D + ωL)−1[(1− ω)D − ωU ] (10.15)

or

B = I − ω(D + ωL)−1S, (10.16)

or

B = (I + ωD−1L)−1[(1− ω)I − ωD−1U ]. (10.17)

10.4 Jacobi’s Algorithm and JOR

The matrix B in Equation (10.10) is not generally av and the Jacobi iter-
ative scheme will not converge, in general. Additional conditions need to
be imposed on S in order to guarantee convergence. One such condition is
that S be strictly diagonally dominant. In that case, all the eigenvalues of
B = M−1K can be shown to lie inside the unit circle of the complex plane,
so that ρ(B) < 1. It follows from Lemma 6.5 that B is sc with respect to
some vector norm, and the Jacobi iteration converges. If, in addition, S is
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Hermitian, the eigenvalues of B are in the interval (−1, 1), and so B is sc
with respect to the Euclidean norm.

Alternatively, one has the Jacobi overrelaxation (JOR) method, which
is essentially a special case of the Landweber algorithm and involves an
arbitrary parameter.

For S an N by N matrix, Jacobi’s method can be written as

znew
m = S−1

mm[hm −
∑
j 6=m

Smjz
old
j ], (10.18)

for m = 1, ..., N . With D the invertible diagonal matrix with entries
Dmm = Smm we can write one cycle of Jacobi’s method as

znew = zold +D−1(h− Szold). (10.19)

The Jacobi overrelaxation (JOR) method has the following full-cycle iter-
ative step:

znew = zold + ωD−1(h− Szold); (10.20)

choosing ω = 1 we get the Jacobi method. Convergence of the JOR itera-
tion will depend, of course, on properties of S and on the choice of ω. When
S is Hermitian, nonnegative-definite, for example, S = A†A or S = AA†,
we can say more.

10.4.1 The JOR in the Nonnegative-definite Case

When S is nonnegative-definite and the system Sz = h is consistent the
JOR converges to a solution for any ω ∈ (0, 2/ρ(D−1/2SD−1/2)), where
ρ(Q) denotes the largest eigenvalue of the nonnegative-definite matrix Q.
For nonnegative-definite S, the convergence of the JOR method is implied
by the KM Theorem 9.2, since the JOR is equivalent to Landweber’s algo-
rithm in these cases.

The JOR method, as applied to Sz = AA†z = b, is equivalent to the
Landweber iterative method for Ax = b.

Lemma 10.1 If {zk} is the sequence obtained from the JOR, then the
sequence {A†zk} is the sequence obtained by applying the Landweber algo-
rithm to the system D−1/2Ax = D−1/2b, where D is the diagonal part of
the matrix S = AA†.

If we select ω = 1/I we obtain the Cimmino method. Since the trace of
the matrix D−1/2SD−1/2 equals I we know that ω = 1/I is not greater
than the largest eigenvalue of the matrix D−1/2SD−1/2 and so this choice
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of ω is acceptable and the Cimmino algorithm converges whenever there
are solutions of Ax = b. In fact, it can be shown that Cimmino’s method
converges to a least squares approximate solution generally.

Similarly, the JOR method applied to the system A†Ax = A†b is equiv-
alent to the Landweber algorithm, applied to the system Ax = b.

Lemma 10.2 Show that, if {zk} is the sequence obtained from the JOR,
then the sequence {D1/2zk} is the sequence obtained by applying the Landwe-
ber algorithm to the system AD−1/2x = b, where D is the diagonal part of
the matrix S = A†A.

10.5 The Gauss-Seidel Algorithm and SOR

In general, the full-cycle iterative step of the Gauss-Seidel method is the
following:

znew = zold + (D + L)−1(h− Szold), (10.21)

where S = D + L + U is the decomposition of the square matrix S into
its diagonal, lower triangular and upper triangular diagonal parts. The GS
method does not converge without restrictions on the matrix S. As with
the Jacobi method, strict diagonal dominance is a sufficient condition.

10.5.1 The Nonnegative-Definite Case

Now we consider the square system Sz = h, assuming that S = L+D+L† is
Hermitian and nonnegative-definite, so that x†Sx ≥ 0, for all x. It is easily
shown that all the entries of D are nonnegative. We assume that all the
diagonal entries of D are positive, so that D + L is invertible. The Gauss-
Seidel iterative step is zk+1 = Tzk, where T is the affine linear operator
given by Tz = Bz + d, for B = −(D + L)−1L† and d = (D + L)−1h.

Proposition 10.1 Let λ be an eigenvalue of B that is not equal to one.
Then |λ| < 1.

If B is diagonalizable, then there is a norm with respect to which T is
paracontractive, so, by the EKN Theorem 9.3, the GS iteration converges
to a solution of Sz = h, whenever solutions exist.

Proof of Proposition (10.1): Let Bv = λv, for v nonzero. Then −Bv =
(D + L)−1L†v = −λv, so that

L†v = −λ(D + L)v, (10.22)
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and

Lv = −λ(D + L)†v. (10.23)

Therefore,

v†L†v = −λv†(D + L)v. (10.24)

Adding v†(D + L)v to both sides, we get

v†Sv = (1− λ)v†(D + L)v. (10.25)

Since the left side of the equation is real, so is the right side. Therefore

(1− λ)(D + L)†v = (1− λ)v†(D + L)v

= (1− λ)v†Dv + (1− λ)v†Lv

= (1− λ)v†Dv − (1− λ)λv†(D + L)†v. (10.26)

So we have

[(1− λ) + (1− λ)λ]v†(D + L)†v = (1− λ)v†Dv, (10.27)

or

(1− |λ|2)v†(D + L)†v = (1− λ)v†Dv. (10.28)

Multiplying by (1− λ) on both sides, we get, on the left side,

(1− |λ|2)v†(D + L)†v − (1− |λ|2)λv†(D + L)†v, (10.29)

which is equal to

(1− |λ|2)v†(D + L)†v + (1− |λ|2)v†Lv, (10.30)

and, on the right side, we get

|1− λ|2v†Dv. (10.31)

Consequently, we have

(1− |λ|2)v†Sv = |1− λ|2v†Dv. (10.32)

Since v†Sv ≥ 0 and v†Dv > 0, it follows that 1− |λ|2 ≥ 0. If |λ| = 1, then
|1− λ|2 = 0, so that λ = 1. This completes the proof.

Note that λ = 1 if and only if Sv = 0. Therefore, if S is invertible,
the affine linear operator T is a strict contraction, and the GS iteration
converges to the unique solution of Sz = h.
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10.5.2 Successive Overrelaxation

The successive overrelaxation (SOR) method has the following full-cycle
iterative step:

znew = zold + (ω−1D + L)−1(h− Szold); (10.33)

the choice of ω = 1 gives the GS method. Convergence of the SOR iteration
will depend, of course, on properties of S and on the choice of ω.

Using the form

B = (D + ωL)−1[(1− ω)D − ωU ] (10.34)

we can show that

|det(B)| = |1− ω|N . (10.35)

From this and the fact that the determinant of B is the product of its
eigenvalues, we conclude that ρ(B) > 1 if ω < 0 or ω > 2.

When S is Hermitian, nonnegative-definite, as, for example, when we
take S = A†A or S = AA†, we can say more.

10.5.3 The SOR for Nonnegative-Definite S

When S is nonnegative-definite and the system Sz = h is consistent the
SOR converges to a solution for any ω ∈ (0, 2). This follows from the
convergence of the ART algorithm, since, for such S, the SOR is equivalent
to the ART.

Now we consider the SOR method applied to the Björck-Elfving equa-
tions AA†z = b. Rather than count a full cycle as one iteration, we
now count as a single step the calculation of a single new entry. There-
fore, for k = 0, 1, ... the k + 1-st step replaces the value zk

i only, where
i = k(mod I) + 1. We have

zk+1
i = (1− ω)zk

i + ωD−1
ii (bi −

i−1∑
n=1

Sinz
k
n −

I∑
n=i+1

Sinz
k
n) (10.36)

and zk+1
n = zk

n for n 6= i. Now we calculate xk+1 = A†zk+1:

xk+1
j = xk

j + ωD−1
ii Aij(bi − (Axk)i). (10.37)

This is one step of the relaxed algebraic reconstruction technique (ART)
applied to the original system of equations Ax = b. The relaxed ART
converges to a solution, when solutions exist, for any ω ∈ (0, 2).
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When Ax = b is consistent, so is AA†z = b. We consider now the
case in which S = AA† is invertible. Since the relaxed ART sequence
{xk = A†zk} converges to a solution x∞, for any ω ∈ (0, 2), the sequence
{AA†zk} converges to b. Since S = AA† is invertible, the SOR sequence
{zk} then converges to S−1b.
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Chapter 11

The ART and MART
Again

11.1 The ART in the General Case

Although the ART was developed to compute tomographic images, it can
be viewed more generally as an iterative method for solving an arbitrary
system of linear equations, Ax = b.

Let A be a complex matrix with I rows and J columns, and let b be a
member of CI . We want to solve the system Ax = b. For each index value
i, let Hi be the hyperplane of J-dimensional vectors given by

Hi = {x|(Ax)i = bi}, (11.1)

and Pi the orthogonal projection operator onto Hi. Let x0 be arbitrary
and, for each nonnegative integer k, let i(k) = k(mod I) + 1. The iterative
step of the ART is

xk+1 = Pi(k)x
k. (11.2)

Because the ART uses only a single equation at each step, it has been called
a row-action method .

11.1.1 Calculating the ART

Given any vector z the vector inHi closest to z, in the sense of the Euclidean
distance, has the entries

xj = zj +Aij(bi − (Az)i)/
J∑

m=1

|Aim|2. (11.3)

115
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To simplify our calculations, we shall assume, throughout this chapter, that
the rows of A have been rescaled to have Euclidean length one; that is

J∑
j=1

|Aij |2 = 1, (11.4)

for each i = 1, ..., I, and that the entries of b have been rescaled accordingly,
to preserve the equations Ax = b. The ART is then the following: begin
with an arbitrary vector x0; for each nonnegative integer k, having found
xk, the next iterate xk+1 has entries

xk+1
j = xk

j +Aij(bi − (Axk)i). (11.5)

When the system Ax = b has exact solutions the ART converges to the
solution closest to x0, in the 2-norm. How fast the algorithm converges
will depend on the ordering of the equations and on whether or not we use
relaxation. In selecting the equation ordering, the important thing is to
avoid particularly bad orderings, in which the hyperplanes Hi and Hi+1

are nearly parallel.

11.1.2 Full-cycle ART

We also consider the full-cycle ART, with iterative step zk+1 = Tzk, for

T = PIPI−1 · · · P2P1. (11.6)

When the system Ax = b has solutions, the fixed points of T are solutions.
When there are no solutions of Ax = b, the operator T will still have fixed
points, but they will no longer be exact solutions.

11.1.3 Relaxed ART

The ART employs orthogonal projections onto the individual hyperplanes.
If we permit the next iterate to fall short of the hyperplane, or somewhat
beyond it, we get a relaxed version of ART.The relaxed ART algorithm is
as follows:

Algorithm 11.1 (Relaxed ART) With ω ∈ (0, 2), x0 arbitrary, and
i = k(mod I) + 1, let

xk+1
j = xk

j + ωAij(bi − (Axk)i)). (11.7)

The relaxed ART converges to the solution closest to x0, in the consis-
tent case. In the inconsistent case, it does not converge, but subsequences
associated with the same i converge to distinct vectors, forming a limit
cycle.
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11.1.4 Constrained ART

Let C be a closed, nonempty convex subset of CJ and PCx the orthogonal
projection of x onto C. If there are solutions of Ax = b that lie within C,
we can find them using the constrained ART algorithm:

Algorithm 11.2 (Constrained ART) With x0 arbitrary and i = k(mod I)+
1, let

xk+1
j = PC(xk

j +Aij(bi − (Axk)i)). (11.8)

For example, if A and b are real and we seek a nonnegative solution to
Ax = b, we can use

Algorithm 11.3 (Non-negative ART) With x0 arbitrary and i = k(mod I)+
1, let

xk+1
j = (xk

j +Aij(bi − (Axk)i))+, (11.9)

where, for any real number a, a+ = max{a, 0}.

The constrained ART converges to a solution of Ax = b within C, whenever
such solutions exist.

Noise in the data can manifest itself in a variety of ways; we have seen
what can happen when we impose positivity on the calculated least-squares
solution, that is, when we minimize ||Ax−b||2 over all non-negative vectors
x. Theorem 11.1 tells us that when J > I, but Ax = b has no non-negative
solutions, the non-negatively constrained least-squares solution can have at
most I−1 non-zero entries, regardless of how large J is. This phenomenon
also occurs with several other approximate methods, such as those that
minimize the cross-entropy distance.

Definition 11.1 The matrix A has the full-rank property if A and every
matrix Q obtained from A by deleting columns have full rank.

Theorem 11.1 Let A have the full-rank property. Suppose there is no
nonnegative solution to the system of equations Ax = b. Then there is a
subset S of the set {j = 1, 2, ..., J}, with cardinality at most I − 1, such
that, if x̂ is any minimizer of ||Ax− b||2 subject to x ≥ 0, then x̂j = 0 for
j not in S. Therefore, x̂ is unique.

For a proof, see the chapter on optimization.

11.1.5 When Ax = b Has Solutions

For the consistent case, in which the system Ax = b has exact solutions,
we have the following result.
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Theorem 11.2 Let Ax̂ = b and let x0 be arbitrary. Let {xk} be generated
by Equation (11.5). Then the sequence {||x̂−xk||2} is decreasing and {xk}
converges to the solution of Ax = b closest to x0.

The proof of the following lemma follows immediately from the defini-
tion of the ART iteration.

Lemma 11.1 Let x0 and y0 be arbitrary and {xk} and {yk} be the se-
quences generated by applying the ART algorithm, beginning with x0 and
y0, respectively; that is, yk+1 = Pi(k)y

k. Then

||x0 − y0||22 − ||xI − yI ||22 =
I∑

i=1

|(Axi−1)i − (Ayi−1)i|2. (11.10)

Proof of Theorem 11.2: Let Ax̂ = b. Let vr
i = (AxrI+i−1)i and vr =

(vr
1, ..., v

r
I )T , for r = 0, 1, .... It follows from Equation (11.10) that the

sequence {||x̂ − xrI ||2} is decreasing and the sequence {vr − b} → 0. So
{xrI} is bounded; let x∗,0 be a cluster point. Then, for i = 1, 2, ..., I, let
x∗,i be the successor of x∗,i−1 using the ART algorithm. It follows that
(Ax∗,i−1)i = bi for each i, from which we conclude that x∗,0 = x∗,i for all
i and that Ax∗,0 = b. Using x∗,0 in place of the arbitrary solution x̂, we
have that the sequence {||x∗,0 − xk||2} is decreasing. But a subsequence
converges to zero, so {xk} converges to x∗,0. By Equation (11.10), the
difference ||x̂− xk||22 − ||x̂− xk+1||22 is independent of which solution x̂ we
pick; consequently, so is ||x̂−x0||22− ||x̂−x∗,0||22. It follows that x∗,0 is the
solution closest to x0. This completes the proof.

11.1.6 When Ax = b Has No Solutions

When there are no exact solutions, the ART does not converge to a single
vector, but, for each fixed i, the subsequence {xnI+i, n = 0, 1, ...} converges
to a vector zi and the collection {zi |i = 1, ..., I} is called the limit cycle.
This was shown by Tanabe [231] and also follows from the results of De
Pierro and Iusem [102]. Proofs of subsequential convergence are given in
[62, 63].

The ART limit cycle will vary with the ordering of the equations, and
contains more than one vector unless an exact solution exists. There are
several open questions about the limit cycle.

Open Question: For a fixed ordering, does the limit cycle depend on the
initial vector x0? If so, how?
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11.1.7 The Geometric Least-Squares Solution

When the system Ax = b has no solutions, it is reasonable to seek an ap-
proximate solution, such as the least squares solution, xLS = (A†A)−1A†b,
which minimizes ||Ax−b||2. It is important to note that the system Ax = b
has solutions if and only if the related system WAx = Wb has solutions,
where W denotes an invertible matrix; when solutions of Ax = b exist, they
are identical to those of WAx = Wb. But, when Ax = b does not have
solutions, the least-squares solutions of Ax = b, which need not be unique,
but usually are, and the least-squares solutions of WAx = Wb need not
be identical. In the typical case in which A†A is invertible, the unique
least-squares solution of Ax = b is

(A†A)−1A†b, (11.11)

while the unique least-squares solution of WAx = Wb is

(A†W †WA)−1A†W †b, (11.12)

and these need not be the same.
A simple example is the following. Consider the system

x = 1

x = 2, (11.13)

which has the unique least-squares solution x = 1.5, and the system

2x = 2

x = 2, (11.14)

which has the least-squares solution x = 1.2.

Definition 11.2 The geometric least-squares solution of Ax = b is the
least-squares solution of WAx = Wb, for W the diagonal matrix whose
entries are the reciprocals of the Euclidean lengths of the rows of A.

In our example above, the geometric least-squares solution for the first
system is found by using W11 = 1 = W22, so is again x = 1.5, while the
geometric least-squares solution of the second system is found by using
W11 = 0.5 and W22 = 1, so that the geometric least-squares solution is
x = 1.5, not x = 1.2.

Open Question: If there is a unique geometric least-squares solution,
where is it, in relation to the vectors of the limit cycle? Can it be calculated
easily, from the vectors of the limit cycle?
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There is a partial answer to the second question. In [52] (see also
[62]) it was shown that if the system Ax = b has no exact solution, and if
I = J+1, then the vectors of the limit cycle lie on a sphere in J-dimensional
space having the least-squares solution at its center. This is not true more
generally, however.

11.2 Regularized ART

If the entries of b are noisy but the system Ax = b remains consistent (which
can easily happen in the under-determined case, with J > I), the ART
begun at x0 = 0 converges to the solution having minimum Euclidean norm,
but this norm can be quite large. The resulting solution is probably useless.
Instead of solving Ax = b, we regularize by minimizing, for example, the
function

Fε(x) = ||Ax− b||22 + ε2||x||22. (11.15)

The solution to this problem is the vector

x̂ε = (A†A+ ε2I)−1A†b. (11.16)

However, we do not want to calculate A†A + ε2I when the matrix A is
large. Fortunately, there are ways to find x̂ε, using only the matrix A and
the ART algorithm.

We discuss two methods for using ART to obtain regularized solutions
of Ax = b. The first one is presented in [62], while the second one is due
to Eggermont, Herman, and Lent [113].

In our first method we use ART to solve the system of equations given
in matrix form by

[A† εI ]
[
u
v

]
= 0. (11.17)

We begin with u0 = b and v0 = 0. Then, the lower component of the limit
vector is v∞ = −εx̂ε.

The method of Eggermont et al. is similar. In their method we use
ART to solve the system of equations given in matrix form by

[A εI ]
[
x
v

]
= b. (11.18)

We begin at x0 = 0 and v0 = 0. Then, the limit vector has for its upper
component x∞ = x̂ε as before, and that εv∞ = b−Ax̂ε.
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Open Question: In both the consistent and inconsistent cases, the se-
quence {xk} of ART iterates is bounded, as Tanabe [231], and De Pierro
and Iusem [102] have shown. The proof is easy in the consistent case. Is
there an easy proof for the inconsistent case?

11.3 Avoiding the Limit Cycle

Generally, the greater the minimum value of ||Ax−b||22 the more the vectors
of the LC are distinct from one another. There are several ways to avoid
the LC in ART and to obtain a least-squares solution. One way is the
double ART (DART) [56]:

11.3.1 Double ART (DART)

We know that any b can be written as b = Ax̂ + ŵ, where AT ŵ = 0 and
x̂ is a minimizer of ||Ax − b||22. The vector ŵ is the orthogonal projection
of b onto the null space of the matrix transformation A†. Therefore, in
Step 1 of DART we apply the ART algorithm to the consistent system of
linear equations A†w = 0, beginning with w0 = b. The limit is w∞ = ŵ,
the member of the null space of A† closest to b. In Step 2, apply ART
to the consistent system of linear equations Ax = b − w∞ = Ax̂. The
limit is then the minimizer of ||Ax − b||2 closest to x0. Notice that we
could also obtain the least-squares solution by applying ART to the system
A†y = A†b, starting with y0 = 0, to obtain the minimum-norm solution,
which is y = Ax̂, and then applying ART to the system Ax = y.

11.3.2 Strongly Under-relaxed ART

Another method for avoiding the LC is strong under-relaxation, due to
Censor, Eggermont and Gordon [73]. Let t > 0. Replace the iterative step
in ART with

xk+1
j = xk

j + tAij(bi − (Axk)i). (11.19)

In [73] it is shown that, as t→ 0, the vectors of the LC approach the geo-
metric least squares solution closest to x0; a short proof is in [52]. Bertsekas
[19] uses strong under-relaxation to obtain convergence of more general in-
cremental methods.

Exercise 11.1 Prove that the two iterative methods for regularized ART
perform as indicated.
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11.4 The MART

The multiplicative ART (MART) [138] is an iterative algorithm closely re-
lated to the ART. It also was devised to obtain tomographic images, but,
like ART, applies more generally; MART applies to systems of linear equa-
tions Ax = b for which the bi are positive, the Aij are nonnegative, and the
solution x we seek is to have nonnegative entries. It is not so easy to see the
relation between ART and MART if we look at the most general formula-
tion of MART. For that reason, we begin with a simpler case, transmission
tomographic imaging, in which the relation is most clearly visible.

11.4.1 The MART in the General Case

The MART, which can be applied only to nonnegative systems, is a se-
quential, or row-action, method that uses one equation only at each step
of the iteration.

Algorithm 11.4 (MART) Let x0 be any positive vector, and i = k(mod I)+
1. Having found xk for positive integer k, define xk+1 by

xk+1
j = xk

j

( bi
(Axk)i

)m−1
i

Aij

, (11.20)

where mi = max {Aij |j = 1, 2, ..., J}.

Some treatments of MART leave out the mi, but require only that the
entries of A have been rescaled so that Aij ≤ 1 for all i and j. The mi

is important, however, in accelerating the convergence of MART. There
is another way to do the rescaling for MART, which we discuss in the
appendix on Geometric Programming and the MART.

The MART can be accelerated by relaxation, as well.

Algorithm 11.5 (Relaxed MART) Let x0 be any positive vector, and
i = k(mod I) + 1. Having found xk for positive integer k, define xk+1 by

xk+1
j = xk

j

( bi
(Axk)i

)γim
−1
i

Aij

, (11.21)

where γi is in the interval (0, 1).

As with ART, finding the best relaxation parameters is a bit of an art.

11.4.2 Cross-Entropy

For a > 0 and b > 0, let the cross-entropy or Kullback-Leibler distance
from a to b be

KL(a, b) = a log
a

b
+ b− a, (11.22)
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with KL(a, 0) = +∞, and KL(0, b) = b. Extend to nonnegative vectors
coordinate-wise, so that

KL(x, z) =
J∑

j=1

KL(xj , zj). (11.23)

Unlike the Euclidean distance, the KL distance is not symmetric; KL(Ax, b)
and KL(b, Ax) are distinct, and we can obtain different approximate so-
lutions of Ax = b by minimizing these two distances with respect to non-
negative x.

11.4.3 Convergence of MART

In the consistent case, by which we mean that Ax = b has nonnegative
solutions, we have the following convergence theorem for MART.

Theorem 11.3 In the consistent case, the MART converges to the unique
nonnegative solution of b = Ax for which the distance

∑J
j=1KL(xj , x

0
j ) is

minimized.

If the starting vector x0 is the vector whose entries are all one, then the
MART converges to the solution that maximizes the Shannon entropy,

SE(x) =
J∑

j=1

xj log xj − xj . (11.24)

As with ART, the speed of convergence is greatly affected by the order-
ing of the equations, converging most slowly when consecutive equations
correspond to nearly parallel hyperplanes.

Open Question: When there are no nonnegative solutions, MART does
not converge to a single vector, but, like ART, is always observed to produce
a limit cycle of vectors. Unlike ART, there is no proof of the existence of
a limit cycle for MART.
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Chapter 12

A Tale of Two Algorithms

12.1 The Two Algorithms

The algorithms we shall consider are the expectation maximization maxi-
mum likelihood method (EMML) and the simultaneous multiplicative alge-
braic reconstruction technique (SMART). When y = Px has nonnegative
solutions, both algorithms produce such a solution. In general, the EMML
gives a nonnegative minimizer of KL(y, Px), while the SMART minimizes
KL(Px,y) over nonnegative x.

For both algorithms we begin with an arbitrary positive vector x0. The
iterative step for the EMML method is

xk+1
j = (xk)′j = xk

j

I∑
i=1

Pij
yi

(Pxk)i
. (12.1)

The iterative step for the SMART is

xm+1
j = (xm)′′j = xm

j exp
( I∑

i=1

Pij log
yi

(Pxm)i

)
. (12.2)

Note that, to avoid confusion, we use k for the iteration number of the
EMML and m for the SMART.

12.2 Background

The expectation maximization maximum likelihood method (EMML) has
been the subject of much attention in the medical-imaging literature over
the past decade. Statisticians like it because it is based on the well-studied
principle of likelihood maximization for parameter estimation. Physicists

125
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like it because, unlike its competition, filtered back-projection, it permits
the inclusion of sophisticated models of the physical situation. Mathemati-
cians like it because it can be derived from iterative optimization theory.
Physicians like it because the images are often better than those produced
by other means. No method is perfect, however, and the EMML suffers
from sensitivity to noise and slow rate of convergence. Research is ongoing
to find faster and less sensitive versions of this algorithm.

Another class of iterative algorithms was introduced into medical imag-
ing by Gordon et al. in [138]. These include the algebraic reconstruction
technique (ART) and its multiplicative version, MART. These methods
were derived by viewing image reconstruction as solving systems of linear
equations, possibly subject to constraints, such as positivity. The simulta-
neous MART (SMART) [98, 218] is a variant of MART that uses all the
data at each step of the iteration.

Although the EMML and SMART algorithms have quite different his-
tories and are not typically considered together they are closely related
[48, 49]. In this chapter we examine these two algorithms in tandem, fol-
lowing [50]. Forging a link between the EMML and SMART led to a better
understanding of both of these algorithms and to new results. The proof of
convergence of the SMART in the inconsistent case [48] was based on the
analogous proof for the EMML [242], while discovery of the faster version
of the EMML, the rescaled block-iterative EMML (RBI-EMML) [51] came
from studying the analogous block-iterative version of SMART [82]. The
proofs we give here are elementary and rely mainly on easily established
properties of the cross-entropy or Kullback-Leibler distance.

12.3 The Kullback-Leibler Distance

The The Kullback-Leibler distance KL(x, z) is defined for nonnegative vec-
tors x and z by Equations (11.22) and (11.23). Clearly, the KL distance
has the property KL(cx, cz) = cKL(x, z) for all positive scalars c.

Exercise 12.1 Let z+ =
∑J

j=1 zj > 0. Then

KL(x, z) = KL(x+, z+) +KL(x, (x+/z+)z). (12.3)

As we shall see, the KL distance mimics the ordinary Euclidean distance
in several ways that make it particularly useful in designing optimization
algorithms.
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12.4 The Alternating Minimization Paradigm

Let P be an I by J matrix with entries Pij ≥ 0, such that, for each
j = 1, ..., J , we have sj =

∑I
i=1 Pij > 0. Let y = (y1, ..., yI)T with yi > 0

for each i. We shall assume throughout this chapter that sj = 1 for each j.
If this is not the case initially, we replace xj with xjsj and Pij with Pij/sj ;
the quantities (Px)i are unchanged.

For each nonnegative vector x for which (Px)i =
∑J

j=1 Pijxj > 0, let
r(x) = {r(x)ij} and q(x) = {q(x)ij} be the I by J arrays with entries

r(x)ij = xjPij
yi

(Px)i

and
q(x)ij = xjPij .

The KL distances

KL(r(x), q(z)) =
I∑

i=1

J∑
j=i

KL(r(x)ij , q(z)ij)

and

KL(q(x), r(z)) =
I∑

i=1

J∑
j=1

KL(q(x)ij , r(z)ij)

will play important roles in the discussion that follows. Note that if there
is nonnegative x with r(x) = q(x) then y = Px.

12.4.1 Some Pythagorean Identities Involving the KL
Distance

The iterative algorithms we discuss in this chapter are derived using the
principle of alternating minimization, according to which the distances
KL(r(x), q(z)) and KL(q(x), r(z)) are minimized, first with respect to the
variable x and then with respect to the variable z. Although the KL dis-
tance is not Euclidean, and, in particular, not even symmetric, there are
analogues of Pythagoras’ theorem that play important roles in the conver-
gence proofs.

Exercise 12.2 Establish the following Pythagorean identities:

KL(r(x), q(z)) = KL(r(z), q(z)) +KL(r(x), r(z)); (12.4)

KL(r(x), q(z)) = KL(r(x), q(x′)) +KL(x′, z), (12.5)
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for

x′j = xj

I∑
i=1

Pij
yi

(Px)i
; (12.6)

KL(q(x), r(z)) = KL(q(x), r(x)) +KL(x, z)−KL(Px, Pz); (12.7)

KL(q(x), r(z)) = KL(q(z′′), r(z)) +KL(x, z′′), (12.8)

for

z′′j = zj exp(
I∑

i=1

Pij log
yi

(Pz)i
). (12.9)

Note that it follows from Equation (12.3) that KL(x, z)−KL(Px, Pz) ≥ 0.

12.4.2 Convergence of the SMART and EMML

We shall prove convergence of the SMART and EMML algorithms through
a series of exercises.

Exercise 12.3 Show that, for {xk} given by Equation (12.1), {KL(y, Pxk)}
is decreasing and {KL(xk+1,xk)} → 0. Show that, for {xm} given by
Equation (12.2), {KL(Pxm,y)} is decreasing and {KL(xm,xm+1)} → 0.

Hint: Use KL(r(x), q(x)) = KL(y, Px), KL(q(x), r(x)) = KL(Px,y),
and the Pythagorean identities.

Exercise 12.4 Show that the EMML sequence {xk} is bounded by showing

J∑
j=1

xk
j =

I∑
i=1

yi.

Show that the SMART sequence {xm} is bounded by showing that

J∑
j=1

xm
j ≤

I∑
i=1

yi.
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Exercise 12.5 Show that (x∗)′ = x∗ for any cluster point x∗ of the EMML
sequence {xk} and that (x∗)′′ = x∗ for any cluster point x∗ of the SMART
sequence {xm}.

Hint: Use the facts that {KL(xk+1,xk)} → 0 and {KL(xm,xm+1)} → 0.

Exercise 12.6 Let x̂ and x̃ minimize KL(y, Px) and KL(Px,y), respec-
tively, over all x ≥ 0. Then, (x̂)′ = x̂ and (x̃)′′ = x̃.

Hint: Apply Pythagorean identities toKL(r(x̂), q(x̂)) andKL(q(x̃), r(x̃)).
Note that, because of convexity properties of the KL distance, even if

the minimizers x̂ and x̃ are not unique, the vectors P x̂ and P x̃ are unique.

Exercise 12.7 For the EMML sequence {xk} with cluster point x∗ and x̂
as defined previously, we have the double inequality

KL(x̂,xk) ≥ KL(r(x̂), r(xk)) ≥ KL(x̂,xk+1), (12.10)

from which we conclude that the sequence {KL(x̂,xk)} is decreasing and
KL(x̂,x∗) < +∞.

Hint: For the first inequality calculate KL(r(x̂), q(xk)) in two ways. For
the second one, use (x)′j =

∑I
i=1 r(x)ij and Exercise 12.1.

Exercise 12.8 Show that, for the SMART sequence {xm} with cluster
point x∗ and x̃ as defined previously, we have

KL(x̃,xm)−KL(x̃,xm+1) = KL(Pxm+1,y)−KL(P x̃,y)+

KL(P x̃, Pxm) +KL(xm+1,xm)−KL(Pxm+1, Pxm), (12.11)

and so KL(P x̃, Px∗) = 0, the sequence {KL(x̃,xm)} is decreasing and
KL(x̃,x∗) < +∞.

Hint: Expand KL(q(x̃), r(xm)) using the Pythagorean identities.



130 CHAPTER 12. A TALE OF TWO ALGORITHMS

Exercise 12.9 For x∗ a cluster point of the EMML sequence {xk} we have
KL(y, Px∗) = KL(y, P x̂). Therefore, x∗ is a nonnegative minimizer of
KL(y, Px). Consequently, the sequence {KL(x∗,xk)} converges to zero,
and so {xk} → x∗.

Hint: Use the double inequality of Equation (12.10) and KL(r(x̂), q(x∗)).

Exercise 12.10 For x∗ a cluster point of the SMART sequence {xm} we
have KL(Px∗,y) = KL(P x̃,y). Therefore, x∗ is a nonnegative mini-
mizer of KL(Px,y). Consequently, the sequence {KL(x∗,xm)} converges
to zero, and so {xm} → x∗. Moreover,

KL(x̃,x0) ≥ KL(x∗,x0)

for all x̃ as before.

Hints: Use Exercise 12.8. For the final assertion use the fact that the
difference KL(x̃,xm) − KL(x̃,xm+1) is independent of the choice of x̃,
since it depends only on Px∗ = P x̃. Now sum over the index m.

Both the EMML and the SMART algorithms are slow to converge. For
that reason attention has shifted, in recent years, to block-iterative versions
of these algorithms. We take up that topic in a later chapter.



Chapter 13

Block-Iterative Methods

Image reconstruction problems in tomography are often formulated as sta-
tistical likelihood maximization problems in which the pixel values of the
desired image play the role of parameters. Iterative algorithms based on
cross-entropy minimization, such as the expectation maximization maxi-
mum likelihood (EMML) method and the simultaneous multiplicative alge-
braic reconstruction technique (SMART) can be used to solve such prob-
lems. Because the EMML and SMART are slow to converge for large
amounts of data typical in imaging problems, acceleration of the algo-
rithms using blocks of data or ordered subsets has become popular. There
are a number of different ways to formulate these block-iterative versions
of EMML and SMART, involving the choice of certain normalization and
regularization parameters. These methods are not faster merely because
they are block-iterative; the correct choice of the parameters is crucial. The
purpose of this chapter is to discuss these different formulations in detail
sufficient to reveal the precise roles played by the parameters and to guide
the user in choosing them.

It is not obvious, nor, in fact, is it even true, that using block-iterative
methods will accelerate convergence. To better understand the connection
between the use of blocks and acceleration, we begin with a discussion of
the ART algorithm and its simultaneous versions, the Landweber algorithm
and more particularly, Cimmino’s method.

13.1 The ART and its Simultaneous Versions

In this section we let Ax = b denote any real system of I linear equations in
J unknowns. For each i = 1, ..., I denote by Hi the hyperplane associated
with the ith equation, that is,

Hi = {x|(Ax)i = bi},
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and Pi the orthogonal projection operator onto Hi, that is, for every vector
z, Piz is the vector in Hi closest to z. We can write Piz explicitly; we have

Piz = z + (bi − (Az)i)ai,

where ai is the ith column of the matrix AT , which we shall assume has
been normalized to have ||ai|| = 1.

13.1.1 The ART

For k = 0, 1, ... and i = i(k) = k(mod I) + 1, the ART iterative step is

xk+1 = Pix
k = xk + (bi − (Axk)i)ai.

The ART operates by projecting the current vector onto the next hyper-
plane and cycling through the hyperplanes repeatedly. The ART uses only
one equation at each step of the iteration.

Suppose that x̂ is a solution of Ax = b, so that Ax̂ = b. Each step of
the ART gets us closer to x̂, as the following calculations show.

We begin by calculating ||x̂− xk+1||2. We use

||x̂− xk+1||2 = 〈x̂− xk+1, x̂− xk+1〉

and the definition of xk+1 to get

||x̂−xk+1||2 = ||x̂−xk||2−2〈x̂−xk, (bi−(Axk)i)ai〉+〈(bi−(Axk)i)ai, (bi−(Axk)i)ai〉

= ||x̂− xk||2 − 2(bi − (Axk)i)〈x̂− xk, ai〉+ (bi − (Axk)i)2

= ||x̂−xk||2−2(bi− (Axk)i)2 +(bi− (Axk)i)2 = ||x̂−xk||2− (bi− (Axk)i)2.

Therefore, we find that

||x̂− xk||2 − ||x̂− xk+1||2 = (bi − (Axk)i)2. (13.1)

Consequently, we know that

||x̂− xk||2 ≥ ||x̂− xk+1||2.

It will help us later to know that

||x̂− x0||2 − ||x̂− xI ||2 =
I∑

i=1

(bi − (Axi−1)i)2. (13.2)

This measures how much closer to x̂ we are after we have used all the
equations one time.

There is one other consideration concerning the ART. From Equation
(13.2) we see that it is helpful to have the quantities (bi− (Axi−1)i)2 large;
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if the equations are ordered in such a way that these quantities are not
large, then the ART will not converge as quickly as it may otherwise do.
This can easily happen if the equations correspond to discrete line integrals
through the object and the lines are ordered so that each line is close to
the previous line. Ordering the lines randomly, or in any way that avoids
unfortunate ordering, greatly improves convergence speed [152].

Relaxation also helps to speed up the convergence of ART [222]. A
relaxed version of ART has the following iterative step:

xk+1 = xk + β(bi − (Axk)i)ai,

where 0 < β ≤ 1.

13.1.2 The Landweber Algorithm and Cimmino’s Method

As we just saw, the ART uses one equation at a time and, at each step
of the iteration, projects orthogonally onto the hyperplane associated with
the next equation. A simultaneous version of ART uses all the equations at
each step, projecting orthogonally onto all the hyperplanes and averaging
the result. This is Cimmino’s method, and the iterative step is

xk+1 = xk +
1
I

I∑
i=1

(bi − (Axk)i)ai = xk +
1
I
AT (b−Axk),

where, as previously, we assume that ||ai|| = 1 for all i. A more general
iterative algorithm is the Landweber algorithm, with the iterative step

xk+1 = xk + γAT (b−Axk);

for convergence of this algorithm we need 0 ≤ γ ≤ 2/ρ(ATA), where
ρ(ATA) denotes the largest eigenvalue of the matrix ATA. Since ||ai|| = 1
for all i, it follows that the trace of the matrix AAT is I, which is also
the trace of the matrix ATA; since the trace of ATA is also the sum of
the eigenvalues of ATA, it follows that the choice of γ = 1

I in Cimmino’s
method is acceptable.

Now let us calculate how much closer to x̂ we get as we take one step
of the Landweber iteration. We have

||x̂−xk+1||2 = ||x̂−xk||2−2γ〈x̂−xk, AT (b−Axk)〉+γ2〈AT (b−Axk), AT (b−Axk)〉.

From the inequality (30.1) in our earlier discussion of eigenvectors and
eigenvalues in optimization, we know that, for any matrix B, we have

||Bx||2 ≤ ρ(BTB)||x||2.
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Therefore,

〈AT (b−Axk), AT (b−Axk)〉 = ||AT (b−Axk)||2 ≤ ρ(ATA)||b−Axk||2.

Using

〈x̂−xk, AT (b−Axk)〉 = 〈A(x̂−xk), b−Axk〉 = 〈b−Axk, b−Axk〉 = ||b−Axk||2,

we find that

||x̂− xk||2 − ||x̂− xk+1||2 ≥ (2γ − γ2ρ(ATA))||b−Axk||2.

For 0 < γ < 2
ρ(AT A)

the sequence {||x̂ − xk||2} is decreasing. If we take
γ = 1

ρ(AT A)
we have

||x̂− xk||2 − ||x̂− xk+1||2 ≥ 1
ρ(ATA)

||b−Axk||2. (13.3)

In the case of Cimmino’s method, we have γ = 1
I , so that

||x̂− xk||2 − ||x̂− xk+1||2 ≥ 1
I
||b−Axk||2. (13.4)

Using Equation (13.2) and the inequality in (13.4), we can make a rough
comparison between ART and Cimmino’s method, with respect to how
much closer to x̂ we get as we pass through all the equations one time. The
two quantities

I∑
i=1

(bi − (Axi−1)i)2

from Equation (13.2) and
||b−Axk||2

from the inequality in (13.4) are comparable, in that both sums are over
i = 1, ..., I, even though what is being summed is not the same in both
cases. In image reconstruction I is quite large and the most important
thing in such comparisons is the range of the summation index, so long
as what is being summed is roughly comparable. However, notice that in
the inequality in (13.4) the right side also has a factor of 1

I . This tells
us that, roughly speaking, one pass through all the equations using ART
improves the squared distance to x̂ by a factor of I, compared to using all
the equations in one step of Cimmino’s method, even though the amount
of calculation is about the same.

Because the Landweber algorithm permits other choices for the param-
eter γ, there is hope that we may obtain better results with γ 6= 1

I . The
inequality

0 < γ <
2

ρ(ATA)
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suggests using γ = 1
ρ(AT A)

, which means that it would help to have a
decent estimate of ρ(ATA); the estimate used in Cimmino’s method is
ρ(ATA) = I, which is usually much too large. As a result, the choice of
γ = 1

I means that we are taking unnecessarily small steps at each iteration.
A smaller upper bound for ρ(ATA) would allow us to take bigger steps each
time, and therefore, getting close to x̂ sooner.

In many image processing applications, such as tomography, the matrix
A is sparse, which means that most of the entries of A are zero. In the
tomography problems for example, the number of non-zero entries of A is
usually on the order of

√
J ; since I and J are usually roughly compara-

ble, this means that A has about
√
I non-zero entries. In the appendix

on matrix theory we obtain an upper bound estimate for ρ(ATA) that is
particularly useful when A is sparse. Suppose that all the rows of A have
length one. Let s be the largest number of non-zero entries in any column
of A. Then ρ(ATA) does not exceed s. Notice that this estimate does not
require us to calculate the matrix ATA and makes use of the sparse nature
of A; the matrix ATA need not be sparse, and would be time-consuming
to calculate in practice, anyway.

If, for the sparse cases, we take ρ(ATA) to be approximately
√
I, and

choose γ = 1√
I
, we find that we have replaced the factor 1

I in the inequality
(13.4) with the much larger factor 1√

I
, which then improves the rate of

convergence. However, the ART is still faster by, roughly, a factor of
√
I.

13.1.3 Block-Iterative ART

The ART uses only one equation at a time, while the Landweber algorithm
uses all the equations at each step of the iteration. It is sometimes con-
venient to take a middle course, and use some, but not all, equations at
each step of the iteration. The collection of equations to be used together
constitute a block. Such methods are called block-iterative or ordered-subset
methods. Generally speaking, when unfortunate ordering of the blocks and
selection of equations within each block are avoided, and the parameters
well chosen, these block-iterative methods converge faster than the Cim-
mino algorithm by roughly a factor of the number of blocks.

We turn now to the iterative algorithms that are based on the KL
distance. For these algorithms as well, we find that using block-iterative
methods and choosing the parameters carefully, we can improve conver-
gence by roughly the number of blocks, with respect to the simultaneous
EMML and SMART methods.
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13.2 Overview of KL-based methods

The algorithms we discuss here have interesting histories, which we sketch
in this section.

13.2.1 The SMART and its variants

Like the ART, the MART has a simultaneous version, called the SMART.
Like MART, SMART applies only to nonnegative systems of equations
Ax = b. Unlike MART, SMART is a simultaneous algorithm that uses
all equations in each step of the iteration. The SMART was discovered
in 1972, independently, by Darroch and Ratcliff, working in statistics, [98]
and by Schmidlin [218] in medical imaging; neither work makes reference
to MART. Darroch and Ratcliff do consider block-iterative versions of their
algorithm, in which only some of the equations are used at each step, but
their convergence proof involves unnecessary restrictions on the system
matrix. Censor and Segman [82] seem to be the first to present the SMART
and its block-iterative variants explicitly as generalizations of MART.

13.2.2 The EMML and its variants

The expectation maximization maximum likelihood (EMML) method turns
out to be closely related to the SMART, although it has quite a different
history. The EMML algorithm we discuss here is actually a special case
of a more general approach to likelihood maximization, usually called the
EM algorithm [100]; the book by McLachnan and Krishnan [187] is a good
source for the history of this more general algorithm.

It was noticed by Rockmore and Macovski [215] that the image recon-
struction problems posed by medical tomography could be formulated as
statistical parameter estimation problems. Following up on this idea, Shepp
and Vardi [221] suggested the use of the EM algorithm for solving the re-
construction problem in emission tomography. In [174], Lange and Carson
presented an EM-type iterative method for transmission tomographic im-
age reconstruction, and pointed out a gap in the convergence proof given in
[221] for the emission case. In [242], Vardi, Shepp and Kaufman repaired
the earlier proof, relying on techniques due to Csiszár and Tusnády [96].
In [175] Lange, Bahn and Little improved the transmission and emission
algorithms, by including regularization to reduce the effects of noise. The
question of uniqueness of the solution in the inconsistent case was resolved
in [48].

The MART and SMART were initially designed to apply to consistent
systems of equations. Darroch and Ratcliff did not consider what happens
in the inconsistent case, in which the system of equations has no non-
negative solutions; this issue was resolved in [48], where it was shown that
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the SMART converges to a non-negative minimizer of the Kullback-Leibler
distance KL(Ax, b). The EMML, as a statistical parameter estimation
technique, was not originally thought to be connected to any system of lin-
ear equations. In [48] it was shown that the EMML leads to a non-negative
minimizer of the Kullback-Leibler distance KL(b, Ax), thereby exhibiting
a close connection between the SMART and the EMML methods. Conse-
quently, when the non-negative system of linear equations Ax = b has a
non-negative solution, the EMML converges to such a solution.

13.2.3 Block-iterative Versions of SMART and EMML

As we have seen, Darroch and Ratcliff included what are now called block-
iterative versions of SMART in their original paper [98]. Censor and Seg-
man [82] viewed SMART and its block-iterative versions as natural exten-
sion of the MART. Consequently, block-iterative variants of SMART have
been around for some time. The story with the EMML is quite different.

The paper of Holte, Schmidlin, et al. [155] compares the performance of
Schmidlin’s method of [218] with the EMML algorithm. Almost as an aside,
they notice the accelerating effect of what they call projection interleaving,
that is, the use of blocks. This paper contains no explicit formulas, however,
and presents no theory, so one can only make educated guesses as to the
precise iterative methods employed. Somewhat later, Hudson, Hutton and
Larkin [156, 157] observed that the EMML can be significantly accelerated
if, at each step, one employs only some of the data. They referred to this
approach as the ordered subset EM method (OSEM). They gave a proof
of convergence of the OSEM, for the consistent case. The proof relied on
a fairly restrictive relationship between the matrix A and the choice of
blocks, called subset balance. In [51] a revised version of the OSEM, called
the rescaled block-iterative EMML (RBI-EMML), was shown to converge,
in the consistent case, regardless of the choice of blocks.

13.2.4 Basic assumptions

Methods based on cross-entropy, such as the MART, SMART, EMML and
all block-iterative versions of these algorithms apply to nonnegative sys-
tems that we denote by Ax = b, where b is a vector of positive entries, A is
a matrix with entries Aij ≥ 0 such that for each j the sum sj =

∑I
i=1Aij

is positive and we seek a solution x with nonnegative entries. If no non-
negative x satisfies b = Ax we say the system is inconsistent.

Simultaneous iterative algorithms employ all of the equations at each
step of the iteration; block-iterative methods do not. For the latter methods
we assume that the index set {i = 1, ..., I} is the (not necessarily disjoint)
union of the N sets or blocks Bn, n = 1, ..., N . We shall require that
snj =

∑
i∈Bn

Aij > 0 for each n and each j. Block-iterative methods like
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ART and MART for which each block consists of precisely one element are
called row-action or sequential methods. We begin our discussion with the
SMART and the EMML method.

13.3 The SMART and the EMML method

Both the SMART and the EMML method provide a solution of b = Ax
when such exist and (distinct) approximate solutions in the inconsistent
case. The SMART algorithm is the following:

Algorithm 13.1 (SMART) Let x0 be an arbitrary positive vector. For
k = 0, 1, ... let

xk+1
j = xk

j exp
(
s−1

j

I∑
i=1

Aij log
bi

(Axk)i

)
. (13.5)

The exponential and logarithm in the SMART iterative step are compu-
tationally expensive. The EMML method is similar to the SMART, but
somewhat less costly to compute.

Algorithm 13.2 (EMML) Let x0 be an arbitrary positive vector. For
k = 0, 1, ... let

xk+1
j = xk

j s
−1
j

I∑
i=1

Aij
bi

(Axk)i
. (13.6)

The main results concerning the SMART are given by the following theo-
rem.

Theorem 13.1 In the consistent case the SMART converges to the unique
nonnegative solution of b = Ax for which the distance

∑J
j=1 sjKL(xj , x

0
j )

is minimized. In the inconsistent case it converges to the unique nonnega-
tive minimizer of the distance KL(Ax, y) for which

∑J
j=1 sjKL(xj , x

0
j ) is

minimized; if A and every matrix derived from A by deleting columns has
full rank then there is a unique nonnegative minimizer of KL(Ax, y) and
at most I − 1 of its entries are nonzero.

For the EMML method the main results are the following.

Theorem 13.2 In the consistent case the EMML algorithm converges to
nonnegative solution of b = Ax. In the inconsistent case it converges to a
nonnegative minimizer of the distance KL(y,Ax); if A and every matrix
derived from A by deleting columns has full rank then there is a unique
nonnegative minimizer of KL(y,Ax) and at most I − 1 of its entries are
nonzero.
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In the consistent case there may be multiple nonnegative solutions and the
one obtained by the EMML algorithm will depend on the starting vector
x0; how it depends on x0 is an open question.

These theorems are special cases of more general results on block-
iterative methods that we shall prove later in this chapter.

Both the EMML and SMART are related to likelihood maximization.
Minimizing the function KL(y,Ax) is equivalent to maximizing the like-
lihood when the bi are taken to be measurements of independent Poisson
random variables having means (Ax)i. The entries of x are the parameters
to be determined. This situation arises in emission tomography. So the
EMML is a likelihood maximizer, as its name suggests.

The connection between SMART and likelihood maximization is a bit
more convoluted. Suppose that sj = 1 for each j. The solution of b = Ax
for which KL(x, x0) is minimized necessarily has the form

xj = x0
j exp

( I∑
i=1

Aijλi

)
(13.7)

for some vector λ with entries λi. This log linear form also arises in trans-
mission tomography, where it is natural to assume that sj = 1 for each j
and λi ≤ 0 for each i. We have the following lemma that helps to connect
the SMART algorithm with the transmission tomography problem:

Lemma 13.1 Minimizing KL(d, x) over x as in Equation (13.7) is equiv-
alent to minimizing KL(x, x0), subject to Ax = Ad.

