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Chapter 1

Farfield Propagation

A basic problem in remote sensing is to determine the nature of a distant
object by measuring signals transmitted by or reflected from that object. If
the object of interest is sufficiently remote, that is, is in the farfield, it can
be assumed that the data we obtain by sampling the propagating spatio-
temporal field is related to what we want by Fourier transformation. The
problem is then to estimate a function from finitely many (usually noisy)
values of its Fourier transform. Although there are many important math-
ematical tools employed to solve signal-processing problems, the Fourier
transform is the most important. Our discussion of farfield propagation
will serve to motivate the Fourier transform, not only as a useful mathe-
matical device, but also as an object having actual physical significance.

We shall begin our discussion of farfield propagation by considering
an extended object transmitting or reflecting a single-frequency, or nar-

rowband, signal. Later, we shall move to the problem of a distant point
source whose location we wish to ascertain, as well as to signals involving
multiple frequencies, the so-called broadband-signal case. The narrowband,
extended-object case is a good place to begin, since a point object is simply
a limiting case of an extended object, and broadband received signals can
always be filtered to reduce their frequency band.

The application we consider here is a common one of remote-sensing of
transmitted or reflected waves propagating from distant sources. Exam-
ples include optical imaging of planets and asteroids using reflected sun-
light, radio-astronomy imaging of distant sources of radio waves, active and
passive sonar, and radar imaging.
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4 CHAPTER 1. FARFIELD PROPAGATION

1.1 The Solar-Emission Problem

In [1] Bracewell discusses the solar-emission problem. In 1942, it was
observed that radio-wave emissions in the one-meter wavelength range were
arriving from the sun. Were they coming from the entire disk of the sun
or were the sources more localized, in sunspots, for example? The problem
then was to view each location on the sun’s surface as a potential source of
these radio waves and to determine the intensity of emission corresponding
to each location. The sun has an angular diameter of 30 min. of arc, or
one-half of a degree, when viewed from earth, but the needed resolution
was more like 3 min. of arc. As we shall see shortly, such resolution requires
a radio telescope 1000 wavelengths across, which means a diameter of 1km
at a wavelength of 1 meter; in 1942 the largest military radar antennas
were less than 5 meters across. A solution was found, using the method of
reconstructing an object from line-integral data, a technique that surfaced
again in tomography. The problem here is inherently two-dimensional, but,
for simplicity, we shall begin with the one-dimensional case.

1.2 The One-Dimensional Case

Because our purpose is to motivate the Fourier transform by showing how
it arises naturally in a discussion of farfield propagation, we begin with the
more tractable narrowband-signal case. We assume that each of the sig-
nals being transmitted or reflected is a single-frequency complex sinusoid,
having the form Aeiωt, with complex amplitude A that varies as a func-
tion of position within the distant object. The Fourier transform enters
the picture when we make the farfield assumption that the distance from
the object to the sensors is much larger than the distance between sensors.
Equivalently, we assume that we are far enough away from the sources that
the spherically spreading waves they have generated appear to the sensors
as planewave fronts.

Suppose that D > 0 represents a large distance from our sensors.
Imagine each point (x, D, 0) along an axis parallel to the x-axis in three-
dimensional space transmitting or reflecting the sinusoidal signal g(x)eiωt,
where ω is the common frequency of these signals and the g(x) is the
complex amplitude associated with each particular x. Our objective is to
determine the values g(x), for each x. In the sun-spot problem such infor-
mation will help us decide where the transmitted radio waves are coming
from. In a radar problem, determining the g(x), the amplitudes of the re-
flected radio wave, will tell us something about the nature of the extended
object, since different materials reflect the waves differently. We calculate
the signal received at the point (s, 0, 0), under the assumption that D > 0
is much, much larger than |s|.
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1.2.1 The Plane-Wave Model

Let θ denote the angle between the x-axis and the line from (0, 0, 0) to
(x, D, 0). Because D is so much larger than |s|, the angle θ remains the
same, when observed from any other point (s, 0, 0), that is, there is no
parallax, and the use of the point (0, 0, 0) is merely a convenience. Again,
because D is so large, the spherically spreading field originating at (x, D, 0)
is essentially a plane surface as it reachs the sensors. The planes of constant
value are normal to the direction vector θ = (cos θ, sin θ). Let b(s, t) be the
signal from (x, D, 0) that is received at location (s, 0, 0) at time t. For
reference, let us suppose that

b(0, t) = eiω(t− D
c

)g(x).