The solution to the latter problem can be obtained using the SMART.
With x+ =

∑J
j=1 xj the vector A with entries pj = xj/x+ is a probabil-

ity vector. Let d = (d1, ..., dJ)T be a vector whose entries are nonnegative
integers, with K =

∑J
j=1 dj . Suppose that, for each j, pj is the probability

of index j and dj is the number of times index j was chosen in K trials.
The likelihood function of the parameters λi is

L(λ) =
J∏

j=1

p
dj

j (13.8)

so that the log-likelihood function is

LL(λ) =
J∑

j=1

dj log pj . (13.9)

Since A is a probability vector, maximizing L(λ) is equivalent to minimizing
KL(d, p) with respect to λ, which, according to the lemma above, can
be solved using SMART. In fact, since all of the block-iterative versions
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of SMART have the same limit whenever they have the same starting
vector, any of these methods can be used to solve this maximum likelihood
problem. In the case of transmission tomography the λi must be non-
positive, so if SMART is to be used, some modification is needed to obtain
such a solution.

Those who have used the SMART or the EMML on sizable problems
have certainly noticed that they are both slow to converge. An important
issue, therefore, is how to accelerate convergence. One popular method is
through the use of block-iterative (or ordered subset) methods.

13.4 Ordered-Subset Versions

To illustrate block-iterative methods and to motivate our subsequent dis-
cussion we consider now the ordered subset EM algorithm (OSEM), which is
a popular technique in some areas of medical imaging, as well as an anal-
ogous version of SMART, which we shall call here the OSSMART. The
OSEM is now used quite frequently in tomographic image reconstruction,
where it is acknowledged to produce usable images significantly faster then
EMML. From a theoretical perspective both OSEM and OSSMART are
incorrect. How to correct them is the subject of much that follows here.

The idea behind the OSEM (OSSMART) is simple: the iteration looks
very much like the EMML (SMART), but at each step of the iteration
the summations are taken only over the current block. The blocks are
processed cyclically.

The OSEM iteration is the following: for k = 0, 1, ... and n = k(modN)+
1, having found xk let

OSEM:

xk+1
j = xk

j s
−1
nj

∑
i∈Bn

Aij
bi

(Axk)i
. (13.10)

The OSSMART has the following iterative step:

OSSMART

xk+1
j = xk

j exp
(
s−1

nj

∑
i∈Bn

Aij log
bi

(Axk)i

)
. (13.11)

In general we do not expect block-iterative algorithms to converge in the
inconsistent case, but to exhibit subsequential convergence to a limit cycle,
as we shall discuss later. We do, however, want them to converge to a
solution in the consistent case; the OSEM and OSSMART fail to do this
except when the matrix A and the set of blocks {Bn, n = 1, ..., N} satisfy
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the condition known as subset balance, which means that the sums snj

depend only on j and not on n. While this may be approximately valid in
some special cases, it is overly restrictive, eliminating, for example, almost
every set of blocks whose cardinalities are not all the same. When the
OSEM does well in practice in medical imaging it is probably because the
N is not large and only a few iterations are carried out.

The experience with the OSEM was encouraging, however, and strongly
suggested that an equally fast, but mathematically correct, block-iterative
version of EMML was to be had; this is the rescaled block-iterative EMML
(RBI-EMML). Both RBI-EMML and an analogous corrected version of
OSSMART, the RBI-SMART, provide fast convergence to a solution in
the consistent case, for any choice of blocks.

13.5 The RBI-SMART

We turn next to the block-iterative versions of the SMART, which we shall
denote BI-SMART. These methods were known prior to the discovery of
RBI-EMML and played an important role in that discovery; the importance
of rescaling for acceleration was apparently not appreciated, however.

We start by considering a formulation of BI-SMART that is general
enough to include all of the variants we wish to discuss. As we shall see,
this formulation is too general and will need to be restricted in certain ways
to obtain convergence. Let the iterative step be

xk+1
j = xk

j exp
(
βnj

∑
i∈Bn

αniAij log
( bi

(Axk)i

))
, (13.12)

for j = 1, 2, ..., J , n = k(modN) + 1 and βnj and αni positive. As we
shall see, our convergence proof will require that βnj be separable, that is,
bnj = γjδn for each j and n and that

γjδnσnj ≤ 1, (13.13)

for σnj =
∑

i∈Bn
αniAij . With these conditions satisfied we have the fol-

lowing result.

Theorem 13.3 Let x be a nonnegative solution of b = Ax. For any posi-
tive vector x0 and any collection of blocks {Bn, n = 1, ..., N} the sequence
{xk} given by Equation (13.12) converges to the unique solution of b = Ax

for which the weighted cross-entropy
∑J

j=1 γ
−1
j KL(xj , x

0
j ) is minimized.

The inequality in the following lemma is the basis for the convergence proof.
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Lemma 13.2 Let b = Ax for some nonnegative x. Then for {xk} as in
Equation (13.12) we have

J∑
j=1

γ−1
j KL(xj , x

k
j )−

J∑
j=1

γ−1
j KL(xj , x

k+1
j ) ≥ (13.14)

δn
∑

i∈Bn

αniKL(bi, (Axk)i). (13.15)

Proof: First note that

xk+1
j = xk

j exp
(
γjδn

∑
i∈Bn

αniAij log
( bi

(Axk)i

))
, (13.16)

and

exp
(
γjδn

∑
i∈Bn

αniAij log
( bi

(Axk)i

))
(13.17)

can be written as

exp
(
(1− γjδnσnj) log 1 + γjδn

∑
i∈Bn

αniAij log
( bi

(Axk)i

))
, (13.18)

which, by the convexity of the exponential function, is not greater than

(1− γjδnσnj) + γjδn
∑

i∈Bn

αniAij
bi

(Axk)i
. (13.19)

It follows that

J∑
j=1

γ−1
j (xk

j − xk+1
j ) ≥ δn

∑
i∈Bn

αni((Axk)i − bi). (13.20)

We also have

log(xk+1
j /xk

j ) = γjδn
∑

i∈Bn

αniAij log
bi

(Axk)i
. (13.21)

Therefore

J∑
j=1

γ−1
j KL(xj , x

k
j )−

J∑
j=1

γ−1
j KL(xj , x

k+1
j ) (13.22)
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=
J∑

j=1

γ−1
j (xj log(xk+1

j /xk
j ) + xk

j − xk+1
j ) (13.23)

=
J∑

j=1

xjδn
∑

i∈Bn

αniAij log
bi

(Axk)i
+

J∑
j=1

γ−1
j (xk

j − xk+1
j ) (13.24)

= δn
∑

i∈Bn

αni(
J∑

j=1

xjAij) log
bi

(Axk)i
+

J∑
j=1

γ−1
j (xk

j − xk+1
j ) (13.25)

≥ δn

( ∑
i∈Bn

αni(bi log
bi

(Axk)i
+ (Axk)i − bi)

)
= δn

∑
i∈Bn

αniKL(bi, (Axk)i).

(13.26)

This completes the proof of the lemma.
From the inequality (13.15) we conclude that the sequence

{
J∑

j=1

γ−1
j KL(xj , x

k
j )} (13.27)

is decreasing, that {xk} is therefore bounded and the sequence

{
∑

i∈Bn

αniKL(bi, (Axk)i)} (13.28)

is converging to zero. Let x∗ be any cluster point of the sequence {xk}.
Then it is not difficult to show that b = Ax∗. Replacing x with x∗ we
have that the sequence {

∑J
j=1 γ

−1
j KL(x∗j , x

k
j )} is decreasing; since a sub-

sequence converges to zero, so does the whole sequence. Therefore x∗ is
the limit of the sequence {xk}. This proves that the algorithm produces
a solution of b = Ax. To conclude further that the solution is the one
for which the quantity

∑J
j=1 γ

−1
j KL(xj , x

0
j ) is minimized requires further

work to replace the inequality (13.15) with an equation in which the right
side is independent of the particular solution x chosen; see the final section
of this chapter for the details.

We see from the theorem that how we select the γj is determined by
how we wish to weight the terms in the sum

∑J
j=1 γ

−1
j KL(xj , x

0
j ). In

some cases we want to minimize the cross-entropy KL(x, x0) subject to
b = Ax; in this case we would select γj = 1. In other cases we may
have some prior knowledge as to the relative sizes of the xj and wish to
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emphasize the smaller values more; then we may choose γj proportional to
our prior estimate of the size of xj . Having selected the γj , we see from
the inequality (13.15) that convergence will be accelerated if we select δn
as large as permitted by the condition γjδnσnj ≤ 1. This suggests that we
take

δn = 1/min{σnjγj , j = 1, ..., J}. (13.29)

The rescaled BI-SMART (RBI-SMART) as presented in [50, 52, 53] uses
this choice, but with αni = 1 for each n and i. For each n = 1, ..., N let

mn = max{snjs
−1
j |j = 1, ..., J}. (13.30)

The original RBI-SMART is as follows:

Algorithm 13.3 (RBI-SMART) Let x0 be an arbitrary positive vector.
For k = 0, 1, ..., let n = k(modN) + 1. Then let

xk+1
j = xk

j exp
(
m−1

n s−1
j

∑
i∈Bn

Aij log
( bi

(Axk)i

))
. (13.31)

Notice that Equation (13.31) can be written as

log xk+1
j = (1−m−1

n s−1
j snj) log xk

j +m−1
n s−1

j

∑
i∈Bn

Aij log
(
xk

j

bi
(Axk)i

)
,

(13.32)

from which we see that xk+1
j is a weighted geometric mean of xk

j and the
terms

(Qix
k)j = xk

j

( bi
(Axk)i

)
,

for i ∈ Bn. This will be helpful in deriving block-iterative versions of the
EMML algorithm. The vectors Qi(xk) are sometimes called weighted KL
projections.

Let’s look now at some of the other choices for these parameters that
have been considered in the literature.

First, we notice that the OSSMART does not generally satisfy the re-
quirements, since in (13.11) the choices are αni = 1 and βnj = s−1

nj ; the
only times this is acceptable is if the snj are separable; that is, snj = rjtn
for some rj and tn. This is slightly more general than the condition of
subset balance and is sufficient for convergence of OSSMART.

In [82] Censor and Segman make the choices βnj = 1 and αni > 0 such
that σnj ≤ 1 for all n and j. In those cases in which σnj is much less than
1 for each n and j their iterative scheme is probably excessively relaxed; it
is hard to see how one might improve the rate of convergence by altering
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only the weights αni, however. Limiting the choice to γjδn = 1 reduces our
ability to accelerate this algorithm.

The original SMART in Equation (13.5) uses N = 1, γj = s−1
j and

αni = αi = 1. Clearly the inequality (13.13) is satisfied; in fact it becomes
an equality now.

For the row-action version of SMART, the multiplicative ART (MART),
due to Gordon, Bender and Herman [138], we take N = I and Bn = Bi =
{i} for i = 1, ..., I. The MART has the iterative

xk+1
j = xk

j

( bi
(Axk)i

)m−1
i

Aij

, (13.33)

for j = 1, 2, ..., J , i = k(mod I) + 1 and mi > 0 chosen so that m−1
i Aij ≤ 1

for all j. The smaller mi is the faster the convergence, so a good choice
is mi = max{Aij |, j = 1, ..., J}. Although this particular choice for mi is
not explicitly mentioned in the various discussions of MART I have seen,
it was used in implementations of MART from the beginning [151].

Darroch and Ratcliff included a discussion of a block-iterative version of
SMART in their 1972 paper [98]. Close inspection of their version reveals
that they require that snj =

∑
i∈Bn

Aij = 1 for all j. Since this is unlikely
to be the case initially, we might try to rescale the equations or unknowns
to obtain this condition. However, unless snj =

∑
i∈Bn

Aij depends only
on j and not on n, which is the subset balance property used in [157], we
cannot redefine the unknowns in a way that is independent of n.

The MART fails to converge in the inconsistent case. What is always
observed, but for which no proof exists, is that, for each fixed i = 1, 2, ..., I,
as m→ +∞, the MART subsequences {xmI+i} converge to separate limit
vectors, say x∞,i. This limit cycle LC = {x∞,i|i = 1, ..., I} reduces to a
single vector whenever there is a nonnegative solution of b = Ax. The
greater the minimum value of KL(Ax, y) the more distinct from one an-
other the vectors of the limit cycle are. An analogous result is observed for
BI-SMART.

13.6 The RBI-EMML

As we did with SMART, we consider now a formulation of BI-EMML that
is general enough to include all of the variants we wish to discuss. Once
again, the formulation is too general and will need to be restricted in certain
ways to obtain convergence. Let the iterative step be

xk+1
j = xk

j (1− βnjσnj) + xk
jβnj

∑
i∈Bn

αniAij
bi

(Axk)i
, (13.34)

for j = 1, 2, ..., J , n = k(modN)+1 and βnj and αni positive. As in the case
of BI-SMART, our convergence proof will require that βnj be separable,
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that is,

bnj = γjδn (13.35)

for each j and n and that the inequality (13.13) hold. With these conditions
satisfied we have the following result.

Theorem 13.4 Let x be a nonnegative solution of b = Ax. For any posi-
tive vector x0 and any collection of blocks {Bn, n = 1, ..., N} the sequence
{xk} given by Equation (13.12) converges to a nonnegative solution of
b = Ax.

When there are multiple nonnegative solutions of b = Ax the solution
obtained by BI-EMML will depend on the starting point x0, but precisely
how it depends on x0 is an open question. Also, in contrast to the case of
BI-SMART, the solution can depend on the particular choice of the blocks.
The inequality in the following lemma is the basis for the convergence proof.

Lemma 13.3 Let b = Ax for some nonnegative x. Then for {xk} as in
Equation (13.34) we have

J∑
j=1

γ−1
j KL(xj , x

k
j )−

J∑
j=1

γ−1
j KL(xj , x

k+1
j ) ≥ (13.36)

δn
∑

i∈Bn

αniKL(bi, (Axk)i). (13.37)

Proof: From the iterative step

xk+1
j = xk

j (1− γjδnσnj) + xk
j γjδn

∑
i∈Bn

αniAij
bi

(Axk)i
(13.38)

we have

log(xk+1
j /xk

j ) = log
(
(1− γjδnσnj) + γjδn

∑
i∈Bn

αniAij
bi

(Axk)i

)
. (13.39)

By the concavity of the logarithm we obtain the inequality

log(xk+1
j /xk

j ) ≥
(
(1− γjδnσnj) log 1 + γjδn

∑
i∈Bn

αniAij log
bi

(Axk)i

)
,

(13.40)

or

log(xk+1
j /xk

j ) ≥ γjδn
∑

i∈Bn

αniAij log
bi

(Axk)i
. (13.41)
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Therefore

J∑
j=1

γ−1
j xj log(xk+1

j /xk
j ) ≥ δn

∑
i∈Bn

αni(
J∑

j=1

xjAij) log
bi

(Axk)i
. (13.42)

Note that it is at this step that we used the separability of the βnj . Also

J∑
j=1

γ−1
j (xk+1

j − xk
j ) = δn

∑
i∈Bn

((Axk)i − bi). (13.43)

This concludes the proof of the lemma.
From the inequality in (13.37) we conclude, as we did in the BI-SMART

case, that the sequence {
∑J

j=1 γ
−1
j KL(xj , x

k
j )} is decreasing, that {xk} is

therefore bounded and the sequence {
∑

i∈Bn
αniKL(bi, (Axk)i)} is con-

verging to zero. Let x∗ be any cluster point of the sequence {x}. Then it is
not difficult to show that b = Ax∗. Replacing x with x∗ we have that the
sequence {

∑J
j=1 γ

−1
j KL(x∗j , x

k
j )} is decreasing; since a subsequence con-

verges to zero, so does the whole sequence. Therefore x∗ is the limit of
the sequence {xk}. This proves that the algorithm produces a nonnegative
solution of b = Ax. So far, we have been unable to replace the inequality
in (13.37) with an equation in which the right side is independent of the
particular solution x chosen.

Having selected the γj , we see from the inequality in (13.37) that con-
vergence will be accelerated if we select δn as large as permitted by the
condition γjδnσnj ≤ 1. This suggests that once again we take

δn = 1/min{σnjγj , j = 1, ..., J}. (13.44)

The rescaled BI-EMML (RBI-EMML) as presented in [50, 52, 53] uses this
choice, but with αni = 1 for each n and i. The original motivation for the
RBI-EMML came from consideration of Equation (13.32), replacing the
geometric means with arithmetic means. This RBI-EMML is as follows:

Algorithm 13.4 (RBI-EMML) Let x0 be an arbitrary positive vector.
For k = 0, 1, ..., let n = k(modN) + 1. Then let

xk+1
j = (1−m−1

n s−1
j snj)xk

j +m−1
n s−1

j xk
j

∑
i∈Bn

(Aij
bi

(Axk)i
). (13.45)

Let’s look now at some of the other choices for these parameters that
have been considered in the literature.

First, we notice that the OSEM does not generally satisfy the require-
ments, since in (13.10) the choices are αni = 1 and βnj = s−1

nj ; the only
times this is acceptable is if the snj are separable; that is, snj = rjtn for
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some rj and tn. This is slightly more general than the condition of subset
balance and is sufficient for convergence of OSEM.

The original EMML in Equation (13.6) uses N = 1, γj = s−1
j and

αni = αi = 1. Clearly the inequality (13.13) is satisfied; in fact it becomes
an equality now.

Notice that the calculations required to perform the BI-SMART are
somewhat more complicated than those needed in BI-EMML. Because the
MART converges rapidly in most cases there is considerable interest in the
row-action version of EMML. It was clear from the outset that using the
OSEM in a row-action mode does not work. We see from the formula for
BI-EMML that the proper row-action version of EMML, which we call the
EM-MART, is the following:

Algorithm 13.5 (EM-MART) Let x0be an arbitrary positive vector and
i = k(mod I) + 1. Then let

xk+1
j = (1− δiγjαiiAij)xk

j + δiγjαiix
k
jAij

bi
(Axk)i

, (13.46)

with

γjδiαiiAij ≤ 1 (13.47)

for all i and j.

The optimal choice would seem to be to take δiαii as large as possible;
that is, to select δiαii = 1/max{γjAij , j = 1, ..., J}. With this choice the
EM-MART is called the rescaled EM-MART (REM-MART).

The EM-MART fails to converge in the inconsistent case. What is
always observed, but for which no proof exists, is that, for each fixed i =
1, 2, ..., I, as m→ +∞, the EM-MART subsequences {xmI+i} converge to
separate limit vectors, say x∞,i. This limit cycle LC = {x∞,i|i = 1, ..., I}
reduces to a single vector whenever there is a nonnegative solution of b =
Ax. The greater the minimum value of KL(y,Ax) the more distinct from
one another the vectors of the limit cycle are. An analogous result is
observed for BI-EMML.

We must mention a method that closely resembles the REM-MART, the
row-action maximum likelihood algorithm (RAMLA), which was discovered
independently by Browne and De Pierro [30]. The RAMLA avoids the limit
cycle in the inconsistent case by using strong underrelaxation involving
a decreasing sequence of relaxation parameters λk. The RAMLA is the
following:

Algorithm 13.6 (RAMLA) Let x0 be an arbitrary positive vector, and
n = k(modN) + 1. Let the positive relaxation parameters λk be chosen to
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converge to zero and
∑+∞

k=0 λk = +∞. Then,

xk+1
j = (1− λk

∑
i∈Bn

Aij)xk
j + λkx

k
j

∑
i∈Bn

Aij

( bi
(Axk)i

)
, (13.48)

13.7 RBI-SMART and Entropy Maximization

As we stated earlier, in the consistent case the sequence {xk} generated by
the BI-SMART algorithm and given by Equation (13.16) converges to the
unique solution of b = Ax for which the distance

∑J
j=1 γ

−1
j KL(xj , x

0
j ) is

minimized. In this section we sketch the proof of this result as a sequence
of lemmas, each of which is easily established.

Lemma 13.4 For any nonnegative vectors a and b with a+ =
∑M

m=1 am

and b+ =
∑M

m=1 bm > 0 we have

KL(a, b) = KL(a+, b+) +KL(a+,
a+

b+
b). (13.49)

For nonnegative vectors x and z let

Gn(x, z) =
J∑

j=1

γ−1
j KL(xj , zj) (13.50)

+δn
∑

i∈Bn

αni[KL((Ax)i, bi)−KL((Ax)i, (Az)i)]. (13.51)

It follows from Equation 13.49 and the inequality

γ−1
j − δnσnj ≥ 1 (13.52)

that Gn(x, z) ≥ 0 in all cases.

Lemma 13.5 For every x we have

Gn(x, x) = δn
∑

i∈Bn

αniKL((Ax)i, bi) (13.53)

so that

Gn(x, z) = Gn(x, x) +
J∑

j=1

γ−1
j KL(xj , zj) (13.54)

−δn
∑

i∈Bn

αniKL((Ax)i, (Az)i). (13.55)
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Therefore the distance Gn(x, z) is minimized, as a function of z, by z = x.
Now we minimize Gn(x, z) as a function of x. The following lemma shows
that the answer is

xj = z′j = zj exp
(
γjδn

∑
i∈Bn

αniAij log
bi

(Az)i

)
. (13.56)

Lemma 13.6 For each x and z we have

Gn(x, z) = Gn(z′, z) +
J∑

j=1

γ−1
j KL(xj , z

′
j). (13.57)

It is clear that (xk)′ = xk+1 for all k.
Now let b = Pu for some nonnegative vector u. We calculate Gn(u, xk)

in two ways: using the definition we have

Gn(u, xk) =
J∑

j=1

γ−1
j KL(uj , x

k
j )− δn

∑
i∈Bn

αniKL(bi, (Axk)i), (13.58)

while using Lemma 13.57 we find that

Gn(u, xk) = Gn(xk+1, xk) +
J∑

j=1

γ−1
j KL(uj , x

k+1
j ). (13.59)

Therefore

J∑
j=1

γ−1
j KL(uj , x

k
j )−

J∑
j=1

γ−1
j KL(uj , x

k+1
j ) (13.60)

= Gn(xk+1, xk) + δn
∑

i∈Bn

αniKL(bi, (Axk)i). (13.61)

We conclude several things from this.
First, the sequence {

∑J
j=1 γ

−1
j KL(uj , x

k
j )} is decreasing, so that the

sequences {Gn(xk+1, xk)} and {δn
∑

i∈Bn
αniKL(bi, (Axk)i)} converge to

zero. Therefore the sequence {xk} is bounded and we may select an arbi-
trary cluster point x∗. It follows that b = Ax∗. We may therefore replace
the generic solution u with x∗ to find that {

∑J
j=1 γ

−1
j KL(x∗j , x

k
j )} is a de-

creasing sequence; but since a subsequence converges to zero, the entire
sequence must converge to zero. Therefore {xk} converges to the solution
x∗.
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Finally, since the right side of Equation (13.61) does not depend on
the particular choice of solution we made, neither does the left side. By
telescoping we conclude that

J∑
j=1

γ−1
j KL(uj , x

0
j )−

J∑
j=1

γ−1
j KL(uj , x

∗
j ) (13.62)

is also independent of the choice of u. Consequently, minimizing the func-
tion

∑J
j=1 γ

−1
j KL(uj , x

0
j ) over all solutions u is equivalent to minimizing∑J

j=1 γ
−1
j KL(uj , x

∗
j ) over all solutions u; but the solution to the latter

problem is obviously u = x∗. This completes the proof.
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Chapter 14

Regularization

When we use an iterative algorithm, we want it to solve our problem.
We also want the solution in a reasonable amount of time, and we want
slight errors in the measurements to cause only slight perturbations in the
calculated answer. We have already discussed the use of block-iterative
methods to accelerate convergence. Now we turn to regularization as a
means of reducing sensitivity to noise. Because a number of regularization
methods can be derived using a Bayesian maximum a posteriori approach,
regularization is sometimes treated under the heading of MAP methods;
see, for example, [192, 210] and the discussion in [62]. Penalty functions
are also used for regularization [120, 2, 3].

14.1 Where Does Sensitivity Come From?

We illustrate the sensitivity problem that can arise when the inconsistent
system Ax = b has more equations than unknowns. We take A to be I by
J and we calculate the least-squares solution,

xLS = (A†A)−1A†b, (14.1)

assuming that the J by J Hermitian, nonnegative-definite matrix Q =
(A†A) is invertible, and therefore positive-definite.

The matrix Q has the eigenvalue/eigenvector decomposition

Q = λ1u1u
†
1 + · · ·+ λJuJu

†
J , (14.2)

where the (necessarily positive) eigenvalues of Q are

λ1 ≥ λ2 ≥ · · · ≥ λJ > 0, (14.3)

and the vectors uj are the corresponding orthonormal eigenvectors.

153
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14.1.1 The Singular-Value Decomposition of A

The square roots
√
λj are called the singular values of A. The singular-

value decomposition (SVD) of A is similar to the eigenvalue/eigenvector
decomposition of Q: we have

A =
√
λ1u1v

†
1 + · · ·+

√
λIuJv

†
J , (14.4)

where the vj are particular eigenvectors of AA†. We see from the SVD that
the quantities

√
λj determine the relative importance of each term ujv

†
j .

The SVD is commonly used for compressing transmitted or stored im-
ages. In such cases, the rectangular matrix A is a discretized image. It
is not uncommon for many of the lowest singular values of A to be nearly
zero, and to be essentially insignificant in the reconstruction of A. Only
those terms in the SVD for which the singular values are significant need
to be transmitted or stored. The resulting images may be slightly blurred,
but can be restored later, as needed.

When the matrix A is a finite model of a linear imaging system, there
will necessarily be model error in the selection of A. Getting the dominant
terms in the SVD nearly correct is much more important (and usually much
easier) than getting the smaller ones correct. The problems arise when we
try to invert the system, to solve Ax = b for x.

14.1.2 The Inverse of Q = A†A

The inverse of Q can then be written

Q−1 = λ−1
1 u1u

†
1 + · · ·+ λ−1

J uJu
†
J , (14.5)

so that, with A†b = c, we have

xLS = λ−1
1 (u†1c)u1 + · · ·+ λ−1

J (u†Jc)uJ . (14.6)

Because the eigenvectors are orthonormal, we can express ||A†b||22 = ||c||22
as

||c||22 = |u†1c|2 + · · ·+ |u†Jc|
2, (14.7)

and ||xLS ||22 as

||xLS ||22 = λ−1
1 |u†1c|2 + · · ·+ λ−1

J |u†Jc|
2. (14.8)

It is not uncommon for the eigenvalues of Q to be quite distinct, with some
of them much larger than the others. When this is the case, we see that
||xLS ||2 can be much larger than ||c||2, because of the presence of the terms
involving the reciprocals of the small eigenvalues. When the measurements
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b are essentially noise-free, we may have |u†jc| relatively small, for the indices
near J , keeping the product λ−1

j |u†jc|2 reasonable in size, but when the b
becomes noisy, this may no longer be the case. The result is that those
terms corresponding to the reciprocals of the smallest eigenvalues dominate
the sum for xLS and the norm of xLS becomes quite large. The least-
squares solution we have computed is essentially all noise and useless.

In our discussion of the ART, we saw that when we impose a non-
negativity constraint on the solution, noise in the data can manifest itself
in a different way. When A has more columns than rows, but Ax = b has
no non-negative solution, then, at least for those A having the full-rank
property, the non-negatively constrained least-squares solution has at most
I − 1 non-zero entries. This happens also with the EMML and SMART
solutions. As with the ART, regularization can eliminate the problem.

14.1.3 Reducing the Sensitivity to Noise

As we just saw, the presence of small eigenvalues for Q and noise in b can
cause ||xLS ||2 to be much larger than ||A†b||2, with the result that xLS is
useless. In this case, even though xLS minimizes ||Ax− b||2, it does so by
overfitting to the noisy b. To reduce the sensitivity to noise and thereby
obtain a more useful approximate solution, we can regularize the problem.

It often happens in applications that, even when there is an exact so-
lution of Ax = b, noise in the vector b makes such as exact solution unde-
sirable; in such cases a regularized solution is usually used instead. Select
ε > 0 and a vector p that is a prior estimate of the desired solution. Define

Fε(x) = (1− ε)‖Ax− b‖2
2 + ε‖x− p‖2

2. (14.9)

Lemma 14.1 The function Fε always has a unique minimizer x̂ε, given
by

x̂ε = ((1− ε)A†A+ εI)−1((1− ε)A†b+ εp); (14.10)

this is a regularized solution of Ax = b. Here, p is a prior estimate of the
desired solution. Note that the inverse above always exists.

Note that, if p = 0, then

x̂ε = (A†A+ γ2I)−1A†b, (14.11)

for γ2 = ε
1−ε . The regularized solution has been obtained by modifying

the formula for xLS , replacing the inverse of the matrix Q = A†A with
the inverse of Q + γ2I. When ε is near zero, so is γ2, and the matrices
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Q and Q+ γ2I are nearly equal. What is different is that the eigenvalues
of Q + γ2I are λi + γ2, so that, when the eigenvalues are inverted, the
reciprocal eigenvalues are no larger than 1/γ2, which prevents the norm of
xε from being too large, and decreases the sensitivity to noise.

Lemma 14.2 Let ε be in (0, 1), and let I be the identity matrix whose
dimensions are understood from the context. Then

((1− ε)AA† + εI)−1A = A((1− ε)A†A+ εI)−1, (14.12)

and, taking conjugate transposes,

A†((1− ε)AA† + εI)−1 = ((1− ε)A†A+ εI)−1A†. (14.13)

Proof: Use the identity

A((1− ε)A†A+ εI) = ((1− ε)AA† + εI)A. (14.14)

Lemma 14.3 Any vector p in RJ can be written as p = A†q + r, where
Ar = 0.

What happens to x̂ε as ε goes to zero? This will depend on which case
we are in:

Case 1: J ≤ I, and we assume that A†A is invertible; or

Case 2: J > I, and we assume that AA† is invertible.

Lemma 14.4 In Case 1, taking limits as ε→ 0 on both sides of the expres-
sion for x̂ε gives x̂ε → (A†A)−1A†b, the least squares solution of Ax = b.

We consider Case 2 now. Write p = A†q + r, with Ar = 0. Then

x̂ε = A†((1− ε)AA† + εI)−1((1− ε)b+ εq) + ((1− ε)A†A+ εI)−1(εr).(14.15)

Lemma 14.5 (a) We have

((1− ε)A†A+ εI)−1(εr) = r, (14.16)

for all ε ∈ (0, 1). (b) Taking the limit of x̂ε, as ε → 0, we get x̂ε →
A†(AA†)−1b+ r. This is the solution of Ax = b closest to p.

Proof: For part (a) let

tε = ((1− ε)A†A+ εI)−1(εr). (14.17)

Then, multiplying by A gives

Atε = A((1− ε)A†A+ εI)−1(εr). (14.18)

Now show that Atε = 0. For part (b) draw a diagram for the case of one
equation in two unknowns.
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14.2 Iterative Regularization

It is often the case that the entries of the vector b in the system Ax = b
come from measurements, so are usually noisy. If the entries of b are noisy
but the system Ax = b remains consistent (which can easily happen in the
under-determined case, with J > I), the ART begun at x0 = 0 converges
to the solution having minimum norm, but this norm can be quite large.
The resulting solution is probably useless. Instead of solving Ax = b, we
regularize by minimizing, for example, the function Fε(x) given in Equation
(14.9). For the case of p = 0, the solution to this problem is the vector x̂ε

in Equation (14.11). However, we do not want to calculate A†A+ γ2I, in
order to solve

(A†A+ γ2I)x = A†b, (14.19)

when the matrix A is large. Fortunately, there are ways to find x̂ε, using
only the matrix A. We saw previously how this might be accomplished
using the ART; now we show how the Landweber algorithm can be used
to calculate this regularized solution.

14.2.1 Regularizing Landweber’s Algorithm

Our goal is to minimize the function in Equation (14.9), with p = 0. Notice
that this is equivalent to minimizing the function

F (x) = ||Bx− c||22, (14.20)

for

B =
[
A
γI

]
, (14.21)

and

c =
[
b
0

]
, (14.22)

where 0 denotes a column vector with all entries equal to zero and γ = ε
1−ε .

The Landweber iteration for the problem Bx = c is

xk+1 = xk + αBT (c−Bxk), (14.23)

for 0 < α < 2/ρ(BTB), where ρ(BTB) is the spectral radius of BTB.
Equation (14.23) can be written as

xk+1 = (1− αγ2)xk + αAT (b−Axk). (14.24)
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14.3 A Bayesian View of Reconstruction

The EMML iterative algorithm maximizes the likelihood function for the
case in which the entries of the data vector b = (b1, ..., bI)T are assumed
to be samples of independent Poisson random variables with mean val-
ues (Ax)i; here, A is an I by J matrix with nonnegative entries and
x = (x1, ..., xJ)T is the vector of nonnegative parameters to be estimated.
Equivalently, it minimizes the Kullback-Leibler distance KL(b, Ax). This
situation arises in single photon emission tomography, where the bi are the
number of photons counted at each detector i, x is the vectorized image
to be reconstructed and its entries xj are (proportional to) the radionu-
clide intensity levels at each voxel j. When the signal-to-noise ratio is low,
which is almost always the case in medical applications, maximizing like-
lihood can lead to unacceptably noisy reconstructions, particularly when
J is larger than I. One way to remedy this problem is simply to halt the
EMML algorithm after a few iterations, to avoid over-fitting the x to the
noisy data. A more mathematically sophisticated remedy is to employ a
penalized-likelihood or Bayesian approach and seek a maximum a posteriori
(MAP) estimate of x.

In the Bayesian approach we view x as an instance of a random vector
having a probability density function f(x). Instead of maximizing the like-
lihood given the data, we now maximize the posterior likelihood, given both
the data and the prior distribution for x. This is equivalent to minimizing

F (x) = KL(b, Ax)− log f(x). (14.25)

The EMML algorithm is an example of an optimization method based on
alternating minimization of a function H(x, z) > 0 of two vector variables.
The alternating minimization works this way: let x and z be vector vari-
ables and H(x, z) > 0. If we fix z and minimize H(x, z) with respect to x,
we find that the solution is x = z, the vector we fixed; that is,

H(x, z) ≥ H(z, z) (14.26)

always. If we fix x and minimizeH(x, z) with respect to z, we get something
new; call it Tx. The EMML algorithm has the iterative step xk+1 = Txk.

Obviously, we can’t use an arbitrary function H; it must be related to
the function KL(b, Ax) that we wish to minimize, and we must be able to
obtain each intermediate optimizer in closed form. The clever step is to
select H(x, z) so that H(x, x) = KL(b, Ax), for any x. Now see what we
have so far:

KL(b, Axk) = H(xk, xk) ≥ H(xk, xk+1) (14.27)

≥ H(xk+1, xk+1) = KL(b, Axk+1). (14.28)
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That tells us that the algorithm makes KL(b, Axk) decrease with each
iteration. The proof doesn’t stop here, but at least it is now plausible that
the EMML iteration could minimize KL(b, Ax).

The function H(x, z) used in the EMML case is the KL distance

H(x, z) = KL(r(x), q(z)) =
I∑

i=1

J∑
j=i

KL(r(x)ij , q(z)ij); (14.29)

we define, for each nonnegative vector x for which (Ax)i =
∑J

j=1Aijxj > 0,
the arrays r(x) = {r(x)ij} and q(x) = {q(x)ij} with entries

r(x)ij = xjAij
bi

(Ax)i
(14.30)

and

q(x)ij = xjAij . (14.31)

With x = xk fixed, we minimize with respect to z to obtain the next
EMML iterate xk+1. Having selected the prior pdf f(x), we want an itera-
tive algorithm to minimize the function F (x) in Equation (14.25). It would
be a great help if we could mimic the alternating minimization formulation
and obtain xk+1 by minimizing

KL(r(xk), q(z))− log f(z) (14.32)

with respect to z. Unfortunately, to be able to express each new xk+1 in
closed form, we need to choose f(x) carefully.

14.4 The Gamma Prior Distribution for x

In [175] Lange et al. suggest viewing the entries xj as samples of indepen-
dent gamma-distributed random variables. A gamma-distributed random
variable x takes positive values and has for its pdf the gamma distribution
defined for positive x by

γ(x) =
1

Γ(α)
(
α

β
)αxα−1e−αx/β , (14.33)

where α and β are positive parameters and Γ denotes the gamma function.
The mean of such a gamma-distributed random variable is then µ = β and
the variance is σ2 = β2/α.
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Lemma 14.6 If the entries zj of z are viewed as independent and gamma-
distributed with means µj and variances σ2

j , then minimizing the function
in line (14.32) with respect to z is equivalent to minimizing the function

KL(r(xk), q(z)) +
J∑

j=1

δjKL(γj , zj), (14.34)

for

δj =
µj

σ2
j

, γj =
µ2

j − σ2
j

µj
, (14.35)

under the assumption that the latter term is positive.

The resulting regularized EMML algorithm is the following:

Algorithm 14.1 (γ-prior Regularized EMML) Let x0 be an arbitrary
positive vector. Then let

xk+1
j =

δj
δj + sj

γj +
1

δj + sj
xk

j

I∑
i=1

Aijbi/(Axk)i, (14.36)

where sj =
∑I

i=1Aij.

We see from Equation (14.36) that the MAP iteration using the gamma
priors generates a sequence of estimates each entry of which is a convex
combination or weighted arithmetic mean of the result of one EMML step
and the prior estimate γj . Convergence of the resulting iterative sequence
is established by Lange, Bahn and Little in [175]; see also [48].

14.5 The One-Step-Late Alternative

It may well happen that we do not wish to use the gamma priors model
and prefer some other f(x). Because we will not be able to find a closed
form expression for the z minimizing the function in line (14.32), we need
some other way to proceed with the alternating minimization. Green [140]
has offered the one-step-late (OSL) alternative.

When we try to minimize the function in line (14.32) by setting the
gradient to zero we replace the variable z that occurs in the gradient of the
term − log f(z) with xk, the previously calculated iterate. Then, we can
solve for z in closed form to obtain the new xk+1. Unfortunately, negative
entries can result and convergence is not guaranteed. There is a sizable
literature on the use of MAP methods for this problem. In [57] an interior
point algorithm (IPA) is presented that avoids the OSL issue. In [193] the
IPA is used to regularize transmission tomographic images.
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14.6 Regularizing the SMART

The SMART algorithm is not derived as a maximum likelihood method, so
regularized versions do not take the form of MAP algorithms. Neverthe-
less, in the presence of noisy data, the SMART algorithm suffers from the
same problem that afflicts the EMML, overfitting to noisy data resulting
in an unacceptably noisy image. As we saw earlier, there is a close con-
nection between the EMML and SMART algorithms. This suggests that a
regularization method for SMART can be developed along the lines of the
MAP with gamma priors used for EMML. Since the SMART is obtained by
minimizing the function KL(q(z), r(xk)) with respect to z to obtain xk+1,
it seems reasonable to attempt to derive a regularized SMART iterative
scheme by minimizing

KL(q(z), r(xk)) +
J∑

j=1

δjKL(zj , γj), (14.37)

as a function of z, for selected positive parameters δj and γj . This leads to
the following algorithm:

Algorithm 14.2 (Regularized SMART) Let x0 be an arbitrary positive
vector. Then let

log xk+1
j =

δj
δj + sj

log γj +
1

δj + sj
xk

j

I∑
i=1

Aij log[bi/(Axk)i]. (14.38)

In [48] it was shown that this iterative sequence converges to a minimizer
of the function

KL(Ax, y) +
J∑

j=1

δjKL(xj , γj). (14.39)

It is useful to note that, although it may be possible to rederive this min-
imization problem within the framework of Bayesian MAP estimation by
carefully selecting a prior pdf for the vector x, we have not done so. The
MAP approach is a special case of regularization through the use of penalty
functions. These penalty functions need not arise through a Bayesian for-
mulation of the parameter-estimation problem.

14.7 De Pierro’s Surrogate-Function Method

In [101] De Pierro presents a modified EMML algorithm that includes reg-
ularization in the form of a penalty function. His objective is the same as
ours was in the case of regularized SMART: to embed the penalty term
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in the alternating minimization framework in such a way as to make it
possible to obtain the next iterate in closed form. Because his surrogate
function method has been used subsequently by others to obtain penalized
likelihood algorithms [84], we consider his approach in some detail.

Let x and z be vector variables and H(x, z) > 0. Mimicking the be-
havior of the function H(x, z) used in Equation (14.29), we require that
if we fix z and minimize H(x, z) with respect to x, the solution should be
x = z, the vector we fixed; that is, H(x, z) ≥ H(z, z) always. If we fix
x and minimize H(x, z) with respect to z, we should get something new;
call it Tx. As with the EMML, the algorithm will have the iterative step
xk+1 = Txk.

Summarizing, we see that we need a functionH(x, z) with the properties
(1) H(x, z) ≥ H(z, z) for all x and z; (2) H(x, x) is the function F (x) we
wish to minimize; and (3) minimizing H(x, z) with respect to z for fixed x
is easy.

The function to be minimized is

F (x) = KL(b, Ax) + g(x), (14.40)

where g(x) ≥ 0 is some penalty function. De Pierro uses penalty functions
g(x) of the form

g(x) =
p∑

l=1

fl(〈sl, x〉 ). (14.41)

Let us define the matrix S to have for its lth row the vector sT
l . Then

〈sl, x〉 = (Sx)l, the lth entry of the vector Sx. Therefore,

g(x) =
p∑

l=1

fl((Sx)l). (14.42)

Let λlj > 0 with
∑J

j=1 λlj = 1, for each l.
Assume that the functions fl are convex. Therefore, for each l, we have

fl((Sx)l) = fl(
J∑

j=1

Sljxj) = fl(
J∑

j=1

λlj(Slj/λlj)xj) (14.43)

≤
J∑

j=1

λljfl((Slj/λlj)xj). (14.44)

Therefore,

g(x) ≤
p∑

l=1

J∑
j=1

λljfl((Slj/λlj)xj). (14.45)
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So we have replaced g(x) with a related function in which the xj occur
separately, rather than just in the combinations (Sx)l. But we aren’t quite
done yet.

We would like to take for De Pierro’s H(x, z) the function used in the
EMML algorithm, plus the function

p∑
l=1

J∑
j=1

λljfl((Slj/λlj)zj). (14.46)

But there is one slight problem: we need H(z, z) = F (z), which we don’t
have yet.

De Pierro’s clever trick is to replace fl((Slj/λlj)zj) with

fl

(
(Slj/λlj)zj − (Slj/λlj)xj

)
+ fl((Sx)l). (14.47)

So, De Pierro’s function H(x, z) is the sum of the H(x, z) used in the
EMML case and the function

p∑
l=1

J∑
j=1

λljfl

(
(Slj/λlj)zj − (Slj/λlj)xj

)
+

p∑
l=1

fl((Sx)l). (14.48)

Now he has the three properties he needs. Once he has computed xk, he
minimizes H(xk, z) by taking the gradient and solving the equations for
the correct z = Txk = xk+1. For the choices of fl he discusses, these
intermediate calculations can either be done in closed form (the quadratic
case) or with a simple Newton-Raphson iteration (the logcosh case).

14.8 Block-Iterative Regularization

We saw previously that it is possible to obtain a regularized least-squares
solution x̂ε, and thereby avoid the limit cycle, using only the matrix A and
the ART algorithm. This prompts us to ask if it is possible to find regular-
ized SMART solutions using block-iterative variants of SMART. Similarly,
we wonder if it is possible to do the same for EMML.

Open Question: Can we use the MART to find the minimizer of the
function

KL(Ax, b) + εKL(x, p)? (14.49)

More generally, can we obtain the minimizer using RBI-SMART?

Open Question: Can we use the RBI-EMML methods to obtain the
minimizer of the function

KL(b, Ax) + εKL(p, x)? (14.50)
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There have been various attempts to include regularization in block-
iterative methods, to reduce noise sensitivity and avoid limit cycles; the
paper by Ahn and Fessler [2] is a good source, as is [3]. Most of these
approaches have been ad hoc, with little or no theoretical basis. Typically,
they simply modify each iterative step by including an additional term that
appears to be related to the regularizing penalty function. The case of the
ART is instructive, however. In that case, we obtained the desired iterative
algorithm by using an augmented set of variables, not simply by modifying
each step of the original ART algorithm. How to do this for the MART
and the other block-iterative algorithms is not obvious.

Recall that the RAMLA method in Equation (13.48) is similar to the
RBI-EMML algorithm, but employs a sequence of decreasing relaxation
parameters, which, if properly chosen, will cause the iterates to converge
to the minimizer of KL(b, Ax), thereby avoiding the limit cycle. In [103]
De Pierro and Yamaguchi present a regularized version of RAMLA, but
without guaranteed convergence.



Chapter 15

Block-Iterative ART

15.1 Introduction and Notation

The ART is a sequential algorithm, using only a single equation from the
system Ax = b at each step of the iteration. In this chapter we consider
iterative procedures for solving Ax = b in which several or all of the equa-
tions are used at each step. Such methods are called block-iterative and
simultaneous algorithms, respectively.

We are concerned here with iterative methods for solving, at least ap-
proximately, the system of I linear equations in J unknowns symbolized
by Ax = b. In the applications of interest to us, such as medical imaging,
both I and J are quite large, making the use of iterative methods the only
feasible approach. It is also typical of such applications that the matrix
A is sparse, that is, has relatively few non-zero entries. Therefore, itera-
tive methods that exploit this sparseness to accelerate convergence are of
special interest to us.

The algebraic reconstruction technique (ART) of Gordon, et al. [138] is
a sequential method; at each step only one equation is used. The current
vector xk−1 is projected orthogonally onto the hyperplane corresponding
to that single equation, to obtain the next iterate xk. The iterative step of
the ART is

xk
j = xk−1

j +Aij

(
bi − (Axk−1)i∑J

t=1 |Ait|2

)
, (15.1)

where i = k(mod I). The sequence {xk} converges to the solution closest
to x0 in the consistent case, but only converges subsequentially to a limit
cycle in the inconsistent case.

Cimmino’s method [87] is a simultaneous method, in which all the equa-
tions are used at each step. The current vector xk−1 is projected orthog-
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onally onto each of the hyperplanes and these projections are averaged to
obtain the next iterate xk. The iterative step of Cimmino’s method is

xk
j =

1
I

I∑
i=1

(
xk−1

j +Aij

(
bi − (Axk−1)i∑J

t=1 |Ait|2

))
,

which can also be written as

xk
j = xk−1

j +
I∑

i=1

Aij

(
bi − (Axk−1)i

I
∑J

t=1 |Ait|2

)
. (15.2)

Landweber’s iterative scheme [172] with

xk = xk−1 +B†(d−Bxk−1), (15.3)

converges to the least-squares solution of Bx = d closest to x0, provided
that the largest singular value of B does not exceed one. If we let B be the
matrix with entries

Bij = Aij/

√√√√I
J∑

t=1

|Ait|2,

and define

di = bi/

√√√√I
J∑

t=1

|Ait|2,

then, since the trace of the matrix BB† is one, convergence of Cimmino’s
method follows. However, using the trace in this way to estimate the
largest singular value of a matrix usually results in an estimate that is
far too large, particularly when A is large and sparse, and therefore in an
iterative algorithm with unnecessarily small step sizes.

The appearance of the term

I
J∑

t=1

|Ait|2

in the denominator of Cimmino’s method suggested to Censor et al. [78]
that, when A is sparse, this denominator might be replaced with

J∑
t=1

st|Ait|2,

where st denotes the number of non-zero entries in the tth column of A.
The resulting iterative method is the component-averaging (CAV) itera-
tion. Convergence of the CAV method was established by showing that no
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singular value of the matrix B exceeds one, where B has the entries

Bij = Aij/

√√√√ J∑
t=1

st|Ait|2.

In [64] we extended this result, to show that no eigenvalue of A†A exceeds
the maximum of the numbers

pi =
J∑

t=1

st|Ait|2.

Convergence of CAV then follows, as does convergence of several other
methods, including the ART, Landweber’s method, the SART [5], the
block-iterative CAV (BICAV) [79], the CARP1 method of Gordon and
Gordon [139], a block-iterative variant of CARP1 obtained from the DROP
method of Censor et al. [76], and the SIRT method [241].

For a positive integer N with 1 ≤ N ≤ I, we let B1, ..., BN be not
necessarily disjoint subsets of the set {i = 1, ..., I}; the subsets Bn are
called blocks. We then let An be the matrix and bn the vector obtained
from A and b, respectively, by removing all the rows except for those whose
index i is in the set Bn. For each n, we let snt be the number of non-zero
entries in the tth column of the matrix An, sn the maximum of the snt,
s the maximum of the st, and Ln = ρ(A†nAn) be the spectral radius, or
largest eigenvalue, of the matrix A†nAn, with L = ρ(A†A). We denote by
Ai the ith row of the matrix A, and by νi the length of Ai, so that

ν2
i =

J∑
j=1

|Aij |2.

15.2 Cimmino’s Algorithm

The ART seeks a solution of Ax = b by projecting the current vector
xk−1 orthogonally onto the next hyperplane H(ai(k), bi(k)) to get xk; here
i(k) = k(mod )I. In Cimmino’s algorithm, we project the current vector
xk−1 onto each of the hyperplanes and then average the result to get xk.
The algorithm begins at k = 1, with an arbitrary x0; the iterative step is
then

xk =
1
I

I∑
i=1

Pix
k−1, (15.4)
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where Pi is the orthogonal projection onto H(ai, bi). The iterative step can
then be written as

xk
j = xk−1

j +
1
I

I∑
i=1

(
Aij(bi − (Axk−1)i)

ν2
i

)
. (15.5)

As we saw in our discussion of the ART, when the system Ax = b has
no solutions, the ART does not converge to a single vector, but to a limit
cycle. One advantage of many simultaneous algorithms, such as Cimmino’s,
is that they do converge to the least squares solution in the inconsistent
case.

When νi = 1 for all i, Cimmino’s algorithm has the form xk+1 = Txk,
for the operator T given by

Tx = (I − 1
I
A†A)x+

1
I
A†b.

Experience with Cimmino’s algorithm shows that it is slow to converge.
In the next section we consider how we might accelerate the algorithm.

15.3 The Landweber Algorithms

For simplicity, we assume, in this section, that νi = 1 for all i. The Landwe-
ber algorithm [172, 17], with the iterative step

xk = xk−1 + γA†(b−Axk−1), (15.6)

converges to the least squares solution closest to the starting vector x0,
provided that 0 < γ < 2/λmax, where λmax is the largest eigenvalue of
the nonnegative-definite matrix A†A. Loosely speaking, the larger γ is, the
faster the convergence. However, precisely because A is large, calculating
the matrix A†A, not to mention finding its largest eigenvalue, can be pro-
hibitively expensive. The matrix A is said to be sparse if most of its entries
are zero. Useful upper bounds for λmax are then given by Theorems 15.2
and 15.3.

15.3.1 Finding the Optimum γ

The operator

Tx = x+ γA†(b−Ax) = (I − γA†A)x+ γA†b

is affine linear and is av if and only if its linear part, the Hermitian matrix

B = I − γA†A,
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is av. To guarantee this we need 0 ≤ γ < 2/λmax. Should we always try to
take γ near its upper bound, or is there an optimum value of γ? To answer
this question we consider the eigenvalues of B for various values of γ.

Lemma 15.1 If γ < 0, then none of the eigenvalues of B is less than one.

Lemma 15.2 For

0 ≤ γ ≤ 2
λmax + λmin

, (15.7)

we have

ρ(B) = 1− γλmin; (15.8)

the smallest value of ρ(B) occurs when

γ =
2

λmax + λmin
, (15.9)

and equals

λmax − λmin

λmax + λmin
. (15.10)

Similarly, for

γ ≥ 2
λmax + λmin

, (15.11)

we have

ρ(B) = γλmax − 1; (15.12)

the smallest value of ρ(B) occurs when

γ =
2

λmax + λmin
, (15.13)

and equals

λmax − λmin

λmax + λmin
. (15.14)

We see from this lemma that, if 0 ≤ γ < 2/λmax, and λmin > 0, then
‖B‖2 = ρ(B) < 1, so that B is sc. We minimize ‖B‖2 by taking

γ =
2

λmax + λmin
, (15.15)
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in which case we have

‖B‖2 =
λmax − λmin

λmax + λmin
=
c− 1
c+ 1

, (15.16)

for c = λmax/λmin, the condition number of the positive-definite matrix
A†A. The closer c is to one, the smaller the norm ‖B‖2, and the faster the
convergence.

On the other hand, if λmin = 0, then ρ(B) = 1 for all γ in the interval
(0, 2/λmax). The matrix B is still av, but it is no longer sc. For example,
consider the orthogonal projection P0 onto the hyperplane H0 = H(a, 0),
where ‖a‖2 = 1. This operator can be written

P0 = I − aa†. (15.17)

The largest eigenvalue of aa† is λmax = 1; the remaining ones are zero.
The relaxed projection operator

B = I − γaa† (15.18)

has ρ(B) = 1 − γ > 1, if γ < 0, and for γ ≥ 0, we have ρ(B) = 1. The
operator B is av, in fact, it is fne, but it is not sc.

15.3.2 The Projected Landweber Algorithm

When we require a nonnegative approximate solution x for the real system
Ax = b we can use a modified version of the Landweber algorithm, called
the projected Landweber algorithm [17], in this case having the iterative
step

xk+1 = (xk + γA†(b−Axk))+, (15.19)

where, for any real vector a, we denote by (a)+ the nonnegative vector
whose entries are those of a, for those that are nonnegative, and are zero
otherwise. The projected Landweber algorithm converges to a vector that
minimizes ‖Ax− b‖2 over all nonnegative vectors x, for the same values of
γ.

The projected Landweber algorithm is actually more general. For any
closed, nonempty convex set C in X, define the iterative sequence

xk+1 = PC(xk + γA†(b−Axk)). (15.20)

This sequence converges to a minimizer of the function ‖Ax− b‖2 over all
x in C, whenever such minimizers exist.

Both the Landweber and projected Landweber algorithms are special
cases of the CQ algorithm [59], which, in turn, is a special case of the
more general iterative fixed point algorithm, the Krasnoselskii/Mann (KM)
method, with convergence governed by the KM Theorem (see [65]).
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15.4 Some Upper Bounds for L

For the iterative algorithms we shall consider here, having a good upper
bound for the largest eigenvalue of the matrix A†A is important. In the
applications of interest, principally medical image processing, the matrix
A is large; even calculating A†A, not to mention computing eigenvalues,
is prohibitively expensive. In addition, the matrix A is typically sparse,
but A†A will not be, in general. In this section we present upper bounds
for L that are particularly useful when A is sparse and do not require the
calculation of A†A.

15.4.1 Our Basic Eigenvalue Inequality

In [241] van der Sluis and van der Vorst show that certain rescaling of
the matrix A results in none of the eigenvalues of A†A exceeding one. A
modification of their proof leads to upper bounds on the eigenvalues of the
original A†A ([64]). For any a in the interval [0, 2] let

caj = caj(A) =
I∑

i=1

|Aij |a,

rai = rai(A) =
J∑

j=1

|Aij |2−a,

and ca and ra the maxima of the caj and rai, respectively. We prove the
following theorem.

Theorem 15.1 For any a in the interval [0, 2], no eigenvalue of the matrix
A†A exceeds the maximum of

J∑
j=1

caj |Aij |2−a,

over all i, nor the maximum of

I∑
i=1

rai|Aij |a,

over all j. Therefore, no eigenvalue of A†A exceeds cara.

Proof: Let A†Av = λv, and let w = Av. Then we have

‖A†w‖2 = λ‖w‖2.
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Applying Cauchy’s Inequality, we obtain∣∣∣ I∑
i=1

Aijwi

∣∣∣2 ≤ ( I∑
i=1

|Aij |a/2|Aij |1−a/2|wi|
)2

≤
( I∑

i=1

|Aij |a
)( I∑

i=1

|Aij |2−a|wi|2
)
.

Therefore,

‖A†w‖2 ≤
J∑

j=1

(
caj(

I∑
i=1

|Aij |2−a|wi|2)
)

=
I∑

i=1

( J∑
j=1

caj |Aij |2−a
)
|wi|2

≤ max
i

( J∑
j=1

caj |Aij |2−a
)
‖w‖2.

The remaining two assertions follow in similar fashion.
As a corollary, we obtain the following eigenvalue inequality, which is

central to our discussion.

Theorem 15.2 For each i = 1, 2, ..., I, let

pi =
J∑

j=1

sj |Aij |2,

and let p be the maximum of the pi. Then L ≤ p.

Proof: Take a = 0. Then, using the convention that 00 = 0, we have
c0j = sj .

Corollary 15.1 Selecting a = 1, we have

L = ‖A‖2
2 ≤ ‖A‖1‖A‖∞ = c1r1.

Corollary 15.2 Selecting a = 2, we have

L = ‖A‖2
2 ≤ ‖A‖2

F ,

where ‖A‖F denotes the Frobenius norm of A.

Corollary 15.3 Let G be the matrix with entries

Gij = Aij
√
αi

√
βj ,

where

αi ≤
( J∑

j=1

sjβj |Aij |2
)−1

,

for all i. Then ρ(G†G) ≤ 1.
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Proof: We have

J∑
j=1

sj |Gij |2 = αi

J∑
j=1

sjβj |Aij |2 ≤ 1,

for all i. The result follows from Corollary 15.2.

Corollary 15.4 If
∑J

j=1 sj |Aij |2 ≤ 1 for all i, then L ≤ 1.

Corollary 15.5 If 0 < γi ≤ p−1
i for all i, then the matrix B with entries

Bij =
√
γiAij has ρ(B†B) ≤ 1.

Proof: We have

J∑
j=1

sj |Bij |2 = γi

J∑
j=1

sj |Aij |2 = γipi ≤ 1.

Therefore, ρ(B†B) ≤ 1, according to the theorem.

Corollary 15.6 ([59]; [240], Th. 4.2) If
∑J

j=1 |Aij |2 = 1 for each i, then
L ≤ s.

Proof: For all i we have

pi =
J∑

j=1

sj |Aij |2 ≤ s
J∑

j=1

|Aij |2 = s.

Therefore,
L ≤ p ≤ s.

Corollary 15.7 If, for some a in the interval [0, 2], we have

αi ≤ r−1
ai , (15.21)

for each i, and

βj ≤ c−1
aj , (15.22)

for each j, then, for the matrix G with entries

Gij = Aij
√
αi

√
βj ,

no eigenvalue of G†G exceeds one.
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Proof: We calculate caj(G) and rai(G) and find that

caj(G) ≤
(

max
i
α

a/2
i

)
β

a/2
j

I∑
i=1

|Aij |a =
(

max
i
α

a/2
i

)
β

a/2
j caj(A),

and
rai(G) ≤

(
max

j
β

1−a/2
j

)
α

1−a/2
i rai(A).

Therefore, applying the inequalities (15.21) and (15.22), we have

caj(G)rai(G) ≤ 1,

for all i and j. Consequently, ρ(G†G) ≤ 1.

15.4.2 Another Upper Bound for L

The next theorem ([59]) provides another upper bound for L that is useful
when A is sparse. As previously, for each i and j, we let eij = 1, if Aij is not

zero, and eij = 0, if Aij = 0. Let 0 < νi =
√∑J

j=1 |Aij |2, σj =
∑I

i=1 eijν
2
i ,

and σ be the maximum of the σj .

Theorem 15.3 ([59]) No eigenvalue of A†A exceeds σ.

Proof: Let A†Av = cv, for some non-zero vector v and scalar c. With
w = Av, we have

w†AA†w = cw†w.

Then∣∣∣ I∑
i=1

Aijwi

∣∣∣2 =
∣∣∣ I∑

i=1

Aijeijνi
wi

νi

∣∣∣2 ≤ ( I∑
i=1

|Aij |2
|wi|2

ν2
i

)( I∑
i=1

ν2
i eij

)

=
( I∑

i=1

|Aij |2
|wi|2

ν2
i

)
σj ≤ σ

( I∑
i=1

|Aij |2
|wi|2

ν2
i

)
.

Therefore, we have

cw†w = w†AA†w =
J∑

j=1

∣∣∣ I∑
i=1

Aijwi

∣∣∣2

≤ σ
J∑

j=1

( I∑
i=1

|Aij |2
|wi|2

ν2
i

)
= σ

I∑
i=1

|wi|2 = σw†w.

We conclude that c ≤ σ.
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Corollary 15.8 Let the rows of A have Euclidean length one. Then no
eigenvalue of A†A exceeds the maximum number of non-zero entries in any
column of A.

Proof: We have ν2
i =

∑J
j=1 |Aij |2 = 1, for each i, so that σj = sj is

the number of non-zero entries in the jth column of A, and σ = s is the
maximum of the σj .

When the rows of A have length one, it is easy to see that L ≤ I, so
the choice of γ = 1

I in the Landweber algorithm, which gives Cimmino’s
algorithm [87], is acceptable, although perhaps much too small.

The proof of Theorem 15.3 is based on results presented by Arnold Lent
in informal discussions with Gabor Herman, Yair Censor, Rob Lewitt and
me at MIPG in Philadelphia in the late 1990’s.

15.5 The Basic Convergence Theorem

The following theorem is a basic convergence result concerning block-iterative
ART algorithms.

Theorem 15.4 Let Ln ≤ 1, for n = 1, 2, ..., N . If the system Ax = b is
consistent, then, for any starting vector x0, and with n = n(k) = k(modN)
and λk ∈ [ε, 2− ε] for all k, the sequence {xk} with iterative step

xk = xk−1 + λkA
†
n(bn −Anx

k−1) (15.23)

converges to the solution of Ax = b for which ‖x− x0‖ is minimized.

We begin with the following lemma.

Lemma 15.3 Let T be any (not necessarily linear) operator on RJ , and
S = I − T , where I denotes the identity operator. Then, for any x and y,
we have

‖x− y‖2 − ‖Tx− Ty‖2 = 2〈Sx− Sy, x− y〉 − ‖Sx− Sy‖2. (15.24)

The proof is a simple calculation and we omit it here.
Proof of Theorem 15.4: Let Az = b. Applying Equation (15.24) to the
operator

Tx = x+ λkA
†
n(bn −Anx),

we obtain

‖z − xk−1‖2 − ‖z − xk‖2 = 2λk‖bn −Anx
k−1‖2 − λ2

k‖A†nbn −A†nAnx
k−1‖2.

(15.25)
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Since Ln ≤ 1, it follows that

‖A†nbn −A†nAnx
k−1‖2 ≤ ‖bn −Anx

k−1‖2.

Therefore,

‖z − xk−1‖2 − ‖z − xk‖2 ≥ (2λk − λ2
k)‖bn −Anx

k−1‖2,

from which we draw several conclusions:

• the sequence {‖z − xk‖} is decreasing;

• the sequence {‖bn −Anx
k−1‖} converges to zero.

In addition, for fixed n = 1, ..., N and m→∞,

• the sequence {‖bn −Anx
mN+n−1‖} converges to zero;

• the sequence {xmN+n} is bounded.

Let x∗,1 be a cluster point of the sequence {xmN+1}; then there is sub-
sequence {xmrN+1} converging to x∗,1. The sequence {xmrN+2} is also
bounded, and we select a cluster point x∗,2. Continuing in this fashion, we
obtain cluster points x∗,n, for n = 1, ..., N . From the conclusions reached
previously, we can show that x∗,n = x∗,n+1 = x∗, for n = 1, 2, ..., N − 1,
and Ax∗ = b. Replacing the generic solution x̂ with the solution x∗, we
see that the sequence {‖x∗ − xk‖} is decreasing. But, subsequences of this
sequence converge to zero, so the entire sequence converges to zero, and so
xk → x∗.

Now we show that x∗ is the solution of Ax = b that minimizes ‖x−x0‖.
Since xk − xk−1 is in the range of A† for all k, so is x∗ − x0, from which it
follows that x∗ is the solution minimizing ‖x−x0‖. Another way to get this
result is to use Equation (15.25). Since the right side of Equation (15.25)
is independent of the choice of solution, so is the left side. Summing both
sides over the index k reveals that the difference

‖x− x0‖2 − ‖x− x∗‖2

is independent of the choice of solution. Consequently, minimizing ‖x−x0‖
over all solutions x is equivalent to minimizing ‖x− x∗‖ over all solutions
x; the solution to the latter problem is clearly x = x∗.

15.6 Simultaneous Iterative Algorithms

In this section we apply the previous theorems to obtain convergence of
several simultaneous iterative algorithms for linear systems.



15.6. SIMULTANEOUS ITERATIVE ALGORITHMS 177

15.6.1 The General Simultaneous Iterative Scheme

In this section we are concerned with simultaneous iterative algorithms
having the following iterative step:

xk
j = xk−1

j + λk

I∑
i=1

γijAij(bi − (Axk−1)i), (15.26)

with λk ∈ [ε, 1] and the choices of the parameters γij that guarantee con-
vergence. Although we cannot prove convergence for this most general
iterative scheme, we are able to prove the following theorems for the sepa-
rable case of γij = αiβj .

Theorem 15.5 If, for some a in the interval [0, 2], we have

αi ≤ r−1
ai , (15.27)

for each i, and

βj ≤ c−1
aj , (15.28)

for each j, then the sequence {xk} given by Equation (15.26) converges to
the minimizer of the proximity function

I∑
i=1

αi|bi − (Ax)i|2

for which
J∑

j=1

β−1
j |xj − x0

j |2

is minimized.

Proof: For each i and j, let

Gij =
√
αi

√
βjAij ,

zj = xj/
√
βj ,

and
di =

√
αibi.

Then Ax = b if and only if Gz = d. From Corollary 15.7 we have that
ρ(G†G) ≤ 1. Convergence then follows from Theorem 15.4.
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Corollary 15.9 Let γij = αiβj, for positive αi and βj. If

αi ≤
( J∑

j=1

sjβj |Aij |2
)−1

, (15.29)

for each i, then the sequence {xk} in (15.26) converges to the minimizer of
the proximity function

I∑
i=1

αi|bi − (Ax)i|2

for which
J∑

j=1

β−1
j |xj − x0

j |2

is minimized.

Proof: We know from Corollary 15.3 that ρ(G†G) ≤ 1.

15.6.2 Some Convergence Results

We obtain convergence for several known algorithms as corollaries to the
previous theorems.

The SIRT Algorithm:

Corollary 15.10 ([241]) For some a in the interval [0, 2] let αi = r−1
ai and

βj = c−1
aj . Then the sequence {xk} in (15.26) converges to the minimizer

of the proximity function

I∑
i=1

αi|bi − (Ax)i|2

for which
J∑

j=1

β−1
j |xj − x0

j |2

is minimized.

For the case of a = 1, the iterative step becomes

xk
j = xk−1

j +
I∑

i=1

(
Aij(bi − (Axk−1)i)

(
∑J

t=1 |Ait|)(
∑I

m=1 |Amj |)

)
,

which was considered in [145]. The SART algorithm [5] is a special case,
in which it is assumed that Aij ≥ 0, for all i and j.
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The CAV Algorithm:

Corollary 15.11 If βj = 1 and αi satisfies

0 < αi ≤
( J∑

j=1

sj |Aij |2
)−1

,

for each i, then the algorithm with the iterative step

xk = xk−1 + λk

I∑
i=1

αi(bi − (Axk−1)i)A
†
i (15.30)

converges to the minimizer of

I∑
i=1

αi|bi − (Axk−1)i|2

for which ‖x− x0‖ is minimized.

When

αi =
( J∑

j=1

sj |Aij |2
)−1

,

for each i, this is the relaxed component-averaging (CAV) method of Censor
et al. [78].

The Landweber Algorithm: When βj = 1 and αi = α for all i and j,
we have the relaxed Landweber algorithm. The convergence condition in
Equation (15.21) becomes

α ≤
( J∑

j=1

sj |Aij |2
)−1

= p−1
i

for all i, so α ≤ p−1 suffices for convergence. Actually, the sequence {xk}
converges to the minimizer of ‖Ax− b‖ for which the distance ‖x− x0‖ is
minimized, for any starting vector x0, when 0 < α < 1/L. Easily obtained
estimates of L are usually over-estimates, resulting in overly conservative
choices of α. For example, if A is first normalized so that

∑J
j=1 |Aij |2 = 1

for each i, then the trace of A†A equals I, which tells us that L ≤ I. But
this estimate, which is the one used in Cimmino’s method [87], is far too
large when A is sparse.

The Simultaneous DROP Algorithm:
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Corollary 15.12 Let 0 < wi ≤ 1,

αi = wiν
−2
i = wi

( J∑
j=1

|Aij |2
)−1

and βj = s−1
j , for each i and j. Then the simultaneous algorithm with the

iterative step

xk
j = xk−1

j + λk

I∑
i=1

(
wiAij(bi − (Axk−1)i)

sjν2
i

)
, (15.31)

converges to the minimizer of the function

I∑
i=1

∣∣∣∣∣wi(bi − (Ax)i)
νi

∣∣∣∣∣
2

for which the function
J∑

j=1

sj |xj − x0
j |2

is minimized.

For wi = 1, this is the CARP1 algorithm of [139] (see also [106, 78, 79]).
The simultaneous DROP algorithm of [76] requires only that the weights
wi be positive, but dividing each wi by their maximum, maxi{wi}, while
multiplying each λk by the same maximum, gives weights in the interval
(0, 1]. For convergence of their algorithm, we need to replace the condition
λk ≤ 2− ε with λk ≤ 2−ε

maxi{wi} .
The denominator in CAV is

J∑
t=1

st|Ait|2,

while that in CARP1 is

sj

J∑
t=1

|Ait|2.

It was reported in [139] that the two methods differed only slightly in the
simulated cases studied.

15.7 Block-iterative Algorithms

The methods discussed in the previous section are simultaneous, that is,
all the equations are employed at each step of the iteration. We turn now
to block-iterative methods, which employ only some of the equations at
each step. When the parameters are appropriately chosen, block-iterative
methods can be significantly faster than simultaneous ones.
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15.7.1 The Block-Iterative Landweber Algorithm

For a given set of blocks, the block-iterative Landweber algorithm has the
following iterative step: with n = k(modN),

xk = xk−1 + γnA
†
n(bn −Anx

k−1). (15.32)

The sequence {xk} converges to the solution of Ax = b that minimizes
‖x − x0‖, whenever the system Ax = b has solutions, provided that the
parameters γn satisfy the inequalities 0 < γn < 1/Ln. This follows from
Theorem 15.4 by replacing the matrices An with

√
γnAn and the vectors

bn with
√
γnb

n.
If the rows of the matrices An are normalized to have length one, then

we know that Ln ≤ sn. Therefore, we can use parameters γn that satisfy

0 < γn ≤
(
sn

J∑
j=1

|Aij |2
)−1

, (15.33)

for each i ∈ Bn.

15.7.2 The BICAV Algorithm

We can extend the block-iterative Landweber algorithm as follows: let
n = k(modN) and

xk = xk−1 + λk

∑
i∈Bn

γi(bi − (Axk−1)i)A
†
i . (15.34)

It follows from Theorem 15.2 that, in the consistent case, the sequence {xk}
converges to the solution of Ax = b that minimizes ‖x−x0‖, provided that,
for each n and each i ∈ Bn, we have

γi ≤
( J∑

j=1

snj |Aij |2
)−1

.

The BICAV algorithm [79] uses

γi =
( J∑

j=1

snj |Aij |2
)−1

.

The iterative step of BICAV is

xk = xk−1 + λk

∑
i∈Bn

(
bi − (Axk−1)i∑J

t=1 snt|Ait|2

)
A†i . (15.35)
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15.7.3 A Block-Iterative CARP1

The obvious way to obtain a block-iterative version of CARP1 would be to
replace the denominator term

sj

J∑
t=1

|Ait|2

with

snj

J∑
t=1

|Ait|2.

However, this is problematic, since we cannot redefine the vector of un-
knowns using zj = xj

√
snj , since this varies with n. In [76], this issue is

resolved by taking τj to be not less than the maximum of the snj , and
using the denominator

τj

J∑
t=1

|Ait|2 = τjν
2
i .

A similar device is used in [160] to obtain a convergent block-iterative
version of SART. The iterative step of DROP is

xk
j = xk−1

j + λk

∑
i∈Bn

(
Aij

(bi − (Axk−1)i)
τjν2

i

)
. (15.36)

Convergence of the DROP (diagonally-relaxed orthogonal projection)
iteration follows from their Theorem 11. We obtain convergence as a corol-
lary of our previous results.

The change of variables is zj = xj
√
τj , for each j. Using our eigenvalue

bounds, it is easy to show that the matrices Cn with entries

(Cn)ij =

(
Aij√
τjνi

)
,

for all i ∈ Bn and all j, have ρ(C†nCn) ≤ 1. The resulting iterative scheme,
which is equivalent to Equation (15.36), then converges, whenever Ax = b
is consistent, to the solution minimizing the proximity function

I∑
i=1

∣∣∣∣∣bi − (Ax)i

νi

∣∣∣∣∣
2

for which the function
J∑

j=1

τj |xj − x0
j |2

is minimized.
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15.7.4 Using Sparseness

Suppose, for the sake of illustration, that each column of A has s non-zero
elements, for some s < I, and we let r = s/I. Suppose also that the number
of members of Bn is In = I/N for each n, and that N is not too large.
Then sn is approximately equal to rIn = s/N . On the other hand, unless
An has only zero entries, we know that sn ≥ 1. Therefore, it is no help to
select N for which s/N < 1. For a given degree of sparseness s we need not
select N greater than s. The more sparse the matrix A, the fewer blocks
we need to gain the maximum advantage from the rescaling, and the more
we can benefit from parallelization in the calculations at each step of the
algorithm in Equation (15.23).

15.8 Exercises

Exercise 15.1 Prove Lemma 15.1.

Exercise 15.2 (Computer Problem) Compare the speed of convergence
of the ART and Cimmino algorithms.

Exercise 15.3 (Computer Problem) By generating sparse matrices of
various sizes, test the accuracy of the estimates of the largest singular-value
given above.
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Chapter 16

The Split Feasibility
Problem

The split feasibility problem (SFP) [74] is to find c ∈ C with Ac ∈ Q, if such
points exist, where A is a real I by J matrix and C and Q are nonempty,
closed convex sets in RJ and RI , respectively. In this chapter we discuss
the CQ algorithm for solving the SFP, as well as recent extensions and
applications.

16.1 The CQ Algorithm

In [59] the CQ algorithm for solving the SFP was presented, for the real
case. It has the iterative step

xk+1 = PC(xk − γAT (I − PQ)Axk), (16.1)

where I is the identity operator and γ ∈ (0, 2/ρ(ATA)), for ρ(ATA) the
spectral radius of the matrix ATA, which is also its largest eigenvalue. The
CQ algorithm can be extended to the complex case, in which the matrix A
has complex entries, and the sets C and Q are in CJ and CI , respectively.
The iterative step of the extended CQ algorithm is then

xk+1 = PC(xk − γA†(I − PQ)Axk). (16.2)

The CQ algorithm converges to a solution of the SFP, for any starting
vector x0, whenever the SFP has solutions. When the SFP has no solutions,
the CQ algorithm converges to a minimizer of the function

f(x) =
1
2
||PQAx−Ax||22

185
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over the set C, provided such constrained minimizers exist [60]. The CQ al-
gorithm employs the relaxation parameter γ in the interval (0, 2/L), where
L is the largest eigenvalue of the matrix ATA. Choosing the best relaxation
parameter in any algorithm is a nontrivial procedure. Generally speaking,
we want to select γ near to 1/L. If A is normalized so that each row has
length one, then the spectral radius of ATA does not exceed the maximum
number of nonzero elements in any column of A. A similar upper bound
on ρ(ATA) can be obtained for non-normalized, ε-sparse A.

16.2 Particular Cases of the CQ Algorithm

It is easy to find important examples of the SFP: if C ⊆ RJ and Q = {b}
then solving the SFP amounts to solving the linear system of equations
Ax = b; if C is a proper subset of RJ , such as the nonnegative cone, then
we seek solutions of Ax = b that lie within C, if there are any. Generally,
we cannot solve the SFP in closed form and iterative methods are needed.

A number of well known iterative algorithms, such as the Landweber
[172] and projected Landweber methods (see [17]), are particular cases of
the CQ algorithm.

16.2.1 The Landweber algorithm

With x0 arbitrary and k = 0, 1, ... let

xk+1 = xk + γAT (b−Axk). (16.3)

This is the Landweber algorithm.

16.2.2 The Projected Landweber Algorithm

For a general nonempty closed convex C, x0 arbitrary, and k = 0, 1, ..., the
projected Landweber method for finding a solution of Ax = b in C has the
iterative step

xk+1 = PC(xk + γAT (b−Axk)). (16.4)

16.2.3 Convergence of the Landweber Algorithms

From the convergence theorem for the CQ algorithm it follows that the
Landweber algorithm converges to a solution of Ax = b and the projected
Landweber algorithm converges to a solution of Ax = b in C, whenever
such solutions exist. When there are no solutions of the desired type, the
Landweber algorithm converges to a least squares approximate solution
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of Ax = b, while the projected Landweber algorithm will converge to a
minimizer, over the set C, of the function ||b − Ax||2, whenever such a
minimizer exists.

16.2.4 The Simultaneous ART (SART)

Another example of the CQ algorithm is the simultaneous algebraic recon-
struction technique (SART) [5] for solving Ax = b, for nonnegative matrix
A. Let A be an I by J matrix with nonnegative entries. Let Ai+ > 0 be
the sum of the entries in the ith row of A and A+j > 0 be the sum of the
entries in the jth column of A. Consider the (possibly inconsistent) system
Ax = b. The SART algorithm has the following iterative step:

xk+1
j = xk

j +
1
A+j

∑I

i=1
Aij(bi − (Axk)i)/Ai+.

We make the following changes of variables:

Bij = Aij/(Ai+)1/2(A+j)1/2,

zj = xj(A+j)1/2,

and
ci = bi/(Ai+)1/2.

Then the SART iterative step can be written as

zk+1 = zk +BT (c−Bzk).

This is a particular case of the Landweber algorithm, with γ = 1. The
convergence of SART follows from that of the CQ algorithm, once we know
that the largest eigenvalue of BTB is less than two; in fact, we show that
it is one [59].

If BTB had an eigenvalue greater than one and some of the entries of A
are zero, then, replacing these zero entries with very small positive entries,
we could obtain a new A whose associated BTB also had an eigenvalue
greater than one. Therefore, we assume, without loss of generality, that A
has all positive entries. Since the new BTB also has only positive entries,
this matrix is irreducible and the Perron-Frobenius Theorem applies. We
shall use this to complete the proof.

Let u = (u1, ..., uJ)T with uj = (A+j)1/2 and v = (v1, ..., vI)T , with vi =
(Ai+)1/2. Then we have Bu = v and BT v = u; that is, u is an eigenvector
of BTB with associated eigenvalue equal to one, and all the entries of u
are positive, by assumption. The Perron-Frobenius theorem applies and
tells us that the eigenvector associated with the largest eigenvalue has all
positive entries. Since the matrix BTB is symmetric its eigenvectors are
orthogonal; therefore u itself must be an eigenvector associated with the
largest eigenvalue of BTB. The convergence of SART follows.
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16.2.5 Application of the CQ Algorithm in Dynamic
ET

To illustrate how an image reconstruction problem can be formulated as
a SFP, we consider briefly emission computed tomography (ET) image re-
construction. The objective in ET is to reconstruct the internal spatial
distribution of intensity of a radionuclide from counts of photons detected
outside the patient. In static ET the intensity distribution is assumed con-
stant over the scanning time. Our data are photon counts at the detectors,
forming the positive vector b and we have a matrix A of detection proba-
bilities; our model is Ax = b, for x a nonnegative vector. We could then
take Q = {b} and C = RN

+ , the nonnegative cone in RN .
In dynamic ET [118] the intensity levels at each voxel may vary with

time. The observation time is subdivided into, say, T intervals and one
static image, call it xt, is associated with the time interval denoted by t,
for t = 1, ..., T . The vector x is the concatenation of these T image vectors
xt. The discrete time interval at which each data value is collected is also
recorded and the problem is to reconstruct this succession of images.

Because the data associated with a single time interval is insufficient, by
itself, to generate a useful image, one often uses prior information concern-
ing the time history at each fixed voxel to devise a model of the behavior
of the intensity levels at each voxel, as functions of time. One may, for
example, assume that the radionuclide intensities at a fixed voxel are in-
creasing with time, or are concave (or convex) with time. The problem
then is to find x ≥ 0 with Ax = b and Dx ≥ 0, where D is a matrix chosen
to describe this additional prior information. For example, we may wish to
require that, for each fixed voxel, the intensity is an increasing function of
(discrete) time; then we want

xt+1
j − xt

j ≥ 0,

for each t and each voxel index j. Or, we may wish to require that the
intensity at each voxel describes a concave function of time, in which case
nonnegative second differences would be imposed:

(xt+1
j − xt

j)− (xt+2
j − xt+1

j ) ≥ 0.

In either case, the matrix D can be selected to include the left sides of
these inequalities, while the set Q can include the nonnegative cone as one
factor.

16.2.6 More on the CQ Algorithm

One of the obvious drawbacks to the use of the CQ algorithm is that we
would need the projections PC and PQ to be easily calculated. Several
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authors have offered remedies for that problem, using approximations of the
convex sets by the intersection of hyperplanes and orthogonal projections
onto those hyperplanes [249].
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Chapter 17

Conjugate-Direction
Methods

Finding the least-squares solution of a possibly inconsistent system of linear
equations Ax = b is equivalent to minimizing the quadratic function f(x) =
1
2 ||Ax − b||22 and so can be viewed within the framework of optimization.
Iterative optimization methods can then be used to provide, or at least
suggest, algorithms for obtaining the least-squares solution. The conjugate
gradient method is one such method.

17.1 Iterative Minimization

Iterative methods for minimizing a real-valued function f(x) over the vector
variable x usually take the following form: having obtained xk−1, a new
direction vector dk is selected, an appropriate scalar αk > 0 is determined
and the next member of the iterative sequence is given by

xk = xk−1 + αkd
k. (17.1)

Ideally, one would choose the αk to be the value of α for which the function
f(xk−1+αdk) is minimized. It is assumed that the direction dk is a descent
direction; that is, for small positive α the function f(xk−1 +αdk) is strictly
decreasing. Finding the optimal value of α at each step of the iteration is
difficult, if not impossible, in most cases, and approximate methods, using
line searches, are commonly used.

Exercise 17.1 Differentiate the function f(xk−1+αdk) with respect to the
variable α to show that

∇f(xk) · dk = 0. (17.2)

191
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Since the gradient ∇f(xk) is orthogonal to the previous direction vector
dk and also because −∇f(x) is the direction of greatest decrease of f(x),
the choice of dk+1 = −∇f(xk) as the next direction vector is a reasonable
one. With this choice we obtain Cauchy’s steepest descent method [183]:

xk+1 = xk − αk+1∇f(xk).

The steepest descent method need not converge in general and even when
it does, it can do so slowly, suggesting that there may be better choices
for the direction vectors. For example, the Newton-Raphson method [194]
employs the following iteration:

xk+1 = xk −∇2f(xk)−1∇f(xk),

where ∇2f(x) is the Hessian matrix for f(x) at x. To investigate further
the issues associated with the selection of the direction vectors, we consider
the more tractable special case of quadratic optimization.

17.2 Quadratic Optimization

Let A be an arbitrary real I by J matrix. The linear system of equations
Ax = b need not have any solutions, and we may wish to find a least-squares
solution x = x̂ that minimizes

f(x) =
1
2
||b−Ax||22. (17.3)

The vector b can be written

b = Ax̂+ ŵ,

where AT ŵ = 0 and a least squares solution is an exact solution of the
linear system Qx = c, with Q = ATA and c = AT b. We shall assume
that Q is invertible and there is a unique least squares solution; this is the
typical case.

We consider now the iterative scheme described by Equation (17.1) for
f(x) as in Equation (17.3). For this f(x) the gradient becomes

∇f(x) = Qx− c.

The optimal αk for the iteration can be obtained in closed form.

Exercise 17.2 Show that the optimal αk is

αk =
rk · dk

dk ·Qdk
, (17.4)

where rk = c−Qxk−1.
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Exercise 17.3 Let ||x||2Q = x ·Qx denote the square of the Q-norm of x.
Show that

||x̂− xk−1||2Q − ||x̂− xk||2Q = (rk · dk)2/dk ·Qdk ≥ 0

for any direction vectors dk.

If the sequence of direction vectors {dk} is completely general, the iter-
ative sequence need not converge. However, if the set of direction vectors
is finite and spans RJ and we employ them cyclically, convergence follows.

Theorem 17.1 Let {d1, ..., dJ} be any finite set whose span is all of RJ .
Let αk be chosen according to Equation (17.4). Then, for k = 0, 1, ...,
j = k(modJ) + 1, and any x0, the sequence defined by

xk = xk−1 + αkd
j

converges to the least squares solution.

Proof: The sequence {||x̂ − xk||2Q} is decreasing and, therefore, the se-
quence {(rk · dk)2/dk · Qdk must converge to zero. Therefore, the vectors
xk are bounded, and for each j = 1, ..., J , the subsequences {xmJ+j , m =
0, 1, ...} have cluster points, say x∗,j with

x∗,j = x∗,j−1 +
(c−Qx∗,j−1) · dj

dj ·Qdj
dj .

Since
rmJ+j · dj → 0,

it follows that, for each j = 1, ..., J ,

(c−Qx∗,j) · dj = 0.

Therefore,
x∗,1 = ... = x∗,J = x∗

with Qx∗ = c. Consequently, x∗ is the least squares solution and the
sequence {||x∗−xk||Q} is decreasing. But a subsequence converges to zero;
therefore, {||x∗ − xk||Q} → 0. This completes the proof.

There is an interesting corollary to this theorem that pertains to a mod-
ified version of the ART algorithm. For k = 0, 1, ... and i = k(modM) + 1
and with the rows of A normalized to have length one, the ART iterative
step is

xk+1 = xk + (bi − (Axk)i)ai,
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where ai is the ith column of AT . When Ax = b has no solutions, the
ART algorithm does not converge to the least-squares solution; rather,
it exhibits subsequential convergence to a limit cycle. However, using the
previous theorem, we can show that the following modification of the ART,
which we shall call the least squares ART (LS-ART), converges to the least-
squares solution for every x0:

xk+1 = xk +
rk+1 · ai

ai ·Qai
ai.

In the quadratic case the steepest descent iteration has the form

xk = xk−1 +
rk · rk

rk ·Qrk
rk.

We have the following result.

Theorem 17.2 The steepest descent method converges to the least-squares
solution.

Proof: As in the proof of the previous theorem, we have

||x̂− xk−1||2Q − ||x̂− xk||2Q = (rk · dk)2/dk ·Qdk ≥ 0,

where now the direction vectors are dk = rk. So, the sequence {||x̂−xk||2Q}
is decreasing, and therefore the sequence {(rk ·rk)2/rk ·Qrk} must converge
to zero. The sequence {xk} is bounded; let x∗ be a cluster point. It follows
that c − Qx∗ = 0, so that x∗ is the least-squares solution x̂. The rest of
the proof follows as in the proof of the previous theorem.

17.3 Conjugate Bases for RJ

If the set {v1, ..., vJ} is a basis for RJ , then any vector x in RJ can be
expressed as a linear combination of the basis vectors; that is, there are
real numbers a1, ..., aJ for which

x = a1v
1 + a2v

2 + ...+ aJv
J .

For each x the coefficients aj are unique. To determine the aj we write

x · vm = a1v
1 · vm + a2v

2 · vm + ...+ aJv
J · vm,

for m = 1, ...,M . Having calculated the quantities x · vm and vj · vm, we
solve the resulting system of linear equations for the aj .

If the set {u1, ..., uM} is an orthogonal basis, that is, then uj · um = 0,
unless j = m, then the system of linear equations is now trivial to solve.
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The solution is aj = x · uj/uj · uj , for each j. Of course, we still need to
compute the quantities x · uj .

The least-squares solution of the linear system of equations Ax = b is

x̂ = (ATA)−1AT b = Q−1c.

To express x̂ as a linear combination of the members of an orthogonal basis
{u1, ..., uJ} we need the quantities x̂ ·uj , which usually means that we need
to know x̂ first. For a special kind of basis, a Q-conjugate basis, knowing x̂
ahead of time is not necessary; we need only know Q and c. Therefore, we
can use such a basis to find x̂. This is the essence of the conjugate gradient
method (CGM), in which we calculate a conjugate basis and, in the process,
determine x̂.

17.3.1 Conjugate Directions

From Equation (17.2) we have

(c−Qxk+1) · dk = 0,

which can be expressed as

(x̂− xk+1) ·Qdk = (x̂− xk+1)TQdk = 0.

Two vectors x and y are said to be Q-orthogonal (or Q-conjugate, or just
conjugate), if x · Qy = 0. So, the least-squares solution that we seek lies
in a direction from xk+1 that is Q-orthogonal to dk. This suggests that
we can do better than steepest descent if we take the next direction to be
Q-orthogonal to the previous one, rather than just orthogonal. This leads
us to conjugate direction methods.

Exercise 17.4 Say that the set {p1, ..., pn} is a conjugate set for RJ if
pi · Qpj = 0 for i 6= j. Prove that a conjugate set that does not contain
zero is linearly independent. Show that if pn 6= 0 for n = 1, ..., J , then the
least-squares vector x̂ can be written as

x̂ = a1p
1 + ...+ aJp

J ,

with aj = c ·pj/pj ·Qpj for each j. Hint: use the Q-inner product 〈x, y〉Q =
x ·Qy.

Therefore, once we have a conjugate basis, computing the least squares
solution is trivial. Generating a conjugate basis can obviously be done
using the standard Gram-Schmidt approach.
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17.3.2 The Gram-Schmidt Method

Let {v1, ..., vJ} be a linearly independent set of vectors in the space RM ,
where J ≤ M . The Gram-Schmidt method uses the vj to create an or-
thogonal basis {u1, ..., uJ} for the span of the vj . Begin by taking u1 = v1.
For j = 2, ..., J , let

uj = vj − u1 · vj

u1 · u1
u1 − ...− uj−1 · vj

uj−1 · uj−1
uj−1.

To apply this approach to obtain a conjugate basis, we would simply replace
the dot products uk · vj and uk · uk with the Q-inner products, that is,

pj = vj − p1 ·Qvj

p1 ·Qp1
p1 − ...− pj−1 ·Qvj

pj−1 ·Qpj−1
pj−1. (17.5)

Even though the Q-inner products can always be written as x·Qy = Ax·Ay,
so that we need not compute the matrix Q, calculating a conjugate basis
using Gram-Schmidt is not practical for large J . There is a way out,
fortunately.

If we take p1 = v1 and vj = Qpj−1, we have a much more efficient
mechanism for generating a conjugate basis, namely a three-term recursion
formula [183]. The set {p1, Qp1, ..., QpJ−1} need not be a linearly indepen-
dent set, in general, but, if our goal is to find x̂, and not really to calculate
a full conjugate basis, this does not matter, as we shall see.

Theorem 17.3 Let p1 6= 0 be arbitrary. Let p2 be given by

p2 = Qp1 − Qp1 ·Qp1

p1 ·Qp1
p1,

so that p2 ·Qp1 = 0. Then, for n ≥ 2, let pn+1 be given by

pn+1 = Qpn − Qpn ·Qpn

pn ·Qpn
pn − Qpn−1 ·Qpn

pn−1 ·Qpn−1
pn−1. (17.6)

Then, the set {p1, ..., pJ} is a conjugate set for RJ . If pn 6= 0 for each n,
then the set is a conjugate basis for RJ .

Proof: We consider the induction step of the proof. Assume that {p1, ..., pn}
is a Q-orthogonal set of vectors; we then show that {p1, ..., pn+1} is also,
provided that n ≤ J − 1. It is clear from Equation (17.6) that

pn+1 ·Qpn = pn+1 ·Qpn−1 = 0.

For j ≤ n− 2, we have

pn+1 ·Qpj = pj ·Qpn+1 = pj ·Q2pn − apj ·Qpn − bpj ·Qpn−1,
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for constants a and b. The second and third terms on the right side are
then zero because of the induction hypothesis. The first term is also zero
since

pj ·Q2pn = (Qpj) ·Qpn = 0

because Qpj is in the span of {p1, ..., pj+1}, and so is Q-orthogonal to pn.

The calculations in the three-term recursion formula Equation (17.6)
also occur in the Gram-Schmidt approach in Equation (17.5); the point is
that Equation (17.6) uses only the first three terms, in every case.

17.4 The Conjugate Gradient Method

The main idea in the conjugate gradient method (CGM) is to build the
conjugate set as we calculate the least squares solution using the iterative
algorithm

xn = xn−1 + αnp
n. (17.7)

The αn is chosen so as to minimize the function of α defined by f(xn−1 +
αpn), and so we have

αn =
rn · pn

pn ·Qpn
,

where rn = c − Qxn−1. Since the function f(x) = 1
2 ||Ax − b||22 has for

its gradient ∇f(x) = AT (Ax − b) = Qx − c, the residual vector rn =
c − Qxn−1 is the direction of steepest descent from the point x = xn−1.
The CGM combines the use of the negative gradient directions from the
steepest descent method with the use of a conjugate basis of directions, by
using the rn+1 to construct the next direction pn+1 in such a way as to
form a conjugate set {p1, ..., p

J}.
As before, there is an efficient recursive formula that provides the next

direction: let p1 = r1 = (c−Qx0) and

pn+1 = rn+1 − rn+1 ·Qpn

pn ·Qpn
pn. (17.8)

Since the αn is the optimal choice and

rn+1 = −∇f(xn),

we have, according to Equation (17.2),

rn+1 · pn = 0.

Exercise 17.5 Prove that rn+1 = 0 whenever pn+1 = 0, in which case we
have c = Qxn, so that xn is the least-squares solution.
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In theory, the CGM converges to the least squares solution in finitely
many steps, since we either reach pn+1 = 0 or n+ 1 = J . In practice, the
CGM can be employed as a fully iterative method by cycling back through
the previously used directions.

An induction proof similar to the one used to prove Theorem 17.3 es-
tablishes that the set {p1, ..., pJ} is a conjugate set [183, 194]. In fact, we
can say more.

Theorem 17.4 For n = 1, 2, ..., J and j = 1, ..., n−1 we have a) rn·rj = 0;
b) rn · pj = 0; and c) pn ·Qpj = 0.

The proof presented here through a series of exercises is based on that given
in [194].

The proof uses induction on the number n. Throughout the following
exercises assume that the statements in the theorem hold for some n < J .
We prove that they hold also for n+ 1.

Exercise 17.6 Use the fact that

rj+1 = rj − αjQp
j ,

to show that Qpj is in the span of the vectors rj and rj+1.

Exercise 17.7 Show that rn+1 · rn = 0. Hint: establish that

αn =
rn · rn

pn ·Qpn
.

Exercise 17.8 Show that rn+1 · rj = 0, for j = 1, ..., n− 1. Hint: use the
induction hypothesis.

Exercise 17.9 Show that rn+1 · pj = 0, for j = 1, ..., n. Hint: first,
establish that

pj = rj − βj−1p
j−1,

where

βj−1 =
rj ·Qpj−1

pj−1 ·Qpj−1
,

and
rn+1 = rn − αnQp

n.

Exercise 17.10 Show that pn+1 ·Qpj = 0, for j = 1, ..., n− 1. Hint: use

Qpj = α−1
j (rj − rj+1).

The final step in the proof is contained in the following exercise.
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Exercise 17.11 Show that pn+1 ·Qpn = 0. Hint: establish that

βn = −r
n+1 · rn+1

rn · rn
.

The convergence rate of the CGM depends on the condition number of
the matrix Q, which is the ratio of its largest to its smallest eigenvalues.
When the condition number is much greater than one convergence can be
accelerated by preconditioning the matrix Q; this means replacing Q with
P−1/2QP−1/2, for some positive-definite approximation P of Q (see [7]).

There are versions of the CGM for the minimization of nonquadratic
functions. In the quadratic case the next conjugate direction pn+1 is built
from the residual rn+1 and pn. Since, in that case, rn+1 = −∇f(xn), this
suggests that in the nonquadratic case we build pn+1 from −∇f(xn) and
pn. This leads to the Fletcher-Reeves method. Other similar algorithms,
such as the Polak-Ribiere and the Hestenes-Stiefel methods, perform better
on certain problems [194].
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Chapter 18

Constrained Iteration
Methods

The ART and its simultaneous and block-iterative versions are designed to
solve general systems of linear equations Ax = b. The SMART, EMML
and RBI methods require that the entries of A be nonnegative, those of b
positive and produce nonnegative x. In this chapter we present variations
of the SMART and EMML that impose the constraints uj ≤ xj ≤ vj ,
where the uj and vj are selected lower and upper bounds on the individual
entries xj . These algorithms were used in [193] as a method for including in
transmission tomographic reconstruction spatially varying upper and lower
bounds on the x-ray attenuation.

18.1 Modifying the KL distance

The SMART, EMML and RBI methods are based on the Kullback-Leibler
distance between nonnegative vectors. To impose more general constraints
on the entries of x we derive algorithms based on shifted KL distances, also
called Fermi-Dirac generalized entropies.

For a fixed real vector u, the shifted KL distance KL(x − u, z − u) is
defined for vectors x and z having xj ≥ uj and zj ≥ uj . Similarly, the
shifted distance KL(v − x, v − z) applies only to those vectors x and z for
which xj ≤ vj and zj ≤ vj . For uj ≤ vj , the combined distance

KL(x− u, z − u) +KL(v − x, v − z)

is restricted to those x and z whose entries xj and zj lie in the interval
[uj , vj ]. Our objective is to mimic the derivation of the SMART, EMML
and RBI methods, replacing KL distances with shifted KL distances, to
obtain algorithms that enforce the constraints uj ≤ xj ≤ vj , for each j.
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The algorithms that result are the ABMART and ABEMML block-iterative
methods. These algorithms were originally presented in [54], in which the
vectors u and v were called a and b, hence the names of the algorithms.
Throughout this chapter we shall assume that the entries of the matrix A
are nonnegative. We shall denote by Bn, n = 1, ..., N a partition of the
index set {i = 1, ..., I} into blocks. For k = 0, 1, ... let n(k) = k(modN)+1.

The projected Landweber algorithm can also be used to impose the
restrictions uj ≤ xj ≤ vj ; however, the projection step in that algorithm
is implemented by clipping, or setting equal to uj or vj values of xj that
would otherwise fall outside the desired range. The result is that the values
uj and vj can occur more frequently than may be desired. One advantage
of the AB methods is that the values uj and vj represent barriers that
can only be reached in the limit and are never taken on at any step of the
iteration.

18.2 The ABMART Algorithm

We assume that (Au)i ≤ bi ≤ (Av)i and seek a solution of Ax = b with
uj ≤ xj ≤ vj , for each j. The algorithm begins with an initial vector x0

satisfying uj ≤ x0
j ≤ vj , for each j. Having calculated xk, we take

xk+1
j = αk

j vj + (1− αk
j )uj , (18.1)

with n = n(k),

αk
j =

ckj
∏n(dk

i )Aij

1 + ckj
∏n(dk

i )Aij
, (18.2)

ckj =
(xk

j − uj)
(vj − xk

j )
, (18.3)

and

dk
j =

(bi − (Au)i)((Av)i − (Axk)i)
((Av)i − bi)((Axk)i − (Au)i)

, (18.4)

where
∏n denotes the product over those indices i in Bn(k). Notice that,

at each step of the iteration, xk
j is a convex combination of the endpoints

uj and vj , so that xk
j lies in the interval [uj , vj ].

We have the following theorem concerning the convergence of the AB-
MART algorithm:

Theorem 18.1 If there is a solution of the system Ax = b that satisfies the
constraints uj ≤ xj ≤ vj for each j, then, for any N and any choice of the
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blocks Bn, the ABMART sequence converges to that constrained solution
of Ax = b for which the Fermi-Dirac generalized entropic distance from x
to x0,

KL(x− u, x0 − u) +KL(v − x, v − x0),

is minimized. If there is no constrained solution of Ax = b, then, for
N = 1, the ABMART sequence converges to the minimizer of

KL(Ax−Au, b−Au) +KL(Av −Ax,Av − b)

for which
KL(x− u, x0 − u) +KL(v − x, v − x0)

is minimized.

The proof is similar to that for RBI-SMART and is found in [54].

18.3 The ABEMML Algorithm

We make the same assumptions as in the previous section. The iterative
step of the ABEMML algorithm is

xk+1
j = αk

j vj + (1− αk
j )uj , (18.5)

where

αk
j = γk

j /d
k
j , (18.6)

γk
j = (xk

j − uj)ek
j , (18.7)

βk
j = (vj − xk

j )fk
j , (18.8)

dk
j = γk

j + βk
j , (18.9)

ek
j =

(
1−

∑
i∈Bn

Aij

)
+
∑

i∈Bn

Aij

(
bi − (Au)i

(Axk)i − (Au)i

)
, (18.10)

and

fk
j =

(
1−

∑
i∈Bn

Aij

)
+
∑

i∈Bn

Aij

(
(Av)i − bi

(Av)i − (Axk)i

)
. (18.11)

We have the following theorem concerning the convergence of the ABE-
MML algorithm:
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Theorem 18.2 If there is a solution of the system Ax = b that satisfies
the constraints uj ≤ xj ≤ vj for each j, then, for any N and any choice
of the blocks Bn, the ABEMML sequence converges to such a constrained
solution of Ax = b. If there is no constrained solution of Ax = b, then, for
N = 1, the ABMART sequence converges to a constrained minimizer of

KL(Ax−Au, b−Au) +KL(Av −Ax,Av − b).