Because the planewaves travel at a speed c, we have

b(s, t) = u(0, t +
s cos θ

c
) = eiω(t− D

c
)ei ωs cos θ

c g(x).

Of course, the signal received at (s, 0, 0) does not come only from a single
point (x, D, 0), but from all the points (x, D, 0), so the combined signal
received at (s, 0, 0) is

B(s, t) = eiω(t− D
c

)

∫

ei ωs cos θ
c g(x)dx. (1.1)

Since θ is a one-to-one function of x, we can view g(x) as a function of
θ, and write g(θ) in place of g(x). We then introduce the new variable
k = ω

c cos θ and write the integral
∫

ei ωs cos θ
c g(x)dx

as

c

ω

∫ ω
c

− ω
c

f(k)eiskdk, (1.2)

where f(k) is the function g(θ)/ sin θ, written as a function of the variable k.
Since, in most applications, the distant object has a small angular diameter
when viewed from a great distance, the sun’s is 30 minutes of arc, the angle
θ will be restricted to a small interval centered at θ = π

2 . Therefore, sin θ
is bounded away from zero and f(k) is well defined.

The integral
∫ ω

c

− ω
c

f(k)eiskdk

is the familiar one that defines the Fourier transform of the function f(k).
Using the approximations permitted under the farfield assumption, the
received signal B(s, t) is easily shown to provide the Fourier transform of
the object function f(k).
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1.3 Fourier-Transform Pairs

We consider now the Fourier transform of a function of a single real variable.
In the previous section it was reasonable to denote the Fourier transform
of f(k) by F (s), with s denoting location in sensor space and k denoting
wave vectors associated with given angles. However, in discussing the more
general case, it is better to use more conventional notation. Therefore, we
shall consider a function f(x) having Fourier transform F (γ). The variable
x has no relation to the variable of the same name used to describe the
spatial extent of the distant object being imaged in our previous example.

1.3.1 The Fourier Transform

Let f(x) be defined for real variable x in (−∞,∞). The Fourier transform

of f(x) is the function of the real variable γ given by

F (γ) =

∫ ∞

−∞

f(x)eiγxdx. (1.3)

In our example of farfield propagation, the signal received at (s, 0, 0), as
given by Equation (1.1), can be rewritten as

B(s, t) =
c

ω
eiω(t− D

c
)F (s), (1.4)

where F (s) is the Fourier transform of f(k). Consequently, we can say that
the data measured at the sensor locations (s, 0, 0) give us (noisy) values of
the Fourier transform of f(k).

1.3.2 Sampling

Because the function f(k) is zero outside the interval [−ω
c , ω

c ], the function
F (s) is band-limited. The Nyquist spacing in the variable s is therefore

∆s =
πc

ω
.

The wavelength λ associated with the frequency ω is defined to be

λ =
2πc

ω
,

so that

∆s =
λ

2
.

The significance of the Nyquist spacing comes from Shannon’s Sampling
Theorem, which says that if we have the values F (m∆s), for all integers
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m, then we have enough information to recover f(k) exactly. In practice,
of course, this is never the case.

Notice that B(s, t) is not just F (s), but

B(s, t) =
c

ω
eiω(t− D

c
)F (s).

To extract F (s) from B(s, t), we need to remove the factor eiω(t− D
c

). When
the frequency ω is large, as in optical remote sensing, for example, deter-
mining this value accurately may be impossible. What we then have is the
phase problem; that is, we can measure only |F (s)|, and not the phase of
the complex numbers F (s).

1.3.3 Reconstructing from Fourier-Transform Data

As illustrated by the farfield propagation example, our goal is often to
reconstruct the function f(x) from measurements of its Fourier transform
F (γ). But, how?

If we have F (γ) for all real γ, then we can recover the function f(x)
using the Fourier Inversion Formula:

f(x) =
1

2π

∫

F (γ)e−iγxdγ. (1.5)

The functions f(x) and F (γ) are called a Fourier-transform pair.

1.3.4 An Example

For example, consider an extended object of finite length, with uniform
amplitude function f(x) = 1

2X , for |x| ≤ X, and f(x) = 0, otherwise. The
Fourier transform of this f(x) is

F (γ) =
sin(Xγ)

Xγ
,

for all real γ 6= 0, and F (0) = 1. Note that F (γ) is nonzero throughout the
real line, except for isolated zeros, but that it goes to zero as we go to the
infinities. This is typical behavior. Notice also that the smaller the X, the
slower F (γ) dies out; the first zeros of F (γ) are at |γ| = π

X , so the main
lobe widens as X goes to zero.