The proof is similar to that for RBI-EMML and is to be found in [54]. In
contrast to the ABMART theorem, this is all we can say about the limits
of the ABEMML sequences.

Open Question: How does the limit of the ABEMML iterative sequence
depend, in the consistent case, on the choice of blocks, and, in general, on
the choice of x0?



Part IV

Applications

205





Chapter 19

Transmission Tomography
I

In this part of the text we focus on transmission tomography. This chapter
will provide a detailed description of how the data is gathered, the math-
ematical model of the scanning process, and the problem to be solved. In
subsequent chapters we shall study the various mathematical techniques
needed to solve this problem and the manner in which these techniques are
applied.

19.1 X-ray Transmission Tomography

Although transmission tomography is not limited to scanning living beings,
we shall concentrate here on the use of x-ray tomography in medical diag-
nosis and the issues that concern us in that application. The mathematical
formulation will, of course, apply more generally.

In x-ray tomography, x-rays are transmitted through the body along
many lines. In some, but not all, cases, the lines will all lie in the same
plane. The strength of the x-rays upon entering the body is assumed
known, and the strength upon leaving the body is measured. This data can
then be used to estimate the amount of attenuation the x-ray encountered
along that line, which is taken to be the integral, along that line, of the
attenuation function. On the basis of these line integrals, we estimate the
attenuation function. This estimate is presented to the physician as one or
more two-dimensional images.
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19.2 The Exponential-Decay Model

As an x-ray beam passes through the body, it encounters various types of
matter, such as soft tissue, bone, ligaments, air, each weakening the beam
to a greater or lesser extent. If the intensity of the beam upon entry is Iin
and Iout is its lower intensity after passing through the body, then

Iout = Iine
−
∫

L
f
,

where f = f(x, y) ≥ 0 is the attenuation function describing the two-
dimensional distribution of matter within the slice of the body being scanned
and

∫
L
f is the integral of the function f over the line L along which the

x-ray beam has passed. To see why this is the case, imagine the line L
parameterized by the variable s and consider the intensity function I(s)
as a function of s. For small ∆s > 0, the drop in intensity from the start
to the end of the interval [s, s + ∆s] is approximately proportional to the
intensity I(s), to the attenuation f(s) and to ∆s, the length of the interval;
that is,

I(s)− I(s+ ∆s) ≈ f(s)I(s)∆s.

Dividing by ∆s and letting ∆s approach zero, we get

I ′(s) = −f(s)I(s).

Exercise 19.1 Show that the solution to this differential equation is

I(s) = I(0) exp(−
∫ u=s

u=0

f(u)du).

Hint: Use an integrating factor.

From knowledge of Iin and Iout, we can determine
∫

L
f . If we know

∫
L
f

for every line in the x, y-plane we can reconstruct the attenuation function
f . In the real world we know line integrals only approximately and only
for finitely many lines. The goal in x-ray transmission tomography is to
estimate the attenuation function f(x, y) in the slice, from finitely many
noisy measurements of the line integrals. We usually have prior informa-
tion about the values that f(x, y) can take on. We also expect to find
sharp boundaries separating regions where the function f(x, y) varies only
slightly. Therefore, we need algorithms capable of providing such images.

19.3 Difficulties to be Overcome

There are several problems associated with this model. X-ray beams are
not exactly straight lines; the beams tend to spread out. The x-rays are not
monochromatic, and their various frequency components are attenuated at
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different rates, resulting in beam hardening, that is, changes in the spec-
trum of the beam as it passes through the object (see the appendix on the
Laplace transform). The beams consist of photons obeying statistical laws,
so our algorithms probably should be based on these laws. How we choose
the line segments is determined by the nature of the problem; in certain
cases we are somewhat limited in our choice of these segments. Patients
move; they breathe, their hearts beat, and, occasionally, they shift position
during the scan. Compensating for these motions is an important, and dif-
ficult, aspect of the image reconstruction process. Finally, to be practical
in a clinical setting, the processing that leads to the reconstructed image
must be completed in a short time, usually around fifteen minutes. This
time constraint is what motivates viewing the three-dimensional attenua-
tion function in terms of its two-dimensional slices.

As we shall see, the Fourier transform and the associated theory of con-
volution filters play important roles in the reconstruction of transmission
tomographic images.

The data we actually obtain at the detectors are counts of detected
photons. These counts are not the line integrals; they are random quan-
tities whose means, or expected values, are related to the line integrals.
The Fourier inversion methods for solving the problem ignore its statistical
aspects; in contrast, other methods, such as likelihood maximization, are
based on a statistical model that involves Poisson-distributed emissions.

19.4 Reconstruction from Line Integrals

We turn now to the underlying problem of reconstructing attenuation func-
tions from line-integral data.

19.4.1 The Radon Transform

Our goal is to reconstruct the function f(x, y) ≥ 0 from line-integral data.
Let θ be a fixed angle in the interval [0, π). Form the t, s-axis system with
the positive t-axis making the angle θ with the positive x-axis, as shown
in Figure 19.1. Each point (x, y) in the original coordinate system has
coordinates (t, s) in the second system, where the t and s are given by

t = x cos θ + y sin θ,

and
s = −x sin θ + y cos θ.

If we have the new coordinates (t, s) of a point, the old coordinates are
(x, y) given by

x = t cos θ − s sin θ,
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and
y = t sin θ + s cos θ.

We can then write the function f as a function of the variables t and s.
For each fixed value of t, we compute the integral∫

L

f(x, y)ds =
∫
f(t cos θ − s sin θ, t sin θ + s cos θ)ds

along the single line L corresponding to the fixed values of θ and t. We
repeat this process for every value of t and then change the angle θ and
repeat again. In this way we obtain the integrals of f over every line L in
the plane. We denote by rf (θ, t) the integral

rf (θ, t) =
∫

L

f(x, y)ds.

The function rf (θ, t) is called the Radon transform of f .

19.4.2 The Central Slice Theorem

For fixed θ the function rf (θ, t) is a function of the single real variable t;
let Rf (θ, ω) be its Fourier transform. Then

Rf (θ, ω) =
∫
rf (θ, t)eiωtdt

=
∫ ∫

f(t cos θ − s sin θ, t sin θ + s cos θ)eiωtdsdt

=
∫ ∫

f(x, y)eiω(x cos θ+y sin θ)dxdy = F (ω cos θ, ω sin θ),

where F (ω cos θ, ω sin θ) is the two-dimensional Fourier transform of the
function f(x, y), evaluated at the point (ω cos θ, ω sin θ); this relationship
is called the Central Slice Theorem. For fixed θ, as we change the value
of ω, we obtain the values of the function F along the points of the line
making the angle θ with the horizontal axis. As θ varies in [0, π), we get all
the values of the function F . Once we have F , we can obtain f using the
formula for the two-dimensional inverse Fourier transform. We conclude
that we are able to determine f from its line integrals. As we shall see,
inverting the Fourier transform can be implemented by combinations of
frequency-domain filtering and back-projection.



19.4. RECONSTRUCTION FROM LINE INTEGRALS 211

Figure 19.1: The Radon transform of f at (t, θ) is the line integral of f
along line L.
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Chapter 20

Transmission Tomography
II

According to the Central Slice Theorem, if we have all the line integrals
through the attenuation function f(x, y) then we have the two-dimensional
Fourier transform of f(x, y). To get f(x, y) we need to invert the two-
dimensional Fourier transform.

20.1 Inverting the Fourier Transform

The Fourier-transform inversion formula for two-dimensional functions tells
us that the function f(x, y) can be obtained as

f(x, y) =
1

4π2

∫ ∫
F (u, v)e−i(xu+yv)dudv. (20.1)

We now derive alternative inversion formulas.

20.1.1 Back-Projection

Let g(θ, t) be any function of the variables θ and t; for example, it could be
the Radon transform. As with the Radon transform, we imagine that each
pair (θ, t) corresponds to one line through the x, y-plane. For each fixed
point (x, y) we assign to this point the sum of the quantities g(θ, t) for
every pair (θ, t) such that the point (x, y) lies on the associated line. The
summing process is integration and the back-projection function at (x, y) is

BPg(x, y) =
∫
g(θ, x cos θ + y sin θ)dθ.

The operation of back-projection will play an important role in what follows
in this chapter.
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20.1.2 Ramp Filter, then Back-project

Expressing the double integral in Equation (20.1) in polar coordinates
(ω, θ), with ω ≥ 0, u = ω cos θ, and v = ω sin θ, we get

f(x, y) =
1

4π2

∫ 2π

0

∫ ∞

0

F (u, v)e−i(xu+yv)ωdωdθ,

or
f(x, y) =

1
4π2

∫ π

0

∫ ∞

−∞
F (u, v)e−i(xu+yv)|ω|dωdθ.

Now write
F (u, v) = F (ω cos θ, ω sin θ) = Rf (θ, ω),

where Rf (θ, ω) is the FT with respect to t of rf (θ, t), so that∫ ∞

−∞
F (u, v)e−i(xu+yv)|ω|dω =

∫ ∞

−∞
Rf (θ, ω)|ω|e−iωtdω.

The function gf (θ, t) defined for t = x cos θ + y sin θ by

gf (θ, x cos θ + y sin θ) =
1
2π

∫ ∞

−∞
Rf (θ, ω)|ω|e−iωtdω (20.2)

is the result of a linear filtering of rf (θ, t) using a ramp filter with transfer
function H(ω) = |ω|. Then,

f(x, y) =
1
2π

∫ π

0

gf (θ, x cos θ + y sin θ)dθ (20.3)

gives f(x, y) as the result of a back-projection operator; for every fixed value
of (θ, t) add gf (θ, t) to the current value at the point (x, y) for all (x, y)
lying on the straight line determined by θ and t by t = x cos θ + y sin θ.
The final value at a fixed point (x, y) is then the average of all the values
gf (θ, t) for those (θ, t) for which (x, y) is on the line t = x cos θ + y sin θ.
It is therefore said that f(x, y) can be obtained by filtered back-projection
(FBP) of the line-integral data.

Knowing that f(x, y) is related to the complete set of line integrals by
filtered back-projection suggests that, when only finitely many line integrals
are available, a similar ramp filtering and back-projection can be used to
estimate f(x, y); in the clinic this is the most widely used method for the
reconstruction of tomographic images.

20.1.3 Back-project, then Ramp Filter

There is a second way to recover f(x, y) using back-projection and filtering,
this time in the reverse order; that is, we back-project the Radon transform
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and then ramp filter the resulting function of two variables. We begin again
with the relation

f(x, y) =
1

4π2

∫ 2π

0

∫ ∞

0

F (u, v)e−i(xu+yv)ωdωdθ,

which we write as

f(x, y) =
1

4π2

∫ 2π

0

∫ ∞

0

F (u, v)√
u2 + v2

√
u2 + v2e−i(xu+yv)ωdωdθ

=
1

4π2

∫ 2π

0

∫ ∞

0

G(u, v)
√
u2 + v2e−i(xu+yv)ωdωdθ, (20.4)

using

G(u, v) =
F (u, v)√
u2 + v2

for (u, v) 6= (0, 0). Equation (20.4) expresses f(x, y) as the result of per-
forming a two-dimensional ramp filtering of g(x, y), the inverse Fourier
transform of G(u, v). We show now that g(x, y) is the back-projection of
the function rf (θ, t); that is, we show that

g(x, y) =
1
2π

∫ π

0

rf (θ, x cos θ + y sin θ)dθ.

We have

g(x, y) =
1

4π2

∫ π

0

∫ ∞

−∞
G(ω cos θ, ω sin θ)|ω|e−iω(x cos θ+y sin θ)dωdθ

=
1

4π2

∫ π

0

∫ ∞

−∞
F (ω cos θ, ω sin θ)e−iω(x cos θ+y sin θ)dωdθ

=
1

4π2

∫ π

0

∫ ∞

−∞
Rf (θ, ω)e−iω(x cos θ+y sin θ)dωdθ

=
1
2π

∫ π

0

rf (θ, x cos θ + y sin θ)dθ,

as required.

20.1.4 Radon’s Inversion Formula

To get Radon’s inversion formula, we need two basic properties of the
Fourier transform. First, if f(x) has Fourier transform F (γ) then the
derivative f ′(x) has Fourier transform −iγF (γ). Second, if F (γ) = sgn(γ),
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the function that is γ
|γ| for γ 6= 0, and equal to zero for γ = 0, then its

inverse Fourier transform is f(x) = 1
iπx .

Writing equation (20.2) as

gf (θ, t) =
1
2π

∫ ∞

−∞
ωRf (θ, ω)sgn(ω)e−iωtdω,

we see that gf is the inverse Fourier transform of the product of the two
functions ωRf (θ, ω) and sgn(ω). Consequently, gf is the convolution of
their individual inverse Fourier transforms, i ∂

∂trf (θ, t) and 1
iπt ; that is,

gf (θ, t) =
1
π

∫ ∞

−∞

∂

∂t
rf (θ, s)

1
t− s

ds,

which is the Hilbert transform of the function ∂
∂trf (θ, t), with respect to

the variable t. Radon’s inversion formula is then

f(x, y) =
1
2π

∫ π

0

HT (
∂

∂t
rf (θ, t))dθ.

20.2 From Theory to Practice

What we have just described is the theory. What happens in practice?

20.2.1 The Practical Problems

Of course, in reality we never have the Radon transform rf (θ, t) for all
values of its variables. Only finitely many angles θ are used, and, for each
θ, we will have (approximate) values of line integrals for only finitely many
t. Therefore, taking the Fourier transform of rf (θ, t), as a function of
the single variable t, is not something we can actually do. At best, we can
approximate Rf (θ, ω) for finitely many θ. From the Central Slice Theorem,
we can then say that we have approximate values of F (ω cos θ, ω sin θ), for
finitely many θ. This means that we have (approximate) Fourier transform
values for f(x, y) along finitely many lines through the origin, like the
spokes of a wheel. The farther from the origin we get, the fewer values we
have, so the coverage in Fourier space is quite uneven. The low-spatial-
frequencies are much better estimated than higher ones, meaning that we
have a low-pass version of the desired f(x, y). The filtered back-projection
approaches we have just discussed both involve ramp filtering, in which the
higher frequencies are increased, relative to the lower ones. This too can
only be implemented approximately, since the data is noisy and careless
ramp filtering will cause the reconstructed image to be unacceptably noisy.
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20.2.2 A Practical Solution: Filtered Back-Projection

We assume, to begin with, that we have finitely many line integrals, that
is, we have values rf (θ, t) for finitely many θ and finitely many t. For
each fixed θ we estimate the Fourier transform, Rf (θ, ω). This step can
be performed in various ways, and we can freely choose the values of ω
at which we perform the estimation. The FFT will almost certainly be
involved in calculating the estimates of Rf (θ, ω).

For each fixed θ we multiply our estimated values of Rf (θ, ω) by |ω| and
then use the FFT again to inverse Fourier transform, to achieve a ramp
filtering of rf (θ, t) as a function of t. Note, however, that when |ω| is large,
we may multiply by a smaller quantity, to avoid enhancing noise. We do
this for each angle θ, to get a function of (θ, t), which we then back-project
to get our final image. This is ramp-filtering, followed by back-projection,
as applied to the finite data we have.

It is also possible to mimic the second approach to inversion, that is, to
back-project onto the pixels each rf (θ, t) that we have, and then to perform
a ramp filtering of this two-dimensional array of numbers to obtain the
final image. In this case, the two-dimensional ramp filtering involves many
applications of the FFT.

There is a third approach. Invoking the Central Slice Theorem, we can
say that we have finitely many approximate values of F (u, v), the Fourier
transform of the attenuation function f(x, y), along finitely many lines
through the origin. The first step is to use these values to estimate the
values of F (u, v) at the points of a rectangular grid. This step involves
interpolation [233, 238]. Once we have (approximate) values of F (u, v) on
a rectangular grid, we perform a two-dimensional FFT to obtain our final
estimate of the (discreteized) f(x, y).

20.3 Summary

We have seen how the problem of reconstructing a function from line inte-
grals arises in transmission tomography. The Central Slice Theorem con-
nects the line integrals and the Radon transform to the Fourier transform
of the desired attenuation function. Various approaches to implementing
the Fourier Inversion Formula lead to filtered back-projection algorithms
for the reconstruction. In x-ray tomography, as well as in PET, viewing the
data as line integrals ignores the statistical aspects of the problem, and in
SPECT, it ignores, as well, the important physical effects of attenuation.
To incorporate more of the physics of the problem, iterative algorithms
based on statistical models have been developed. We shall consider some
of these algorithms later.
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Chapter 21

Emission Tomography

In this chapter we describe the two modalities of emission tomography,
positron emission tomography (PET) and single photon emission computed
tomography (SPECT), and introduce the basic mathematical models for
both.

21.1 Positron Emission Tomography

As we noted previously, detection in the PET case means the recording of
two photons at nearly the same time at two different detectors. The loca-
tions of these two detectors then provide the end points of the line segment
passing, more or less, through the site of the original positron emission.
Therefore, each possible pair of detectors determines a line of response
(LOR). When a LOR is recorded, it is assumed that a positron was emit-
ted somewhere along that line. The PET data consists of a chronological
list of LOR that are recorded.

Let the LOR be parameterized by the variable s, with s = 0 and s = c
denoting the two ends, and c the distance from one end to the other. For
a fixed value s = s0, let P (s) be the probability of reaching s for a photon
resulting from an emission at s0. For small ∆s > 0 the probability that a
photon that reached s is absorbed in the interval [s, s+∆s] is approximately
µ(s)∆s, where µ(s) ≥ 0 is the photon attenuation density at s. Then
P (s+ ∆s) ≈ P (s)[1− µ(s)∆s], so that

P (s+ ∆s)− P (s) ≈ −P (s)µ(s)∆s.

Dividing by ∆s and letting ∆s go to zero, we get

P ′(s) = −P (s)µ(s).
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It follows that

P (s) = e
−
∫ s

s0
µ(t)dt

.

The probability that the photon will reach s = c and be detected is then

P (c) = e
−
∫ c

s0
µ(t)dt

.

Similarly, we find that the probability that a photon will succeed in reaching
s = 0 from s0 is

P (0) = e
−
∫ s0

0
µ(t)dt

.

Since having one photon reach s = 0 and the other reach s = c are indepen-
dent events, their probabilities multiply, so that the probability that both
photons reach their destinations and a coincident detection is recorded for
this LOR is

e
−
∫ c

0
µ(t)dt

.

The expected number of coincident detections along the LOR is then pro-
portional to∫ c

0

f(s)e−
∫ c

0
µ(t)dt

ds = e
−
∫ c

0
µ(t)dt

∫ c

0

f(s)ds, (21.1)

where f(s) is the intensity of radionuclide at s.
Let yi be the number of coincidence detections associated with the ith

LOR. If we are willing to equate the actual count with the expected count,
and assuming we know the attenuation function µ(s), we can estimate the
line integral

∫ c

0
f(s)ds along the ith LOR as∫ c

0

f(s)ds = yie

∫ c

0
µ(t)dt

.

So, once again, we have line-integral data pertaining to the function of
interest.

21.2 Single-Photon Emission Tomography

We turn now to single-photon computed emission tomography (SPECT).

21.2.1 Sources of Degradation to be Corrected

We remarked earlier that there are at least three degradations that need
to be corrected before the line-integral model and FBP can be successfully
applied in the SPECT case [166]: attenuation, scatter, and spatially depen-
dent resolution. There are mathematical ways to correct for both spatially
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varying resolution and uniform attenuation [227]. Correcting for the more
realistic non-uniform and patient-specific attenuation is more difficult and
is the subject of on-going research.

Some photons never reach the detectors because they are absorbed in
the body. As in the PET case, correcting for attenuation requires knowl-
edge of the patient’s body; this knowledge can be obtained by performing
a transmission scan at the same time. In contrast to the PET case, the
attenuation due to absorption is more difficult to correct, since it does not
involve merely the line integral of the attenuation function, but a half-line
integral that depends on the distribution of matter between each photon
source and each detector.

While some photons are absorbed within the body, others are first de-
flected and then detected; this is called scatter. Consequently, some of
the detected photons do not come from where they seem to come from.
The scattered photons often have reduced energy, compared to primary, or
non-scattered, photons, and scatter correction can be based on this energy
difference; see [166].

Finally, even if there were no attenuation and no scatter, it would be
incorrect to view the detected photons as having originated along a straight
line from the detector. The detectors have a cone of acceptance that widens
as it recedes from the detector. This results in spatially varying resolution.

It is not uncommon, however, to make the simplifying assumption that
all photons detected at a given detector originated along a single line. As in
the PET case previously discussed, the probability that a photon emitted
at the point on the line corresponding to the variable s = s0 will reach
s = c and be detected is then

P (s0) = e
−
∫ c

s0
µ(t)dt

.

If f(s) is the expected number of photons emitted from point s during the
scanning, then the expected number of photons detected at c and originat-
ing along this line is proportional to∫ c

0

f(s)e−
∫ c

s
µ(t)dt

ds. (21.2)

Notice the difference between the integral in Equation (21.2) and the one
in Equation (21.1).

The integral in Equation (21.2) varies with the line being considered;
the resulting function of lines is called the attenuated Radon transform.

If the attenuation function µ is constant, then the attenuated Radon
transform is called the exponential Radon transform. Since∫ c

s

µdt = µ(c− s),
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the integral in (21.2) is now

e−µc

∫ c

0

f(s)eµsds = e−µc

∫ ∞

0

f(s)e−(−µ)sds = e−µcF(−µ),

where F denotes the Laplace transform of f . Since the function f(s) is
zero outside a bounded interval, we may safely assume that the Laplace
transform is defined for all real values of the argument.

In practice, one sometimes assumes, initially, that µ = 0 and that the
counts at each detector are essentially integrals of f along a single line.
Filtered back=projection is then used to reconstruct an image. Since the
image does not reflect the effects of attenuation, it can be “corrected”
during the back-projection phase.

Spatially varying resolution complicates the quantitation problem, which
is the effort to determine the exact amount of radionuclide present within
a given region of the body, by introducing the partial volume effect and
spill-over (see [245]). To a large extent, these problems are shortcomings
of reconstruction based on the line-integral model. If we assume that all
photons detected at a particular detector came from points within a narrow
strip perpendicular to the camera face, and we reconstruct the image us-
ing this assumption, then photons coming from locations outside this strip
will be incorrectly attributed to locations within the strip (spill-over), and
therefore not correctly attributed to their true source location. If the true
source location also has its counts raised by spill-over, the net effect may
not be significant; if, however, the true source is a hot spot surrounded
by cold background, it gets no spill-over from its neighbors and its true
intensity value is underestimated, resulting in the partial-volume effect.
The term “partial volume” indicates that the hot spot is smaller than the
region that the line-integral model offers as the source of the emitted pho-
tons. One way to counter these effects is to introduce a description of the
spatially dependent blur into the reconstruction, which is then performed
by iterative methods [205].

In the SPECT case, as in most such inverse problems, there is a trade-
off to be made between careful modeling of the physical situation and
computational tractability. The FBP method slights the physics in favor
of computational simplicity and speed. In recent years, iterative methods
that incorporate more of the physics have become competitive.

21.2.2 The Discrete Model

In iterative reconstruction we begin by discretizing the problem; that is,
we imagine the region of interest within the patient to consist of finitely
many tiny squares, called pixels for two-dimensional processing or cubes,
called voxels for three-dimensional processing. In what follows we shall
not distinguish the two cases, but as a linguistic shorthand, we shall refer
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to ‘pixels’ indexed by j = 1, ..., J . The detectors are indexed by i =
1, ..., I, the count obtained at detector i is denoted yi, and the vector y =
(y1, ..., yI)T is our data. In practice, for the fully three-dimensional case, I
and J can be several hundred thousand.

We imagine that each pixel j has its own level of concentration of ra-
dioactivity and these concentration levels are what we want to determine.
Proportional to these concentration levels are the average rates of emission
of photons; the average rate for j we denote by xj . The goal is to determine
the vector x = (x1, ..., xJ)T from y.

21.2.3 Discrete Attenuated Radon Transform

To achieve our goal we must construct a model that relates y to x. One
way to do that is to discretize the attenuated Radon Transform [142, 234].

The objective is to describe the contribution to the count data from
the intensity xj at the jth pixel. We assume, for the moment, that all
the radionuclide is concentrated within the jth pixel, and we compute the
resulting attenuated Radon Transform. Following [142, 234], we adopt a
ray model for detection, which means that corresponding to each detector
is a line of acceptance and that all the counts recorded at that detector
came from pixels that intersect this line. This is a simplification, of course,
since each detector has a solid angle of acceptance, which leads to depth-
dependent blur.

For notational simplicity, we suppose that the line of acceptance asso-
ciated with the ith detector is parameterized by arc-length s ≥ 0, with
s = c > 0 corresponding to the point closest to the detector, within the
body, s = 0 corresponding to the point farthest from the detector, at which
the line leaves the body, s = b < c the point closest to the detector within
the jth pixel, and s = a < b the point farthest from the detector at which
the line leaves the jth pixel. The length of the intersection of the jth pixel
with the line is then dij = b− a.

We are assuming that all the radionuclide is within the jth pixel, with
intensity distribution (proportional to) xj , so the value at detector i of the
attenuated Radon Transform is

Aij =
∫ b

a

xje
−
∫ c

s
µ(t)dt

ds. (21.3)

We assume that the attenuation is uniformly equal to µj ≥ 0 within the
jth pixel, so we can write

Aij =
∫ b

a

xje
−
∫ b

s
µjdt−

∫ c

b
µ(t)dt

ds,

or

Aij = xje
−
∫ c

b
µ(t)dt

∫ b

a

e(s−b)µjds.
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If µj = 0, then we have

Aij = xje
−
∫ c

b
µ(t)dt

dij ,

while if µj > 0 we have

Aij =
(
xje

−
∫ c

b
µ(t)dt

dij

)
Sij ,

where

Sij =
1
dij

∫ b

a

e(b−s)µjds =
1

µjdij
(1− e−µjdij ).

We can then write
Aij = xjWij ,

for each j and i.
Since the function

g(t) =
1
t
(1− e−t)

is positive for positive t, g(0) = 1, and g(+∞) = 0, it is reasonable to view
Sij as the survival proportion associated with the jth pixel and the line
from the ith detector. Expanding the exponential in Sij in a power series,
we find that

Sij =
1

µjdij
(1− e−µjdij ) ≈ 1− 1

2
µjdij ,

so that the loss proportion is approximately 1
2µjdij . If we were to adopt

the decaying exponential model for a photon surviving its passage through
the jth pixel, and assume all the radionuclide was initially at the far side
of the jth pixel, we would replace Sij with e−µjdij , which is approximately
1− µjdij , so that the loss proportion is approximately µjdij . This is twice
the loss proportion that we got using the other model, and is larger because
we are assuming that all the radionuclide in the jth pixel has to attempt
to travel through the entire jth pixel, whereas, due to the spreading of the
radionuclide throughout the pixel, the average journey through the pixel is
only half of the length dij .

Having found the valuesWij , we form the matrixW having these entries
and then find a non-negative solution of the system of equations Wx =
y, using one of a number of iterative algorithms, including the EMML.
Contrary to what is stated in [234], it may not be appropriate to consider
Wij as the probability that a photon emitted at the jth pixel is detected
at the ith detector, even though 0 ≤ Wij ≤ 1 for each i and j. If viewed
that way, it would be the case that

I∑
i=1

Wij
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would be the probability of detecting a photon emitted from the jth pixel;
we have no guarantee, however, that this sum is not greater than one.

It is significant that the authors in [234] realize that the EMML iterative
algorithm can be used to find a non-negative solution of Wx = y, even
though no stochastic model for the data is assumed in their derivation.
Their development involves discretizing the attenuated Radon Transform,
which involves no randomness, and viewing the count data as approximate
values of this discrete function.

There is another approach that can be used to relate the count data to
the intensity levels xj . This other approach is based on a stochastic model,
as we describe next.

21.2.4 A Stochastic Model

Another way to relate the count data to the intensities xj is to adopt the
model of independent Poisson emitters. For i = 1, ..., I and j = 1, ..., J , de-
note by Zij the random variable whose value is to be the number of photons
emitted from pixel j, and detected at detector i, during the scanning time.
We assume that the members of the collection {Zij |i = 1, ..., I, j = 1, ..., J}
are independent. In keeping with standard practice in modeling radioac-
tivity, we also assume that the Zij are Poisson-distributed.

Generally, the signal-to-noise ratio (SNR) is the ratio of the mean of
a distribution to its standard deviation (the square root of the variance).
In the case of the Poisson distribution, the variance and the mean are the
same, so the SNR is the square root of the mean; therefore, the higher the
mean the higher the SNR.

We assume that Zij is a Poisson random variable whose mean value (and
variance) is λij = Pijxj . Here the xj ≥ 0 is the average rate of emission
from pixel j, as discussed previously, and Pij ≥ 0 is the probability that a
photon emitted from pixel j will be detected at detector i. The calculation
of the Pij can be quite similar to the derivation of the Wij in the previous
subsection, with the exception that we do need to have

I∑
i=1

Pij ≤ 1.

We then define the random variables Yi =
∑J

j=1 Zij , the total counts to
be recorded at detector i; our actual count yi is then the observed value of
the random variable Yi. Note that the actual values of the individual Zij

are not observable.
Any Poisson-distributed random variable has a mean equal to its vari-

ance. The signal-to-noise ratio (SNR) is usually taken to be the ratio of
the mean to the standard deviation, which, in the Poisson case, is then the
square root of the mean. Consequently, the Poisson SNR increases as the
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mean value increases, which points to the desirability (at least, statistically
speaking) of higher dosages to the patient.

Having found the Pij , we take P to be the matrix with these entries.
Since Px is the vector of expected counts at the various detectors, and y
is the vector of actual counts, trying to find a non-negative solution of the
system y = Px may not seem completely reasonable. However, this is what
several well known iterative algorithms do, even ones such as the EMML
that were not originally designed for this purpose.

21.2.5 Reconstruction as Parameter Estimation

The goal is to estimate the distribution of radionuclide intensity by cal-
culating the vector x. The entries of x are parameters and the data are
instances of random variables, so the problem looks like a fairly standard
parameter estimation problem of the sort studied in beginning statistics.
One of the basic tools for statistical parameter estimation is likelihood
maximization, which is playing an increasingly important role in medical
imaging. There are several problems, however. One is that the number of
parameters is quite large, as large as the number of data values, in most
cases. Standard statistical parameter estimation usually deals with the es-
timation of a handful of parameters. Another problem is that we do not
know what the Pij are. These values will vary from one patient to the next,
since whether or not a photon makes it from a given pixel to a given de-
tector depends on the geometric relationship between detector i and pixel
j, as well as what is in the patient’s body between these two locations. If
there are ribs or skull getting in the way, the probability of making it goes
down. If there are just lungs, the probability goes up. These values can
change during the scanning process, when the patient moves. Some motion
is unavoidable, such as breathing and the beating of the heart. Determin-
ing good values of the Pij in the absence of motion, and correcting for the
effects of motion, are important parts of SPECT image reconstruction.

21.3 Relative Advantages

In [197], Ollinger and Fessler discuss some of the relative advantages of
these two modes of emission tomography.

Attenuation, which is primarily the scattering of photons by the body
to locations outside the field of view of the detecting cameras, is harder to
correct in SPECT. The radiopharmaceuticals used in SPECT must incor-
porate heavy isotopes, such as thallium and technetium; since these do not
occur naturally in biologically active molecules, the synthesis of physiologi-
cally useful tracers is a challenge. In contrast, in PET the positron-emitting
isotopes of carbon, nitrogen, oxygen and fluorine that are used occur natu-
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rally in many compounds of biological interest and can therefore be easily
incorporated into useful radiopharmaceuticals.

Because collimation is performed by the computer in PET, while SPECT
must employ lead collimators, which absorb many of the photons, the sensi-
tivity of the detecting gamma cameras in SPECT is reduced, in comparison
to PET.

On the other side of the balance sheet, the short half-life of most
positron-emitting isotopes necessitates an on-site cyclotron, while the iso-
topes used in SPECT have longer half-lives and can be stored. Also, the
scanners for PET are more expensive than those used in SPECT.

At any given time, computer speed limits the size of the problem that
can be dealt with. While 2D reconstructions are clinically feasible, fully 3D
imaging (not to mention dynamic, 4D imaging) poses more of a challenge,
hence the need for continuing algorithm development.
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Chapter 22

List-Mode Reconstruction
in PET

22.1 Why List-Mode Processing?

In PET the radionuclide emits individual positrons, which travel, on aver-
age, between 4 mm and 2.5 cm (depending on their kinetic energy) before
encountering an electron. The resulting annihilation releases two gamma-
ray photons that then proceed in essentially opposite directions. Detection
in the PET case means the recording of two photons at nearly the same
time at two different detectors. The locations of these two detectors then
provide the end points of the line segment passing, more or less, through
the site of the original positron emission. Therefore, each possible pair of
detectors determines a line of response. When a LOR is recorded, it is
assumed that a positron was emitted somewhere along that line.

In modern PET scanners the number of pairs of detectors, and therefore,
the number of potential LOR, often exceeds the number of detections; the
count recorded at any single i is typically one or zero. It makes sense,
therefore, to record the data as a list of those LOR corresponding to a
detection; this is list-mode data.

22.2 Correcting for Attenuation in PET

In SPECT attenuation correction is performed by modifying the probabil-
ities Pij . In PET the situation is at once simpler and more involved.

Let a given LOR be parameterized by the variable s, with s = 0 and
s = c denoting the two ends, and c the distance from one end to the other.
For a fixed value s = s0, let P (s) be the probability of reaching s for a
photon resulting from an emission at s0. For small ∆s > 0 the probability

229
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that a photon that reached s is absorbed in the interval [s, s + ∆s] is
approximately µ(s)∆s, where µ(s) ≥ 0 is the photon attenuation density
at s. Then P (s+ ∆s) ≈ P (s)[1− µ(s)∆s], so that

P (s+ ∆s)− P (s) ≈ −P (s)µ(s)∆s.

Dividing by ∆s and letting ∆s go to zero, we get

P ′(s) = −P (s)µ(s).

It follows that
P (s) = e

−
∫ s

s0
µ(t)dt

.

The probability that the photon will reach s = c and be detected is then

P (c) = e
−
∫ c

s0
µ(t)dt

.

Similarly, we find that the probability that a photon will succeed in reaching
s = 0 from s0 is

P (0) = e
−
∫ s0

0
µ(t)dt

.

Since having one photon reach s = 0 and the other reach s = c are indepen-
dent events, their probabilities multiply, so that the probability that both
photons reach their destinations and a coincident detection is recorded for
this LOR is

e
−
∫ c

0
µ(t)dt

.

The expected number of coincident detections along the LOR is then pro-
portional to∫ c

0

f(s)e−
∫ c

0
µ(t)dt

ds = e
−
∫ c

0
µ(t)dt

∫ c

0

f(s)ds, (22.1)

where f(s) is the intensity of radionuclide at s.
For each LOR i and each pixel or voxel j, let Aij be the geometric

probability that an emission at j will result in two photons traveling along
the LOR i. The probability Aij is unrelated to the attenuation presented
by the body of the patient. Then the probability that an emission at j will
result in the LOR i being added to the list is

Pij = aiAij ,

where
ai = e

−
∫

i
µ(s)ds

,

and the integral is the line integral along the line segment associated with
the LOR i. We then perform attenuation correction by using the probabil-
ities Pij in the reconstruction.
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Note that, if the number I of potential LOR is not too large and the
entries of the data vector y are not simply zero or one, we might correct
for attenuation by replacing each yi with yi/ai, which is approximately the
count we would have seen for the LOR i if there had been no attenuation.
However, in the more typical case of large I and zero or one values for the
yi, this approach does not make much sense. The effect of attenuation now
is to prevent certain i from being recorded, not to diminish the values of the
positive yi of the LOR that were recorded. Therefore, at least in theory, it
makes more sense to correct for attenuation by using the Pij . There is an
additional complication, though.

In list-mode processing, I, the number of potential LOR, is much larger
than the size of the list. To employ the EMML algorithm or one of its
block-iterative variants, we need to calculate the probabilities associated
with those LOR on the list, but it is costly to do this for all the potential
LOR; we do need to compute the sensitivities, or probabilities of detection,
for each pixel, however. If we consider only the geometry of the scanner,
calculating the sensitivities for each pixel is not difficult and can be done
once and used repeatedly; it is much more problematic if we must include
the patient-specific attenuation. For this reason, it makes sense, practically
speaking, to correct for attenuation in list-mode PET by replacing yi with
yi/ai for those yi equal to one. The reconstruction is probably much the
same, either way.

22.3 Modeling the Possible LOR

We can model the potential LOR simply as pairs of detectors, so that I, the
number of potential LOR, is very large, but finite, and finite probability
vectors, rather than probability density functions, suffice in forming the
likelihood function. The EMML algorithm applies directly to this list-mode
model. This is the approach adopted by Huesman et al. [158].

Alternatively, one can assume that the end-point coordinates form a
continuum, so that the set of potential LOR is uncountably infinite. Now
we need probability density functions to form the likelihood function. This
method, adopted by Parra and Barrett [201], makes the application of the
EMML algorithm more complicated, as discussed in [58].

22.4 EMML: The Finite LOR Model

In this section we discuss the EMML iterative algorithm for list-mode re-
construction based on the finite model.

Let the list of recorded LOR be {i1, ..., iM} and let

Qmj = Pim,j ,
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for m = 1, ...,M . Since the values of the yi are typically zero or one, the im
are typically distinct, but this is not essential here. The EMML iteration
becomes

xk+1
j = xk

j s
−1
j

M∑
m=1

Qmj

( 1
(Qxk)m

)
. (22.2)

Note that we still need to use the sensitivity values

sj =
I∑

i=1

Pij ,

which are the probabilities of detection. However, for imaging the radionu-
clide we do not need to calculate the sj by first determining each of the
Pij ; we need only that the sj >

∑M
m=1Qmj for each j and that the relative

values of the various sj be reasonably accurate. For quantitation, though,
accurate absolute values of the sj are needed.

22.5 List-mode RBI-EMML

We turn now to the block-iterative versions of EMML. For n = 1, ..., N let
Cn consist of all indices m such that the LOR im on the list is also in Bn.
The list-mode BI-EMML (LMBI-EMML) has the iterative step

xk
j = (1− γnδjsnj)xk−1

j + xk
j γnδj

∑
m∈Cn

Pij

( 1
(Qxk)m

)
, (22.3)

with γ > 0 chosen so that
snjδjγn ≤ 1.

When we select δj = s−1
j , we must then have γn ≤ µ−1

n . When we have
δj = 1, we need γn ≤ m−1

n . Generally speaking, the larger the γn the
faster the convergence. The rescaled LMBI-EMML (LMRBI-EMML) uses
the largest values of γn consistent with these constraints.

Note that, as previously, we need sj and now we also need snj . As be-
fore, though, we do not need to specify each of the Pij to obtain reasonable
choices for these values.

22.6 The Row-action LMRBI-EMML: LMEMART

The row-action or event-by-event version of the RBI-EMML algorithm, the
LMEMART, is a special case of the LMRBI-EMML in which, for m =
1, ...,M , each LOR im on the list forms its own block or subset, denoted
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Cm. Another way to say this is that we choose the original blocks Bn so
that no Bn contains more than one im. For clarity, we shall assume that the
blocks Bn are chosen so that Bm = {im} and Cm = {m}, for m = 1, ...,M .
We then let BM+1 consist of all the i not equal to some Im on the list, and
N = M + 1. Therefore, for n = 1, ...,M , we have

snj = Qnj .

In the LMEMART each iteration employs a single member of the list and we
cycle through the list repeatedly. The iteration index is now m = 1, ...,M ,
with m = m(k) = k(modM) + 1.

The LMEMART has the iterative step

xk+1
j = (1− γmδjQmj)xk

j + xk
j γmδjQmj

( 1
(Qxk)m

)
, (22.4)

with Qmjδjγm ≤ 1.

22.7 EMML: The Continuous LOR Model

When the end points of the potential LOR are allowed to take on values in
a continuum, the likelihood function involves probability density functions,
rather than finite probabilities. This poses a difficulty, in that the values
of probability density functions can be any non-negative real number; only
their integrals are required to be one. As a result, the convergence theory
for the EMML algorithm and its various block-iterative versions does not
apply unchanged.

For each pixel index j, let fj(·) be the probability density function (pdf)
whose domain is the (uncountably infinite) set of potential LOR with the
property that the probability that an emission at j results in an LOR from
the set S being recorded is the integral of fj over S. With xj the expected
number of emissions from j during the scanning time, and

x+ =
J∑

j=1

xj ,

the probability that an emission came from j, given that an emission has
happened, is xj/x+. Therefore, the probability that an LOR in the set S
will be recorded, given that an emission has happened, is the integral over
S of the pdf

f(·) =
1
x+

J∑
j=1

xjfj(·).
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For each j let dj be the probability that an emission from j will be detected,
and let

d =
1
x+

J∑
j=1

xjdj

be the probability that an emission will be detected.
The number of items on the list, M , is also a random variable, which we

model as having a Poisson distribution with mean value dx+. Therefore,
the probability of M is

p(M) = exp(−x+d)(x+d)M/M !.

Given the list of recorded LOR, the likelihood function is then

L(x) = p(M)
M∏

m=1

f(im),

and the log likelihood function to be maximized is

LL(x) = −x+d+
M∑

m=1

log(Px)m,

where the matrix P has entries

Pmj = fj(im).

Note that

(Px)m =
J∑

j=1

Pmjxj ,

so that
M∑

m=1

(Px)m =
J∑

j=1

( M∑
m=1

Pmj)xj =
J∑

j=1

cjxj ,

for

cj =
M∑

m=1

Pmj .

Maximizing the log likelihood function is equivalent to minimizing

KL(u, Px)−
M∑

m=1

(Px)m + x+d+ constants,

where u is the vector whose entries are all one, and therefore equivalent to
minimizing

F (x) = KL(u, Px) +
J∑

j=1

(dj − cj)xj .
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The EMML algorithm itself will minimize only KL(u, Px). The basic
problem now is that we have values of probability density functions and
the quantities cj , which can be any positive real numbers, are unrelated to
the detectability or sensitivity dj .

It was shown in [58] that the EMML algorithm can be modified to
provide a convergent iterative method for minimizing F (x). This modified
EMML algorithm has the iterative step

xk+1
j = xk

j d
−1
j

M∑
m=1

( 1
(Pxk)m

)
.

For the finite model, as in [158], this is just the usual EMML and conver-
gence follows from known results, but for the continuous model, as in [201],
this iterative scheme falls outside the EMML framework and convergence
needed to be established, as in [58].

Just as the EMML algorithm must be modified before it can be applied
to the continuous model, we must adapt the block-iterative versions as well;
see [58] for details.
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Chapter 23

Magnetic Resonance
Imaging

In elements with an odd number of protons, such as hydrogen, the nucleus
itself will have a net magnetic moment. The objective in magnetic res-
onance imaging (MRI) is to determine the density of such elements in a
volume of interest within the body. This is achieved by forcing the indi-
vidual spinning nuclei to emit signals that, while too weak to be detected
alone, are detectable in the aggregate. Fourier-transform estimation and
extrapolation techniques play a major role in the rapidly expanding field
of magnetic resonance imaging [247, 143].

23.1 Slice Isolation

When the external magnetic field is the static field B0k, that is, the mag-
netic field has strength B0 and axis k = (0, 0, 1), then the Larmor fre-
quency is the same everywhere and equals ω0 = γB0, where γ is the gy-
romagnetic constant. If, instead, we impose an external magnetic field
(B0 +Gz(z−z0))k, for some constant Gz, then the Larmor frequency is ω0

only within the plane z = z0. This external field now includes a gradient
field.

23.2 Tipping

When a magnetic dipole moment that is aligned with k is given a compo-
nent in the x, y-plane, it begins to precess around the z-axis, with frequency
equal to its Larmor frequency. To create this x, y-plane component, we ap-
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ply a radio-frequency field (rf field)

H1(t)(cos(ωt)i + sin(ωt)j).

The function H1(t) typically lasts only for a short while, and the effect
of imposing this rf field is to tip the aligned magnetic dipole moment axes
away from the z-axis, initiating precession. Those dipole axes that tip most
are those whose Larmor frequency is ω. Therefore, if we first isolate the
slice z = z0 and then choose ω = ω0, we tip primarily those dipole axes
within the plane z = z0. The dipoles that have been tipped ninety degrees
into the x, y-plane generate the strongest signal. How much tipping occurs
also depends on H1(t), so it is common to select H1(t) to be constant over
the time interval [0, τ ], and zero elsewhere, with integral π

2γ . This H1(t)
is called a π

2 -pulse, and tips those axes with Larmor frequency ω0 into the
x, y-plane.

23.3 Imaging

The information we seek about the proton density function is contained
within the received signal. By carefully adding gradient fields to the ex-
ternal field, we can make the Larmor frequency spatially varying, so that
each frequency component of the received signal contains a piece of the
information we seek. The proton density function is then obtained through
Fourier transformations.

23.3.1 The Line-Integral Approach

Suppose that we have isolated the plane z = z0 and tipped the aligned axes
using a π

2 -pulse. After the tipping has been completed, we introduce an
external field (B0 + Gxx)k, so that now the Larmor frequency of dipoles
within the plane z = z0 is ω(x) = ω0 + γGxx, which depends on the x-
coordinate of the point. The result is that the component of the received
signal associated with the frequency ω(x) is due solely to those dipoles
having that x coordinate. Performing an FFT of the received signal gives
us line integrals of the density function along lines in the x, y-plane having
fixed x-coordinate.

More generally, if we introduce an external field (B0+Gxx+Gyy)k, the
Larmor frequency is constant at ω(x, y) = ω0 + γ(Gxx + Gyy) = ω0 + γs
along lines in the x, y-plane with equation

Gxx+Gyy = s.

Again performing an FFT on the received signal, we obtain the integral of
the density function along these lines. In this way, we obtain the three-
dimensional Radon transform of the desired density function. The central
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slice theorem for this case tells us that we can obtain the Fourier transform
of the density function by performing a one-dimensional Fourier transform
with respect to the variable s. For each fixed (Gx, Gy) we obtain this
Fourier transform along a ray through the origin. By varying the (Gx, Gy)
we get the entire Fourier transform. The desired density function is then
obtained by Fourier inversion.

23.3.2 Phase Encoding

In the line-integral approach, the line-integral data is used to obtain values
of the Fourier transform of the density function along lines through the
origin in Fourier space. It would be more convenient to have Fourier-
transform values on the points of a rectangular grid. We can obtain this
by selecting the gradient fields to achieve phase encoding.

Suppose that, after the tipping has been performed, we impose the
external field (B0+Gyy)k for T seconds. The effect is to alter the precession
frequency from ω0 to ω(y) = ω0 + γGyy. A harmonic eiω0t is changed to

eiω0teiγGyyt,

so that, after T seconds,we have

eiω0T eiγGyyT .

For t ≥ T , the harmonic eiω0t returns, but now it is

eiω0teiγGyyT .

The effect is to introduce a phase shift of γGyyT . Each point with the
same y-coordinate has the same phase shift.

After time T , when this gradient field is turned off, we impose a second
external field, (B0 +Gxx)k. Because this gradient field alters the Larmor
frequencies, at times t ≥ T the harmonic eiω0teiγGyyT is transformed into

eiω0teiγGyyT eiγGxxt.

The received signal is now

S(t) = eiω0t

∫ ∫
ρ(x, y)eiγGyyT eiγGxxtdxdy,

where ρ(x, y) is the value of the proton density function at (x, y). Removing
the eiω0t factor, we have∫ ∫

ρ(x, y)eiγGyyT eiγGxxtdxdy,

which is the Fourier transform of ρ(x, y) at the point (γGxt, γGyT ). By
selecting equi-spaced values of t and altering the Gy, we can get the Fourier
transform values on a rectangular grid.
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23.4 The General Formulation

The external magnetic field generated in the MRI scanner is generally de-
scribed by

H(r, t) = (H0 + G(t) · r)k +H1(t)(cos(ωt)i + sin(ωt)j). (23.1)

The vectors i, j, and k are the unit vectors along the coordinate axes,
and r = (x, y, z). The vector-valued function G(t) = (Gx(t), Gy(t), Gz(t))
produces the gradient field

G(t) · r.

The magnetic field component in the x, y plane is the radio frequency (rf)
field.

If G(t) = 0, then the Larmor frequency is ω0 everywhere. Using ω = ω0

in the rf field, with a π
2 -pulse, will then tip the aligned axes into the x, y-

plane and initiate precession. If G(t) = θ, for some direction vector θ, then
the Larmor frequency is constant on planes θ · r = s. Using an rf field
with frequency ω = γ(H0 + s) and a π

2 -pulse will then tip the axes in this
plane into the x, y-plane. The strength of the received signal will then be
proportional to the integral, over this plane, of the proton density function.
Therefore, the measured data will be values of the three-dimensional Radon
transform of the proton density function, which is related to its three-
dimensional Fourier transform by the Central Slice Theorem. Later, we
shall consider two more widely used examples of G(t).

23.5 The Received Signal

We assume now that the function H1(t) is a short π
2 -pulse, that is, it has

constant value over a short time interval [0, τ ] and has integral π
2γ . The

received signal produced by the precessing magnetic dipole moments is
approximately

S(t) =
∫

R3
ρ(r) exp(−iγ(

∫ t

0

G(s)ds) · r) exp(−t/T2)dr, (23.2)

where ρ(r) is the proton density function, and T2 is the transverse or spin-
spin relaxation time. The vector integral in the exponent is∫ t

0

G(s)ds = (
∫ t

0

Gx(s)ds,
∫ t

0

Gy(s)ds,
∫ t

0

Gz(s)ds).

Now imagine approximating the function Gx(s) over the interval [0, t] by
a step function that is constant over small subintervals, that is, Gx(s)
is approximately Gx(n∆) for s in the interval [n∆, (n + 1)∆), with n =
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1, ..., N and ∆ = t
N . During the interval [n∆, (n + 1)∆), the presence of

this gradient field component causes the phase to change by the amount
xγGx(n∆)∆, so that by the time we reach s = t the phase has changed by

x
N∑

n=1

Gx(n∆)∆,

which is approximately x
∫ t

0
Gx(s)ds.

23.5.1 An Example of G(t)

Suppose now that g > 0 and θ is an arbitrary direction vector. Let

G(t) = gθ, for τ ≤ t, (23.3)

and G(t) = 0 otherwise. Then the received signal S(t) is

S(t) =
∫

R3
ρ(r) exp(−iγg(t− τ)θ · r)dr

= (2π)3/2ρ̂(γg(t− τ)θ), (23.4)

for τ ≤ t << T2, where ρ̂ denotes the three-dimensional Fourier transform
of the function ρ(r).

From Equation (23.4) we see that, by selecting different direction vec-
tors and by sampling the received signal S(t) at various times, we can
obtain values of the Fourier transform of ρ along lines through the origin
in the Fourier domain, called k-space. If we had these values for all θ and
for all t we would be able to determine ρ(r) exactly. Instead, we have much
the same problem as in transmission tomography; only finitely many θ and
only finitely many samples of S(t). Noise is also a problem, because the
resonance signal is not strong, even though the external magnetic field is.

We may wish to avoid having to estimate the function ρ(r) from finitely
many noisy values of its Fourier transform. We can do this by selecting the
gradient field G(t) differently.

23.5.2 Another Example of G(t)

The vector-valued function G(t) can be written as

G(t) = (G1(t), G2(t), G3(t)).

Now we let
G2(t) = g2,
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and
G3(t) = g3,

for 0 ≤ t ≤ τ , and zero otherwise, and

G1(t) = g1,

for τ ≤ t, and zero otherwise. This means that only H0k and the rf field
are present up to time τ , and then the rf field is shut off and the gradient
field is turned on. Then, for t ≥ τ , we have

S(t) = (2π)3/2M̂0(γ(t− τ)g1, γτg2, γτg3).

By selecting
tn = n∆t+ τ, forn = 1, ..., N,

g2k = k∆g,

and
g3i = i∆g,

for i, k = −m, ...,m we have values of the Fourier transform, M̂0, on a
Cartesian grid in three-dimensional k-space. The proton density function,
ρ, can then be approximated using the fast Fourier transform.

Although the reconstruction employs the FFT, obtaining the Fourier-
transform values on the Cartesian grid can take time. An abdominal scan
can last for a couple of hours, during which the patient is confined, mo-
tionless and required to hold his or her breath repeatedly. Recent work
on compressed sensing is being applied to reduce the number of Fourier-
transform values that need to be collected, and thereby reduce the scan
time [250, 184].

23.6 Compressed Sensing in Image Recon-
struction

As we have seen, the data one obtains from the scanning process can often
be interpreted as values of the Fourier transform of the desired image; this is
precisely the case in magnetic-resonance imaging, and approximately true
for x-ray transmission tomography, positron-emission tomography (PET)
and single-photon emission tomography (SPECT). The images one encoun-
ters in medical diagnosis are often approximately locally constant, so the
associated array of discrete partial derivatives will be sparse. If this sparse
derivative array can be recovered from relatively few Fourier-transform val-
ues, then the scanning time can be reduced.
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23.6.1 Incoherent Bases

The objective in CS is to exploit sparseness to reconstruct a vector f in
RJ from relatively few linear functional measurements [107].

Let U = {u1, u2, ..., uJ} and V = {v1, v2, ..., vJ} be two orthonormal
bases for RJ , with all members of RJ represented as column vectors. For
i = 1, 2, ..., J , let

µi = max
1≤j≤J

{|〈ui, vj〉|}

and
µ(U, V ) = max{mui |i = 1, ..., I}.

We know from Cauchy’s Inequality that

|〈ui, vj〉| ≤ 1,

and from Parseval’s Equation

J∑
j=1

|〈ui, vj〉|2 = ||ui||2 = 1.

Therefore, we have
1√
J
≤ µ(U, V ) ≤ 1.

The quantity µ(U, V ) is the coherence measure of the two bases; the closer
µ(U, V ) is to the lower bound of 1√

J
, the more incoherent the two bases

are.
Let f be a fixed member of RJ ; we expand f in the V basis as

f = x1v
1 + x2v

2 + ...+ xJv
J .

We say that the coefficient vector x = (x1, ..., xJ) is S-sparse if S is the
number of non-zero xj .

23.6.2 Exploiting Sparseness

If S is small, most of the xj are zero, but since we do not know which ones
these are, we would have to compute all the linear functional values

xj = 〈f, vj〉

to recover f exactly. In fact, the smaller S is, the harder it would be to
learn anything from randomly selected xj , since most would be zero. The
idea in CS is to obtain measurements of f with members of a different
orthonormal basis, which we call the U basis. If the members of U are very
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much like the members of V , then nothing is gained. But, if the members of
U are quite unlike the members of V , then each inner product measurement

yi = 〈f, ui〉 = fTui

should tell us something about f . If the two bases are sufficiently inco-
herent, then relatively few yi values should tell us quite a bit about f .
Specifically, we have the following result due to Candès and Romberg [67]:
suppose the coefficient vector x for representing f in the V basis is S-sparse.
Select uniformly randomly M ≤ J members of the U basis and compute
the measurements yi = 〈f, ui〉 . Then, if M is sufficiently large, it is highly
probable that z = x also solves the problem of minimizing the one-norm

||z||1 = |z1|+ |z2|+ ...+ |zJ |,

subject to the conditions

yi = 〈g, ai〉 = gTui,

for those M randomly selected ui, where

g = z1v
1 + z2v

2 + ...+ zJv
J .

This can be formulated as a linear programming problem. The smaller
µ(U, V ) is, the smaller the M is permitted to be without reducing the
probability of perfect reconstruction.



Chapter 24

Intensity Modulated
Radiation Therapy

In intensity modulated radiation therapy (IMRT) beamlets of radiation with
different intensities are transmitted into the body of the patient. Each voxel
within the patient will then absorb a certain dose of radiation from each
beamlet. The goal of IMRT is to direct a sufficient dosage to those regions
requiring the radiation, those that are designated planned target volumes
(PTV), while limiting the dosage received by the other regions, the so-
called organs at risk (OAR). In our discussion here we follow Censor et al.
[75].

24.1 The Forward and Inverse Problems

The forward problem is to calculate the radiation dose absorbed in the
irradiated tissue based on a given distribution of the beamlet intensities.
The inverse problem is to find a distribution of beamlet intensities, the
radiation intensity map, that will result in a clinically acceptable dose
distribution. One important constraint is that the radiation intensity map
must be implementable, that is, it is physically possible to produce such
an intensity map, given the machine’s design. There will be limits on the
change in intensity between two adjacent beamlets, for example.

24.2 Equivalent Uniform Dosage

The equivalent uniform dose (EUD) for tumors is the biologically equivalent
dose which, if given uniformly, will lead to the same cell-kill within the
tumor volume as the actual non-uniform dose.
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24.3 Constraints

Constraints on the EUD received by each voxel of the body are described in
dose space, the space of vectors whose entries are the doses received at each
voxel. Constraints on the deliverable radiation intensities of the beamlets
are best described in intensity space, the space of vectors whose entries are
the intensity levels associated with each of the beamlets. The constraints
in dose space will be upper bounds on the dosage received by the OAR
and lower bounds on the dosage received by the PTV. The constraints
in intensity space are limits on the complexity of the intensity map and
on the delivery time, and, obviously, that the intensities be non-negative.
Because the constraints operate in two different domains, it is convenient
to formulate the problem using these two domains. This leads to a split-
feasibility problem.

24.4 The Multi-Set Split-Feasibilty-Problem
Model

The split feasibility problem (SFP) is to find an x in a given closed convex
subset C of RJ such that Ax is in a given closed convex subset Q of
RI , where A is a given real I by J matrix. Because the constraints are
best described in terms of several sets in dose space and several sets in
intensity space, the SFP model needs to be expanded into the multi-set
SFP (MSSFP) [77].

It is not uncommon to find that, once the various constraints have been
specified, there is no intensity map that satisfies them all. In such cases,
it is desirable to find an intensity map that comes as close as possible to
satisfying all the constraints. One way to do this, as we shall see, is to
minimize a proximity function.

24.5 Formulating the Proximity Function

For i = 1, ..., I, and j = 1, ..., J , let hi ≥ 0 be the dose absorbed by the
i-th voxel of the patient’s body, xj ≥ 0 be the intensity of the j-th beamlet
of radiation, and Dij ≥ 0 be the dose absorbed at the i-th voxel due to a
unit intensity of radiation at the j-th beamlet. The non-negative matrix
D with entries Dij is the dose influence matrix.

In intensity space, we have the obvious constraints that xj ≥ 0. In addi-
tion, there are implementation constraints; the available treatment machine
will impose its own requirements, such as a limit on the difference in in-
tensities between adjacent beamlets. In dosage space, there will be a lower
bound on the dosage delivered to those regions designated as planned tar-
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get volumes (PTV), and an upper bound on the dosage delivered to those
regions designated as organs at risk (OAR).

24.6 Equivalent Uniform Dosage Functions

Suppose that St is either a PTV or a OAR, and suppose that St contains
Nt voxels. For each dosage vector h = (h1, ..., hI)T define the equivalent
uniform dosage function (EUD-function) et(h) by

et(h) = (
1
Nt

∑
i∈St

(hi)α)1/α, (24.1)

where 0 < α < 1 if St is a PTV, and α > 1 if St is an OAR. The function
et(h) is convex, for h nonnegative, when St is an OAR, and −et(h) is
convex, when St is a PTV. The constraints in dosage space take the form

et(h) ≤ at,

when St is an OAR, and
−et(h) ≤ bt,

when St is a PTV. Therefore, we require that h = Dx lie within the
intersection of these convex sets.
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Chapter 25

Planewave Propagation

In this chapter we demonstrate how the Fourier transform arises naturally
as we study the signals received in the farfield from an array of tranmitters
or reflectors. We restrict our attention to single-frequency, or narrowband,
signals.

25.1 Transmission and Remote-Sensing

For pedagogical reasons, we shall discuss separately what we shall call the
transmission and the remote-sensing problems, although the two problems
are opposite sides of the same coin, in a sense. In the one-dimensional
transmission problem, it is convenient to imagine the transmitters located
at points (x, 0) within a bounded interval [−A,A] of the x-axis, and the
measurements taken at points P lying on a circle of radius D, centered
at the origin. The radius D is large, with respect to A. It may well be
the case that no actual sensing is to be performed, but rather, we are
simply interested in what the received signal pattern is at points P distant
from the transmitters. Such would be the case, for example, if we were
analyzing or constructing a transmission pattern of radio broadcasts. In the
remote-sensing problem, in contrast, we imagine, in the one-dimensional
case, that our sensors occupy a bounded interval of the x-axis, and the
transmitters or reflectors are points of a circle whose radius is large, with
respect to the size of the bounded interval. The actual size of the radius
does not matter and we are interested in determining the amplitudes of the
transmitted or reflected signals, as a function of angle only. Such is the case
in astronomy, farfield sonar or radar, and the like. Both the transmission
and remote-sensing problems illustrate the important role played by the
Fourier transform.

249
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25.2 The Transmission Problem

We identify two distinct transmission problems: the direct problem and
the inverse problem. In the direct transmission problem, we wish to deter-
mine the farfield pattern, given the complex amplitudes of the transmitted
signals. In the inverse transmission problem, the array of transmitters or
reflectors is the object of interest; we are given, or we measure, the farfield
pattern and wish to determine the amplitudes. For simplicity, we consider
only single-frequency signals.

We suppose that each point x in the interval [−A,A] transmits the
signal f(x)eiωt, where f(x) is the complex amplitude of the signal and
ω > 0 is the common fixed frequency of the signals. Let D > 0 be large,
with respect to A, and consider the signal received at each point P given
in polar coordinates by P = (D, θ). The distance from (x, 0) to P is
approximately D − x cos θ, so that, at time t, the point P receives from
(x, 0) the signal f(x)eiω(t−(D−x cos θ)/c), where c is the propagation speed.
Therefore, the combined signal received at P is

B(P, t) = eiωte−iωD/c

∫ A

−A

f(x)eix ω cos θ
c dx. (25.1)

The integral term, which gives the farfield pattern of the transmission, is

F (
ω cos θ
c

) =
∫ A

−A

f(x)eix ω cos θ
c dx, (25.2)

where F (γ) is the Fourier transform of f(x), given by

F (γ) =
∫ A

−A

f(x)eixγdx. (25.3)

How F (ω cos θ
c ) behaves, as a function of θ, as we change A and ω, is dis-

cussed in some detail in the chapter in [62] on direct transmission.
Consider, for example, the function f(x) = 1, for |x| ≤ A, and f(x) = 0,

otherwise. The Fourier transform of f(x) is

F (γ) = 2Asinc(Aγ), (25.4)

where sinc(t) is defined to be

sinc(t) =
sin(t)
t

, (25.5)

for t 6= 0, and sinc(0) = 1. Then F (ω cos θ
c ) = 2A when cos θ = 0, so when

θ = π
2 and θ = 3π

2 . We will have F (ω cos θ
c ) = 0 when Aω cos θ

c = π, or
cos θ = πc

Aω . Therefore, the transmission pattern has no nulls if πc
Aω > 1. In
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order for the transmission pattern to have nulls, we need A > λ
2 , where λ =

2πc
ω is the wavelength. This rather counterintuitive fact, namely that we

need more signals transmitted in order to receive less at certain locations,
illustrates the phenomenon of destructive interference.

25.3 Reciprocity

For certain remote-sensing applications, such as sonar and radar array pro-
cessing and astronomy, it is convenient to switch the roles of sender and
receiver. Imagine that superimposed planewave fields are sensed at points
within some bounded region of the interior of the sphere, having been
transmitted or reflected from the points P on the surface of a sphere whose
radius D is large with respect to the bounded region. The reciprocity prin-
ciple tells us that the same mathematical relation holds between points P
and (x, 0), regardless of which is the sender and which the receiver. Con-
sequently, the data obtained at the points (x, 0) are then values of the
inverse Fourier transform of the function describing the amplitude of the
signal sent from each point P .

25.4 Remote Sensing

A basic problem in remote sensing is to determine the nature of a distant
object by measuring signals transmitted by or reflected from that object.
If the object of interest is sufficiently remote, that is, is in the farfield, the
data we obtain by sampling the propagating spatio-temporal field is related,
approximately, to what we want by Fourier transformation. The problem
is then to estimate a function from finitely many (usually noisy) values
of its Fourier transform. The application we consider here is a common
one of remote-sensing of transmitted or reflected waves propagating from
distant sources. Examples include optical imaging of planets and asteroids
using reflected sunlight, radio-astronomy imaging of distant sources of radio
waves, active and passive sonar, and radar imaging.

25.5 The Wave Equation

In many areas of remote sensing, what we measure are the fluctuations
in time of an electromagnetic or acoustic field. Such fields are described
mathematically as solutions of certain partial differential equations, such
as the wave equation. A function u(x, y, z, t) is said to satisfy the three-
dimensional wave equation if

utt = c2(uxx + uyy + uzz) = c2∇2u, (25.6)
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where utt denotes the second partial derivative of u with respect to the time
variable t twice and c > 0 is the (constant) speed of propagation. More
complicated versions of the wave equation permit the speed of propagation
c to vary with the spatial variables x, y, z, but we shall not consider that
here.

We use the method of separation of variables at this point, to get some
idea about the nature of solutions of the wave equation. Assume, for the
moment, that the solution u(t, x, y, z) has the simple form

u(t, x, y, z) = f(t)g(x, y, z). (25.7)

Inserting this separated form into the wave equation, we get

f ′′(t)g(x, y, z) = c2f(t)∇2g(x, y, z) (25.8)

or

f ′′(t)/f(t) = c2∇2g(x, y, z)/g(x, y, z). (25.9)

The function on the left is independent of the spatial variables, while the
one on the right is independent of the time variable; consequently, they
must both equal the same constant, which we denote −ω2. From this we
have two separate equations,

f ′′(t) + ω2f(t) = 0, (25.10)

and

∇2g(x, y, z) +
ω2

c2
g(x, y, z) = 0. (25.11)

Equation (25.11) is the Helmholtz equation.
Equation (25.10) has for its solutions the functions f(t) = cos(ωt) and

sin(ωt), or, in complex form, the complex exponential functions f(t) = eiωt

and f(t) = e−iωt. Functions u(t, x, y, z) = f(t)g(x, y, z) with such time
dependence are called time-harmonic solutions.

25.6 Planewave Solutions

Suppose that, beginning at time t = 0, there is a localized disturbance.
As time passes, that disturbance spreads out spherically. When the radius
of the sphere is very large, the surface of the sphere appears planar, to
an observer on that surface, who is said then to be in the far field. This
motivates the study of solutions of the wave equation that are constant on
planes; the so-called planewave solutions.
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Let s = (x, y, z) and u(s, t) = u(x, y, z, t) = eiωteik·s. Then we can show
that u satisfies the wave equation utt = c2∇2u for any real vector k, so long
as ||k||2 = ω2/c2. This solution is a planewave associated with frequency
ω and wavevector k; at any fixed time the function u(s, t) is constant on
any plane in three-dimensional space having k as a normal vector.

In radar and sonar, the field u(s, t) being sampled is usually viewed as
a discrete or continuous superposition of planewave solutions with various
amplitudes, frequencies, and wavevectors. We sample the field at various
spatial locations s, for various times t. Here we simplify the situation a
bit by assuming that all the planewave solutions are associated with the
same frequency, ω. If not, we can perform an FFT on the functions of time
received at each sensor location s and keep only the value associated with
the desired frequency ω.

25.7 Superposition and the Fourier Transform

In the continuous superposition model, the field is

u(s, t) = eiωt

∫
F (k)eik·sdk. (25.12)

Our measurements at the sensor locations s give us the values

f(s) =
∫
F (k)eik·sdk. (25.13)

The data are then Fourier transform values of the complex function F (k);
F (k) is defined for all three-dimensional real vectors k, but is zero, in
theory, at least, for those k whose squared length ||k||2 is not equal to
ω2/c2. Our goal is then to estimate F (k) from measured values of its
Fourier transform. Since each k is a normal vector for its planewave field
component, determining the value of F (k) will tell us the strength of the
planewave component coming from the direction k.

25.7.1 The Spherical Model

We can imagine that the sources of the planewave fields are the points P
that lie on the surface of a large sphere centered at the origin. For each
P , the ray from the origin to P is parallel to some wavevector k. The
function F (k) can then be viewed as a function F (P ) of the points P . Our
measurements will be taken at points s inside this sphere. The radius of
the sphere is assumed to be orders of magnitude larger than the distance
between sensors. The situation is that of astronomical observation of the
heavens using ground-based antennas. The sources of the optical or electro-
magnetic signals reaching the antennas are viewed as lying on a large sphere
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surrounding the earth. Distance to the sources is not considered now, and
all we are interested in are the amplitudes F (k) of the fields associated
with each direction k.

25.8 Sensor Arrays

In some applications the sensor locations are essentially arbitrary, while
in others their locations are carefully chosen. Sometimes, the sensors are
collinear, as in sonar towed arrays.

25.8.1 The Two-Dimensional Array

Suppose now that the sensors are in locations s = (x, y, 0), for various x
and y; then we have a planar array of sensors. Then the dot product s · k
that occurs in Equation (25.13) is

s · k = xk1 + yk2; (25.14)

we cannot see the third component, k3. However, since we know the size
of the vector k, we can determine |k3|. The only ambiguity that remains
is that we cannot distinguish sources on the upper hemisphere from those
on the lower one. In most cases, such as astronomy, it is obvious in which
hemisphere the sources lie, so the ambiguity is resolved.

The function F (k) can then be viewed as F (k1, k2), a function of the
two variables k1 and k2. Our measurements give us values of f(x, y), the
two-dimensional Fourier transform of F (k1, k2). Because of the limitation
||k|| = ω

c , the function F (k1, k2) has bounded support. Consequently, its
Fourier transform cannot have bounded support. As a result, we can never
have all the values of f(x, y), and so cannot hope to reconstruct F (k1, k2)
exactly, even for noise-free data.

25.8.2 The One-Dimensional Array

If the sensors are located at points s having the form s = (x, 0, 0), then we
have a line array of sensors. The dot product in Equation (25.13) becomes

s · k = xk1. (25.15)

Now the ambiguity is greater than in the planar array case. Once we have
k1, we know that

k2
2 + k2

3 = (
ω

c
)2 − k2

1, (25.16)

which describes points P lying on a circle on the surface of the distant
sphere, with the vector (k1, 0, 0) pointing at the center of the circle. It
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is said then that we have a cone of ambiguity. One way to resolve the
situation is to assume k3 = 0; then |k2| can be determined and we have
remaining only the ambiguity involving the sign of k2. Once again, in many
applications, this remaining ambiguity can be resolved by other means.

Once we have resolved any ambiguity, we can view the function F (k)
as F (k1), a function of the single variable k1. Our measurements give us
values of f(x), the Fourier transform of F (k1). As in the two-dimensional
case, the restriction on the size of the vectors k means that the function
F (k1) has bounded support. Consequently, its Fourier transform, f(x),
cannot have bounded support. Therefore, we shall never have all of f(x),
and so cannot hope to reconstruct F (k1) exactly, even for noise-free data.

25.8.3 Limited Aperture

In both the one- and two-dimensional problems, the sensors will be placed
within some bounded region, such as |x| ≤ A, |y| ≤ B for the two-
dimensional problem, or |x| ≤ A for the one-dimensional case. These
bounded regions are the apertures of the arrays. The larger these apertures
are, in units of the wavelength, the better the resolution of the reconstruc-
tions.

In digital array processing there are only finitely many sensors, which
then places added limitations on our ability to reconstruction the field
amplitude function F (k).

25.9 The Remote-Sensing Problem

We shall begin our discussion of the remote-sensing problem by consid-
ering an extended object transmitting or reflecting a single-frequency, or
narrowband, signal. The narrowband, extended-object case is a good place
to begin, since a point object is simply a limiting case of an extended ob-
ject, and broadband received signals can always be filtered to reduce their
frequency band.

25.9.1 The Solar-Emission Problem

In [26] Bracewell discusses the solar-emission problem. In 1942, it was
observed that radio-wave emissions in the one-meter wavelength range were
arriving from the sun. Were they coming from the entire disk of the sun
or were the sources more localized, in sunspots, for example? The problem
then was to view each location on the sun’s surface as a potential source of
these radio waves and to determine the intensity of emission corresponding
to each location.

For electromagnetic waves the propagation speed is the speed of light
in a vacuum, which we shall take here to be c = 3× 108 meters per second.
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The wavelength λ for gamma rays is around one Angstrom, which is 10−10

meters; for x-rays it is about one millimicron, or 10−9 meters. The visi-
ble spectrum has wavelengths that are a little less than one micron, that
is, 10−6 meters. Shortwave radio has a wavelength around one millime-
ter; microwaves have wavelengths between one centimeter and one meter.
Broadcast radio has a λ running from about 10 meters to 1000 meters,
while the so-called long radio waves can have wavelengths several thousand
meters long.

The sun has an angular diameter of 30 min. of arc, or one-half of a
degree, when viewed from earth, but the needed resolution was more like
3 min. of arc. As we shall see shortly, such resolution requires a radio
telescope 1000 wavelengths across, which means a diameter of 1km at a
wavelength of 1 meter; in 1942 the largest military radar antennas were
less than 5 meters across. A solution was found, using the method of
reconstructing an object from line-integral data, a technique that surfaced
again in tomography. The problem here is inherently two-dimensional, but,
for simplicity, we shall begin with the one-dimensional case.

25.10 Sampling

In the one-dimensional case, the signal received at the point (x, 0, 0) is
essentially the inverse Fourier transform f(x) of the function F (k1); for
notational simplicity, we write k = k1. The F (k) supported on a bounded
interval |k| ≤ ω

c , so f(x) cannot have bounded support. As we noted
earlier, to determine F (k) exactly, we would need measurements of f(x)
on an unbounded set. But, which unbounded set?

Because the function F (k) is zero outside the interval [−ω
c ,

ω
c ], the func-

tion f(x) is band-limited. The Nyquist spacing in the variable x is therefore

∆x =
πc

ω
. (25.17)

The wavelength λ associated with the frequency ω is defined to be

λ =
2πc
ω
, (25.18)

so that

∆x =
λ

2
. (25.19)

The significance of the Nyquist spacing comes from Shannon’s Sampling
Theorem, which says that if we have the values f(m∆x), for all integers m,
then we have enough information to recover F (k) exactly. In practice, of
course, this is never the case.
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25.11 The Limited-Aperture Problem

In the remote-sensing problem, our measurements at points (x, 0, 0) in the
farfield give us the values f(x). Suppose now that we are able to take
measurements only for limited values of x, say for |x| ≤ A; then 2A is the
aperture of our antenna or array of sensors. We describe this by saying that
we have available measurements of f(x)h(x), where h(x) = χA(x) = 1, for
|x| ≤ A, and zero otherwise. So, in addition to describing blurring and
low-pass filtering, the convolution-filter model can also be used to model
the limited-aperture problem. As in the low-pass case, the limited-aperture
problem can be attacked using extrapolation, but with the same sort of risks
described for the low-pass case. A much different approach is to increase
the aperture by physically moving the array of sensors, as in synthetic
aperture radar (SAR).

Returning to the farfield remote-sensing model, if we have Fourier trans-
form data only for |x| ≤ A, then we have f(x) for |x| ≤ A. Using
h(x) = χA(x) to describe the limited aperture of the system, the point-
spread function is H(γ) = 2Asinc(γA), the Fourier transform of h(x). The
first zeros of the numerator occur at |γ| = π

A , so the main lobe of the
point-spread function has width 2π

A . For this reason, the resolution of such
a limited-aperture imaging system is said to be on the order of 1

A . Since
|k| ≤ ω

c , we can write k = ω
c cos θ, where θ denotes the angle between

the positive x-axis and the vector k = (k1, k2, 0); that is, θ points in the
direction of the point P associated with the wavevector k. The resolution,
as measured by the width of the main lobe of the point-spread function
H(γ), in units of k, is 2π

A , but, the angular resolution will depend also on
the frequency ω. Since k = 2π

λ cos θ, a distance of one unit in k may corre-
spond to a large change in θ when ω is small, but only to a relatively small
change in θ when ω is large. For this reason, the aperture of the array is
usually measured in units of the wavelength; an aperture of A = 5 meters
may be acceptable if the frequency is high, so that the wavelength is small,
but not if the radiation is in the one-meter-wavelength range.

25.12 Resolution

If F (k) = δ(k) and h(x) = χA(x) describes the aperture-limitation of the
imaging system, then the point-spread function is H(γ) = 2Asinc(γA).
The maximum of H(γ) still occurs at γ = 0, but the main lobe of H(γ)
extends from − π

A to π
A ; the point source has been spread out. If the point-

source object shifts, so that F (k) = δ(k−a), then the reconstructed image
of the object is H(k−a), so the peak is still in the proper place. If we know
a priori that the object is a single point source, but we do not know its
location, the spreading of the point poses no problem; we simply look for



258 CHAPTER 25. PLANEWAVE PROPAGATION

the maximum in the reconstructed image. Problems arise when the object
contains several point sources, or when we do not know a priori what we
are looking at, or when the object contains no point sources, but is just a
continuous distribution.

Suppose that F (k) = δ(k − a) + δ(k − b); that is, the object consists
of two point sources. Then Fourier transformation of the aperture-limited
data leads to the reconstructed image

R(k) = 2A
(
sinc(A(k − a)) + sinc(A(k − b))

)
. (25.20)

If |b − a| is large enough, R(k) will have two distinct maxima, at approx-
imately k = a and k = b, respectively. For this to happen, we need π/A,
the width of the main lobe of the function sinc(Ak), to be less than |b−a|.
In other words, to resolve the two point sources a distance |b−a| apart, we
need A ≥ π/|b − a|. However, if |b − a| is too small, the distinct maxima
merge into one, at k = a+b

2 and resolution will be lost. How small is too
small will depend on both A and ω.

Suppose now that F (k) = δ(k − a), but we do not know a priori that
the object is a single point source. We calculate

R(k) = H(k − a) = 2Asinc(A(k − a)) (25.21)

and use this function as our reconstructed image of the object, for all k.
What we see when we look at R(k) for some k = b 6= a is R(b), which is
the same thing we see when the point source is at k = b and we look at
k = a. Point-spreading is, therefore, more than a cosmetic problem. When
the object is a point source at k = a, but we do not know a priori that it
is a point source, the spreading of the point causes us to believe that the
object function F (k) is nonzero at values of k other than k = a. When we
look at, say, k = b, we see a nonzero value that is caused by the presence
of the point source at k = a.

Suppose now that the object function F (k) contains no point sources,
but is simply an ordinary function of k. If the aperture A is very small, then
the function H(k) is nearly constant over the entire extent of the object.
The convolution of F (k) and H(k) is essentially the integral of F (k), so
the reconstructed object is R(k) =

∫
F (k)dk, for all k.

Let’s see what this means for the solar-emission problem discussed ear-
lier.

25.12.1 The Solar-Emission Problem Revisited

The wavelength of the radiation is λ = 1 meter. Therefore, ω
c = 2π, and

k in the interval [−2π, 2π] corresponds to the angle θ in [0, π]. The sun
has an angular diameter of 30 minutes of arc, which is about 10−2 radians.
Therefore, the sun subtends the angles θ in [π

2 −(0.5)·10−2, π
2 +(0.5)·10−2],
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which corresponds roughly to the variable k in the interval [−3 · 10−2, 3 ·
10−2]. Resolution of 3 minutes of arc means resolution in the variable k of
3 · 10−3. If the aperture is 2A, then to achieve this resolution, we need

π

A
≤ 3 · 10−3, (25.22)

or

A ≥ π

3
· 103 (25.23)

meters, or A not less than about 1000 meters.
The radio-wave signals emitted by the sun are focused, using a parabolic

radio-telescope. The telescope is pointed at the center of the sun. Because
the sun is a great distance from the earth and the subtended arc is small
(30 min.), the signals from each point on the sun’s surface arrive at the
parabola nearly head-on, that is, parallel to the line from the vertex to the
focal point, and are reflected to the receiver located at the focal point of
the parabola. The effect of the parabolic antenna is not to discriminate
against signals coming from other directions, since there are none, but to
effect a summation of the signals received at points (x, 0, 0), for |x| ≤ A,
where 2A is the diameter of the parabola. When the aperture is large, the
function h(x) is nearly one for all x and the signal received at the focal
point is essentially ∫

f(x)dx = F (0); (25.24)

we are now able to distinguish between F (0) and other values F (k). When
the aperture is small, h(x) is essentially δ(x) and the signal received at the
focal point is essentially∫

f(x)δ(x)dx = f(0) =
∫
F (k)dk; (25.25)

now all we get is the contribution from all the k, superimposed, and all
resolution is lost.

Since the solar emission problem is clearly two-dimensional, and we need
3 min. resolution in both dimensions, it would seem that we would need a
circular antenna with a diameter of about one kilometer, or a rectangular
antenna roughly one kilometer on a side. We shall return to this problem
later, once when we discuss multi-dimensional Fourier transforms, and then
again when we consider tomographic reconstruction of images from line
integrals.

25.13 Discrete Data

A familiar topic in signal processing is the passage from functions of con-
tinuous variables to discrete sequences. This transition is achieved by sam-
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pling, that is, extracting values of the continuous-variable function at dis-
crete points in its domain. Our example of farfield propagation can be used
to explore some of the issues involved in sampling.

Imagine an infinite uniform line array of sensors formed by placing
receivers at the points (n∆, 0, 0), for some ∆ > 0 and all integers n. Then
our data are the values f(n∆). Because we defined k = ω

c cos θ, it is clear
that the function F (k) is zero for k outside the interval [−ω

c ,
ω
c ].

Our discrete array of sensors cannot distinguish between the signal ar-
riving from θ and a signal with the same amplitude, coming from an angle
α with

ω

c
cosα =

ω

c
cos θ +

2π
∆
m, (25.26)

where m is an integer. To resolve this ambiguity, we select ∆ > 0 so that

−ω
c

+
2π
∆

≥ ω

c
, (25.27)

or

∆ ≤ πc

ω
=
λ

2
. (25.28)

The sensor spacing ∆s = λ
2 is the Nyquist spacing.

In the sunspot example, the object function F (k) is zero for k outside
of an interval much smaller than [−ω

c ,
ω
c ]. Knowing that F (k) = 0 for

|k| > K, for some 0 < K < ω
c , we can accept ambiguities that confuse

θ with another angle that lies outside the angular diameter of the object.
Consequently, we can redefine the Nyquist spacing to be

∆s =
π

K
. (25.29)

This tells us that when we are imaging a distant object with a small angular
diameter, the Nyquist spacing is greater than λ

2 . If our sensor spacing has
been chosen to be λ

2 , then we have oversampled. In the oversampled case,
band-limited extrapolation methods can be used to improve resolution .

25.13.1 Reconstruction from Samples

From the data gathered at our infinite array we have extracted the Fourier
transform values f(n∆), for all integers n. The obvious question is whether
or not the data is sufficient to reconstruct F (k). We know that, to avoid
ambiguity, we must have ∆ ≤ πc

ω . The good news is that, provided this
condition holds, F (k) is uniquely determined by this data and formulas
exist for reconstructing F (k) from the data; this is the content of the
Shannon’s Sampling Theorem. Of course, this is only of theoretical interest,
since we never have infinite data. Nevertheless, a considerable amount of
traditional signal-processing exposition makes use of this infinite-sequence
model. The real problem, of course, is that our data is always finite.
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25.14 The Finite-Data Problem

Suppose that we build a uniform line array of sensors by placing receivers
at the points (n∆, 0, 0), for some ∆ > 0 and n = −N, ..., N . Then our data
are the values f(n∆), for n = −N, ..., N . Suppose, as previously, that the
object of interest, the function F (k), is nonzero only for values of k in the
interval [−K,K], for some 0 < K < ω

c . Once again, we must have ∆ ≤ πc
ω

to avoid ambiguity; but this is not enough, now. The finite Fourier data
is no longer sufficient to determine a unique F (k). The best we can hope
to do is to estimate the true F (k), using both our measured Fourier data
and whatever prior knowledge we may have about the function F (k), such
as where it is nonzero, if it consists of Dirac delta point sources, or if it is
nonnegative. The data is also noisy, and that must be accounted for in the
reconstruction process.

In certain applications, such as sonar array processing, the sensors are
not necessarily arrayed at equal intervals along a line, or even at the grid
points of a rectangle, but in an essentially arbitrary pattern in two, or even
three, dimensions. In such cases, we have values of the Fourier transform
of the object function, but at essentially arbitrary values of the variable.
How best to reconstruct the object function in such cases is not obvious.

25.15 Functions of Several Variables

Fourier transformation applies, as well, to functions of several variables. As
in the one-dimensional case, we can motivate the multi-dimensional Fourier
transform using the farfield propagation model. As we noted earlier, the
solar emission problem is inherently a two-dimensional problem.

25.15.1 Two-Dimensional Farfield Object

Assume that our sensors are located at points s = (x, y, 0) in the x,y-plane.
As discussed previously, we assume that the function F (k) can be viewed
as a function F (k1, k2). Since, in most applications, the distant object has
a small angular diameter when viewed from a great distance - the sun’s is
only 30 minutes of arc - the function F (k1, k2) will be supported on a small
subset of vectors (k1, k2).

25.15.2 Limited Apertures in Two Dimensions

Suppose we have the values of the Fourier transform, f(x, y), for |x| ≤ A
and |y| ≤ A. We describe this limited-data problem using the function
h(x, y) that is one for |x| ≤ A, and |y| ≤ A, and zero, otherwise. Then the
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point-spread function is the Fourier transform of this h(x, y), given by

H(α, β) = 4ABsinc(Aα)sinc(Bβ). (25.30)

The resolution in the horizontal (x) direction is on the order of 1
A , and

1
B in the vertical, where, as in the one-dimensional case, aperture is best
measured in units of wavelength.

Suppose our aperture is circular, with radius A. Then we have Fourier
transform values f(x, y) for

√
x2 + y2 ≤ A. Let h(x, y) equal one, for√

x2 + y2 ≤ A, and zero, otherwise. Then the point-spread function of
this limited-aperture system is the Fourier transform of h(x, y), given by
H(α, β) = 2πA

r J1(rA), with r =
√
α2 + β2. The resolution of this system is

roughly the distance from the origin to the first null of the function J1(rA),
which means that rA = 4, roughly.

For the solar emission problem, this says that we would need a circular
aperture with radius approximately one kilometer to achieve 3 minutes of
arc resolution. But this holds only if the antenna is stationary; a moving
antenna is different! The solar emission problem was solved by using a
rectangular antenna with a large A, but a small B, and exploiting the
rotation of the earth. The resolution is then good in the horizontal, but bad
in the vertical, so that the imaging system discriminates well between two
distinct vertical lines, but cannot resolve sources within the same vertical
line. Because B is small, what we end up with is essentially the integral
of the function f(x, z) along each vertical line. By tilting the antenna, and
waiting for the earth to rotate enough, we can get these integrals along
any set of parallel lines. The problem then is to reconstruct F (k1, k2) from
such line integrals. This is also the main problem in tomography.

25.16 Broadband Signals

We have spent considerable time discussing the case of a distant point
source or an extended object transmitting or reflecting a single-frequency
signal. If the signal consists of many frequencies, the so-called broadband
case, we can still analyze the received signals at the sensors in terms of
time delays, but we cannot easily convert the delays to phase differences,
and thereby make good use of the Fourier transform. One approach is
to filter each received signal, to remove components at all but a single
frequency, and then to proceed as previously discussed. In this way we can
process one frequency at a time. The object now is described in terms of a
function of both k and ω, with F (k, ω) the complex amplitude associated
with the wave vector k and the frequency ω. In the case of radar, the
function F (k, ω) tells us how the material at P reflects the radio waves at
the various frequencies ω, and thereby gives information about the nature
of the material making up the object near the point P .
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There are times, of course, when we do not want to decompose a broad-
band signal into single-frequency components. A satellite reflecting a TV
signal is a broadband point source. All we are interested in is receiving the
broadband signal clearly, free of any other interfering sources. The direc-
tion of the satellite is known and the antenna is turned to face the satellite.
Each location on the parabolic dish reflects the same signal. Because of its
parabolic shape, the signals reflected off the dish and picked up at the focal
point have exactly the same travel time from the satellite, so they combine
coherently, to give us the desired TV signal.
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Chapter 26

Complex Exponentials

The most important signals considered in signal processing are sinusoids,
that is, sine or cosine functions. A complex sinusoid is a function of the
real variable t having the form

f(t) = cosωt+ i sinωt, (26.1)

for some real frequency ω. Complex sinusoids are also called complex ex-
ponential functions.

26.1 Why “Exponential”?

Complex exponential functions have the property f(t + u) = f(t)f(u),
which is characteristic of exponential functions. This property can be easily
verified for f(t) using trigonometric identities.

Exponential functions in calculus take the form g(t) = at, for some
positive constant a; the most famous of these is g(t) = et. The function
f(t) in Equation (26.1) has complex values, so cannot be f(t) = at for
any positive a. But, what if we let a be complex? If it is the case that
f(t) = at for some complex a, then, setting t = 1, we would have a =
f(1) = cosω + i sinω. This is the complex number denoted ei; to see why
we consider Taylor series expansions.

26.2 Taylor-series expansions

The Taylor series expansion for the exponential function g(t) = et is

et = 1 + t+
1
2!
t2 +

1
3!
t3 + .... (26.2)

267
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If we replace t with iω, where i =
√
−1, we obtain

eiω = (1− 1
2!
ω2 +

1
4!
ω4 − ...) + i(ω − 1

3!
ω3 +

1
5!
ω5 − ...). (26.3)

We recognize the two series in Equation (26.3) as the Taylor-series expan-
sions for cosω and sinω, respectively, so we can write

eiω = cosω + i sinω.

Therefore the complex exponential function in Equation (26.1) can be writ-
ten

f(t) = (eiω)t = eiωt.

If A = |A|eiθ, then the signal h(t) = Aeiωt can be written

h(t) = |A|ei(ωt+θ);

here A is called the complex amplitude of the signal h(t), with positive
amplitude |A| and phase θ.

26.3 Basic Properties

The laws of exponents apply to the complex exponential functions, so, for
example, we can write

eiωteiωu = eiω(t+u).

Note also that the complex conjugate of eiωt is

eiωt = e−iωt

It follows directly from the definition of eiωt that

sin(ωt) =
1
2i

[eiωt − e−iωt],

and
cos(ωt) =

1
2
[eiωt + e−iωt].

Exercise 26.1 Show that

eia + eib = ei a+b
2 [ei a−b

2 + e−i a−b
2 ] = 2ei a+b

2 cos(
a− b

2
),

and

eia − eib = ei a+b
2 [ei a−b

2 − e−i a−b
2 ] = 2iei a+b

2 sin(
a− b

2
).
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Exercise 26.2 Use the formula for the sum of a geometric progression,

1 + r + r2 + ...+ rk = (1− rk+1)/(1− r),

to show that

N∑
n=M

eiωn = ei M+N
2

sin(ωN−M+1
2 )

sin(ω
2 )

. (26.4)

Exercise 26.3 Express the result in the previous exercise in terms of real
and imaginary parts to show that

N∑
n=M

cos(ωn) = cos(
M +N

2
)
sin(ωN−M+1

2 )
sin(ω

2 )
,

and
N∑

n=M

sin(ωn) = sin(
M +N

2
)
sin(ωN−M+1

2 )
sin(ω

2 )
.
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Chapter 27

The Fourier Transform

As we noted previously, the Fourier transform in one and two dimensions
plays an important role in transmission tomographic image reconstruction,
both in the theoretical formulation and in the practical implementation.
In fact, in many areas of remote sensing, including MRI, what we want is
related by the Fourier transform to what we can measure.

In this chapter we review the basic properties of the Fourier transform.

27.1 Fourier-Transform Pairs

Let f(x) be defined for the real variable x in (−∞,∞). The Fourier trans-
form of f(x) is the function of the real variable γ given by

F (γ) =
∫ ∞

−∞
f(x)eiγxdx. (27.1)

Precisely how we interpret the infinite integrals that arise in the discussion
of the Fourier transform will depend on the properties of the function f(x).
A detailed treatment of this issue, which is beyond the scope of this book,
can be found in almost any text on the Fourier transform (see, for example,
[129]).

27.1.1 The Issue of Units

When we write cosπ = −1, it is with the understanding that π is a mea-
sure of angle, in radians; the function cos will always have an independent
variable in units of radians. By extension, the same is true of the complex
exponential functions. Therefore, when we write eixγ , we understand the
product xγ to be in units of radians. If x is measured in seconds, then
γ is in units of radians per second; if x is in meters, then γ is in units of
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radians per meter. When x is in seconds, we sometimes use the variable
γ
2π ; since 2π is then in units of radians per cycle, the variable γ

2π is in units
of cycles per second, or Hertz. When we sample f(x) at values of x spaced
∆ apart, the ∆ is in units of x-units per sample, and the reciprocal, 1

∆ ,
which is called the sampling frequency, is in units of samples per x-units.
If x is in seconds, then ∆ is in units of seconds per sample, and 1

∆ is in
units of samples per second.

27.1.2 Reconstructing from Fourier-Transform Data

Our goal is often to reconstruct the function f(x) from measurements of
its Fourier transform F (γ). But, how?

If we have F (γ) for all real γ, then we can recover the function f(x)
using the Fourier Inversion Formula:

f(x) =
1
2π

∫ ∞

−∞
F (γ)e−iγxdγ. (27.2)

The functions f(x) and F (γ) are called a Fourier-transform pair. Once
again, the proper interpretation of Equation (27.2) will depend on the
properties of the functions involved. If both f(x) and F (γ) are measurable
and absolutely integrable then both functions are continuous. In the next
chapter, we prove the Fourier Inversion Formula for the functions in the
Schwartz class [129].

27.1.3 An Example

Consider the function f(x) = 1
2A , for |x| ≤ A, and f(x) = 0, otherwise.

The Fourier transform of this f(x) is

F (γ) =
sin(Aγ)
Aγ

,

for all real γ 6= 0, and F (0) = 1. Note that F (γ) is nonzero throughout
the real line, except for isolated zeros, but that it goes to zero as we go
to the infinities. This is typical behavior. Notice also that the smaller the
A, the slower F (γ) dies out; the first zeros of F (γ) are at |γ| = π

A , so the
main lobe widens as A goes to zero. The function f(x) is not continuous,
so its Fourier transform cannot be absolutely integrable. In this case, the
Fourier Inversion Formula must be interpreted as involving convergence in
the L2 norm.

It may seem paradoxical that when A is larger, its Fourier transform dies
off more quickly. The Fourier transform F (γ) goes to zero faster for larger A
because of destructive interference. Because of differences in their complex
phases as x varies, the magnitude of the sum of the complex exponential
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functions eiγx is much smaller than we might expect, especially when A
is large. For smaller A the x are more similar to one another and so the
complex exponential functions are much more in phase with one another;
consequently, the magnitude of the sum remains large. A more quantitative
statement of this phenomenon is provided by the uncertainty principle (see
[61]).

27.1.4 The Dirac Delta

Consider what happens in the limit, as A→ 0. Then we have an infinitely
high point source at x = 0; we denote this by δ(x), the Dirac delta. The
Fourier transform approaches the constant function with value 1, for all γ;
the Fourier transform of f(x) = δ(x) is the constant function F (γ) = 1, for
all γ. The Dirac delta δ(x) has the sifting property:∫

h(x)δ(x)dx = h(0),

for each function h(x) that is continuous at x = 0.
Because the Fourier transform of δ(x) is the function F (γ) = 1, the

Fourier inversion formula tells us that

δ(x) =
1
2π

∫ ∞

−∞
e−iγxdγ. (27.3)

Obviously, this integral cannot be understood in the usual way. The inte-
gral in Equation (27.3) is a symbolic way of saying that∫

h(x)(
1
2π

∫ ∞

−∞
e−iγxdγ)dx =

∫
h(x)δ(x)dx = h(0), (27.4)

for all h(x) that are continuous at x = 0; that is, the integral in Equation
(27.3) has the sifting property, so it acts like δ(x). Interchanging the order
of integration in Equation (27.4), we obtain∫

h(x)(
1
2π

∫ ∞

−∞
e−iγxdγ)dx =

1
2π

∫ ∞

−∞
(
∫
h(x)e−iγxdx)dγ

=
1
2π

∫ ∞

−∞
H(−γ)dγ =

1
2π

∫ ∞

−∞
H(γ)dγ = h(0).

We shall return to the Dirac delta when we consider farfield point sources.

27.2 Practical Limitations

In actual remote-sensing problems, arrays of sensors cannot be of infinite
extent. In digital signal processing, moreover, there are only finitely many
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sensors. We never measure the entire Fourier transform F (γ), but, at best,
just part of it; as we shall see in the chapter on planewave propagation,
in the direct transmission problem we measure F (γ) only for γ = k, with
|k| ≤ ω

c , with ω the frequency and c the propagation speed. In fact, the
data we are able to measure is almost never exact values of F (γ), but rather,
values of some distorted or blurred version. To describe such situations,
we usually resort to convolution-filter models.

27.3 Convolution Filtering

Imagine that what we measure are not values of F (γ), but of F (γ)H(γ),
whereH(γ) is a function that describes the limitations and distorting effects
of the measuring process, including any blurring due to the medium through
which the signals have passed, such as refraction of light as it passes through
the atmosphere. If we apply the Fourier Inversion Formula to F (γ)H(γ),
instead of to F (γ), we get

g(x) =
1
2π

∫
F (γ)H(γ)e−iγxdx. (27.5)

The function g(x) that results is g(x) = (f ∗ h)(x), the convolution of the
functions f(x) and h(x), with the latter given by

h(x) =
1
2π

∫
H(γ)e−iγxdx.

Note that, if f(x) = δ(x), then g(x) = h(x); that is, our reconstruction of
the object from distorted data is the function h(x) itself. For that reason,
the function h(x) is called the point-spread function of the imaging system.

Convolution filtering refers to the process of converting any given func-
tion, say f(x), into a different function, say g(x), by convolving f(x) with
a fixed function h(x). Since this process can be achieved by multiplying
F (γ) by H(γ) and then inverse Fourier transforming, such convolution fil-
ters are studied in terms of the properties of the function H(γ), known in
this context as the system transfer function, or the optical transfer func-
tion (OTF); when γ is a frequency, rather than a spatial frequency, H(γ)
is called the frequency-response function of the filter. The function |H(γ)|,
the magnitude of H(γ), is called the modulation transfer function (MTF).
The study of convolution filters is a major part of signal processing. Such
filters provide both reasonable models for the degradation signals undergo,
and useful tools for reconstruction.

Let us rewrite Equation (27.5), replacing F (γ) and H(γ) with their
definitions, as given by Equation (27.1). Then we have

g(x) =
1
2π

∫
(
∫
f(t)eiγtdt)(

∫
h(s)eiγsds)e−iγxdγ.



27.4. LOW-PASS FILTERING 275

Interchanging the order of integration, we get

g(x) =
1
2π

∫ ∫
f(t)h(s)(

∫
eiγ(x−(t+s))dγ)dsdt.

Now using Equation (27.3) to replace the inner integral with 2πδ(x−(t+s)),
the next integral becomes

2π
∫
h(s)δ(x− (t+ s))ds = 2πh(x− t).

Finally, we have

g(x) =
∫
f(t)h(x− t)dt; (27.6)

this is the definition of the convolution of the functions f and h.

27.4 Low-Pass Filtering

A major problem in image reconstruction is the removal of blurring, which
is often modeled using the notion of convolution filtering. In the one-
dimensional case, we describe blurring by saying that we have available
measurements not of F (γ), but of F (γ)H(γ), where H(γ) is the frequency-
response function describing the blurring. If we know the nature of the
blurring, then we know H(γ), at least to some degree of precision. We can
try to remove the blurring by taking measurements of F (γ)H(γ), dividing
these numbers by the value of H(γ), and then inverse Fourier transform-
ing. The problem is that our measurements are always noisy, and typical
functions H(γ) have many zeros and small values, making division by H(γ)
dangerous, except where the values of H(γ) are not too small. These values
of γ tend to be the smaller ones, centered around zero, so that we end up
with estimates of F (γ) itself only for the smaller values of γ. The result is
a low-pass filtering of the object f(x).

To investigate such low-pass filtering, we suppose that H(γ) = 1, for
|γ| ≤ Γ, and is zero, otherwise. Then the filter is called the ideal Γ-lowpass
filter. In the farfield propagation model, the variable x is spatial, and the
variable γ is spatial frequency, related to how the function f(x) changes
spatially, as we move x. Rapid changes in f(x) are associated with values of
F (γ) for large γ. For the case in which the variable x is time, the variable γ
becomes frequency, and the effect of the low-pass filter on f(x) is to remove
its higher-frequency components.