It may seem paradoxical that when X is larger, its Fourier transform
dies off more quickly. The Fourier transform F (γ) goes to zero faster for
larger X because of destructive interference. Because of differences in their
complex phases, the magnitude of the sum of the signals received from
various parts of the object is much smaller than we might expect, especially
when X is large. For smaller X the signals received at a sensor are much
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more in phase with one another, and so the magnitude of the sum remains
large. A more quantitative statement of this phenomenon is provided by
the uncertainty principle (see [19]).

1.4 The Dirac Delta

Consider what happens in the limit, as X → 0. Then we have an infinitely
high point source at x = 0; we denote this by δ(x), the Dirac delta. The
Fourier transform approaches the constant function with value 1, for all γ;
the Fourier transform of f(x) = δ(x) is the constant function F (γ) = 1, for
all γ. The Dirac delta δ(x) has the sifting property:

∫

h(x)δ(x)dx = h(0),

for each function h(x) that is continuous at x = 0.
Because the Fourier transform of δ(x) is the function F (γ) = 1, the

Fourier inversion formula tells us that

δ(x) =
1

2π

∫ ∞

−∞

e−iωxdω. (1.6)

Obviously, this integral cannot be understood in the usual way. The inte-
gral in Equation (1.6) is a symbolic way of saying that

∫

h(x)(
1

2π

∫ ∞

−∞

e−iωxdω)dx =

∫

h(x)δ(x)dx = h(0), (1.7)

for all h(x) that are continuous at x = 0; that is, the integral in Equation
(1.6) has the sifting property, so it acts like δ(x). Interchanging the order
of integration in Equation (1.7), we obtain

∫

h(x)(
1

2π

∫ ∞

−∞

e−iωxdω)dx =
1

2π

∫ ∞

−∞

(

∫

h(x)e−iωxdx)dω

=
1

2π

∫ ∞

−∞

H(−ω)dω =
1

2π

∫ ∞

−∞

H(ω)dω = h(0).

We shall return to the Dirac delta when we consider farfield point sources.

1.5 Practical Limitations

In actual remote-sensing problems, antennas cannot be of infinite extent.
In digital signal processing, moreover, there are only finitely many sensors.
We never measure the entire Fourier transform of f(x), but, at best, just



1.5. PRACTICAL LIMITATIONS 9

part of it. In fact, the data we are able to measure is almost never exact
values of the Fourier transform of f(x), but rather, values of some dis-
torted or blurred version. To describe such situations, we usually resort to
convolution-filter models.

1.5.1 Convolution Filtering

Imagine that what we measure are not values of F (γ), but of F (γ)H(γ),
where H(γ) is a function that describes the limitations and distorting effects
of the measuring process, including any blurring due to the medium through
which the signals have passed, such as refraction of light as it passes through
the atmosphere. If we apply the Fourier Inversion Formula to F (γ)H(γ),
instead of to F (γ), we get

g(x) =
1

2π

∫

F (γ)H(γ)e−iγxdx. (1.8)

The function g(x) that results is g(x) = (f ∗ h)(x), the convolution of the
functions f(x) and h(x), with the latter given by

h(x) =
1

2π

∫

H(γ)e−iγxdx.

Note that, if f(x) = δ(x), then g(x) = h(x); that is, our reconstruction of
the object from distorted data is the function h(x) itself. For that reason,
the function h(x) is called the point-spread function of the imaging system.

Convolution filtering refers to the process of converting any given func-
tion, say f(x), into a different function, say g(x), by convolving f(x) with a
fixed function h(x). Since this process can be achieved by multiplying F (γ)
by H(γ) and then inverse Fourier transforming, such convolution filters are
studied in terms of the properties of the function H(γ), known in this con-
text as the system transfer function, or the optical transfer function (OTF);
when γ is a frequency, rather than a spatial frequency, H(γ) is called the
frequency-response function of the filter. The magnitude of H(γ), |H(γ)|,
is called the modulation transfer function (MTF). The study of convolu-
tion filters is a major part of signal processing. Such filters provide both
reasonable models for the degradation signals undergo, and useful tools for
reconstruction.