One effect of low-pass filtering in image processing is to smooth out the
more rapidly changing features of an image. This can be useful if these
features are simply unwanted oscillations, but if they are important de-
tail, the smoothing presents a problem. Restoring such wanted detail is
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often viewed as removing the unwanted effects of the low-pass filtering; in
other words, we try to recapture the missing high-spatial-frequency val-
ues that have been zeroed out. Such an approach to image restoration is
called frequency-domain extrapolation . How can we hope to recover these
missing spatial frequencies, when they could have been anything? To have
some chance of estimating these missing values we need to have some prior
information about the image being reconstructed.

27.5 Two-Dimensional Fourier Transforms

More generally, we consider a function f(x, y) of two real variables. Its
Fourier transformation is

F (α, β) =
∫ ∫

f(x, y)ei(xα+yβ)dxdy. (27.7)

For example, suppose that f(x, y) = 1 for
√
x2 + y2 ≤ R, and zero,

otherwise. Then we have

F (α, β) =
∫ π

−π

∫ R

0

e−i(αr cos θ+βr sin θ)rdrdθ.

In polar coordinates, with α = ρ cosφ and β = ρ sinφ, we have

F (ρ, φ) =
∫ R

0

∫ π

−π

eirρ cos(θ−φ)dθrdr.

The inner integral is well known;∫ π

−π

eirρ cos(θ−φ)dθ = 2πJ0(rρ),

where J0 denotes the 0th order Bessel function. Using the identity∫ z

0

tnJn−1(t)dt = znJn(z),

we have
F (ρ, φ) =

2πR
ρ

J1(ρR).

Notice that, since f(x, y) is a radial function, that is, dependent only on
the distance from (0, 0) to (x, y), its Fourier transform is also radial.

The first positive zero of J1(t) is around t = 4, so when we measure
F at various locations and find F (ρ, φ) = 0 for a particular (ρ, φ), we can
estimate R ≈ 4/ρ. So, even when a distant spherical object, like a star,
is too far away to be imaged well, we can sometimes estimate its size by
finding where the intensity of the received signal is zero [168].
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27.5.1 Two-Dimensional Fourier Inversion

Just as in the one-dimensional case, the Fourier transformation that pro-
duced F (α, β) can be inverted to recover the original f(x, y). The Fourier
Inversion Formula in this case is

f(x, y) =
1

4π2

∫ ∫
F (α, β)e−i(αx+βy)dαdβ. (27.8)

It is important to note that this procedure can be viewed as two one-
dimensional Fourier inversions: first, we invert F (α, β), as a function of,
say, β only, to get the function of α and y

g(α, y) =
1
2π

∫
F (α, β)e−iβydβ;

second, we invert g(α, y), as a function of α, to get

f(x, y) =
1
2π

∫
g(α, y)e−iαxdα.

If we write the functions f(x, y) and F (α, β) in polar coordinates, we obtain
alternative ways to implement the two-dimensional Fourier inversion. We
shall consider these other ways when we discuss the tomography problem
of reconstructing a function f(x, y) from line-integral data.

27.6 Fourier Series

Students typically encounter Fourier series before they see Fourier trans-
forms. Suppose that F (γ) is zero outside of the interval [−Γ,Γ]. For
integers n and ∆ = π

Γ , the complex exponential functions eiγn∆ are 2Γ-
periodic, and mutually orthogonal; that is, for m 6= n, we have∫ Γ

−Γ

eiγn∆e−iγm∆dγ = 0.

The objective in Fourier series is to express the function F (γ), for γ in
[−Γ,Γ], as a sum of these complex exponential functions,

F (γ) =
∞∑

n=−∞
ane

iγn∆, (27.9)

for some choice of the coefficients an.
Multiplying both sides of Equation (27.9) by e−iγm∆ and integrating

from −Γ to Γ, we find that∫ Γ

−Γ

F (γ)e−iγm∆dγ = 2Γam.
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Notice that ∫ Γ

−Γ

F (γ)e−iγm∆dγ = 2πf(m∆)

also. Consequently, we have

am = ∆f(m∆).

This gives us the important result that whenever F (γ) is zero outside an
interval [−Γ,Γ], we can recover F (γ), and thereby f(x) also, from the
infinite discrete set of samples f(m∆), for ∆ = π

Γ . In signal processing this
result is called Shannon’s Sampling Theorem.

If G(γ) is also zero for |γ| > Γ, then it follows from the orthogonality
of the complex exponential functions eiγn∆ that

1
2π

∫ Γ

−Γ

F (γ)G(γ)dγ = ∆
∞∑

n=−∞
f(n∆)g(n∆);

this is Parseval’s Equation.
Note that if F (γ) = 0 for |γ| > Γ, then the same is true if we replace Γ

with any larger value. It follows that in Shannon’s Sampling Theorem we
need only that ∆ ≤ π

Γ .

27.7 The Discrete Fourier Transform

Suppose again that F (γ) is zero for |γ| > Γ and let ∆ = π
Γ . In real

applications we never have the entire infinite set of samples {f(n∆)}; at
best, we would have a finite subset of these, say for n = 1 to n = N . If our
goal is to estimate F (γ), we might choose the discrete Fourier transform
(DFT) estimate

FDFT (γ) = ∆
N∑

n=1

f(n∆)ein∆γ .

The DFT estimate FDFT (γ) is data consistent; its inverse Fourier-transform
value at x = n∆ is f(n∆) for n = 1, ..., N . The DFT is sometimes used in
a slightly more general context in which the coefficients are not necessarily
viewed as samples of a function f(x).

Once we have decided to use the DFT estimate for the function F (γ),
we would want to evaluate this estimate at some number of values of γ,
so that, for example, we could plot this function. When N is not large
(say, several hundred), this poses no problem. But in many applications,
especially image processing, N is in the thousands or more, and evaluating
the DFT estimate at that many points without a fast algorithm is too
costly and time-consuming. The fast Fourier transform is an algorithm for
performing this calculation quickly.
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27.8 The Fast Fourier Transform

A fundamental problem in signal processing is to estimate finitely many
values of the function F (γ) from finitely many values of its (inverse) Fourier
transform, f(x). As we shall see, the DFT arises in several ways in that
estimation effort. The fast Fourier transform (FFT), discovered in 1965 by
Cooley and Tukey, is an important and efficient algorithm for calculating
the vector DFT [93]. John Tukey has been quoted as saying that his main
contribution to this discovery was the firm and often voiced belief that such
an algorithm must exist.

27.8.1 Evaluating a Polynomial

To illustrate the main idea underlying the FFT, consider the problem of
evaluating a real polynomial P (x) at a point, say x = c. Let the polynomial
be

P (x) = a0 + a1x+ a2x
2 + ...+ a2Kx

2K ,

where a2K might be zero. Performing the evaluation efficiently by Horner’s
method,

P (c) = (((a2Kc+ a2K−1)c+ a2K−2)c+ a2K−3)c+ ...,

requires 2K multiplications, so the complexity is on the order of the degree
of the polynomial being evaluated. But suppose we also want P (−c). We
can write

P (x) = (a0 + a2x
2 + ...+ a2Kx

2K) + x(a1 + a3x
2 + ...+ a2K−1x

2K−2)

or
P (x) = Q(x2) + xR(x2).

Therefore, we have P (c) = Q(c2) + cR(c2) and P (−c) = Q(c2) − cR(c2).
If we evaluate P (c) by evaluating Q(c2) and R(c2) separately, one more
multiplication gives us P (−c) as well. The FFT is based on repeated use
of this idea, which turns out to be more powerful when we are using complex
exponentials, because of their periodicity.

27.8.2 The DFT and the Vector DFT

Given the complex N -dimensional column vector f = (f0, f1, ..., fN−1)T ,
define the DFT of vector f to be the function DFTf (γ), defined for γ in
[0, 2π), given by

DFTf (γ) =
N−1∑
n=0

fne
inγ .
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Let F be the complex N -dimensional vector F = (F0, F1, ..., FN−1)T , where
Fk = DFTf (2πk/N), k = 0, 1, ..., N − 1. So the vector F consists of N
values of the function DFTf , taken at N equi-spaced points 2π/N apart in
[0, 2π).

From the formula for DFTf we have, for k = 0, 1, ..., N − 1,

Fk = F (2πk/N) =
N−1∑
n=0

fne
2πink/N . (27.10)

To calculate a single Fk requires N multiplications; it would seem that to
calculate all N of them would require N2 multiplications. However, using
the FFT algorithm, we can calculate vector F in approximately N log2(N)
multiplications.

27.8.3 Exploiting Redundancy

Suppose that N = 2M is even. We can rewrite Equation (27.10) as follows:

Fk =
M−1∑
m=0

f2me
2πi(2m)k/N +

M−1∑
m=0

f2m+1e
2πi(2m+1)k/N ,

or, equivalently,

Fk =
M−1∑
m=0

f2me
2πimk/M + e2πik/N

M−1∑
m=0

f2m+1e
2πimk/M . (27.11)

Note that if 0 ≤ k ≤M − 1 then

Fk+M =
M−1∑
m=0

f2me
2πimk/M − e2πik/N

M−1∑
m=0

f2m+1e
2πimk/M , (27.12)

so there is no additional computational cost in calculating the second half
of the entries of F, once we have calculated the first half. The FFT is the
algorithm that results when we take full advantage of the savings obtainable
by splitting a DFT calculating into two similar calculations of half the size.

We assume now that N = 2L. Notice that if we use Equations (27.11)
and (27.12) to calculate vector F, the problem reduces to the calculation of
two similar DFT evaluations, both involving half as many entries, followed
by one multiplication for each of the k between 0 and M − 1. We can split
these in half as well. The FFT algorithm involves repeated splitting of the
calculations of DFTs at each step into two similar DFTs, but with half the
number of entries, followed by as many multiplications as there are entries
in either one of these smaller DFTs. We use recursion to calculate the cost
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C(N) of computing F using this FFT method. From Equation (27.11) we
see that C(N) = 2C(N/2) + (N/2). Applying the same reasoning to get
C(N/2) = 2C(N/4) + (N/4), we obtain

C(N) = 2C(N/2) + (N/2) = 4C(N/4) + 2(N/2) = ...

= 2LC(N/2L) + L(N/2) = N + L(N/2).

Therefore, the cost required to calculate F is approximately N log2N .
The FFT can be used to calculate the periodic convolution (or even the

nonperiodic convolution) of finite length vectors.

27.8.4 Estimating the Fourier Transform

Finally, let’s return to the original context of estimating the Fourier trans-
form F (γ) of function f(x) from finitely many samples of f(x). If we have
N equi-spaced samples, we can use them to form the vector f and perform
the FFT algorithm to get vector F consisting of N values of the DFT es-
timate of F (ω). It may happen that we wish to calculate more than N
values of the DFT estimate, perhaps to produce a smooth looking graph.
We can still use the FFT, but we must trick it into thinking we have more
data that the N samples we really have. We do this by zero-padding. In-
stead of creating the N -dimensional vector f , we make a longer vector by
appending, say, J zeros to the data, to make a vector that has dimension
N + J . The DFT estimate is still the same function of γ, since we have
only included new zero coefficients as fake data; but, the FFT thinks we
have N + J data values, so it returns N + J values of the DFT, at N + J
equi-spaced values of γ in [0, 2π).

27.8.5 The Two-Dimensional Case

Suppose now that we have the data {f(m∆x, n∆y)}, for m = 1, ...,M and
n = 1, ..., N , where ∆x > 0 and ∆y > 0 are the sample spacings in the
x and y directions, respectively. The DFT of this data is the function
FDFT (α, β) defined by

FDFT (α, β) = ∆x∆y

M∑
m=1

N∑
n=1

f(m∆x, n∆y)ei(αm∆x+βn∆y),

for |α| ≤ π/∆x and |β| ≤ π/∆y. The two-dimensional FFT produces MN
values of FDFT (α, β) on a rectangular grid of M equi-spaced values of α
and N equi-spaced values of β. This calculation proceeds as follows. First,
for each fixed value of n, a FFT of the M data points {f(m∆x, n∆y)},m =
1, ...,M is calculated, producing a function, say G(αm, n∆y), of M equi-
spaced values of α and the N equi-spaced values n∆y. Then, for each
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of the M equi-spaced values of α, the FFT is applied to the N values
G(αm, n∆y), n = 1, ..., N , to produce the final result.



Chapter 28

Prony’s Method

The date of publication of [209] is often taken by editors to be a typograph-
ical error and is replaced by 1995; or, since it is not written in English,
perhaps 1895. But the 1795 date is the correct one. The mathematical
problem Prony solved arises also in signal processing, and his method for
solving it is still used today. Prony’s method is also the inspiration for the
eigenvector methods described in our next chapter.

28.1 Prony’s Problem

Prony considers a function of the form

s(t) =
N∑

n=1

ane
γnt, (28.1)

where we allow the an and the γn to be complex. If we take the γn = iωn

to be imaginary, s(t) becomes the sum of complex exponentials; if we take
γn to be real, then s(t) is the sum of real exponentials, either increasing
with t or decreasing with t. The problem is to determine from samples of
s(t) the number N , the γn, and the an.

28.2 Prony’s Method

Suppose that we have data ym = s(m∆), for some ∆ > 0 and for m =
1, ...,M , where we assume that M = 2N . We seek a vector c with entries
cj , j = 0, ..., N such that

c0yk+1 + c1yk+2 + c2yk+3 + ...+ cNyk+N+1 = 0, (28.2)

283
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for k = 0, 1, ...,M − N − 1. So, we want a complex vector c in CN+1

orthogonal to M −N = N other vectors. In matrix-vector notation we are
solving the linear system

y1 y2 ... yN+1

y2 y3 ... yN+2

.

.

.
yN yN+1 ... yM




c0
c1
.
.
.
cN

 =


0
0
.
.
.
0

 ,

which we write as Y c = 0. Since Y †Y c = 0 also, we see that c is an eigen-
vector associated with the eigenvalue zero of the hermitian nonnegative
definite matrix Y †Y .

Fix a value of k and replace each of the yk+j in Equation (28.2) with
the value given by Equation (28.1) to get

0 =
N∑

n=0

an[
N∑

j=0

cje
γn(k+j+1)∆]

=
N∑

n=0

ane
γn(k+1)∆[

N∑
j=0

cj(eγn∆)j ].

Since this is true for each of the N fixed values of k, we conclude that the
inner sum is zero for each n; that is,

N∑
j=0

cj(eγn∆)j = 0,

for each n. Therefore, the polynomial

C(x) =
N∑

j=0

cjx
j

has for its roots the N values x = eγn∆. Once we find the roots of this
polynomial we have the values of γn. Then, we obtain the an by solving
a linear system of equations. In practice we would not know N so would
overestimate N somewhat in selecting M . As a result, some of the an

would be zero.
If we believe that the number N is considerably smaller than M , we do

not assume that 2N = M . Instead, we select L somewhat larger than we
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believe N is and then solve the linear system

y1 y2 ... yL+1

y2 y3 ... yL+2

.

.

.

.
yM−L yM−L+1 ... yM




c0
c1
.
.
.
cL

 =



0
0
.
.
.
0
0


.

This system has M − L equations and L + 1 unknowns, so is quite over-
determined. We would then use the least-squares approach to obtain the
vector c. Again writing the system as Y c = 0, we note that the matrix
Y †Y is L+1 by L+1 and has λ = 0 for its lowest eigenvalue; therefore, it is
not invertible. When there is noise in the measurements, this matrix may
become invertible, but will still have at least one very small eigenvalue.

Finding the vector c in either case can be tricky because we are look-
ing for a nonzero solution of a homogeneous system of linear equations.
For a discussion of the numerical issues involved in these calculations, the
interested reader should consult the book by Therrien [232].
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Chapter 29

Eigenvector Methods

Prony’s method showed that information about the signal can sometimes
be obtained from the roots of certain polynomials formed from the data.
Eigenvector methods assume the data are correlation values and involve
polynomials formed from the eigenvectors of the correlation matrix. Schmidt’s
multiple signal classification (MUSIC) algorithm is one such method [219].
A related technique used in direction-of-arrival array processing is the esti-
mation of signal parameters by rotational invariance techniques (ESPRIT)
of Paulraj, Roy, and Kailath [202].

29.1 The Sinusoids-in-Noise Model

We suppose now that the function f(t) being measured is signal plus noise,
with the form

f(t) =
J∑

j=1

|Aj |eiθje−iωjt + n(t) = s(t) + n(t),

where the phases θj are random variables, independent and uniformly dis-
tributed in the interval [0, 2π), and n(t) denotes the random complex sta-
tionary noise component. Assume that E(n(t)) = 0 for all t and that
the noise is independent of the signal components. We want to estimate
J , the number of sinusoidal components, their magnitudes |Aj | and their
frequencies ωj .
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29.2 Autocorrelation

The autocorrelation function associated with s(t) is

rs(τ) =
J∑

j=1

|Aj |2e−iωjτ ,

and the signal power spectrum is the Fourier transform of rs(τ),

Rs(ω) =
J∑

j=1

|Aj |2δ(ω − ωj).

The noise autocorrelation is denoted rn(τ) and the noise power spectrum
is denoted Rn(ω). For the remainder of this section we shall assume that
the noise is white noise; that is, Rn(ω) is constant and rn(τ) = 0 for τ 6= 0.

We collect samples of the function f(t) and use them to estimate some
of the values of rs(τ). From these values of rs(τ), we estimate Rs(ω),
primarily looking for the locations ωj at which there are delta functions.

We assume that the samples of f(t) have been taken over an interval
of time sufficiently long to take advantage of the independent nature of
the phase angles θj and the noise. This means that when we estimate the
rs(τ) from products of the form f(t+ τ)f(t), the cross terms between one
signal component and another, as well as between a signal component and
the noise, are nearly zero, due to destructive interference coming from the
random phases.

29.3 The Autocorrelation Matrix

Suppose now that we have the values rf (m) for m = −(M − 1), ...,M − 1,
where M > J , rf (m) = rs(m) for m 6= 0, and rf (0) = rs(0) + σ2, for σ2

the variance (or power) of the noise. We form the M by M autocorrelation
matrix R with entries Rm,k = rf (m− k).

Exercise 29.1 Show that the matrix R has the following form:

R =
J∑

j=1

|Aj |2eje
†
j + σ2I,

where ej is the column vector with entries e−iωjm, for m = 0, 1, ...,M − 1.
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Let u be an eigenvector of R with ‖u‖ = 1 and associated eigenvalue λ.
Then we have

λ = u†Ru =
J∑

j=1

|Aj |2|e†ju|
2 + σ2 ≥ σ2.

Therefore, the smallest eigenvalue of R is σ2

Because M > J , there must be non-zero M -dimensional vectors v that
are orthogonal to all of the ej ; in fact, we can say that there are M − J
linearly independent such v. For each such vector v we have

Rv =
J∑

j=1

|Aj |2e†jvej + σ2v = σ2v;

consequently, v is an eigenvector of R with associated eigenvalue σ2.
Let λ1 ≥ λ2 ≥ ... ≥ λM > 0 be the eigenvalues of R and let um be

a norm-one eigenvector associated with λm. It follows from the previous
paragraph that λm = σ2, for m = J + 1, ...,M , while λm > σ2 for m =
1, ..., J . This leads to the MUSIC method.

29.4 The MUSIC Method

By calculating the eigenvalues of R and noting how many of them are
greater than the smallest one, we find J . Now we seek the ωj .

For each ω let eω have the entries e−iωm and form the function

T (ω) =
M∑

m=J+1

|e†ωum|2.

This function T (ω) will have zeros at precisely the values ω = ωj , for
j = 1, ..., J . Once we have determined J and the ωj , we estimate the magni-
tudes |Aj | using Fourier transform estimation techniques already discussed.
This is basically Schmidt’s MUSIC method [219].
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Chapter 30

A Little Optimization

30.1 Image Reconstruction Through Optimiza-
tion

In our discussion of both transmission and emission tomography we saw
that discretization leads to systems of linear equations to be solved for the
vectorized image x. Typically, these systems are quite large, the measured
data is noisy, and there will be no non-negative x satisfying the system
exactly. In such cases, one can turn to optimization, and calculate a non-
negatively constrained least-squares solution, with or without a penalty
term.

In the stochastic approach to emission tomography, we maximize the
likelihood function with respect to the unknown image vector x. Here
again, optimization plays a role. It is reasonable, therefore, to take a brief
look at the theory of optimization, particularly constrained optimization.
In this chapter we discuss optimization with equality constraints and the
area known as convex programming (CP).

30.2 Eigenvalues and Eigenvectors Through
Optimization

Let B be any real I by J matrix. We want to find the maximum value of
the ratio ||Bx||/||x||, over all non-zero vectors x. If x̂ solves this problem,
so does cx̂ for every non-zero real number c; therefore, we may and do
constrain the vectors x to have ||x|| = 1.

We reformulate the problem as follows: maximize f(x) = ||Bx||2, sub-
ject to g(x) = ||x||2 = 1. Our approach will be to use the method of
Lagrange multipliers. Suppose that x̂ is a solution and S is the level sur-
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face of the function f(x) containing the vector x̂, that is,

S = {x|f(x) = f(x̂)}.

The gradient of f(x) at x̂ is a vector normal to S at x̂. Now let U be the
unit surface of all x with ||x|| = 1. We claim that S and U must be tangent
at x = x̂. If that is not the case, then U cuts through S, making it possible
to move from one side of S to the other side of S, while remaining on the
surface U . Therefore, we would be able to move along U to another vector
x with f(x) > f(x̂), which cannot happen.

Since the two surfaces are tangent at x = x̂, their gradients are parallel,
so that

∇f(x̂) = α∇g(x̂),
for some constant α. Equivalently,

∇f(x̂) + (−α)∇g(x̂) = 0.

The main idea of the Lagrange-multiplier method is to define the La-
grangian as

L(x;λ) = f(x) + λg(x),

so that, for some value of the parameter λ the gradient of L(x;λ) is zero;
here λ = −α works.

The Lagrangian for this problem is

L(x, λ) = f(x) + λg(x) = ||Bx||2 + λ||x||2.

Therefore, we have
2BTBx̂+ 2λx̂ = 0,

or
BTBx̂ = αx̂,

which tells us that x̂ is an eigenvector of the matrix BTB corresponding to
the eigenvalue α. Since the matrix BTB is symmetric, all its eigenvalues
are real numbers; in fact, BTB is non-negative definite, so all its eigenvalues
are non-negative.

Since
||Bx̂||2 = x̂TBTBx̂ = αx̂T x̂ = α||x̂||2 = α,

we see that the largest value of ||Bx||2, subject to ||x|| = 1, must be α.
So α is the largest eigenvalue of the matrix BTB and x̂ is an associated
eigenvector.

The largest eigenvalue of BTB is also the largest eigenvalue of the ma-
trix BBT and is denoted ρ(BTB) = ρ(BBT ), and called the spectral radius
of BTB. We can therefore write

||Bz||2 ≤ ρ(BTB)||z||2, (30.1)

for all vectors z.
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30.3 Convex Sets and Convex Functions

A subset C of RJ is said to be convex if, for every collection c1, c2, ..., cN
of points in C and all positive constants a1, a2, ..., aN summing to one, the
point a1c1 + ... + aNcN is again in C. A function f : RJ → R is said to
be a convex function on the convex set C if, for all such combinations as
above, we have

f(a1c1 + ...+ aNcN ) ≤ a1f(c1) + ...+ aNf(cN ).

The function f(x) = ||Ax − b||2 is convex on C = RJ and the function
f(x) = KL(b, Ax) is convex on the set C of non-negative x in RJ .

30.4 The Convex Programming Problem

Let f and gi, i = 1, ..., I, be convex functions defined on a non-empty closed
convex subset C of RJ . The primal problem in convex programming (CP)
is the following:

minimize f(x), subject to gi(x) ≤ 0, for i = 1, ..., I. (P) (30.2)

For notational convenience, we define g(x) = (g1(x), ..., gI(x)). Then (P)
becomes

minimize f(x), subject to g(x) ≤ 0. (P) (30.3)

The feasible set for (P) is

F = {x|g(x) ≤ 0}. (30.4)

Definition 30.1 The problem (P) is said to be consistent if F is not
empty, and super-consistent if there is x in F with gi(x) < 0 for all
i = 1, ..., I. Such a point x is then called a Slater point.

Definition 30.2 The Lagrangian for the problem (P) is the function

L(x, λ) = f(x) +
I∑

i=1

λigi(x), (30.5)

defined for all x in C and λ ≥ 0.

30.5 A Simple Example

Let us minimize the function f : R2 → R given by

f(x, y) = (x+ 1)2 + y2,
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subject to x ≥ 0 and y ≥ 0. To get this problem into the form of the CP
problem we introduce the functions

g1(x, y) = −x,

and
g2(x, y) = −y.

The partial derivative of f , with respect to x, is

∂f

∂x
(x, y) = 2(x+ 1),

and the partial derivative of f , with respect to y, is

∂f

∂y
(x, y) = 2y.

If we simply set both partial derivatives to zero, we get x = −1 and y = 0,
which is, of course, the unconstrained minimizing point for f . But this
point does not satisfy our constraints.

If we graph the function, we see immediately that the constrained so-
lution is the origin, x = 0 and y = 0. At this point, we can move up
or down without decreasing f , and this is reflected in the fact that the
y-partial derivative at (0, 0) is zero. The x-partial derivative at (0, 0) is
not zero, however, since, if we move horizontally to the left, the function f
decreases. However, we are prevented from moving left by the constraint
that x ≥ 0, so it is not necessary that the x-partial derivative be zero at
the solution. We only need to know that if we move to the right, which
is permitted by the constraints, the function f increases; the fact that the
x-partial derivative is positive at (0, 0) guarantees this.

30.6 The Karush-Kuhn-Tucker Theorem

As we have just seen, at the solution of a CP problem it is not necessarily
the case that the partial derivatives all be zero. But what does have to be
the case?

The Karush-Kuhn Tucker Theorem gives necessary and sufficient con-
ditions for a vector x∗ to be a solution of a super-consistent problem (P).

Theorem 30.1 Let (P) be super-consistent. Then x∗ solves (P) if and
only if there is a vector λ∗ such that

• 1) λ∗ ≥ 0;

• 2) λ∗i gi(x∗) = 0, for all i = 1, ..., I;
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• 3) ∇f(x∗) +
∑I

i=1 λ
∗
i∇gi(x∗) = 0.

We saw in the first section that when we optimize subject to an equality
constraint the first condition of the KKT Theorem need not hold, that is,
the Lagrange multipliers need not be non-negative, and the second condi-
tion is automatically true, since the constraints are now gi(x) = 0 for all
i.

30.7 Back to our Example

Once again, the problem is to minimize f(x, y) = (x+ 1)2 + y2, subject to
g1(x, y) = −x ≤ 0 and g2(x, y) = −y ≤ 0. Applying Condition 3 of the
KKT Theorem, we get

0 = 2(x+ 1)− λ∗1,

and
0 = 2y − λ∗2.

From Condition 2 we know that either λ∗1 = 0, which can’t happen, since
then x = −1, or x = 0; therefore x = 0. Also from Condition 2 we know
that either λ∗2 = 0 or y = 0; therefore, y = 0. We have found the solution
to our constrained minimization problem.

30.8 Two More Examples

We illustrate the use of the gradient form of the KKT Theorem with two
more examples that appeared in the paper of Driscoll and Fox [108].

30.8.1 A Linear Programming Problem

Minimize f(x1, x2) = 3x1 +2x2, subject to the constraints 2x1 +x2 ≥ 100,
x1 + x2 ≥ 80, x1 ≥ 0 and x2 ≥ 0. We define

g1(x1, x2) = 100− 2x1 − x2 ≤ 0, (30.6)

g2(x1, x2) = 80− x1 − x2, (30.7)

g3(x1, x2) = −x1, (30.8)

and

g4(x1, x2) = −x2. (30.9)
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The Lagrangian is then

L(x, λ) = 3x1 + 2x2 + λ1(100− 2x1 − x2)

+λ2(80− x1 − x2)− λ3x1 − λ4x2.
(30.10)

From the KKT Theorem, we know that if there is a solution x∗, then there
is λ∗ ≥ 0 with

f(x∗) = L(x∗, λ∗) ≤ L(x, λ∗),

for all x. For notational simplicity, we write λ in place of λ∗.
Taking the partial derivatives of L(x, λ) with respect to the variables

x1 and x2, we get

3− 2λ1 − λ2 − λ3 = 0, (30.11)

and

2− λ1 − λ2 − λ4 = 0. (30.12)

The complementary slackness conditions are

λ1 = 0 , if 2x1 + x2 6= 100, (30.13)

λ2 = 0 , if x1 + x2 6= 80, (30.14)

λ3 = 0 , if x1 6= 0, (30.15)

and

λ4 = 0 , if x2 6= 0. (30.16)

A little thought reveals that precisely two of the four constraints must be
binding. Examining the six cases, we find that the only case satisfying all
the conditions of the KKT Theorem is λ3 = λ4 = 0. The minimum occurs
at x1 = 20 and x2 = 60 and the minimum value is f(20, 60) = 180.

30.8.2 A Nonlinear Convex Programming Problem

Minimize the function

f(x1, x2) = (x1 − 14)2 + (x2 − 11)2,

subject to

g1(x1, x2) = (x1 − 11)2 + (x2 − 13)2 − 49 ≤ 0,
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and
g2(x1, x2) = x1 + x2 − 19 ≤ 0.

The Lagrangian is then

L(x, λ) = (x1 − 14)2 + (x2 − 11)2+

λ1

(
(x1 − 11)2 + (x2 − 13)2 − 49

)
+ λ2

(
x1 + x2 − 19

)
. (30.17)

Again, we write λ in place of λ∗. Setting the partial derivatives, with
respect to x1 and x2, to zero, we get the KKT equations

2x1 − 28 + 2λ1x1 − 22λ1 + λ2 = 0, (30.18)

and

2x2 − 22 + 2λ1x2 − 26λ1 + λ2 = 0. (30.19)

The complementary slackness conditions are

λ1 = 0 , if (x1 − 11)2 + (x2 − 13)2 6= 49, (30.20)

and

λ2 = 0 , if x1 + x2 6= 19. (30.21)

There are four cases to consider. First, if neither constraint is binding, the
KKT equations have solution x1 = 14 and x2 = 11, which is not feasible. If
only the first constraint is binding, we obtain two solutions, neither feasible.
If only the second constraint is binding, we obtain x∗1 = 11, x∗2 = 8, and
λ2 = 6. This is the optimal solution. If both constraints are binding,
we obtain, with a bit of calculation, two solutions, neither feasible. The
minimum value is f(11, 8) = 18, and the sensitivity vector is λ∗ = (0, 6).

30.9 Non-Negatively Constrained Least-Squares

If there is no solution to a system of linear equations Ax = b, then we may
seek a least-squares “solution” , which is a minimizer of the function

f(x) =
I∑

i=1

(
(

J∑
m=1

Aimxm)− bi

)2

= ||Ax− b||2.

The partial derivative of f(x) with respect to the variable xj is

∂f

∂xj
(x) = 2

I∑
i=1

Aij

(
(

J∑
m=1

Aimxm)− bi

)
.
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Setting the gradient equal to zero, we find that to get a least-squares solu-
tion we must solve the system of equations

AT (Ax− b) = 0.

Now we consider what happens when the additional constraints xj ≥ 0 are
imposed.

This problem fits into the CP framework, when we define

gj(x) = −xj ,

for each j. Let x̂ be a least-squares solution. According to the KKT
Theorem, for those values of j for which x̂j is not zero we have λ∗j = 0 and
∂f
∂xj

(x̂) = 0. Therefore, if x̂j 6= 0,

0 =
I∑

i=1

Aij

(
(

J∑
m=1

Aimx̂m)− bi

)
.

Let Q be the matrix obtained from A by deleting rows j for which x̂j = 0.
Then we can write

QT (Ax̂− b) = 0.

If Q has at least I columns and has full rank, then QT is a one-to-one
linear transformation, which implies that Ax̂ = b. Therefore, when there
is no non-negative solution of Ax = b, Q must have fewer than I columns,
which means that x̂ has fewer than I non-zero entries. This is the proof of
Theorem 11.1.

This result has some practical implications in medical image reconstruc-
tion. In the hope of improving the resolution of the reconstructed image,
we may be tempted to take J , the number of pixels, larger than I, the
number of equations arising from photon counts or line integrals. Since
the vector b consists of measured data, it is noisy and there may well not
be a non-negative solution of Ax = b. As a result, the image obtained by
non-negatively constrained least-squares will have at most I − 1 non-zero
entries; many of the pixels will be zero and they will be scattered through-
out the image, making it unusable for diagnosis. The reconstructed images
resemble stars in a night sky, and, as a result, the theorem is sometimes
described as the “night sky” theorem.

This “night sky” phenomenon is not restricted to least squares. The
same thing happens with methods based on the Kullback-Leibler distance,
such as MART, EMML and SMART.

30.10 The EMML Algorithm

Maximizing the likelihood function in SPECT is equivalent to minimizing
the KL distance KL(b, Ax) over non-negative vectors x, where b is the
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vector of photon counts at the detectors and A the matrix of detection
probabilities. With f(x) = KL(b, Ax) and gj(x) = −xj , the problem
becomes a CP problem. We have

∂f

∂xj
(x) =

I∑
i=1

Aij

(
1− bi/(Ax)i

)
,

where

(Ax)i =
J∑

m=1

Aimxm.

Let x̂ be the solution. According to the KKT Theorem, one of two things
are possible: for each j either 1): x̂j = 0 or 2): both λ∗j = 0 and, conse-
quently,

∂f

∂xj
(x̂) = 0.

Therefore, for all values of the index j we have

0 = x̂j

I∑
i=1

Aij

(
1− bi/(Ax̂)i

)
,

or, equivalently,

x̂j = s−1
j

I∑
i=1

Aij

(
bi/(Ax̂)i

)
,

where sj =
∑I

i=1Aij .
This suggests an iterative optimization algorithm whereby we insert the

current value of the vector, call it xk, into the right side of the last equation,
and call the resulting vector the next iterate, xk+1. For simplicity, we
assume sj = 1. Then the iteration becomes

xk+1
j = xk

j

( I∑
i=1

Aij(bi/(Axk)i)
)
. (30.22)

This is the EMML iterative algorithm.

30.11 The Simultaneous MART Algorithm

The MART algorithm has the following iterative step:

xk+1
j = xk

j

(
bi/(Axk)i

)Aij

,
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where i = k(mod I) + 1. The MART uses only one equation at each step.
The simultaneous MART (SMART) uses all the equations at each step.
Assuming once again that sj = 1 for all j, the iterative step of the SMART
is

xk+1
j = xk

j exp
( I∑

i=1

Aij log(bi/(Axk)i)
)
. (30.23)

The SMART is clearly closely related to the EMML algorithm, with subtle
differences, namely the exponentiation and the logarithm. As we shall
show in the next chapter, the SMART algorithm minimizes the function
KL(Ax, b), while the EMML minimizes KL(b, Ax).



Chapter 31

Using Prior Knowledge

A basic problem in signal processing is the estimation of the function F (γ)
from finitely many values of its inverse Fourier transform f(x). The DFT
is one such estimator. As we shall see in this section, there are other
estimators that are able to make better use of prior information about
F (γ) and thereby provide a better estimate.

31.1 Over-Sampling

We assume, for the moment, that F (γ) = 0 for |γ| > Γ and that ∆ = π
Γ .

In Figure 31.1 below, we show the DFT estimate for F (γ) for a case in
which Γ = π

30 . This would tell us that the proper sampling spacing is
∆ = 30. However, it is not uncommon to have situations in which x is time
and we can take as many samples of f(x) as we wish, but must take the
samples at points x within some limited time interval, say [0, A]. In the
case considered in the figure, A = 130. If we had used ∆ = 30, we would
have obtained only four data points, which is not sufficient information.
Instead, we used ∆ = 1 and took N = 129 data points; we over-sampled.
There is a price to be paid for over-sampling, however.

The DFT estimation procedure does not “know” about the true value
of Γ; it only “sees” ∆. It “assumes” incorrectly that Γ must be π, since
∆ = 1. Consequently, it “thinks” that we want it to estimate F (γ) on
the interval [−π, π]. It doesn’t “know” that we know that F (γ) is zero on
most of this interval. Therefore, the DFT spends a lot of its energy trying
to describe the part of the graph of F (γ) where it is zero, and relatively
little of its energy describing what is happening within the interval [−Γ,Γ],
which is all that we are interested in. This is why the bottom graph in the
figure shows the DFT to be poor within [−Γ,Γ]. There is a second graph
in the figure. It looks quite a bit better. How was that graph obtained?

301



302 CHAPTER 31. USING PRIOR KNOWLEDGE

We know that F (γ) = 0 outside the interval [−Γ,Γ]. Can we somehow
let the estimation process know that we know this, so that it doesn’t waste
its energy outside this interval? Yes, we can.

The characteristic function of the interval [−Γ,Γ] is

χΓ(γ) =
{

1, if |γ| ≤ Γ ;
0, if |γ| > Γ .

We take as our estimator of F (γ) a function called the modified DFT,
(MDFT) having the form

MDFT (γ) = χΓ(γ)
N−1∑
m=0

ame
im∆γ . (31.1)

We determine the coefficients am by making MDFT (γ) consistent with the
data. Inserting MDFT (γ) into the integral in Equation (27.2) and setting
x = n∆, for each n = 0, 1, ..., N − 1, in turn, we find that we must have

f(n∆) =
1
2π

N−1∑
m=0

am

∫ Γ

−Γ

ei(m−n)∆γdγ.

Performing the integration, we find that we need

f(n∆) =
N−1∑
m=0

am
sin(Γ(n−m)∆)
π(n−m)∆

, (31.2)

for n = 0, 1, ..., N −1. We solve for the am and insert these coefficients into
the formula for the MDFT. The graph of the MDFT is the top graph in
the figure.

The main idea in the MDFT is to use a form of the estimator that
already includes whatever important features of F (γ) we may know a priori.
In the case of the MDFT, we knew that F (γ) = 0 outside the interval
[−Γ,Γ], so we introduced a factor of χΓ(γ) in the estimator. Now, whatever
coefficients we use, any estimator of the form given in Equation (31.1)
will automatically be zero outside [−Γ,Γ]. We are then free to select the
coefficients so as to make the MDFT consistent with the data. This involves
solving the system of linear equations in (31.2).

31.2 Using Other Prior Information

The approach that led to the MDFT estimate suggests that we can intro-
duce other prior information besides the support of F (γ). For example,
if we have some idea of the overall shape of the function F (γ), we could
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choose P (γ) > 0 to indicate this shape and use it instead of χΓ(γ) in our
estimator. This leads to the PDFT estimator, which has the form

PDFT (γ) = P (γ)
N−1∑
n=0

bme
im∆γ . (31.3)

Now we find the bm by forcing the right side of Equation (31.3) to be
consistent with the data. Inserting the function PDFT (γ) into the integral
in Equation (27.2), we find that we must have

f(n∆) =
1
2π

N−1∑
m=0

bm

∫ ∞

−∞
P (γ)ei(m−n)∆γdγ. (31.4)

Using p(x), the inverse Fourier transform of P (γ), given by

p(x) =
1
2π

∫ ∞

−∞
P (γ)e−ixγdγ,

we find that we must have

f(n∆) =
N−1∑
m=0

bmp((n−m)∆), (31.5)

for n = 0, 1, ..., N − 1. We solve this system of equations for the bm and
insert them into the PDFT estimator in Equation (31.3).

In Figure 31.2 we have the function F (γ) in the upper left corner. It
consists of one large bump in the center and one smaller bump toward the
right side. The DFT on the upper right side gives only slight indication
that the smaller bump exists. The data here is somewhat over-sampled, so
we can try the MDFT. The prior for the MDFT is P (γ) = χΓ(γ), which is
pictured in the center left frame; it is shown only over [−Γ,Γ], where it is
just one. The MDFT estimate is in the center right frame; it shows only
slight improvement over the DFT. Now, suppose we know that there is a
large bump in the center. Both the DFT and the MDFT tell us clearly
that this is the case, so even if we did not know it at the start, we know it
now. Let’s select as our prior a function P (γ) that includes the big bump
in the center, as shown in the lower left. The PDFT on the lower right now
shows the smaller bump more clearly.

A more dramatic illustration of the use of the PDFT is shown in Figure
31.3. The function F (γ) is a function of two variables simulating a slice of a
head. It has been approximated by a discrete image, called here the “orig-
inal” . The data was obtained by taking the two-dimensional vector DFT
of the discrete image and replacing most of its values with zeros. When
we formed the inverse vector DFT, we obtained the estimate in the lower
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right. This is essentially the DFT estimate, and it tells us nothing about
the inside of the head. From prior information, or even from the DFT
estimate itself, we know that the true F (γ) includes a skull. We therefore
select as our prior the (discretized) function of two variables shown in the
upper left. The PDFT estimate is the image in the lower left. The impor-
tant point to remember here is that the same data was used to generate
both pictures.

We saw previously how the MDFT can improve the estimate of F (γ),
by incorporating the prior information about its support. Precisely why
the improvement occurs is the subject of the next section.

31.3 Analysis of the MDFT

Let our data be f(xm), m = 1, ...,M , where the xm are arbitrary values of
the variable x. If F (γ) is zero outside [−Γ,Γ], then minimizing the energy
over [−Γ,Γ] subject to data consistency produces an estimate of the form

FΓ(γ) = χΓ(γ)
M∑

m=1

bm exp(ixmγ),

with the bm satisfying the equations

f(xn) =
M∑

m=1

bm
sin(Γ(xm − xn))
π(xm − xn)

,

for n = 1, ...,M . The matrix SΓ with entries sin(Γ(xm−xn))
π(xm−xn) we call a sinc

matrix.

31.3.1 Eigenvector Analysis of the MDFT

Although it seems reasonable that incorporating the additional information
about the support of F (γ) should improve the estimation, it would be more
convincing if we had a more mathematical argument to make. For that we
turn to an analysis of the eigenvectors of the sinc matrix. Throughout this
subsection we make the simplification that xn = n.

Exercise 31.1 The purpose of this exercise is to show that, for an Her-
mitian nonnegative-definite M by M matrix Q, a norm-one eigenvector u1

of Q associated with its largest eigenvalue, λ1, maximizes the quadratic
form a†Qa over all vectors a with norm one. Let Q = ULU† be the
eigenvector decomposition of Q, where the columns of U are mutually or-
thogonal eigenvectors un with norms equal to one, so that U†U = I, and
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L = diag{λ1, ..., λM} is the diagonal matrix with the eigenvalues of Q as
its entries along the main diagonal. Assume that λ1 ≥ λ2 ≥ ... ≥ λM .
Then maximize

a†Qa =
M∑

n=1

λn |a†un|2,

subject to the constraint

a†a = a†U†Ua =
M∑

n=1

|a†un|2 = 1.

Hint: Show a†Qa is a convex combination of the eigenvalues of Q.

Exercise 31.2 Show that, for the sinc matrix Q = SΓ, the quadratic form
a†Qa in the previous exercise becomes

a†SΓa =
1
2π

∫ Γ

−Γ

|
M∑

n=1

ane
inγ |2dγ.

Show that the norm of the vector a is the integral

1
2π

∫ π

−π

|
M∑

n=1

ane
inγ |2dγ.

Exercise 31.3 For M = 30 compute the eigenvalues of the matrix SΓ for
various choices of Γ, such as Γ = π

k , for k = 2, 3, ..., 10. For each k arrange
the set of eigenvalues in decreasing order and note the proportion of them
that are not near zero. The set of eigenvalues of a matrix is sometimes
called its eigenspectrum and the nonnegative function χΓ(γ) is a power
spectrum; here is one time in which different notions of a spectrum are
related.

31.3.2 The Eigenfunctions of SΓ

Suppose that the vector u1 = (u1
1, ..., u

1
M )T is an eigenvector of SΓ corre-

sponding to the largest eigenvalue, λ1. Associate with u1 the eigenfunction

U1(γ) =
M∑

n=1

u1
ne

inγ .
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Then

λ1 =
∫ Γ

−Γ

|U1(γ)|2dγ/
∫ π

−π

|U1(γ)|2dγ

and U1(γ) is the function of its form that is most concentrated within the
interval [−Γ,Γ].

Similarly, if uM is an eigenvector of SΓ associated with the smallest
eigenvalue λM , then the corresponding eigenfunction UM (γ) is the function
of its form least concentrated in the interval [−Γ,Γ].

Exercise 31.4 Plot for |γ| ≤ π the functions |Um(γ)| corresponding to
each of the eigenvectors of the sinc matrix SΓ. Pay particular attention to
the places where each of these functions is zero.

The eigenvectors of SΓ corresponding to different eigenvalues are orthog-
onal, that is (um)†un = 0 if m is not n. We can write this in terms of
integrals: ∫ π

−π

Un(γ)Um(γ)dγ = 0

if m is not n. The mutual orthogonality of these eigenfunctions is related
to the locations of their roots, which were studied in the previous exercise.

Any Hermitian matrix Q is invertible if and only if none of its eigenval-
ues is zero. With λm and um, m = 1, ...,M , the eigenvalues and eigenvec-
tors of Q, the inverse of Q can then be written as

Q−1 = (1/λ1)u1(u1)† + ...+ (1/λM )uM (uM )†.

Exercise 31.5 Show that the MDFT estimator given by Equation (31.1)
FΓ(γ) can be written as

FΓ(γ) = χΓ(γ)
M∑

m=1

1
λm

(um)†dUm(γ),

where d = (f(1), f(2), ..., f(M))T is the data vector.

Exercise 31.6 Show that the DFT estimate of F (γ), restricted to the in-
terval [−Γ,Γ], is

FDFT (γ) = χΓ(γ)
M∑

m=1

(um)†dUm(γ).
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From these two exercises we can learn why it is that the estimate FΓ(γ)
resolves better than the DFT. The former makes more use of the eigen-
functions Um(γ) for higher values of m, since these are the ones for which
λm is closer to zero. Since those eigenfunctions are the ones having most of
their roots within the interval [−Γ,Γ], they have the most flexibility within
that region and are better able to describe those features in F (γ) that are
not resolved by the DFT.

31.4 The Discrete PDFT (DPDFT)

The derivation of the PDFT assumes a function f(x) of one or more con-
tinuous real variables, with the data obtained from f(x) by integration.
The discrete PDFT (DPDFT) begins with f(x) replaced by a finite vector
f = (f1, ..., fJ)T that is a discretization of f(x); say that fj = f(xj) for
some point xj . The integrals that describe the Fourier transform data can
be replaced by finite sums,

F (γn) =
J∑

j=1

fjEnj , (31.6)

where Enj = eixjγn . We have used a Riemann-sum approximation of the
integrals here, but other choices are also available. The problem then is to
solve this system of equations for the fj .

Since the N is fixed, but the J is under our control, we select J > N ,
so that the system becomes under-determined. Now we can use minimum-
norm and minimum-weighted-norms solutions of the finite-dimensional prob-
lem to obtain an approximate, discretized PDFT solution.

Since the PDFT is a minimum-weighted norm solution in the continous-
variable formulation, it is reasonable to let the DPDFT be the correspond-
ing minimum-weighted-norm solution obtained with the positive-definite
matrix Q the diagonal matrix having for its jth diagonal entry

Qjj = 1/p(xj), (31.7)

if p(xj) > 0, and zero, otherwise.

31.4.1 Calculating the DPDFT

The DPDFT is a minimum-weighted-norm solution, which can be cal-
culated using, say, the ART algorithm. We know that, in the under-
determined case, the ART provides the the solution closest to the starting
vector, in the sense of the Euclidean distance. We therefore reformulate the
system, so that the minimum-weighted norm solution becomes a minimum-
norm solution, as we did earlier, and then begin the ART iteration with
zero. For recent work involving the DPDFT se [223, 222, 224].
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31.4.2 Regularization

We noted earlier that one of the principles guiding the estimation of f(x)
from Fourier transform data should be that we do not want to overfit the
estimate to noisy data. In the PDFT, this can be avoided by adding a small
positive quantity to the main diagonal of the matrix P . In the DPDFT,
sensitivity to noise is reduced by using the iterative regularized ART [63].
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Figure 31.1: The non-iterative band-limited extrapolation method
(MDFT) (top) and the DFT (bottom) for N = 129, ∆ = 1 and Γ = π/30.
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Figure 31.2: The DFT, the MDFT, and the PDFT.
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Figure 31.3: The PDFT in image reconstruction.
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Chapter 32

Convex Sets

Convex sets and convex functions play important roles in optimization. In
this chapter we survey the basic facts concerning the geometry of convex
sets.

32.1 A Bit of Topology

Having the norm allows us to define the distance between two points x and
y in RJ as ||x− y||. Being able to talk about how close points are to each
other enables us to define continuity of functions on RJ and to consider
topological notions of closed set, open set, interior of a set and boundary
of a set.

Definition 32.1 A subset B of RJ is closed if, whenever xk is in B for
each non-negative integer k and ||x − xk|| → 0, as k → +∞, then x is in
B.

For example, B = [0, 1] is closed as a subset of R, but B = (0, 1) is not.

Definition 32.2 We say that d ≥ 0 is the distance from the point x to
the set B if, for every ε > 0, there is bε in B, with ||x− bε||2 < d+ ε, and
no b in B with ||x− b||2 < d.

The distance from the point 0 in R to the set (0, 1) is zero, while its
distance to the set (1, 2) is one. It follows easily from the definitions that,
if B is closed and d = 0, then x is in B.

Definition 32.3 The closure of a set B is the set of all points x whose
distance from B is zero.

The closure of the interval B = (0, 1) is [0, 1].

313
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Definition 32.4 A subset U of RJ is open if its complement, the set of
all points not in U , is closed.

Definition 32.5 Let C be a subset of RJ . A point x in C is said to be
an interior point of set C if there is ε > 0 such that every point z with
||x− z|| < ε is in C. The interior of the set C, written int(C), is the set of
all interior points of C. It is also the largest open set contained within C.

For example, the open interval (0, 1) is the interior of the intervals (0, 1]
and [0, 1]. A set C is open if and only if C = int(C).

Definition 32.6 A point x in RJ is said to be a boundary point of set C
if, for every ε > 0, there are points yε in C and zε not in C, both depending
on the choice of ε, with ||x − yε|| < ε and ||x − zε|| < ε. The boundary of
C is the set of all boundary points of C. It is also the intersection of the
closure of C with the closure of its complement.

For example, the points x = 0 and x = 1 are boundary points of the
set (0, 1].

Definition 32.7 For k = 0, 1, 2, ..., let xk be a vector in RJ . The sequence
of vectors {xk} is said to converge to the vector z if, given any ε > 0, there
is positive integer n, usually depending on ε, such that, for every k > n,
we have ||z − xk|| ≤ ε. Then we say that z is the limit of the sequence.

For example, the sequence {xk = 1
k+1} in R converges to z = 0. The

sequence {(−1)k} alternates between 1 and −1, so does not converge. How-
ever, the subsequence associated with odd k converges to z = −1, while the
subsequence associated with even k converges to z = 1. The values z = −1
and z = 1 are called subsequential limit points, or, sometimes, cluster points
of the sequence.

Definition 32.8 A sequence {xk} of vectors in RJ is said to be bounded
if there is a constant b > 0, such that ||xk|| ≤ b, for all k.

A fundamental result in analysis is the following.

Proposition 32.1 Every convergent sequence of vectors in RJ is bounded.
Every bounded sequence of vectors in RJ has at least one convergent sub-
sequence, therefore, has at least one cluster point.

32.2 Convex Sets in RJ

In preparation for our discussion of linear and nonlinear programming, we
consider some of the basic concepts from the geometry of convex sets.
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32.2.1 Basic Definitions

We begin with the basic definitions.

Definition 32.9 A vector z is said to be a convex combination of the
vectors x and y if there is α in the interval [0, 1] such that z = (1−α)x+αy.

Definition 32.10 A nonempty set C in RJ is said to be convex if, for
any distinct points x and y in C, and for any real number α in the interval
(0, 1), the point (1 − α)x + αy is also in C; that is, C is closed to convex
combinations.

For example, the unit ball B in RJ , consisting of all x with ||x||2 ≤ 1,
is convex, while the surface of the ball, the set of all x with ||x||2 = 1, is
not convex.

Definition 32.11 The convex hull of a set S, denoted conv(S), is the
smallest convex set containing S.

Proposition 32.2 The convex hull of a set S is the set C of all convex
combinations of members of S.

Definition 32.12 A subset S of RJ is a subspace if, for every x and y in
S and scalars α and β, the linear combination αx+ βy is again in S.

A subspace is necessarily a convex set.

Definition 32.13 The orthogonal complement of a subspace S is the set

S⊥ = {u|uT s = 0, for every s ∈ S}, (32.1)

the set of all vectors u in RJ that are orthogonal to every member of S.

For example, in R3, the x, y-plane is a subspace and has for its orthogonal
complement the z-axis.

Definition 32.14 A subset M of RJ is a linear manifold if there is a
subspace S and a vector b such that

M = S + b = {x|x = s+ b, for some s inS}.

Any linear manifold is convex.

Definition 32.15 For a fixed column vector a with Euclidean length one
and a fixed scalar γ the hyperplane determined by a and γ is the set

H(a, γ) = {z|〈a, z〉 = γ}.
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The hyperplanes H(a, γ) are linear manifolds, and the hyperplanes H(a, 0)
are subspaces.

Definition 32.16 Given a subset C of RJ , the affine hull of C, denoted
aff(C), is the smallest linear manifold containing C.

For example, let C be the line segment connecting the two points (0, 1)
and (1, 2) in R2. The affine hull of C is the straight line whose equation is
y = x+ 1.

Definition 32.17 The dimension of a subset of RJ is the dimension of its
affine hull, which is the dimension of the subspace of which it is a translate.

The set C above has dimension one. A set containing only one point is
its own affine hull, since it is a translate of the subspace {0}.

In R2, the line segment connecting the points (0, 1) and (1, 2) has no
interior; it is a one-dimensional subset of a two-dimensional space and can
contain no two-dimensional ball. But, the part of this set without its two
end points is a sort of interior, called the relative interior.

Definition 32.18 The relative interior of a subset C of RJ , denoted ri(C),
is the interior of C, as defined by considering C as a subset of its affine
hull.

Since a set consisting of a single point is its own affine hull, it is its own
relative interior.

Definition 32.19 A point x in a convex set C is said to be an extreme
point of C if the set obtained by removing x from C remains convex.

Said another way, x ∈ C is an extreme point of C if x cannot be written
as

x = (1− α)y + αz, (32.2)

for y, z 6= x and α ∈ (0, 1). For example, the point x = 1 is an extreme
point of the convex set C = [0, 1]. Every point on the boundary of a sphere
in RJ is an extreme point of the sphere. The set of all extreme points of a
convex set is denoted Ext(C).

Definition 32.20 A non-zero vector d is said to be a direction of unbound-
edness of a convex set C if, for all x in C and all γ ≥ 0, the vector x+ γd
is in C.

For example, if C is the non-negative orthant in RJ , then any non-negative
vector d is a direction of unboundedness.
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Definition 32.21 A vector a is normal to a convex set C at the point s
in C if

〈a, c− s〉 ≤ 0, (32.3)

for all c in C.

Definition 32.22 Let C be convex and s in C. The normal cone to C at
s, denoted NC(s), is the set of all vectors a that are normal to C at s.

32.2.2 Orthogonal Projection onto Convex Sets

The following proposition is fundamental in the study of convexity and can
be found in most books on the subject; see, for example, the text by Goebel
and Reich [134].

Proposition 32.3 Given any nonempty closed convex set C and an arbi-
trary vector x in RJ , there is a unique member of C closest to x, denoted
PCx, the orthogonal (or metric) projection of x onto C.

Proof: If x is in C, then PCx = x, so assume that x is not in C. Then
d > 0, where d is the distance from x to C. For each positive integer n,
select cn in C with ||x− cn||2 < d+ 1

n , and ||x− cn||2 < ||x− cn−1||2. Then
the sequence {cn} is bounded; let c∗ be any cluster point. It follows easily
that ||x − c∗||2 = d and that c∗ is in C. If there is any other member c
of C with ||x − c||2 = d, then, by the Parallelogram Law, we would have
||x− (c∗ + c)/2||2 < d, which is a contradiction. Therefore, c∗ is PCx.

For example, if C = U , the unit ball, then PCx = x/||x||2, for all x such
that ||x||2 > 1, and PCx = x otherwise. If C is RJ

+, the nonnegative cone
of RJ , consisting of all vectors x with xj ≥ 0, for each j, then PCx = x+,
the vector whose entries are max (xj , 0). For any closed, convex set C, the
distance from x to C is ||x− PCx||.

If a nonempty set S is not convex, then the orthogonal projection of
a vector x onto S need not be well defined; there may be more than one
vector in S closest to x. In fact, it is known that a set S is convex if and
only if, for every x not in S, there is a unique point in S closest to x. Note
that there may well be some x for which there is a unique closest point in
S, but if S is not convex, then there must be at least one point without a
unique closest point in S.

Lemma 32.1 For H = H(a, γ), z = PHx is the vector

z = PHx = x+ (γ − 〈a, x〉)a. (32.4)

We shall use this fact in our discussion of the ART algorithm.
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For an arbitrary nonempty closed convex set C in RJ , the orthogonal
projection T = PC is a nonlinear operator, unless, of course, C is a sub-
space. We may not be able to describe PCx explicitly, but we do know a
useful property of PCx.

Proposition 32.4 For a given x, a vector z in C is PCx if and only if

〈c− z, z − x〉 ≥ 0, (32.5)

for all c in the set C.

Proof: Let c be arbitrary in C and α in (0, 1). Then

||x− PCx||22 ≤ ||x− (1− α)PCx− αc||22 = ||x− PCx+ α(PCx− c)||22

= ||x− PCx||22 − 2α〈x− PCx, c− PCx〉+ α2||PCx− c||22. (32.6)

Therefore,

−2α〈x− PCx, c− PCx〉+ α2||PCx− c||22 ≥ 0, (32.7)

so that

2〈x− PCx, c− PCx〉 ≤ α||PCx− c||22. (32.8)

Taking the limit, as α→ 0, we conclude that

〈c− PCx, PCx− x〉 ≥ 0. (32.9)

If z is a member of C that also has the property

〈c− z, z − x〉 ≥ 0, (32.10)

for all c in C, then we have both

〈z − PCx, PCx− x〉 ≥ 0, (32.11)

and

〈z − PCx, x− z〉 ≥ 0. (32.12)

Adding on both sides of these two inequalities lead to

〈z − PCx, PCx− z〉 ≥ 0. (32.13)

But,

〈z − PCx, PCx− z〉 = −||z − PCx||22, (32.14)

so it must be the case that z = PCx. This completes the proof.
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32.3 Some Results on Projections

The characterization of the orthogonal projection operator PC given by
Proposition 32.4 has a number of important consequences.

Corollary 32.1 Let S be any subspace of RJ . Then, for any x in RJ and
s in S, we have

〈PSx− x, s〉 = 0. (32.15)

Proof: Since S is a subspace, s+ PSx is again in S, for all s, as is cs, for
every scalar c.

This corollary enables us to prove the Decomposition Theorem.

Theorem 32.1 Let S be any subspace of RJ and x any member of RJ .
Then there are unique vectors s in S and u in S⊥ such that x = s+u. The
vector s is PSx and the vector u is PS⊥x.

Proof: For the given x we take s = PSx and u = x− PSx. Corollary 32.1
assures us that u is in S⊥. Now we need to show that this decomposition
is unique. To that end, suppose that we can write x = s1 + u1, with s1
in S and u1 in S⊥. Then Proposition 32.4 tells us that, since s1 − x is
orthogonal to every member of S, s1 must be PSx.

This theorem is often presented in a slightly different manner.

Theorem 32.2 Let A be a real I by J matrix. Then every vector b in RI

can be written uniquely as b = Ax+ w, where ATw = 0.

To derive Theorem 32.2 from Theorem 32.1, we simply let S = {Ax|x ∈
RJ}. Then S⊥ is the set of all w such that ATw = 0. It follows that w is
the member of the null space of AT closest to b.

Here are additional consequences of Proposition 32.4.

Corollary 32.2 Let S be any subspace of RJ , d a fixed vector, and V the
linear manifold V = S+ d = {v = s+ d|s ∈ S}, obtained by translating the
members of S by the vector d. Then, for every x in RJ and every v in V ,
we have

〈PV x− x, v − PV x〉 = 0. (32.16)

Proof: Since v and PV x are in V , they have the form v = s + d, and
PV x = ŝ+ d, for some s and ŝ in S. Then v − PV x = s− ŝ.
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Corollary 32.3 Let H be the hyperplane H(a, γ). Then, for every x, and
every h in H, we have

〈PHx− x, h− PHx〉 = 0. (32.17)

Corollary 32.4 Let S be a subspace of RJ . Then (S⊥)⊥ = S.

Proof: Every x in RJ has the form x = s + u, with s in S and u in S⊥.
Suppose x is in (S⊥)⊥. Then u = 0.



Chapter 33

Inner Product Spaces

An inner product is a generalization of the dot product between two vec-
tors. An inner product space or pre-Hilbert space is a vector space on
which we have defined an inner product. Such spaces arise in many areas
of mathematics and provide a convenient setting for performing optimal
approximation.

33.1 Background

We begin by recalling the solution of the vibrating string problem and
Sturm-Liouville problems.

33.1.1 The Vibrating String

When we solve the problem of the vibrating string using the technique of
separation of variables, the differential equation involving the space variable
x, and assuming constant mass density, is

y′′(x) +
ω2

c2
y(x) = 0, (33.1)

which we can write as an eigenvalue problem

y′′(x) + λy(x) = 0. (33.2)

The solutions to Equation (33.1) are

y(x) = α sin
(ω
c
x
)
.

In the vibrating string problem, the string is fixed at both ends, x = 0 and
x = L, so that

φ(0, t) = φ(L, t) = 0,

321
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for all t. Therefore, we must have y(0) = y(L) = 0, so that the eigenfunc-

tion solution that corresponds to the eigenvalue λm =
(

πm
L

)2

must have
the form

y(x) = Am sin
(ωm

c
x
)

= Am sin
(πm
L
x
)
,

where ωm = πcm
L , for any positive integer m. Therefore, the boundary

conditions limit the choices for the separation constant ω.
We then discover that the eigenfunction solutions corresponding to dif-

ferent λ are orthogonal, in the sense that∫ L

0

sin
(πm
L
x
)

sin
(πn
L
x
)
dx = 0,

for m 6= n.

33.1.2 The Sturm-Liouville Problem

The general form for the Sturm-Liouville Problem is

d

dx

(
p(x)y′(x)

)
+ λw(x)y(x) = 0. (33.3)

As with the one-dimensional wave equation, boundary conditions, such as
y(a) = y(b) = 0, where a = −∞ and b = +∞ are allowed, restrict the
possible eigenvalues λ to an increasing sequence of positive numbers λm.
The corresponding eigenfunctions ym(x) will be w(x)-orthogonal, meaning
that

0 =
∫ b

a

ym(x)yn(x)w(x)dx,

for m 6= n. For various choices of w(x) and p(x) and various choices of a
and b, we obtain several famous sets of “orthogonal” functions.

Well known examples of Sturm-Liouville problems include

• Legendre:
d

dx

(
(1− x2)

dy

dx

)
+ λy = 0;

• Chebyshev:

d

dx

(√
1− x2

dy

dx

)
+ λ(1− x2)−1/2y = 0;

• Hermite:
d

dx

(
e−x2 dy

dx

)
+ λe−x2

y = 0;

and
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• Laguerre:
d

dx

(
xe−x dy

dx

)
+ λe−xy = 0.

Each of these examples involves an inner product space and an orthog-
onal basis for that space.

33.2 The Complex Vector Dot Product

An inner product is a generalization of the notion of the dot product be-
tween two complex vectors.

33.2.1 The Two-Dimensional Case

Let u = (a, b) and v = (c, d) be two vectors in two-dimensional space. Let
u make the angle α > 0 with the positive x-axis and v the angle β > 0. Let
||u|| =

√
a2 + b2 denote the length of the vector u. Then a = ||u|| cosα,

b = ||u|| sinα, c = ||v|| cosβ and d = ||v|| sinβ. So u · v = ac + bd =
||u||||v||(cosα cosβ + sinα sinβ = ||u|| ||v|| cos(α− β). Therefore, we have

u · v = ||u|| ||v|| cos θ, (33.4)

where θ = α− β is the angle between u and v. Cauchy’s inequality is

|u · v| ≤ ||u|| ||v||,

with equality if and only if u and v are parallel. From Equation (33.4) we
know that the dot product u · v is zero if and only if the angle between
these two vectors is a right angle; we say then that u and v are mutually
orthogonal.

Cauchy’s inequality extends to complex vectors u and v:

u · v =
N∑

n=1

unvn, (33.5)

and Cauchy’s Inequality still holds.

Proof of Cauchy’s Inequality: To prove Cauchy’s inequality for the
complex vector dot product, we write u · v = |u · v|eiθ. Let t be a real
variable and consider

0 ≤ ||e−iθu− tv||2 = (e−iθu− tv) · (e−iθu− tv)

= ||u||2 − t[(e−iθu) · v + v · (e−iθu)] + t2||v||2

= ||u||2 − t[(e−iθu) · v + (e−iθu) · v] + t2||v||2
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= ||u||2 − 2Re(te−iθ(u · v)) + t2||v||2

= ||u||2 − 2Re(t|u · v|) + t2||v||2 = ||u||2 − 2t|u · v|+ t2||v||2.
This is a nonnegative quadratic polynomial in the variable t, so it can-
not have two distinct real roots. Therefore, the discriminant 4|u · v|2 −
4||v||2||u||2 must be non-positive; that is, |u · v|2 ≤ ||u||2||v||2. This is
Cauchy’s inequality.

A careful examination of the proof just presented shows that we did not
explicitly use the definition of the complex vector dot product, but only
some of its properties. This suggested to mathematicians the possibility of
abstracting these properties and using them to define a more general con-
cept, an inner product, between objects more general than complex vectors,
such as infinite sequences, random variables, and matrices. Such an inner
product can then be used to define the norm of these objects and thereby a
distance between such objects. Once we have an inner product defined, we
also have available the notions of orthogonality and best approximation.

33.2.2 Orthogonality

Consider the problem of writing the two-dimensional real vector (3,−2) as
a linear combination of the vectors (1, 1) and (1,−1); that is, we want to
find constants a and b so that (3,−2) = a(1, 1) + b(1,−1). One way to do
this, of course, is to compare the components: 3 = a + b and −2 = a − b;
we can then solve this simple system for the a and b. In higher dimensions
this way of doing it becomes harder, however. A second way is to make
use of the dot product and orthogonality.

The dot product of two vectors (x, y) and (w, z) in R2 is (x, y) · (w, z) =
xw+yz. If the dot product is zero then the vectors are said to be orthogonal;
the two vectors (1, 1) and (1,−1) are orthogonal. We take the dot product
of both sides of (3,−2) = a(1, 1) + b(1,−1) with (1, 1) to get

1 = (3,−2) ·(1, 1) = a(1, 1) ·(1, 1)+b(1,−1) ·(1, 1) = a(1, 1) ·(1, 1)+0 = 2a,

so we see that a = 1
2 . Similarly, taking the dot product of both sides with

(1,−1) gives

5 = (3,−2) · (1,−1) = a(1, 1) · (1,−1) + b(1,−1) · (1,−1) = 2b,

so b = 5
2 . Therefore, (3,−2) = 1

2 (1, 1) + 5
2 (1,−1). The beauty of this

approach is that it does not get much harder as we go to higher dimensions.
Since the cosine of the angle θ between vectors u and v is

cos θ = u · v/||u|| ||v||,

where ||u||2 = u · u, the projection of vector v on to the line through the
origin parallel to u is

Proju(v) =
u · v
u · u

u.
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Therefore, the vector v can be written as

v = Proju(v) + (v − Proju(v)),

where the first term on the right is parallel to u and the second one is
orthogonal to u.

How do we find vectors that are mutually orthogonal? Suppose we
begin with (1, 1). Take a second vector, say (1, 2), that is not parallel to
(1, 1) and write it as we did v earlier, that is, as a sum of two vectors,
one parallel to (1, 1) and the second orthogonal to (1, 1). The projection
of (1, 2) onto the line parallel to (1, 1) passing through the origin is

(1, 1) · (1, 2)
(1, 1) · (1, 1)

(1, 1) =
3
2
(1, 1) = (

3
2
,
3
2
)

so
(1, 2) = (

3
2
,
3
2
) + ((1, 2)− (

3
2
,
3
2
)) = (

3
2
,
3
2
) + (−1

2
,
1
2
).

The vectors (− 1
2 ,

1
2 ) = − 1

2 (1,−1) and, therefore, (1,−1) are then orthogo-
nal to (1, 1). This approach is the basis for the Gram-Schmidt method for
constructing a set of mutually orthogonal vectors.

33.3 Generalizing the Dot Product: Inner
Products

The proof of Cauchy’s Inequality rests not on the actual definition of the
complex vector dot product, but rather on four of its most basic properties.
We use these properties to extend the concept of the complex vector dot
product to that of inner product. Later in this chapter we shall give several
examples of inner products, applied to a variety of mathematical objects,
including infinite sequences, functions, random variables, and matrices.
For now, let us denote our mathematical objects by u and v and the inner
product between them as 〈u,v〉 . The objects will then be said to be
members of an inner-product space. We are interested in inner products
because they provide a notion of orthogonality, which is fundamental to
best approximation and optimal estimation.

33.3.1 Defining an Inner Product and Norm

The four basic properties that will serve to define an inner product are:

• 1: 〈u,u〉 ≥ 0, with equality if and only if u = 0;

• 2: 〈v,u〉 = 〈u,v〉 ;
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• 3: 〈u,v + w〉 = 〈u,v〉+ 〈u,w〉;

• 4: 〈cu,v〉 = c〈u,v〉 for any complex number c.

The inner product is the basic ingredient in Hilbert space theory. Using
the inner product, we define the norm of u to be

||u|| =
√
〈u,u〉

and the distance between u and v to be ||u− v||.

The Cauchy-Schwarz Inequality: Because these four properties were
all we needed to prove the Cauchy inequality for the complex vector dot
product, we obtain the same inequality whenever we have an inner product.
This more general inequality is the Cauchy-Schwarz Inequality:

|〈u,v〉| ≤
√
〈u,u〉

√
〈v,v〉

or
|〈u,v〉| ≤ ||u|| ||v||,

with equality if and only if there is a scalar c such that v = cu. We say
that the vectors u and v are orthogonal if 〈u,v〉 = 0. We turn now to
some examples.

33.3.2 Some Examples of Inner Products

Here are several examples of inner products.

• Inner product of infinite sequences: Let u = {un} and v = {vn}
be infinite sequences of complex numbers. The inner product is then

〈u,v〉 =
∑

unvn,

and

||u|| =
√∑

|un|2.

The sums are assumed to be finite; the index of summation n is singly
or doubly infinite, depending on the context. The Cauchy-Schwarz
inequality says that

|
∑

unvn| ≤
√∑

|un|2
√∑

|vn|2.
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• Inner product of functions: Now suppose that u = f(x) and
v = g(x). Then,

〈u,v〉 =
∫
f(x)g(x)dx

and

||u|| =

√∫
|f(x)|2dx.

The integrals are assumed to be finite; the limits of integration de-
pend on the support of the functions involved. The Cauchy-Schwarz
inequality now says that

|
∫
f(x)g(x)dx| ≤

√∫
|f(x)|2dx

√∫
|g(x)|2dx.

• Inner product of random variables: Now suppose that u = X
and v = Y are random variables. Then,

〈u,v〉 = E(XY )

and
||u|| =

√
E(|X|2),

which is the standard deviation of X if the mean of X is zero. The
expected values are assumed to be finite. The Cauchy-Schwarz in-
equality now says that

|E(XY )| ≤
√
E(|X|2)

√
E(|Y |2).

If E(X) = 0 and E(Y ) = 0, the random variables X and Y are
orthogonal if and only if they are uncorrelated.

• Inner product of complex matrices: Now suppose that u = A
and v = B are complex matrices. Then,

〈u,v〉 = trace(B†A)

and
||u|| =

√
trace(A†A),

where the trace of a square matrix is the sum of the entries on the
main diagonal. As we shall see later, this inner product is simply the
complex vector dot product of the vectorized versions of the matrices
involved. The Cauchy-Schwarz inequality now says that

|trace(B†A)| ≤
√

trace(A†A)
√

trace(B†B).
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• Weighted inner product of complex vectors: Let u and v be
complex vectors and let Q be a Hermitian positive-definite matrix;
that is, Q† = Q and u†Qu > 0 for all nonzero vectors u. The inner
product is then

〈u,v〉 = v†Qu

and
||u|| =

√
u†Qu.

We know from the eigenvector decomposition of Q that Q = C†C for
some matrix C. Therefore, the inner product is simply the complex
vector dot product of the vectors Cu and Cv. The Cauchy-Schwarz
inequality says that

|v†Qu| ≤
√

u†Qu
√

v†Qv.

• Weighted inner product of functions: Now suppose that u =
f(x) and v = g(x) and w(x) > 0. Then define

〈u,v〉 =
∫
f(x)g(x)w(x)dx

and

||u|| =

√∫
|f(x)|2w(x)dx.

The integrals are assumed to be finite; the limits of integration depend
on the support of the functions involved. This inner product is simply
the inner product of the functions f(x)

√
w(x) and g(x)

√
w(x). The

Cauchy-Schwarz inequality now says that

|
∫
f(x)g(x)w(x)dx| ≤

√∫
|f(x)|2w(x)dx

√∫
|g(x)|2w(x)dx.

Once we have an inner product defined, we can speak about orthogonality
and best approximation. Important in that regard is the orthogonality
principle.

33.4 Best Approximation and the Orthogo-
nality Principle

Imagine that you are standing and looking down at the floor. The point
B on the floor that is closest to N , the tip of your nose, is the unique
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point on the floor such that the vector from B to any other point A on the
floor is perpendicular to the vector from N to B; that is, 〈BN,BA〉 = 0.
This is a simple illustration of the orthogonality principle. Whenever we
have an inner product defined we can speak of orthogonality and apply
the orthogonality principle to find best approximations. For notational
simplicity, we shall consider only real inner product spaces.

33.4.1 Best Approximation

Let u and v1, ...,vN be members of a real inner-product space. For all
choices of scalars a1, ..., aN , we can compute the distance from u to the
member a1v1 + ...aNvN . Then, we minimize this distance over all choices
of the scalars; let b1, ..., bN be this best choice.

The distance squared from u to a1v1 + ...aNvN is

||u− (a1v1 + ...aNvN )||2 = 〈u− (a1v1 + ...aNvN ),u− (a1v1 + ...aNvN )〉,

= ||u||2 − 2〈u,
N∑

n=1

anvn〉+
N∑

n=1

N∑
m=1

anam〈vnvm〉.

Setting the partial derivative with respect to an equal to zero, we have

〈u,vn〉 =
N∑

m=1

am〈vmvn〉.

With a = (a1, ..., aN )T ,

d = (〈u,v1〉, ..., 〈u,vN 〉)T

and V the matrix with entries

Vmn = 〈vm,vn〉,

we find that we must solve the system of equations V a = d. When the
vectors vn are mutually orthogonal and each has norm equal to one, then
V = I, the identity matrix, and the desired vector a is simply d.

33.4.2 The Orthogonality Principle

The orthogonality principle provides another way to view the calculation
of the best approximation: let the best approximation of u be the vector

v̂ = b1v1 + ...bNvN .

Then
〈u− v̂,vn〉 = 〈u− (b1v1 + ...bNvN ),vn〉 = 0,
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for n = 1, 2, ..., N . This leads directly to the system of equations

d = V b,

which, as we just saw, provides the optimal coefficients.
To see why the orthogonality principle is valid, fix a value of n and

consider the problem of minimizing the distance

||u− (b1v1 + ...bNvN + αvn)||

as a function of α. Writing the norm squared in terms of the inner product,
expanding the terms, and differentiating with respect to α, we find that
the minimum occurs when

α = 〈u− b1v1 + ...bNvN ,vn〉.

But we already know that the minimum occurs when α = 0. This completes
the proof of the orthogonality principle.

33.5 Gram-Schmidt Orthogonalization

We have seen that the best approximation is easily calculated if the vectors
vn are mutually orthogonal. But how do we get such a mutually orthogonal
set, in general? The Gram-Schmidt Orthogonalization Method is one way
to proceed.

Let {v1, ...,vN} be a linearly independent set of vectors in the space
RM , where N ≤ M . The Gram-Schmidt method uses the vn to create
an orthogonal basis {u1, ...,uN} for the span of the vn. Begin by taking
u1 = v1. For j = 2, ..., N , let

uj = vj − u1 · vj

u1 · u1
u1 − ...− uj−1 · vj

uj−1 · uj−1
uj−1. (33.6)

One obvious problem with this approach is that the calculations become
increasingly complicated and lengthy as the j increases. In many of the
important examples of orthogonal functions that we study in connection
with Sturm-Liouville problems, there is a two-term recursive formula that
enables us to generate the next orthogonal function from the two previous
ones.



Chapter 34

Reconstruction from
Limited Data

The problem is to reconstruct a (possibly complex-valued) function f :
RD → C from finitely many measurements gn, n = 1, ..., N , pertaining
to f . The function f(r) represents the physical object of interest, such
as the spatial distribution of acoustic energy in sonar, the distribution of
x-ray-attenuating material in transmission tomography, the distribution of
radionuclide in emission tomography, the sources of reflected radio waves
in radar, and so on. Often the reconstruction, or estimate, of the function
f takes the form of an image in two or three dimensions; for that reason,
we also speak of the problem as one of image reconstruction. The data
are obtained through measurements. Because there are only finitely many
measurements, the problem is highly under-determined and even noise-free
data are insufficient to specify a unique solution.

34.1 The Optimization Approach

One way to solve such under-determined problems is to replace f(r) with a
vector in CN and to use the data to determine the N entries of this vector.
An alternative method is to model f(r) as a member of a family of linear
combinations of N preselected basis functions of the multivariable r. Then
the data is used to determine the coefficients. This approach offers the
user the opportunity to incorporate prior information about f(r) in the
choice of the basis functions. Such finite-parameter models for f(r) can
be obtained through the use of the minimum-norm estimation procedure,
as we shall see. More generally, we can associate a cost with each data-
consistent function of r, and then minimize the cost over all the potential
solutions to the problem. Using a norm as a cost function is one way to

331
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proceed, but there are others. These optimization problems can often be
solved only through the use of discretization and iterative algorithms.

34.2 Introduction to Hilbert Space

In many applications the data are related linearly to f . To model the op-
erator that transforms f into the data vector, we need to select an ambient
space containing f . Typically, we choose a Hilbert space. The selection of
the inner product provides an opportunity to incorporate prior knowledge
about f into the reconstruction. The inner product induces a norm and
our reconstruction is that function, consistent with the data, for which this
norm is minimized. We shall illustrate the method using Fourier-transform
data and prior knowledge about the support of f and about its overall
shape.

Our problem, then, is to estimate a (possibly complex-valued) function
f(r) of D real variables r = (r1, ..., rD) from finitely many measurements,
gn, n = 1, ..., N . We shall assume, in this chapter, that these measurements
take the form

gn =
∫

S

f(r)hn(r)dr, (34.1)

where S denotes the support of the function f(r), which, in most cases, is
a bounded set. For the purpose of estimating, or reconstructing, f(r), it is
convenient to view Equation (34.1) in the context of a Hilbert space, and
to write

gn = 〈f, hn〉, (34.2)

where the usual Hilbert space inner product is defined by

〈f, h〉2 =
∫

S

f(r)h(r)dr, (34.3)

for functions f(r) and h(r) supported on the set S. Of course, for these
integrals to be defined, the functions must satisfy certain additional prop-
erties, but a more complete discussion of these issues is outside the scope
of this chapter. The Hilbert space so defined, denoted L2(S), consists
(essentially) of all functions f(r) for which the norm

||f ||2 =

√∫
S

|f(r)|2dr (34.4)

is finite.
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34.2.1 Minimum-Norm Solutions

Our estimation problem is highly under-determined; there are infinitely
many functions in L2(S) that are consistent with the data and might be the
right answer. Such under-determined problems are often solved by acting
conservatively, and selecting as the estimate that function consistent with
the data that has the smallest norm. At the same time, however, we often
have some prior information about f that we would like to incorporate in
the estimate. One way to achieve both of these goals is to select the norm
to incorporate prior information about f , and then to take as the estimate
of f the function consistent with the data, for which the chosen norm is
minimized.

The data vector g = (g1, ..., gN )T is in CN and the linear operator H
from L2(S) to CN takes f to g; so we write g = Hf . Associated with the
mapping H is its adjoint operator, H†, going from CN to L2(S) and given,
for each vector a = (a1, ..., aN )T , by

H†a(r) = a1h1(r) + ...+ aNhN (r). (34.5)

The operator from CN to CN defined by HH† corresponds to an N by
N matrix, which we shall also denote by HH†. If the functions hn(r)
are linearly independent, then this matrix is positive-definite, therefore
invertible.

Given the data vector g, we can solve the system of linear equations

g = HH†a (34.6)

for the vector a. Then the function

f̂(r) = H†a(r) (34.7)

is consistent with the measured data and is the function in L2(S) with the
smallest norm for which this is true. The function w(r) = f(r)− f̂(r) has
the property Hw = 0. It is easy to see that

||f ||22 = ||f̂ ||22 + ||w||22 (34.8)

The estimate f̂(r) is the minimum-norm solution, with respect to the
norm defined in Equation (34.4). If we change the norm on L2(S), or, equiv-
alently, the inner product, then the minimum-norm solution will change.

For any continuous linear operator T on L2(S), the adjoint operator,
denoted T †, is defined by

〈T f, h〉2 = 〈f, T †h〉2. (34.9)

The adjoint operator will change when we change the inner product.
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34.3 A Class of Inner Products

Let T be a continuous, linear, and invertible operator on L2(S). Define
the T inner product to be

〈f, h〉T = 〈T −1f, T −1h〉2. (34.10)

We can then use this inner product to define the problem to be solved. We
now say that

gn = 〈f, tn〉T , (34.11)

for known functions tn(r). Using the definition of the T inner product, we
find that

gn = 〈f, hn〉2 = 〈T f, T hn〉T . (34.12)

The adjoint operator for T , with respect to the T -norm, is denoted T ∗,
and is defined by

〈T f, h〉T = 〈f, T ∗h〉T . (34.13)

Therefore,

gn = 〈f, T ∗T hn〉T . (34.14)

Lemma 34.1 . We have T ∗T = T T †.

Consequently, we have

gn = 〈f, T T †hn〉T . (34.15)

34.4 Minimum-T -Norm Solutions

The function f̃ consistent with the data and having the smallest T -norm
has the algebraic form

f̂ =
N∑

m=1

amT T †hm. (34.16)

Applying the T -inner product to both sides of Equation (34.16), we get

gn = 〈f̂ , T T †hn〉T (34.17)

=
N∑

m=1

am〈T T †hm, T T †hn〉T . (34.18)
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Therefore,

gn =
N∑

m=1

am〈T †hm, T †hn〉2. (34.19)

We solve this system for the am and insert them into Equation (34.16)
to get our reconstruction. The Gram matrix that appears in Equation
(34.19) is positive-definite, but is often ill-conditioned; increasing the main
diagonal by a percent or so usually is sufficient regularization.

34.5 The Case of Fourier-Transform Data

To illustrate these minimum-T -norm solutions, we consider the case in
which the data are values of the Fourier transform of f . Specifically, sup-
pose that

gn =
∫

S

f(x)e−iωnxdx, (34.20)

for arbitrary values ωn.

34.5.1 The L2(−π, π) Case

Assume that f(x) = 0, for |x| > π. The minimum-2-norm solution has the
form

f̂(x) =
N∑

m=1

ame
iωmx, (34.21)

with

gn =
N∑

m=1

am

∫ π

−π

ei(ωm−ωn)xdx. (34.22)

For the equi-spaced values ωn = n we find that am = gm and the minimum-
norm solution is

f̂(x) =
N∑

n=1

gne
inx. (34.23)

34.5.2 The Over-Sampled Case

Suppose that f(x) = 0 for |x| > A, where 0 < A < π. Then we use
L2(−A,A) as the Hilbert space. For equi-spaced data at ωn = n, we have

gn =
∫ π

−π

f(x)χA(x)e−inxdx, (34.24)
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so that the minimum-norm solution has the form

f̂(x) = χA(x)
N∑

m=1

ame
imx, (34.25)

with

gn = 2
N∑

m=1

am
sinA(m− n)

m− n
. (34.26)

The minimum-norm solution is support-limited to [−A,A] and consistent
with the Fourier-transform data.

34.5.3 Using a Prior Estimate of f

Suppose that f(x) = 0 for |x| > π again, and that p(x) satisfies

0 < ε ≤ p(x) ≤ E < +∞, (34.27)

for all x in [−π, π]. Define the operator T by (T f)(x) =
√
p(x)f(x). The

T -norm is then

〈f, h〉T =
∫ π

−π

f(x)h(x)p(x)−1dx. (34.28)

It follows that

gn =
∫ π

−π

f(x)p(x)e−iωnxp(x)−1dx, (34.29)

so that the minimum T -norm solution is

f̂(x) =
N∑

m=1

amp(x)eiωmx = p(x)
N∑

m=1

ame
iωmx, (34.30)

where

gn =
N∑

m=1

am

∫ π

−π

p(x)ei(ωm−ωn)xdx. (34.31)

If we have prior knowledge about the support of f , or some idea of its shape,
we can incorporate that prior knowledge into the reconstruction through
the choice of p(x).

The reconstruction in Equation (34.30) was presented in [39], where it
was called the PDFT method. The PDFT was based on a non-iterative
version of the Gerchberg-Papoulis bandlimited extrapolation procedure,
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discussed earlier in [38]. The PDFT was then applied to image reconstruc-
tion problems in [40]. An application of the PDFT was presented in [43].
In [42] we extended the PDFT to a nonlinear version, the indirect PDFT
(IPDFT), that generalizes Burg’s maximum entropy spectrum estimation
method. The PDFT was applied to the phase problem in [45] and in [46]
both the PDFT and IPDFT were examined in the context of Wiener filter
approximation. More recent work on these topics is discussed in the book
[62].

When N , the number of data values, is not large, the PDFT can be
implemented in a straight-forward manner, by first calculating the matrix
P that appears in Equation (34.31), with entries

Pn,m =
∫ π

−π

p(x)ei(ωm−ωn)xdx,

solving Equation (34.31) for the coefficients am, and finally, inserting these
coefficients in Equation (34.30). When N is large, calculating the entries
of the matrix P can be an expensive step. Since, in such cases, solving
the system in Equation (34.31) will probably be done iteratively, it makes
sense to consider an iterative alternative to the PDFT that avoids the use
of the matrix P . This is the discrete PDFT (DPDFT).

The Discrete PDFT (DPDFT)

The PDFT uses the estimate f̂(x) of f(x), consistent with the data, that
has the minimum weighted norm∫ π

−π

|f̂(x)|2p(x)−1dx.

The discrete PDFT (DPDFT) replaces the functions f(x) and p(x) with
finite vectors f = (f1, ..., fJ)T and p = (p1, ..., pJ)T , for some J > N ; for
example, we could have fj = f(xj) for some sample points xj in (−π, π).
The vector p must have positive entries. The integrals that appear in
Equation (34.20) are replaced by sums

gn =
J∑

j=1

fjEn,j ; (34.32)

for example, we could use En,j = exp(−iωnxj). Now our estimate is the
solution of the system g = Ef for which the weighted norm

J∑
j=1

|fj |2p−1
j
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is minimized. To obtain this minimum-weighted-norm solution, we can use
the ART algorithm.

The ART will give the minimum-norm solution of Au = v if we begin
the iteration at u0 = 0. To obtain the solution with minimum weighted
norm

J∑
j=1

|uj |2p−1
j ,

we replace uj with ujp
−1/2
j , and An,j with An,jp

1/2
j , and then apply the

ART.



Chapter 35

Compressed Sensing

One area that has attracted much attention lately is compressed sensing or
compressed sampling (CS) [107]. For applications such as medical imaging,
CS may provide a means of reducing radiation dosage to the patient without
sacrificing image quality. An important aspect of CS is finding sparse
solutions of under-determined systems of linear equations, which can often
be accomplished by one-norm minimization. Perhaps the best reference to
date on CS is [32].

35.1 Compressed Sensing

The objective in CS is exploit sparseness to reconstruct a vector f in RJ

from relatively few linear functional measurements [107].
Let U = {u1, u2, ..., uJ} and V = {v1, v2, ..., vJ} be two orthonormal

bases for RJ , with all members of RJ represented as column vectors. For
i = 1, 2, ..., J , let

µi = max
1≤j≤J

{|〈ui, vj〉|}

and
µ(U, V ) =

I
max
i=1

µi.

We know from Cauchy’s Inequality that

|〈ui, vj〉| ≤ 1,

and from Parseval’s Equation

J∑
j=1

|〈ui, vj〉|2 = ||ui||2 = 1.

339
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Therefore, we have
1√
J
≤ µ(U, V ) ≤ 1.

The quantity µ(U, V ) is the coherence measure of the two bases; the closer
µ(U, V ) is to the lower bound of 1√

J
, the more incoherent the two bases

are.
Let f be a fixed member of RJ ; we expand f in the V basis as

f = x1v
1 + x2v

2 + ...+ xJv
J .

We say that the coefficient vector x = (x1, ..., xJ) is S-sparse if S is the
number of non-zero xj .

If S is small, most of the xj are zero, but since we do not know which
ones these are, we would have to compute all the linear functional values

xj = 〈f, vj〉

to recover f exactly. In fact, the smaller S is, the harder it would be to
learn anything from randomly selected xj , since most would be zero. The
idea in CS is to obtain measurements of f with members of a different
orthonormal basis, which we call the U basis. If the members of U are very
much like the members of V , then nothing is gained. But, if the members of
U are quite unlike the members of V , then each inner product measurement

yi = 〈f, ui〉 = fTui

should tell us something about f . If the two bases are sufficiently inco-
herent, then relatively few yi values should tell us quite a bit about f .
Specifically, we have the following result due to Candès and Romberg [67]:
suppose the coefficient vector x for representing f in the V basis is S-sparse.
Select uniformly randomly M ≤ J members of the U basis and compute
the measurements yi = 〈f, ui〉 . Then, if M is sufficiently large, it is highly
probable that z = x also solves the problem of minimizing the one-norm

||z||1 = |z1|+ |z2|+ ...+ |zJ |,

subject to the conditions

yi = 〈g, ai〉 = gTui,

for those M randomly selected ui, where

g = z1v
1 + z2v

2 + ...+ zJv
J .

The smaller µ(U, V ) is, the smaller the M is permitted to be without
reducing the probability of perfect reconstruction.
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35.2 Sparse Solutions

Suppose that A is a real M by N matrix, with M < N , and that the linear
system Ax = b has infinitely many solutions. For any vector x, we define
the support of x to be the subset S of {1, 2, ..., N} consisting of those n
for which the entries xn 6= 0. For any under-determined system Ax = b,
there will, of course, be at least one solution of minimum support, that is,
for which |S|, the size of the support set S, is minimum. However, finding
such a maximally sparse solution requires combinatorial optimization, and
is known to be computationally difficult. It is important, therefore, to have
a computationally tractable method for finding maximally sparse solutions.

35.2.1 Maximally Sparse Solutions

Consider the problem P0: among all solutions x of the consistent system
b = Ax, find one, call it x̂, that is maximally sparse, that is, has the
minimum number of non-zero entries. Obviously, there will be at least
one such solution having minimal support, but finding one, however, is a
combinatorial optimization problem and is generally NP-hard.

35.2.2 Minimum One-Norm Solutions

Instead, we can seek a minimum one-norm solution, that is, solve the
problem P1: minimize

||x||1 =
N∑

n=1

|xn|,

subject to Ax = b. Problem P1 can be formulated as a linear programming
problem, so is more easily solved. The big questions are: when does P1

have a unique solution, and when is it x̂? The problem P1 will have a
unique solution if and only if A is such that the one-norm satisfies

||x̂||1 < ||x̂+ v||1,

for all non-zero v in the null space of A.

35.2.3 Minimizing ‖x‖1 as Linear Programming

The entries of x need not be non-negative, so the problem is not yet a linear
programming problem. Let

B = [A −A ] ,

and consider the linear programming problem of minimizing the function

cT z =
2J∑

j=1

zj ,
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subject to the constraints z ≥ 0, and Bz = b. Let z∗ be the solution. We
write

z∗ =
[
u∗

v∗

]
.

Then, as we shall see, x∗ = u∗ − v∗ minimizes the one-norm, subject to
Ax = b.

First, we show that u∗jv
∗
j = 0, for each j. If, say, there is a j such that

0 < vj < uj , then we can create a new vector z by replacing the old u∗j with
u∗j−v∗j and the old v∗j with zero, while maintaining Bz = b. But then, since
u∗j − v∗j < u∗j + v∗j , it follows that cT z < cTZ∗, which is a contradiction.
Consequently, we have ‖x∗‖1 = cT z∗.

Now we select any x with Ax = b. Write uj = xj , if xj ≥ 0, and uj = 0,
otherwise. Let vj = uj − xj , so that x = u− v. Then let

z =
[
u
v

]
.

Then b = Ax = Bz, and cT z = ‖x‖1. Consequently,

‖x∗‖1 = cT z∗ ≤ cT z = ‖x‖1,

and x∗ must be a minimum one-norm solution.

35.2.4 Why the One-Norm?

When a system of linear equations Ax = b is under-determined, we can
find the minimum-two-norm solution that minimizes the square of the two-
norm,

||x||22 =
N∑

n=1

x2
n,

subject to Ax = b. One drawback to this approach is that the two-norm
penalizes relatively large values of xn much more than the smaller ones,
so tends to provide non-sparse solutions. Alternatively, we may seek the
solution for which the one-norm,

||x||1 =
N∑

n=1

|xn|,

is minimized. The one-norm still penalizes relatively large entries xn more
than the smaller ones, but much less than the two-norm does. As a result,
it often happens that the minimum one-norm solution actually solves P0

as well.
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35.2.5 Comparison with the PDFT

The PDFT approach to solving the under-determined system Ax = b is to
select weights wn > 0 and then to find the solution x̃ that minimizes the
weighted two-norm given by

N∑
n=1

|xn|2wn.

Our intention is to select weights wn so that w−1
n is reasonably close to

|x̂n|; consider, therefore, what happens when w−1
n = |x̂n|. We claim that x̃

is also a minimum-one-norm solution.
To see why this is true, note that, for any x, we have

N∑
n=1

|xn| =
N∑

n=1

|xn|√
|x̂n|

√
|x̂n|

≤

√√√√ N∑
n=1

|xn|2
|x̂n|

√√√√ N∑
n=1

|x̂n|.

Therefore,
N∑

n=1

|x̃n| ≤

√√√√ N∑
n=1

|x̃n|2
|x̂n|

√√√√ N∑
n=1

|x̂n|

≤

√√√√ N∑
n=1

|x̂n|2
|x̂n|

√√√√ N∑
n=1

|x̂n| =
N∑

n=1

|x̂n|.

Therefore, x̃ also minimizes the one-norm.

35.2.6 Iterative Reweighting

We want each weight wn to be a good prior estimate of the reciprocal of
|x̂n|. Because we do not yet know x̂, we may take a sequential-optimization
approach, beginning with weights w0

n > 0, finding the PDFT solution using
these weights, then using this PDFT solution to get a (we hope!) a better
choice for the weights, and so on. This sequential approach was successfully
implemented in the early 1980’s by Michael Fiddy and his students [123].

In [69], the same approach is taken, but with respect to the one-norm.
Since the one-norm still penalizes larger values disproportionately, balance
can be achieved by minimizing a weighted-one-norm, with weights close to
the reciprocals of the |x̂n|. Again, not yet knowing x̂, they employ a sequen-
tial approach, using the previous minimum-weighted-one-norm solution to
obtain the new set of weights for the next minimization. At each step of
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the sequential procedure, the previous reconstruction is used to estimate
the true support of the desired solution.

It is interesting to note that an on-going debate among users of the
PDFT has been the nature of the prior weighting. Does wn approximate
|xn| or |xn|2? This is close to the issue treated in [69], the use of a weight
in the minimum-one-norm approach.

It should be noted again that finding a sparse solution is not usually
the goal in the use of the PDFT, but the use of the weights has much the
same effect as using the one-norm to find sparse solutions: to the extent
that the weights approximate the entries of x̂, their use reduces the penalty
associated with the larger entries of an estimated solution.

35.3 Why Sparseness?

One obvious reason for wanting sparse solutions of Ax = b is that we have
prior knowledge that the desired solution is sparse. Such a problem arises
in signal analysis from Fourier-transform data. In other cases, such as in
the reconstruction of locally constant signals, it is not the signal itself, but
its discrete derivative, that is sparse.

35.3.1 Signal Analysis

Suppose that our signal f(t) is known to consist of a small number of
complex exponentials, so that f(t) has the form

f(t) =
J∑

j=1

aje
iωjt,

for some small number of frequencies ωj in the interval [0, 2π). For n =
0, 1, ..., N − 1, let fn = f(n), and let f be the N -vector with entries fn;
we assume that J is much smaller than N . The discrete (vector) Fourier
transform of f is the vector f̂ having the entries

f̂k =
1√
N

N−1∑
n=0

fne
2πikn/N ,

for k = 0, 1, ..., N−1; we write f̂ = Ef , where E is the N by N matrix with
entries Ekn = 1√

N
e2πikn/N . If N is large enough, we may safely assume

that each of the ωj is equal to one of the frequencies 2πik and that the
vector f̂ is J-sparse. The question now is: How many values of f(n) do we
need to calculate in order to be sure that we can recapture f(t) exactly?
We have the following theorem [68]:
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Theorem 35.1 Let N be prime. Let S be any subset of {0, 1, ..., N − 1}
with |S| ≥ 2J . Then the vector f̂ can be uniquely determined from the
measurements fn for n in S.

We know that
f = E†f̂ ,

where E† is the conjugate transpose of the matrix E. The point here is
that, for any matrix R obtained from the identity matrix I by deleting
N − |S| rows, we can recover the vector f̂ from the measurements Rf .

If N is not prime, then the assertion of the theorem may not hold, since
we can have n = 0 modN , without n = 0. However, the assertion remains
valid for most sets of J frequencies and most subsets S of indices; therefore,
with high probability, we can recover the vector f̂ from Rf .

Note that the matrix E is unitary, that is, E†E = I, and, equivalently,
the columns of E form an orthonormal basis for CN . The data vector is

b = Rf = RE†f̂ .

In this example, the vector f is not sparse, but can be represented sparsely
in a particular orthonormal basis, namely as f = E†f̂ , using a sparse vector
f̂ of coefficients. The representing basis then consists of the columns of the
matrix E†. The measurements pertaining to the vector f are the values
fn, for n in S. Since fn can be viewed as the inner product of f with δn,
the nth column of the identity matrix I, that is,

fn = 〈δn, f〉,

the columns of I provide the so-called sampling basis. With A = RE† and
x = f̂ , we then have

Ax = b,

with the vector x sparse. It is important for what follows to note that the
matrix A is random, in the sense that we choose which rows of I to use to
form R.

35.3.2 Locally Constant Signals

Suppose now that the function f(t) is locally constant, consisting of some
number of horizontal lines. We discretize the function f(t) to get the
vector f = (f(0), f(1), ..., f(N))T . The discrete derivative vector is g =
(g1, g2, ..., gN )T , with

gn = f(n)− f(n− 1).

Since f(t) is locally constant, the vector g is sparse. The data we will have
will not typically be values f(n). The goal will be to recover f from M
linear functional values pertaining to f , where M is much smaller than N .
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We shall assume, from now on, that we have measured, or can estimate,
the value f(0).

Our M by 1 data vector d consists of measurements pertaining to the
vector f :

dm =
N∑

n=0

Hmnfn,

for m = 1, ...,M , where the Hmn are known. We can then write

dm = f(0)
( N∑

n=0

Hmn

)
+

N∑
k=1

( N∑
j=k

Hmj

)
gk.

Since f(0) is known, we can write

bm = dm − f(0)
( N∑

n=0

Hmn

)
=

N∑
k=1

Amkgk,

where

Amk =
N∑

j=k

Hmj .

The problem is then to find a sparse solution of Ax = g. As in the previous
example, we often have the freedom to select the linear functions, that is,
the values Hmn, so the matrix A can be viewed as random.

35.3.3 Tomographic Imaging

The reconstruction of tomographic images is an important aspect of med-
ical diagnosis, and one that combines aspects of both of the previous ex-
amples. The data one obtains from the scanning process can often be
interpreted as values of the Fourier transform of the desired image; this is
precisely the case in magnetic-resonance imaging, and approximately true
for x-ray transmission tomography, positron-emission tomography (PET)
and single-photon emission tomography (SPECT). The images one encoun-
ters in medical diagnosis are often approximately locally constant, so the
associated array of discrete partial derivatives will be sparse. If this sparse
derivative array can be recovered from relatively few Fourier-transform val-
ues, then the scanning time can be reduced.

We turn now to the more general problem of compressed sampling.