Let us rewrite Equation (1.8), replacing F (γ) and H(γ) with their def-
initions, as given by Equation (1.3). Then we have

g(x) =

∫

(

∫

f(t)eiγtdt)(

∫

h(s)eiγsds)e−iγxdγ.

Interchanging the order of integration, we get

g(x) =

∫ ∫

f(t)h(s)(

∫

eiγ(t+s−x)dγ)dsdt.
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Now using Equation (1.6) to replace the inner integral with δ(t + s − x),
the next integral becomes

∫

h(s)δ(t + s − x)ds = h(x − t).

Finally, we have

g(x) =

∫

f(t)h(x − t)dt; (1.9)

this is the definition of the convolution of the functions f and h.

1.5.2 Low-Pass Filtering

A major problem in image reconstruction is the removal of blurring, which
is often modelled using the notion of convolution filtering. In the one-
dimensional case, we describe blurring by saying that we have available
measurements not of F (γ), but of F (γ)H(γ), where H(γ) is the frequency-
response function describing the blurring. If we know the nature of the
blurring, then we know H(γ), at least to some degree of precision. We can
try to remove the blurring by taking measurements of F (γ)H(γ), dividing
these numbers by the value of H(γ), and then inverse Fourier transform-
ing. The problem is that our measurements are always noisy, and typical
functions H(γ) have many zeros and small values, making division by H(γ)
dangerous, except where the values of H(γ) are not too small. These values
of γ tend to be the smaller ones, centered around zero, so that we end up
with estimates of F (γ) itself only for the smaller values of γ. The result is
a low-pass filtering of the object f(x).

To investigate such low-pass filtering, we suppose that H(γ) = 1, for
|γ| ≤ Γ, and is zero, otherwise. Then the filter is called the ideal Γ-lowpass
filter. In the farfield propagation model, the variable x is spatial, and the
variable γ is spatial frequency, related to how the function f(x) changes
spatially, as we move x. Rapid changes in f(x) are associated with values of
F (γ) for large γ. For the case in which the variable x is time, the variable γ
becomes frequency, and the effect of the low-pass filter on f(x) is to remove
its higher-frequency components.

One effect of low-pass filtering in image processing is to smooth out the
more rapidly changing features of an image. This can be useful if these
features are simply unwanted oscillations, but if they are important de-
tail, the smoothing presents a problem. Restoring such wanted detail is
often viewed as removing the unwanted effects of the low-pass filtering; in
other words, we try to recapture the missing high-spatial-frequency val-
ues that have been zeroed out. Such an approach to image restoration is
called frequency-domain extrapolation . How can we hope to recover these
missing spatial frequencies, when they could have been anything? To have
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some chance of estimating these missing values we need to have some prior
information about the image being reconstructed.

1.6 Point Sources as Dirac Deltas

Television signals reflected from satellites are picked up using antennas
in the shape of parabolic dishes. The idea here is to point the dish at
the satellite, so that signals from other sources are discriminated against
and the one from the satellite is reinforced. In applications such as sonar
surveillance, it is often the case that the array of sensors cannot be moved.
In such cases electronic steering using phase shifts replaces the physical
turning of the antenna. A common practice in sonar is to place sensors at
equal intervals along a straight line; such an arrangement is called a linear

array. If our sensor array is linear, along the line making the angle φ = 0
with the horizontal axis, then each sensor in the linear array receives the
same signal. If the line of the array corresponds to an angle φ that is not
zero, then two sensors a distance ∆ apart along the line receive the signal
with time delays that differ by ∆ sin φ

c , that is, with a phase difference of
ω∆ sin φ

c . Therefore, the data we measure along this linear array contains, in
the phase differences, information about the direction of the farfield point
source, relative to the line of the array. This forms the basis for sonar
direction-of-arrival estimation and detection; for further details see [19].

As we shall see, if we had available an infinite number of sensors, prop-
erly spaced along the line of the array, we could determine the direction of
the distant point source with perfect accuracy. In the real world, we must
make due with finitely many imperfect sensors. In addition, it is rarely the
case that the received signal comes from a single point source; there will
always be background noise, other point sources, and so on. Limitations
on the number of sensors, and on where they can be placed, make it harder
to separate closely-spaced distant point sources. If we know a priori that
we are looking at point sources, and not extended objects, the resolution

problem can be partly overcome, using nonlinear high-resolution techniques.
We shall consider high-resolution methods, such as entropy maximization

and likelihood maximization, in subsequent chapters.

1.7 The Limited-Aperture Problem

In the farfield propagation model, our measurements in the farfield give us
the values F (s). Suppose now that we are able to take measurements only
for limited values of s, say for |s| ≤ A; then 2A is the aperture of our antenna
or array of sensors. We describe this, in the general case, by saying that
we have available measurements of F (γ)H(γ), where H(γ) = χΓ(γ) = 1,
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for |γ| ≤ Γ, and zero otherwise. So, in addition to describing blurring
and low-pass filtering, the convolution-filter model can also be used to
model the limited-aperture problem. As in the low-pass case, the limited-
aperture problem can be attacked using extrapolation, but with the same
sort of risks described for the low-pass case. A much different approach is
to increase the aperture by physically moving the array of sensors, as in
synthetic aperture radar (SAR).

Returning to the farfield propagation model, if we have Fourier trans-
form data only for |s| ≤ A, then we have F (s) for |s| ≤ A. Using
H(s) = χA(s) to describe the limited aperture of the system, the point-

spread function is h(k) = sin(Ak)
πk . The first zeros of the numerator occur

at |k| = π
A , so the main lobe of the point-spread function has width 2π

A .
For this reason, the resolution of such a limited-aperture imaging system
is said to be on the order of 1

A . Because the distant object, expressed as
a function of k in the interval [−ω

c , ω
c ], the resolution achieved in imaging

the distant object will depend on the frequency ω, as well. For that reason,
it is common practice to measure the aperture A in units of wavelength
λ, rather than, say, in units of meters; an aperture of A = 5 meters may
be acceptable if the frequency is high, but not if the radiation is in the
one-meter-wavelength range.

1.7.1 Resolution

If f(x) = δ(x) and H(γ) = χΓ(γ) describes the aperture-limitation of
the imaging system, then the point-spread function is h(x) = sin Γx

πx . The
maximum of h(x) still occurs at x = 0, but the main lobe of h(x) extends
from −π

Γ to π
Γ ; the point source has been spread out. If the point-source

object shifts, so that f(x) = δ(x − a), then the reconstructed image of the
object is h(x − a), so the peak is still in the proper place. If we know
a priori that the object is a single point source, but we do not know its
location, the spreading of the point poses no problem; we simply look for
the maximum in the reconstructed image. Problems arise when the object
contains several point sources, or when we do not know a priori what we
are looking at, or when the object contains no point sources, but is just a
continuous distribution.

Suppose that f(x) = δ(x − a) + δ(x − b); that is, the object consists
of two point sources. Then Fourier inversion of the aperture-limited data
leads to the reconstructed image

g(x) =
sin Γ(x − a)

π(x − a)
+

sin Γ(x − b)

π(x − b)
.

If |b − a| is large enough, g(x) will have two distinct maxima, at approxi-
mately x = a and x = b, respectively. However, if |b − a| is too small, the
distinct maxima merge into one, at x = a+b

2 and resolution will be lost.
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How small is too small will depend on Γ, which, of course, depends on both
A and ω.

Suppose now that f(x) = δ(x − a), but we do not know a priori that
the object is a single point source. We calculate

g(x) = h(x − a) =
sin Γ(x − a)

π(x − a)

and use this function as our reconstructed image of the object, for all x.
What we see when we look at g(x) for some x = b 6= a is g(b), which is
the same thing we see when the point source is at x = b and we look at
x = a. Point-spreading is, therefore, more than a cosmetic problem. When
the object is a point source at x = a, but we do not know a priori that it
is a point source, the spreading of the point causes us to believe that the
object function f(x) is nonzero at values of x other than x = a. When we
look at, say, x = b, we see a nonzero value that is caused by the presence
of the point source at x = a.

Suppose now that the object function f(x) contains no point sources,
but is simply an ordinary function of x. If the aperture A is very small, then
the function h(x) is nearly constant over the entire extent of the object.
The convolution of f(x) and h(x) is essentially the integral of f(x), so the
reconstructed object is g(x) =

∫

f(x)dx, for all x.
Let’s see what this means for the solar-emission problem discussed ear-

lier.