35.4 Compressed Sampling

Our goal is to recover the vector f = (f1, ..., fN )T from M linear functional
values of f , where M is much less than N . In general, this is not possible
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without prior information about the vector f . In compressed sampling,
the prior information concerns the sparseness of either f itself, or another
vector linearly related to f .

Let U and V be unitary N by N matrices, so that the column vectors
of both U and V form orthonormal bases for CN . We shall refer to the
bases associated with U and V as the sampling basis and the representing
basis, respectively. The first objective is to find a unitary matrix V so that
f = V x, where x is sparse. Then we want to find a second unitary matrix
U such that, when an M by N matrix R is obtained from U by deleting
rows, the sparse vector x can be determined from the data b = RV x = Ax.
Theorems in compressed sensing describe properties of the matrices U and
V such that, when R is obtained from U by a random selection of the rows
of U , the vector x will be uniquely determined, with high probability, as
the unique solution that minimizes the one-norm.
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Chapter 36

The BLUE and The
Kalman Filter

In most signal- and image-processing applications the measured data in-
cludes (or may include) a signal component we want and unwanted com-
ponents called noise. Estimation involves determining the precise nature
and strength of the signal component; deciding if that strength is zero or
not is detection.

Noise often appears as an additive term, which we then try to remove. If
we knew precisely the noisy part added to each data value we would simply
subtract it; of course, we never have such information. How then do we
remove something when we don’t know what it is? Statistics provides a
way out.

The basic idea in statistics is to use procedures that perform well on
average, when applied to a class of problems. The procedures are built
using properties of that class, usually involving probabilistic notions, and
are evaluated by examining how they would have performed had they been
applied to every problem in the class. To use such methods to remove
additive noise, we need a description of the class of noises we expect to
encounter, not specific values of the noise component in any one particular
instance. We also need some idea about what signal components look like.
In this chapter we discuss solving this noise removal problem using the best
linear unbiased estimation (BLUE). We begin with the simplest case and
then proceed to discuss increasingly complex scenarios.

An important application of the BLUE is in Kalman filtering. The
connection between the BLUE and Kalman filtering is best understood by
considering the case of the BLUE with a prior estimate of the signal com-
ponent, and mastering the various matrix manipulations that are involved
in this problem. These calculations then carry over, almost unchanged, to

349
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the Kalman filtering.
Kalman filtering is usually presented in the context of estimating a

sequence of vectors evolving in time. Kalman filtering for image processing
is derived by analogy with the temporal case, with certain parts of the
image considered to be in the “past” of a fixed pixel.

36.1 The Simplest Case

Suppose our data is zj = c + vj , for j = 1, ..., J , where c is an unknown
constant to be estimated and the vj are additive noise. We assume that
E(vj) = 0, E(vjvk) = 0 for j 6= k, and E(|vj |2) = σ2

j . So, the additive
noises are assumed to have mean zero and to be independent (or at least
uncorrelated). In order to estimate c, we adopt the following rules:

1. The estimate ĉ is linear in the data z = (z1, ..., zJ)T ; that is, ĉ = k†z,
for some vector k = (k1, ..., kJ)T .

2. The estimate is unbiased; that is E(ĉ) = c. This means
∑J

j=1 kj = 1.

3. The estimate is best in the sense that it minimizes the expected error
squared; that is, E(|ĉ− c|2) is minimized.

The resulting vector k is calculated to be

ki = σ−2
i /(

J∑
j=1

σ−2
j ),

and the BLUE estimator of c is then

ĉ =
J∑

i=1

ziσ
−2
i /(

J∑
j=1

σ−2
j ).

36.2 A More General Case

Suppose now that our data vector is z = Hx + v. Here, x is an unknown
vector whose value is to be estimated, the random vector v is additive
noise whose mean is E(v) = 0 and whose known covariance matrix is
Q = E(vv†), not necessarily diagonal, and the known matrix H is J by N ,
with J > N . Now we seek an estimate of the vector x. We now use the
following rules:

1. The estimate x̂ must have the form x̂ = K†z, where the matrix K is to
be determined.
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2. The estimate is unbiased; that is, E(x̂) = x.

3. The K is determined as the minimizer of the expected squared error;
that is, once again we minimize E(|x̂− x|2).

Exercise 36.1 Show that for the estimator to be unbiased we need K†H =
I, the identity matrix.

Exercise 36.2 Show that

E(|x̂− x|2) = traceK†QK.

Hints: Write the left side as

E(trace ((x̂− x)(x̂− x)†)).

Also use the fact that the trace and expected-value operations commute.

The problem then is to minimize trace K†QK subject to the constraint
equation K†H = I. We solve this problem using a technique known as
prewhitening.

Since the noise covariance matrix Q is Hermitian and nonnegative def-
inite, we have Q = UDU†, where the columns of U are the (mutually
orthogonal) eigenvectors of Q and D is a diagonal matrix whose diago-
nal entries are the (necessarily nonnegative) eigenvalues of Q; therefore,
U†U = I. We call C = UD1/2U† the Hermitian square root of Q, since
C† = C and C2 = Q. We assume that Q is invertible, so that C is also.
Given the system of equations

z = Hx + v,

as before, we obtain a new system

y = Gx + w

by multiplying both sides by C−1 = Q−1/2; here, G = C−1H and w =
C−1v. The new noise correlation matrix is

E(ww†) = C−1QC−1 = I,

so the new noise is white. For this reason the step of multiplying by C−1

is called prewhitening.
With J = CK and M = C−1H, we have

K†QK = J†J
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and
K†H = J†M.

Our problem then is to minimize trace J†J , subject to J†M = I.
Let L = L† = (M†M)−1 and let f(J) be the function

f(J) = trace[(J† − L†M†)(J −ML)].

The minimum value of f(J) is zero, which occurs when J = ML. Note
that this choice for J has the property J†M = I. So, minimizing f(J)
is equivalent to minimizing f(J) subject to the constraint J†M = I and
both problems have the solution J = ML. But minimizing f(J) subject to
J†M = I is equivalent to minimizing trace J†J subject to J†M = I, which
is our original problem. Therefore, the optimal choice for J is J = ML.
Consequently, the optimal choice for K is

K = Q−1HL = Q−1H(H†Q−1H)−1,

and the BLUE estimate of x is

xBLUE = x̂ = K†z = (H†Q−1H)−1H†Q−1z.

The simplest case can be obtained from this more general formula by taking
N = 1, H = (1, 1, ..., 1)T and x = c.

Note that if the noise is white, that is, Q = σ2I, then x̂ = (H†H)−1H†z,
which is the least-squares solution of the equation z = Hx. The effect of
requiring that the estimate be unbiased is that, in this case, we simply
ignore the presence of the noise and calculate the least squares solution of
the noise-free equation z = Hx.

The BLUE estimator involves nested inversion, making it difficult to
calculate, especially for large matrices. In the exercise that follows, we
discover an approximation of the BLUE that is easier to calculate.

Exercise 36.3 Show that for ε > 0 we have

(H†Q−1H + εI)−1H†Q−1 = H†(HH† + εQ)−1. (36.1)

Hint: Use the identity

H†Q−1(HH† + εQ) = (H†Q−1H + εI)H†.

It follows from Equation (36.1) that

xBLUE = lim
ε→0

H†(HH† + εQ)−1z. (36.2)

Therefore, we can get an approximation of the BLUE estimate by selecting
ε > 0 near zero, solving the system of linear equations

(HH† + εQ)a = z

for a and taking x = H†a.
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36.3 Some Useful Matrix Identities

In the exercise that follows we consider several matrix identities that are
useful in developing the Kalman filter.

Exercise 36.4 Establish the following identities, assuming that all the
products and inverses involved are defined:

CDA−1B(C−1 −DA−1B)−1 = (C−1 −DA−1B)−1 − C; (36.3)

(A−BCD)−1 = A−1 +A−1B(C−1 −DA−1B)−1DA−1; (36.4)

A−1B(C−1 −DA−1B)−1 = (A−BCD)−1BC; (36.5)

(A−BCD)−1 = (I +GD)A−1, (36.6)

for
G = A−1B(C−1 −DA−1B)−1.

Hints: To get Equation (36.3) use

C(C−1 −DA−1B) = I − CDA−1B.

For the second identity, multiply both sides of Equation (36.4) on the left
by A−BCD and at the appropriate step use Equation (36.3). For Equation
(36.5) show that

BC(C−1 −DA−1B) = B −BCDA−1B = (A−BCD)A−1B.

For Equation (36.6), substitute what G is and use Equation (36.4).

36.4 The BLUE with a Prior Estimate

In Kalman filtering we have the situation in which we want to estimate
an unknown vector x given measurements z = Hx + v, but also given a
prior estimate y of x. It is the case there that E(y) = E(x), so we write
y = x + w, with w independent of both x and v and E(w) = 0. The
covariance matrix for w we denote by E(ww†) = R. We now require that
the estimate x̂ be linear in both z and y; that is, the estimate has the form

x̂ = C†z +D†y,
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for matrices C and D to be determined.
The approach is to apply the BLUE to the combined system of linear

equations
z = Hx + v and

y = x + w.

In matrix language this combined system becomes u = Jx+n, with uT =
[zT yT ], JT = [HT IT ], and nT = [vT wT ]. The noise covariance matrix
becomes

P =
[
Q 0
0 R

]
.

The BLUE estimate is K†u, with K†J = I. Minimizing the variance, we
find that the optimal K† is

K† = (J†P−1J)−1J†P−1.

The optimal estimate is then

x̂ = (H†Q−1H +R−1)−1(H†Q−1z +R−1y).

Therefore,
C† = (H†Q−1H +R−1)−1H†Q−1

and
D† = (H†Q−1H +R−1)−1R−1.

Using the matrix identities in Equations (36.4) and (36.5) we can rewrite
this estimate in the more useful form

x̂ = y +G(z−Hy),

for

G = RH†(Q+HRH†)−1. (36.7)

The covariance matrix of the optimal estimator is K†PK, which can be
written as

K†PK = (R−1 +H†Q−1H)−1 = (I −GH)R.

In the context of the Kalman filter, R is the covariance of the prior estimate
of the current state, G is the Kalman gain matrix, and K†PK is the pos-
terior covariance of the current state. The algorithm proceeds recursively
from one state to the next in time.
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36.5 Adaptive BLUE

We have assumed so far that we know the covariance matrix Q corre-
sponding to the measurement noise. If we do not, then we may attempt
to estimate Q from the measurements themselves; such methods are called
noise-adaptive. To illustrate, let the innovations vector be e = z − Hy.
Then the covariance matrix of e is S = HRH† + Q. Having obtained an
estimate Ŝ of S from the data, we use Ŝ−HRH† in place of Q in Equation
(36.7).

36.6 The Kalman Filter

So far in this chapter we have focused on the filtering problem: given the
data vector z, estimate x, assuming that z consists of noisy measurements
of Hx; that is, z = Hx + v. An important extension of this problem is
that of stochastic prediction. Shortly, we discuss the Kalman-filter method
for solving this more general problem. One area in which prediction plays
an important role is the tracking of moving targets, such as ballistic mis-
siles, using radar. The range to the target, its angle of elevation, and its
azimuthal angle are all functions of time governed by linear differential
equations. The state vector of the system at time t might then be a vec-
tor with nine components, the three functions just mentioned, along with
their first and second derivatives. In theory, if we knew the initial state
perfectly and our differential equations model of the physics was perfect,
that would be enough to determine the future states. In practice neither
of these is true, and we need to assist the differential equation by taking
radar measurements of the state at various times. The problem then is to
estimate the state at time t using both the measurements taken prior to
time t and the estimate based on the physics.

When such tracking is performed digitally, the functions of time are
replaced by discrete sequences. Let the state vector at time k∆t be de-
noted by xk, for k an integer and ∆t > 0. Then, with the derivatives in
the differential equation approximated by divided differences, the physical
model for the evolution of the system in time becomes

xk = Ak−1xk−1 + mk−1.

The matrix Ak−1, which we assume is known, is obtained from the differen-
tial equation, which may have nonconstant coefficients, as well as from the
divided difference approximations to the derivatives. The random vector
sequence mk−1 represents the error in the physical model due to the dis-
cretization and necessary simplification inherent in the original differential
equation itself. We assume that the expected value of mk is zero for each
k. The covariance matrix is E(mkm

†
k) = Mk.
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At time k∆t we have the measurements

zk = Hkxk + vk,

where Hk is a known matrix describing the nature of the linear measure-
ments of the state vector and the random vector vk is the noise in these
measurements. We assume that the mean value of vk is zero for each k.
The covariance matrix is E(vkv

†
k) = Qk. We assume that the initial state

vector x0 is arbitrary.
Given an unbiased estimate x̂k−1 of the state vector xk−1, our prior

estimate of xk based solely on the physics is

yk = Ak−1x̂k−1.

Exercise 36.5 Show that E(yk − xk) = 0, so the prior estimate of xk is
unbiased. We can then write yk = xk + wk, with E(wk) = 0.

36.7 Kalman Filtering and the BLUE

The Kalman filter [163, 130, 86] is a recursive algorithm to estimate the
state vector xk at time k∆t as a linear combination of the vectors zk and
yk. The estimate x̂k will have the form

x̂k = C†kzk +D†
kyk, (36.8)

for matrices Ck and Dk to be determined. As we shall see, this estimate
can also be written as

x̂k = yk +Gk(zk −Hkyk), (36.9)

which shows that the estimate involves a prior prediction step, the yk,
followed by a correction step, in which Hkyk is compared to the measured
data vector zk; such estimation methods are sometimes called predictor-
corrector methods.

In our discussion of the BLUE, we saw how to incorporate a prior
estimate of the vector to be estimated. The trick was to form a larger
matrix equation and then to apply the BLUE to that system. The Kalman
filter does just that.

The correction step in the Kalman filter uses the BLUE to solve the
combined linear system

zk = Hkxk + vk

and
yk = xk + wk.
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The covariance matrix of x̂k−1 − xk−1 is denoted by Pk−1, and we let
Qk = E(wkw

†
k). The covariance matrix of yk − xk is

cov(yk − xk) = Rk = Mk−1 +Ak−1Pk−1A
†
k−1.

It follows from our earlier discussion of the BLUE that the estimate of xk

is
x̂k = yk +Gk(zk −Hyk),

with
Gk = RkH

†
k(Qk +HkRkH

†
k)−1.

Then, the covariance matrix of x̂k − xk is

Pk = (I −GkHk)Rk.

The recursive procedure is to go from Pk−1 and Mk−1 to Rk, then to Gk,
from which x̂k is formed, and finally to Pk, which, along with the known
matrix Mk, provides the input to the next step. The time-consuming part
of this recursive algorithm is the matrix inversion in the calculation of Gk.
Simpler versions of the algorithm are based on the assumption that the
matrices Qk are diagonal, or on the convergence of the matrices Gk to a
limiting matrix G [86].

There are many variants of the Kalman filter, corresponding to varia-
tions in the physical model, as well as in the statistical assumptions. The
differential equation may be nonlinear, so that the matrices Ak depend on
xk. The system noise sequence {wk} and the measurement noise sequence
{vk} may be correlated. For computational convenience the various func-
tions that describe the state may be treated separately. The model may
include known external inputs to drive the differential system, as in the
tracking of spacecraft capable of firing booster rockets. Finally, the noise
covariance matrices may not be known a priori and adaptive filtering may
be needed. We discuss this last issue briefly in the next section.

36.8 Adaptive Kalman Filtering

As in [86] we consider only the case in which the covariance matrixQk of the
measurement noise vk is unknown. As we saw in the discussion of adaptive
BLUE, the covariance matrix of the innovations vector ek = zk −Hkyk is

Sk = HkRkH
†
k +Qk.

Once we have an estimate for Sk, we estimate Qk using

Q̂k = Ŝk −HkRkH
†
k.
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We might assume that Sk is independent of k and estimate Sk = S using
past and present innovations; for example, we could use

Ŝ =
1

k − 1

k∑
j=1

(zj −Hjyj)(zj −Hjyj)†.



Chapter 37

The BLUE and the Least
Squares Estimators

37.1 Difficulties with the BLUE

As we saw in the previous chapter, the best linear unbiased estimate of x,
given the observed vector z = Hx + v, is

xBLUE = (H†Q−1H)−1H†Q−1z, (37.1)

where Q is the invertible covariance matrix of the mean zero noise vector
v and H is a J by N matrix with J ≥ N and H†H invertible. Even if we
know Q exactly, the double inversion in Equation (37.1) makes it difficult
to calculate the BLUE estimate, especially for large vectors z. It is often
the case in practice that we do not know Q precisely and must estimate
or model it. Because good approximations of Q do not necessarily lead
to good approximations of Q−1, the calculation of the BLUE is further
complicated. For these reasons one may decide to use the least squares
estimate

xLS = (H†H)−1H†z (37.2)

instead. We are therefore led to consider when the two estimation methods
produce the same answers; that is, when we have

(H†H)−1H† = (H†Q−1H)−1H†Q−1. (37.3)

In this chapter we state and prove a theorem that answers this question.
The proof relies on the results of several exercises, useful in themselves,
that involve basic facts of linear algebra.

359
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37.2 Preliminaries from Linear Algebra

We begin with some definitions. Let S be a subspace of finite-dimensional
Euclidean space RJ and Q a J by J Hermitian matrix. We denote by Q(S)
the set

Q(S) = {t|there exists s ∈ S with t = Qs}

and by Q−1(S) the set

Q−1(S) = {u|Qu ∈ S}.

Note that the set Q−1(S) is defined whether or not Q is invertible.
We denote by S⊥ the set of vectors u that are orthogonal to every

member of S; that is,

S⊥ = {u|u†s = 0, for every s ∈ S}.

Let H be a J by N matrix. Then CS(H), the column space of H, is the
subspace of RJ consisting of all the linear combinations of the columns
of H. The null space of H†, denoted NS(H†), is the subspace of RJ

containing all the vectors w for which H†w = 0.

Exercise 37.1 Show that CS(H)⊥ = NS(H†).

Hint: If v ∈ CS(H)⊥, then v†Hx = 0 for all x, including x = H†v.

Exercise 37.2 Show that CS(H) ∩NS(H†) = {0}.

Hint: If y = Hx ∈ NS(H†) consider ||y||2 = y†y.

Exercise 37.3 Let S be any subspace of RJ . Show that if Q is invertible
and Q(S) = S then Q−1(S) = S.

Hint: If Qt = Qs then t = s.

Exercise 37.4 Let Q be Hermitian. Show that Q(S)⊥ = Q−1(S⊥) for
every subspace S. If Q is also invertible then Q−1(S)⊥ = Q(S⊥). Find an
example of a non-invertible Q for which Q−1(S)⊥ and Q(S⊥) are different.
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We assume, for the remainder of this chapter, that Q is Hermitian and
invertible and that the matrix H†H is invertible. Note that the matrix
H†Q−1H need not be invertible under these assumptions. We shall denote
by S an arbitrary subspace of RJ .

Exercise 37.5 Show that Q(S) = S if and only if Q(S⊥) = S⊥.

Hint: Use Exercise 37.4.

Exercise 37.6 Show that if Q(CS(H)) = CS(H) then H†Q−1H is in-
vertible.

Hint: Show that H†Q−1Hx = 0 if and only if x = 0. Recall that
Q−1Hx ∈ CS(H), by Exercise 37.4. Then use Exercise 37.2.

37.3 When are the BLUE and the LS Esti-
mator the Same?

We are looking for conditions on Q and H that imply Equation (37.3),
which we rewrite as

H† = (H†Q−1H)(H†H)−1H†Q (37.4)

or
H†Tx = 0

for all x, where
T = I −Q−1H(H†H)−1H†Q.

In other words, we want Tx ∈ NS(H†) for all x. The theorem is the
following:

Theorem 37.1 We have Tx ∈ NS(H†) for all x if and only if Q(CS(H)) =
CS(H).

An equivalent form of this theorem was proven by Anderson in [4]; he
attributes a portion of the proof to Magness and McQuire [185]. The proof
we give here is due to Kheifets [165] and is much simpler than Anderson’s
proof. The proof of the theorem is simplified somewhat by first establishing
the result in the next exercise.
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Exercise 37.7 Show that if Equation (37.4) holds, then the matrix H†Q−1H
is invertible.

Hints: Recall that we have assumed that CS(H†) = RJ when we assumed
thatH†H is invertible. From equation (37.4) it follows that CS(H†Q−1H) =
RJ .

The Proof of Theorem 37.1: Assume first that Q(CS(H)) = CS(H),
which, as we now know, also implies Q(NS(H†)) = NS(H†), as well as
Q−1(CS(H)) = CS(H), Q−1(NS(H†)) = NS(H†), and the invertibility
of the matrix H†Q−1H. Every x ∈ RJ has the form x = Ha+w, for some
a and w ∈ NS(H†). We show that Tx = w, so that Tx ∈ NS(H†) for all
x. We have

Tx = THa + Tw =

x−Q−1H(H†H)−1H†QHa−Q−1H(H†H)−1H†Qw.

We know that QHa = Hb for some b, so that Ha = Q−1Hb. We also
know that Qw = v ∈ NS(H†), so that w = Q−1v. Then, continuing our
calculations, we have

Tx = x−Q−1Hb− 0 = x−Ha = w,

so Tx ∈ NS(H†).
Conversely, suppose now that Tx ∈ NS(H†) for all x, which, as we

have seen, is equivalent to Equation (37.4). We show that Q−1(NS(H†) =
NS(H†). First, let v ∈ Q−1(NS(H†)); we show v ∈ NS(H†). We have

H†v = (H†Q−1H)(H†H)−1H†Qv,

which is zero, since H†Qv = 0. So, we have shown that Q−1(NS(H†)) ⊆
NS(H†). To complete the proof, we take an arbitrary member v ofNS(H†)
and show that v is in Q−1(NS(H†)); that is, Qv ∈ NS(H†). We know
that Qv = Ha + w, for w ∈ NS(H†), and

a = (H†H)−1H†Qv,

so that
Ha = H(H†H)−1H†Qv.

Then, using Exercise 37.7, we have

Qv = H(H†H)−1H†Qv + w

= H(H†Q−1H)−1H†Q−1Qv + w

= H(H†Q−1H)−1H†v + w = w.

So Qv = w, which is in NS(H†). This completes the proof.



Chapter 38

Linear Inequalities

Most books on linear algebra devote considerable space to the problem of
solving a consistent or inconsistent system of linear equations, say Ax = b.
Problems involving linear inequalities, such as solving Ax ≥ b, attract
less attention, although such problems play a crucial role in linear pro-
gramming. The term linear programming (LP) refers to the problem of
optimizing a linear function of several variables over linear equality or in-
equality constraints. Such problems arise in many areas of applications. It
is common, in applications, for A to be quite large, necessitating the use
of an iterative algorithm to solve the problem. Dantzig’s Simplex Method
(see [65]) is the best known iterative method for solving LP problems.

38.1 Theorems of the Alternative

Later in this chapter we shall present David Gale’s proof of his strong dual-
ity theorem in linear programming ([128]). His proof makes use of a theorem
concerning linear inequalities known as a theorem of the alternative. For
that reason, we begin with a discussion of these types of theorems.

38.1.1 A Theorem of the Alternative

The following theorem is a good illustration of a type of theorem known as
Theorems of the Alternative. These theorems assert that precisely one of
two problems will have a solution. The proof illustrates how we should go
about proving such theorems.

Theorem 38.1 (Gale I)[128] Precisely one of the following is true:

• (1) there is x such that Ax = b;

• (2) there is y such that AT y = 0 and bT y = 1.

363
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Proof: First, we show that it is not possible for both to be true at the same
time. Suppose that Ax = b and AT y = 0. Then bT y = xTAT y = 0, so that
we cannot have bT y = 1. By Theorem 32.1, the fundamental decomposition
theorem from linear algebra, we know that, for any b, there are unique x
and w with ATw = 0 such that b = Ax + w. Clearly, b = Ax if and
only if w = 0. Also, bT y = wT y. Therefore, if alternative (1) does not
hold, we must have w non-zero, in which case AT y = 0 and bT y = 1, for
y = w/||w||2, so alternative (2) holds.

In this section we consider several other theorems of this type.

38.1.2 More Theorems of the Alternative

Theorem 38.2 (Farkas’ Lemma)[117] Precisely one of the following is
true:

• (1) there is x ≥ 0 such that Ax = b;

• (2) there is y such that AT y ≥ 0 and bT y < 0.

Proof: We can restate the lemma as follows: there is a vector y with
AT y ≥ 0 and bT y < 0 if and only if b is not a member of the convex set
C = {Ax|x ≥ 0}. If b is not in C, which is closed and convex, then, by the
Separation Theorem (see [65]), there is a non-zero vector a and real α with

aT b < α ≤ aTAx = (ATa)Tx,

for all x ≥ 0. Since (ATa)Tx is bounded below, as x runs over all non-
negative vectors, it follows that ATa ≥ 0. Choosing x = 0, we have α ≤ 0.
Then let y = a. Conversely, if Ax = b does have a non-negative solution x,
then AT y ≥ 0 implies that 0 ≤ yTAx = yT b ≥ 0.

The next theorem can be obtained from Farkas’ Lemma.

Theorem 38.3 (Gale II)[128] Precisely one of the following is true:

• (1) there is x such that Ax ≤ b;

• (2) there is y ≥ 0 such that AT y = 0 and bT y < 0.

Proof: First, if both are true, then 0 ≤ yT (b − Ax) = yT b − 0 = yT b,
which is a contradiction. Now assume that (2) does not hold. Therefore,
for every y ≥ 0 with AT y = 0, we have bT y ≥ 0. Let B = [A b ]. Then the
system BT y = [ 0 −1 ]T has no non-negative solution. Applying Farkas’
Lemma, we find that there is a vector w = [ z γ ]T with Bw ≥ 0 and
[ 0 −1 ]w < 0. So, Az + γb ≥ 0 and γ > 0. Let x = − 1

γ z to get Ax ≤ b,
so that (1) holds.
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Theorem 38.4 (Gordan)[137] Precisely one of the following is true:

• (1) there is x such that Ax < 0;

• (2) there is y ≥ 0, y 6= 0, such that AT y = 0.

Proof: First, if both are true, then 0 < −yTAx = 0, which cannot be
true. Now assume that there is no non-zero y ≥ 0 with AT y = 0. Then,
with e = (1, 1, ..., 1)T , C = [A e ], and d = (0, 0, ..., 0, 1)T , there is no
non-negative solution of CT y = d. From Farkas’ Lemma we then know
that there is a vector z = [u γ ]T , with Cz = Au+ γe ≥ 0, and dT z < 0.
Then Ax < 0 for x = −u.

Here are several more theorems of the alternative.

Theorem 38.5 (Stiemke I)[229] Precisely one of the following is true:

• (1) there is x such that Ax ≤ 0 and Ax 6= 0;

• (2) there is y > 0 such that AT y = 0.

Theorem 38.6 (Stiemke II)[229] Let c be a fixed non-zero vector. Pre-
cisely one of the following is true:

• (1) there is x such that Ax ≤ 0 and cTx ≥ 0 and not both Ax = 0
and cTx = 0;

• (2) there is y > 0 such that AT y = c.

Theorem 38.7 (Gale III)[128] Let c be a fixed non-zero vector. Pre-
cisely one of the following is true:

• (1) there is x ≥ 0 such that Ax ≥ 0 and cTx < 0;

• (2) there is y ≥ 0 such that AT y ≤ c.

Proof: First, note that we cannot have both true at the same time, since
we would then have

0 < xT (c−AT y) = cTx− (Ax)T y ≤ cTx,

which is a contradiction. Now suppose that (2) does not hold. Then there
is no w ≥ 0 such that

[AT I ]w = c.

By Farkas’ Lemma (Theorem 38.2), it follows that there is x with[
A
I

]
x ≥ 0,

and cTx < 0. Therefore, Ax ≥ 0, Ix = x ≥ 0, and cTx < 0; therefore, (1)
holds.
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Theorem 38.8 (Von Neumann)[243] Precisely one of the following is
true:

• (1) there is x ≥ 0 such that Ax > 0;

• (2) there is y ≥ 0, y 6= 0, such that AT y ≤ 0.

Proof: If both were true, then we would have

0 < (Ax)T y = xT (AT y),

so that AT y ≤ 0 would be false. Now suppose that (2) does not hold.
Then there is no y ≥ 0, y 6= 0, with AT y ≤ 0. Consequently, there is no
y ≥ 0, y 6= 0, such that[

AT

−uT

]
y =

[
AT y
−uT y

]
≤
[

0
−1

]
,

where uT = (1, 1, ..., 1). By Theorem 38.7, there is

z =
[
x
α

]
≥ 0,

such that

[A −u ] z = [A −u ]
[
x
α

]
≥ 0,

and

[ 0 −1 ] z = [ 0 −1 ]
[
x
α

]
= −α < 0.

Therefore, α > 0 and (Ax)i − α ≥ 0 for each i, and so Ax > 0 and (1)
holds.

Theorem 38.9 (Tucker)[235] Precisely one of the following is true:

• (1) there is x ≥ 0 such that Ax ≥ 0, Ax 6= 0;

• (2) there is y > 0 such that AT y ≤ 0.

38.1.3 Another Proof of Farkas’ Lemma

In the previous section, we proved Farkas’ Lemma, Theorem 38.2, using
the Separation Theorem, the proof of which, in turn, depended here on
the existence of the orthogonal projection onto any closed convex set. It is
possible to prove Farkas’ Lemma directly, along the lines of Gale [128].

Suppose that Ax = b has no non-negative solution. If, indeed, it has
no solution whatsoever, then b = Ax + w, where w 6= 0 and ATw = 0.
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Then we take y = −w/||w||2. So suppose that Ax = b does have solutions,
but not any non-negative ones. The approach is to use induction on the
number of columns of the matrix involved in the lemma.

If A has only one column, denoted a1, then Ax = b can be written as

x1a
1 = b.

Assuming that there are no non-negative solutions, it must follow that
x1 < 0. We take y = −b. Then

bT y = −bT b = −||b||2 < 0,

while
AT y = (a1)T (−b) =

−1
x1
bT b > 0.

Now assume that the lemma holds whenever the involved matrix has no
more than m− 1 columns. We show the same is true for m columns.

If there is no non-negative solution of the system Ax = b, then clearly
there are no non-negative real numbers x1, x2, ..., xm−1 such that

x1a
1 + x2a

2 + ...+ xm−1a
m−1 = b,

where aj denotes the jth column of the matrix A. By the induction hy-
pothesis, there must be a vector v with

(aj)T v ≥ 0,

for j = 1, ...,m− 1, and bT v < 0. If it happens that (am)T v ≥ 0 also, then
we are done. If, on the other hand, we have (am)T v < 0, then let

cj = (aj)Tam − (am)Taj , j = 1, ...,m− 1,

and
d = (bT v)am − ((am)T v)b.

Then there are no non-negative real numbers z1, ..., zm−1 such that

z1c
1 + z2c

2 + ...+ zm−1c
m−1 = d, (38.1)

since, otherwise, it would follow from simple calculations that

−1
(am)T v

(
[
m−1∑
j=1

zj((aj)T v)]− bT v
)
am −

m−1∑
j=1

zj((am)T v)aj = b.

Close inspection of this shows all the coefficients to be non-negative, which
implies that the system Ax = b has a non-negative solution, contrary to
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our assumption. It follows, therefore, that there can be no non-negative
solution to the system in Equation (38.1).

By the induction hypothesis, it follows that there is a vector u such that

(cj)Tu ≥ 0, j = 1, ...,m− 1,

and
dTu < 0.

Now let
y = ((am)Tu)v − ((am)T v)u.

We can easily verify that

(aj)T y = (cj)Tu ≥ 0, j = 1, ...,m− 1,

bT y = dTu < 0,

and
(am)T y = 0,

so that
AT y ≥ 0,

and
bT y < 0.

This completes the proof.

38.2 Linear Programming

We begin with an example.

38.2.1 An Example

Consider the problem of maximizing the function f(x1, x2) = x1 + 2x2,
over all x1 ≥ 0 and x2 ≥ 0, for which the inequalities

x1 + x2 ≤ 40,

and
2x1 + x2 ≤ 60

are satisfied. The set of points satisfying all four inequalities is the quadri-
lateral with vertices (0, 0), (30, 0), (20, 20), and (0, 40); draw a picture.
Since the level curves of the function f are straight lines, the maximum
value must occur at one of these vertices; in fact, it occurs at (0, 40) and
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the maximum value of f over the constraint set is 80. Rewriting the prob-
lem as minimizing the function −x1 − 2x2, subject to x1 ≥ 0, x2 ≥ 0,

−x1 − x2 ≥ −40,

and
−2x1 − x2 ≥ −60,

the problem is now in what is called primal canonical form.

38.2.2 Canonical and Standard Forms

Let b and c be fixed vectors and A a fixed matrix. The problem

minimize z = cTx, subject toAx ≥ b, x ≥ 0 (PC) (38.2)

is the so-called primary problem of LP, in canonical form. The dual problem
in canonical form is

maximizew = bT y, subject toAT y ≤ c, y ≥ 0. (DC) (38.3)

The primary problem, in standard form, is

minimize z = cTx, subject toAx = b, x ≥ 0 (PS) (38.4)

with the dual problem in standard form given by

maximizew = bT y, subject toAT y ≤ c. (DS) (38.5)

Notice that the dual problem in standard form does not require that y be
nonnegative. Note also that (PS) makes sense only if the system Ax = b
has solutions. For that reason, we shall assume, for the standard problems,
that the I by J matrix A has at least as many columns as rows, so J ≥ I,
and A has full rank I.

If we are given the primary problem in canonical form, we can convert
it to standard form by augmenting the variables, that is, by defining

ui = (Ax)i − bi, (38.6)

for i = 1, ..., I, and rewriting Ax ≥ b as

Ãx̃ = b, (38.7)

for Ã = [A −I ] and x̃ = [xTuT ]T .
If we are given the primary problem in standard form, we can convert

it to canonical form by writing the equations as inequalities, that is, by
replacing Ax = b with the two matrix inequalities Ax ≥ b, and (−A)x ≥
−b.
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38.2.3 Weak Duality

Consider the problems (PS) and (DS). Say that x is feasible if x ≥ 0 and
Ax = b. Let F be the set of feasible x. Say that y is feasible if AT y ≤ c.
The Weak Duality Theorem is the following:

Theorem 38.10 Let x and y be feasible vectors. Then

z = cTx ≥ bT y = w. (38.8)

Corollary 38.1 If z is not bounded below, then there are no feasible y.

Corollary 38.2 If x and y are both feasible, and z = w, then both x and
y are optimal for their respective problems.

The proof of the theorem and its corollaries are left as exercises.
The nonnegative quantity cTx − bT y is called the duality gap. The

complementary slackness condition says that, for optimal x and y, we have

xj(cj − (AT y)j) = 0, (38.9)

for each j, which says that the duality gap is zero. Primal-dual algorithms
for solving linear programming problems are based on finding sequences
{xk} and {yk} that drive the duality gap down to zero [194].

38.2.4 Strong Duality

The Strong Duality Theorems make a stronger statement. The following
theorems are well known examples.

Theorem 38.11 If one of the problems (PS) or (DS) has an optimal so-
lution, then so does the other and z = w for the optimal vectors.

Theorem 38.12 Gale’s Strong Duality Theorem[128] If both prob-
lems (PC) and (DC) have feasible solutions, then both have optimal solu-
tions and the optimal values are equal.

Proof: We show that there are non-negative vectors x and y such that
Ax ≥ b, AT y ≤ c, and bT y − cTx ≥ 0. It will then follow that z = cTx =
bT y = w, so that x and y are both optimal. In matrix notation, we want
to find x ≥ 0 and y ≥ 0 such that

 A 0
0 −AT

−cT bT

[x
y

]
≥

 b
−c
0

 . (38.10)
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We assume that there are no x ≥ 0 and y ≥ 0 for which the inequalities
in (38.10) hold. Then, according to Theorem 38.7, there are non-negative
vectors s and t, and non-negative scalar ρ such that

[
−AT 0 c

0 A −b

] st
ρ

 ≥ 0, (38.11)

and

[−bT cT 0 ]

 st
ρ

 < 0. (38.12)

Note that ρ cannot be zero, for then we would have AT s ≤ 0 and
At ≥ 0. Taking feasible vectors x and y, we would find that sTAx ≤ 0,
which implies that bT s ≤ 0, and tTAT y ≥ 0, which implies that cT t ≥ 0.
Therefore, we could not also have cT t− bT s < 0.

Writing out the inequalities, we have

ρcT t ≥ sTAt ≥ sT (ρb) = ρsT b.

Using ρ > 0, we find that
cT t ≥ bT s,

which is a contradiction. Therefore, there do exist x ≥ 0 and y ≥ 0 such
that Ax ≥ b, AT y ≤ c, and bT y − cTx ≥ 0.

In his book [128] Gale uses his strong duality theorem to obtain a proof
of the min-max theorem in game theory (see [65]).
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Chapter 39

Geometric Programming
and the MART

Geometric Programming (GP) involves the minimization of functions of
a special type, known as posynomials. The first systematic treatment of
geometric programming appeared in the book [110], by Duffin, Peterson
and Zener, the founders of geometric programming. As we shall see, the
Generalized Arithmetic-Geometric Mean Inequality plays an important role
in the theoretical treatment of geometric programming.

39.1 An Example of a GP Problem

The following optimization problem was presented originally by Duffin, et
al. [110] and discussed by Peressini et al. in [203]. It illustrates well the
type of problem considered in geometric programming. Suppose that 400
cubic yards of gravel must be ferried across a river in an open box of length
t1, width t2 and height t3. Each round-trip cost ten cents. The sides and
the bottom of the box cost 10 dollars per square yard to build, while the
ends of the box cost twenty dollars per square yard. The box will have no
salvage value after it has been used. Determine the dimensions of the box
that minimize the total cost.

With t = (t1, t2, t3), the cost function is

g(t) =
40

t1t2t3
+ 20t1t3 + 10t1t2 + 40t2t3, (39.1)

which is to be minimized over tj > 0, for j = 1, 2, 3. The function g(t) is
an example of a posynomial.

373
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39.2 Posynomials and the GP Problem

Functions g(t) of the form

g(t) =
n∑

i=1

ci

( m∏
j=1

t
aij

j

)
, (39.2)

with t = (t1, ..., tm), the tj > 0, ci > 0 and aij real, are called posynomials.
The geometric programming problem, denoted (GP), is to minimize a given
posynomial over positive t. In order for the minimum to be greater than
zero, we need some of the aij to be negative.

We denote by ui(t) the function

ui(t) = ci

m∏
j=1

t
aij

j , (39.3)

so that

g(t) =
n∑

i=1

ui(t). (39.4)

For any choice of δi > 0, i = 1, ..., n, with

n∑
i=1

δi = 1,

we have

g(t) =
n∑

i=1

δi

(ui(t)
δi

)
. (39.5)

Applying the Generalized Arithmetic-Geometric Mean (GAGM) Inequal-
ity, we have

g(t) ≥
n∏

i=1

(ui(t)
δi

)δi

. (39.6)

Therefore,

g(t) ≥
n∏

i=1

(ci
δi

)δi

(
n∏

i=1

m∏
j=1

t
aijδi

j

)
, (39.7)

or

g(t) ≥
n∏

i=1

(ci
δi

)δi
( m∏

j=1

t

∑n

i=1
aijδi

j

)
, (39.8)
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Suppose that we can find δi > 0 with

n∑
i=1

aijδi = 0, (39.9)

for each j. Then the inequality in (39.8) becomes

g(t) ≥ v(δ), (39.10)

for

v(δ) =
n∏

i=1

(ci
δi

)δi

. (39.11)

39.3 The Dual GP Problem

The dual geometric programming problem, denoted (DGP), is to maximize
the function v(δ), over all feasible δ = (δ1, ..., δn), that is, all positive δ for
which

n∑
i=1

δi = 1, (39.12)

and
n∑

i=1

aijδi = 0, (39.13)

for each j = 1, ...,m. Clearly, we have

g(t) ≥ v(δ), (39.14)

for any positive t and feasible δ. Of course, there may be no feasible δ, in
which case (DGP) is said to be inconsistent.

As we have seen, the inequality in (39.14) is based on the GAGM In-
equality. We have equality in the GAGM Inequality if and only if the terms
in the arithmetic mean are all equal. In this case, this says that there is a
constant λ such that

ui(t)
δi

= λ, (39.15)

for each i = 1, ..., n. Using the fact that the δi sum to one, it follows that

λ =
n∑

i=1

ui(t) = g(t), (39.16)
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and

δi =
ui(t)
g(t)

, (39.17)

for each i = 1, ..., n. As the theorem below asserts, if t∗ is positive and
minimizes g(t), then δ∗, the associated δ from Equation (39.17), is feasible
and solves (DGP). Since we have equality in the GAGM Inequality now,
we have

g(t∗) = v(δ∗).

The main theorem in geometric programming is the following.

Theorem 39.1 If t∗ > 0 minimizes g(t), then (DGP) is consistent. In
addition, the choice

δ∗i =
ui(t∗)
g(t∗)

(39.18)

is feasible and solves (DGP). Finally,

g(t∗) = v(δ∗); (39.19)

that is, there is no duality gap.

Proof: We have

∂ui

∂tj
(t∗) =

aijui(t∗)
t∗j

, (39.20)

so that

t∗j
∂ui

∂tj
(t∗) = aijui(t∗), (39.21)

for each j = 1, ...,m. Since t∗ minimizes g(t), we have

0 =
∂g

∂tj
(t∗) =

n∑
i=1

∂ui

∂tj
(t∗), (39.22)

so that, from Equation (39.21), we have

0 =
n∑

i=1

aijui(t∗), (39.23)

for each j = 1, ...,m. It follows that δ∗ is feasible. Since we have equality
in the GAGM Inequality, we know

g(t∗) = v(δ∗). (39.24)

Therefore, δ∗ solves (DGP). This completes the proof.
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39.4 Solving the GP Problem

The theorem suggests how we might go about solving (GP). First, we try
to find a feasible δ∗ that maximizes v(δ). This means we have to find a
positive solution to the system of m + 1 linear equations in n unknowns,
given by

n∑
i=1

δi = 1, (39.25)

and
n∑

i=1

aijδi = 0, (39.26)

for j = 1, ...,m, such that v(δ) is maximized. As we shall see, the multi-
plicative algebraic reconstruction technique (MART) is an iterative proce-
dure that we can use to find such δ. If there is no such vector, then (GP)
has no minimizer. Once the desired δ∗ has been found, we set

δ∗i =
ui(t∗)
v(δ∗)

, (39.27)

for each i = 1, ..., n, and then solve for the entries of t∗. This last step can
be simplified by taking logs; then we have a system of linear equations to
solve for the values log t∗j .

39.5 Solving the DGP Problem

The iterative multiplicative algebraic reconstruction technique MART can
be used to minimize the function v(δ), subject to linear equality constraints,
provided that the matrix involved has nonnegative entries. We cannot ap-
ply the MART yet, because the matrix AT does not satisfy these conditions.

39.5.1 The MART

The Kullback-Leibler, or KL distance [171] between positive numbers a
and b is

KL(a, b) = a log
a

b
+ b− a. (39.28)

We also define KL(a, 0) = +∞ and KL(0, b) = b. Extending to non-
negative vectors a = (a1, ..., aJ)T and b = (b1, ..., bJ)T , we have

KL(a, b) =
J∑

j=1

KL(aj , bj) =
J∑

j=1

(
aj log

aj

bj
+ bj − aj

)
.
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The MART is an iterative algorithm for finding a non-negative solution of
the system Px = y, for an I by J matrix P with non-negative entries and
vector y with positive entries. We also assume that

pj =
I∑

i=1

Pij > 0,

for all i = 1, ..., I. When discussing the MART, we say that the system
Px = y is consistent when it has non-negative solutions. We consider two
different versions of the MART.

MART I

The iterative step of the first version of MART, which we shall call MART
I, is the following: for k = 0, 1, ..., and i = k(mod I) + 1, let

xk+1
j = xk

j

( yi

(Pxk)i

)Pij/mi

,

for j = 1, ..., J , where the parameter mi is defined to be

mi = max{Pij |j = 1, ..., J}.

The MART I algorithm converges, in the consistent case, to the non-
negative solution for which the KL distance KL(x, x0) is minimized.

MART II

The iterative step of the second version of MART, which we shall call
MART II, is the following: for k = 0, 1, ..., and i = k(mod I) + 1, let

xk+1
j = xk

j

( yi

(Pxk)i

)Pij/pjni

,

for j = 1, ..., J , where the parameter ni is defined to be

ni = max{Pijp
−1
j |j = 1, ..., J}.

The MART II algorithm converges, in the consistent case, to the non-
negative solution for which the KL distance

J∑
j=1

pjKL(xj , x
0
j )

is minimized.
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39.5.2 Using the MART to Solve the DGP Problem

The entries on the bottom row of AT are all one, as is the bottom en-
try of the column vector u, since these entries correspond to the equation∑I

i=1 δi = 1. By adding suitably large positive multiples of this last equa-
tion to the other equations in the system, we obtain an equivalent system,
BT δ = s, for which the new matrix BT and the new vector s have only
positive entries. Now we can apply the MART I algorithm to the system
BT δ = s, letting P = BT , pi =

∑J+1
j=1 Bij , δ = x, x0 = c and y = s.

In the consistent case, the MART I algorithm will find the non-negative
solution that minimizes KL(x, x0), so we select x0 = c. Then the MART I
algorithm finds the non-negative δ∗ satisfying BT δ∗ = s, or, equivalently,
AT δ∗ = u, for which the KL distance

KL(δ, c) =
I∑

i=1

(
δi log

δi
ci

+ ci − δi

)
is minimized. Since we know that

I∑
i=1

δi = 1,

it follows that minimizing KL(δ, c) is equivalent to maximizing v(δ). Using
δ∗, we find the optimal t∗ solving the GP problem.

For example, the linear system of equations AT δ = u corresponding to
the posynomial in Equation (39.1) is

AT δ = u =


−1 1 1 0
−1 0 1 1
−1 1 0 1
1 1 1 1



δ1
δ2
δ3
δ4

 =


0
0
0
1

 .
Adding two times the last row to the other rows, the system becomes

BT δ = s =


1 3 3 2
1 2 3 3
1 3 2 3
1 1 1 1



δ1
δ2
δ3
δ4

 =


2
2
2
1

 .
The matrix BT and the vector s are now positive. We are ready to apply
the MART.

The MART iteration is as follows. With j = k(mod (J + 1)) + 1, mj =
max {Bij |i = 1, 2, ..., I} and k = 0, 1, ..., let

δk+1
i = δk

i

( sj

(BT δk)j

)m−1
j

Bij

.

The optimal δ∗ is δ∗ = (.4, .2, .2, .2)T , the optimal t∗ is t∗ = (2, 1, .5), and
the lowest cost is one hundred dollars.
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39.6 Constrained Geometric Programming

Consider now the following variant of the problem of transporting the gravel
across the river. Suppose that the bottom and the two sides will be con-
structed for free from scrap metal, but only four square yards are available.
The cost function to be minimized becomes

g0(t) =
40

t1t2t3
+ 40t2t3, (39.29)

and the constraint is

g1(t) =
t1t3
2

+
t1t2
4

≤ 1. (39.30)

With δ1 > 0, δ2 > 0, and δ1 + δ2 = 1, we write

g0(t) = δ1
40

δ1t1t2t3
+ δ2

40t2t3
δ2

. (39.31)

Since 0 ≤ g1(t) ≤ 1, we have

g0(t) ≥
(
δ1

40
δ1t1t2t3

+ δ2
40t2t3
δ2

)(
g1(t)

)λ

, (39.32)

for any positive λ. The GAGM Inequality then tells us that

g0(t) ≥

(( 40
δ1t1t2t3

)δ1
(40t2t3

δ2

)δ2

)(
g1(t)

)λ

, (39.33)

so that

g0(t) ≥

((40
δ1

)δ1
(40
δ2

)δ2

)
t−δ1
1 tδ2−δ1

2 tδ2−δ1
3

(
g1(t)

)λ

. (39.34)

From the GAGM Inequality, we also know that, for δ3 > 0, δ4 > 0 and
λ = δ3 + δ4,(

g1(t)
)λ

≥ (λ)λ

(( 1
2δ3

)δ3
( 1

4δ4

)δ4

)
tδ3+δ4
1 tδ4

2 t
δ3
3 . (39.35)

Combining the inequalities in (39.34) and (39.35), we obtain

g0(t) ≥ v(δ)t−δ1+δ3+δ4
1 t−δ1+δ2+δ4

2 t−δ1+δ2+δ3
3 , (39.36)

with

v(δ) =
(40
δ1

)δ1
(40
δ2

)δ2
( 1

2δ3

)δ3
( 1

4δ4

)δ4
(
δ3 + δ4

)δ3+δ4

, (39.37)
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and δ = (δ1, δ2, δ3, δ4). If we can find a positive vector δ with

δ1 + δ2 = 1,

δ3 + δ4 = λ,

−δ1 + δ3 + δ4 = 0,

−δ1 + δ2 + δ4 = 0

−δ1 + δ2 + δ3 = 0, (39.38)

then

g0(t) ≥ v(δ). (39.39)

In this particular case, there is a unique positive δ satisfying the equations
(39.38), namely

δ∗1 =
2
3
, δ∗2 =

1
3
, δ∗3 =

1
3
, and δ∗4 =

1
3
, (39.40)

and

v(δ∗) = 60. (39.41)

Therefore, g0(t) is bounded below by 60. If there is t∗ such that

g0(t∗) = 60, (39.42)

then we must have

g1(t∗) = 1, (39.43)

and equality in the GAGM Inequality. Consequently,

3
2

40
t∗1t

∗
2t
∗
3

= 3(40t∗2t
∗
3) = 60, (39.44)

and
3
2
t∗1t

∗
3 =

3
4
t∗1t

∗
2 = K. (39.45)

Since g1(t∗) = 1, we must have K = 3
2 . We solve these equations by taking

logarithms, to obtain the solution

t∗1 = 2, t∗2 = 1, and t∗3 =
1
2
. (39.46)

The change of variables tj = exj converts the constrained (GP) prob-
lem into a constrained convex programming problem. The theory of the
constrained (GP) problem can then be obtained as a consequence of the
theory for the convex programming problem.
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39.7 Exercises

Exercise 39.1 Show that there is no solution to the problem of minimizing
the function

g(t1, t2) =
2
t1t2

+ t1t2 + t1, (39.47)

over t1 > 0, t2 > 0.

Exercise 39.2 Minimize the function

g(t1, t2) =
1
t1t2

+ t1t2 + t1 + t2, (39.48)

over t1 > 0, t2 > 0. This will require some iterative numerical method for
solving equations.

Exercise 39.3 Program the MART algorithm and use it to verify the as-
sertions made previously concerning the solutions of the two numerical ex-
amples.
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