1.7.2 The Solar-Emission Problem Revisited

The wavelength of the radiation is λ = 1 meter. Therefore, ω
c = 2π, and

k in the interval [−2π, 2π] corresponds to the angle θ in [0, π]. The sun
has an angular diameter of 30 minutes of arc, which is about 10−2 radians.
Therefore, the sun subtends the angles θ in [π

2 −(0.5)·10−2, π
2 +(0.5)·10−2],

which corresponds roughly to the variable k in the interval [−3 · 10−2, 3 ·
10−2]. Resolution of 3 minutes of arc means resolution in the variable k of
3 · 10−3. If the aperture is 2A, then to achieve this resolution, we need

π

A
= 3 · 10−3,

or
A =

π

3
· 103

meters, or about 1000 meters.
The radio-wave signals emitted by the sun are focused, using a parabolic

radio-telescope. The telescope is pointed at the center of the sun. Because
the sun is a great distance from the earth and the subtended arc is small (30
min.), the signals from each point on the sun’s surface arrive at the parabola
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head-on, that is, parallel to the line from the vertex to the focal point, and
are reflected to the receiver located at the focal point of the parabola. The
effect of the parabolic antenna is not to discriminate against signals coming
from other directions, since there are none, but to effect a summation of
the signals received at points (s, 0, 0), for |s| ≤ A, where 2A is the diameter
of the parabola. When the aperture is large, the function H(s) is nearly
one for all s and the signal received at the focal point is essentially

∫

F (s)ds = f(0);

we are now able to distinguish between f(0) and other values f(k). When
the aperture is small, H(s) is essentially δ(s) and the signal received at the
focal point is essentially

∫

F (s)δ(s)dγ = F (0) =

∫

f(k)dk;

now all we get is the contribution from all the k, superimposed, and all
resolution is lost.

Since the solar emission problem is clearly two-dimensional, and we need
3 min. resolution in both dimensions, it would seem that we would need a
circular antenna with a diameter of about one kilometer, or a rectangular
antenna roughly one kilometer on a side. We shall return to this problem
later, once when we discuss multi-dimensional Fourier transforms, and then
again when we consider tomographic reconstruction of images from line
integrals.

1.8 Discrete Data

A familiar topic in signal processing is the passage from functions of con-
tinuous variables to discrete sequences. This transition is achieved by sam-

pling, that is, extracting values of the continuous-variable function at dis-
crete points in its domain. Our example of farfield propagation can be used
to explore some of the issues involved in sampling.

Imagine an infinite uniform line array of sensors formed by placing
receivers at the points (n∆, 0, 0), for some ∆ > 0 and all integers n. Then
our data are the values F (n∆). Because we defined k = ω

c cos θ, it is clear
that the function f(k) is zero for k outside the interval [−ω

c , ω
c ].

Exercise 1.1 Show that our discrete array of sensors cannot distinguish

between the signal arriving from θ and a signal with the same amplitude,

coming from an angle α with

ω

c
cos α =

ω

c
cos θ +

2π

∆
m,

where m is an integer.
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To avoid the ambiguity described in Exercise 1.1, we must select ∆ > 0 so
that

−ω

c
+

2π

∆
≥ ω

c
,

or

∆ ≤ πc

ω
=

λ

2
.

The sensor spacing ∆s = λ
2 is the Nyquist spacing.

In the sunspot example, the object function f(k) is zero for k outside
of an interval much smaller than [−ω

c , ω
c ]. Knowing that f(k) = 0 for

|k| > K, for some 0 < K < ω
c , we can accept ambiguities that confuse

θ with another angle that lies outside the angular diameter of the object.
Consequently, we can redefine the Nyquist spacing to be

∆s =
π

K
.

This tells us that when we are imaging a distant object with a small angular
diameter, the Nyquist spacing is greater than λ

2 . If our sensor spacing has

been chosen to be λ
2 , then we have oversampled. In the oversampled case,

band-limited extrapolation methods can be used to improve resolution (see
[20]).

1.8.1 Reconstruction from Samples

From the data gathered at our infinite array we have extracted the Fourier
transform values F (n∆), for all integers n. The obvious question is whether
or not the data is sufficient to reconstruct f(k). We know that, to avoid
ambiguity, we must have ∆ ≤ πc

ω . The good news is that, provided this
condition holds, f(k) is uniquely determined by this data and formulas exist
for reconstructing f(k) from the data; this is the content of the Shannon

Sampling Theorem. Of course, this is only of theoretical interest, since we
never have infinite data. Nevertheless, a considerable amount of traditional
signal-processing exposition makes use of this infinite-sequence model. The
real problem, of course, is that our data is always finite.

1.9 The Finite-Data Problem

Suppose that we build a uniform line array of sensors by placing receivers
at the points (n∆, 0, 0), for some ∆ > 0 and n = −N, ..., N . Then our data
are the values F (n∆), for n = −N, ..., N . Suppose, as previously, that the
object of interest, the function f(k), is nonzero only for values of k in the
interval [−K, K], for some 0 < K < ω

c . Once again, we must have ∆ ≤ πc
ω

to avoid ambiguity; but this is not enough, now. The finite Fourier data
is no longer sufficient to determine a unique f(k). The best we can hope



16 CHAPTER 1. FARFIELD PROPAGATION

to do is to estimate the true f(k), using both our measured Fourier data
and whatever prior knowledge we may have about the function f(k), such
as where it is nonzero, if it consists of Dirac delta point sources, or if it is
nonnegative. The data is also noisy, and that must be accounted for in the
reconstruction process. We shall return later to this important problem of
reconstructing a general function f(x) from finitely many noisy values of
its Fourier transform.

In certain applications, such as sonar array processing, the sensors are
not necessarily arrayed at equal intervals along a line, or even at the grid
points of a rectangle, but in an essentially arbitrary pattern in two, or even
three, dimensions. In such cases, we have values of the Fourier transform
of the object function, but at essentially arbitrary values of the variable.
How best to reconstruct the object function in such cases is not obvious.

1.10 Functions of Several Variables

Fourier transformation applies, as well, to functions of several variables. As
in the one-dimensional case, we can motivate the multi-dimensional Fourier
transform using the farfield propagation model. As we noted earlier, the
solar emission problem is inherently a two-dimensional problem.

1.10.1 Two-Dimensional Farfield Object

Consider the case of a distant two-dimensional transmitting or reflecting ob-
ject. Let each point (x, D, z) in the x, z-plane send out the signal g(x, z)eiωt.
As in the one-dimensional case, D is so large that the spherically spreading
wave from (x, D, z) is essentially a plane surface when it reaches the plane
y = 0 of the sensors. Let θ be the unit vector along the line from (0, 0, 0)
to (x, D, z). Then θ is normal to the planes of constant value of the field
originating at (x, D, z). As before, we assume that D is so large that the
direction of (x, D, z) as measured from (0, 0, 0) is the same as would have
been measured at any other location (u, 0, v) at which we may locate a
sensor.

Let b(u, v, t) be the signal from (x, D, z) that is received at location
(u, 0, v) at time t. For reference, let us suppose that

u(0, 0, t) = eiω(t− D
c

)g(x, z).

Because the planewaves travel at a speed c, we have

b(u, v, t) = u(0, t +
s · θ

c
) = eiω(t− D

c
)ei ωs·θ

c g(x),

where s = (u, 0, v).
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Of course, the signal received at (u, 0, v) does not come only from a
single point (x, D, z), but from all the points (x, D, z), so the combined
signal received at (u, 0, v) is

B(u, v, t) = eiω(t− D
c

)

∫ ∫

ei ωs·θ
c g(x, z)dxdz. (1.10)

Since there is a one-to-one relationship between the direction vectors θ and
the points (x, D, z), we can view g(x, z) as a function of θ, and write g(θ)
in place of g(x, z). We then introduce the new variable k = ω

c θ and write
the integral

∫ ∫

ei ωs·θ
c g(x, z)dxdz

as

c

ω

∫ ∫

f(k)eis·kdk, (1.11)

where the integral is over all three-dimensional vectors having length ω
c ,

f(k) is the function obtained from g(θ) and the Jacobian of the transforma-
tion of the variables of integration. Since, in most applications, the distant
object has a small angular diameter when viewed from a great distance -
the sun’s is 30 minutes of arc - the direction vector θ will be restricted to
a small subset of vectors centered at θ = (0, D, 0).

The integral
∫ ∫

f(k)eis·kdk

is the familiar one that defines the Fourier transform of the function f(k).
Using the approximations permitted under the farfield assumption, the re-
ceived signal B(u, v, t) provids the Fourier transform of the object function
f(k).

1.10.2 Two-Dimensional Fourier Transforms

Generally, we consider a function f(x, z) of two real variables. Its Fourier
transformation is

F (α, β) =

∫ ∫

f(x, z)ei(xα+zβ)dxdz. (1.12)

For example, suppose that f(x, z) = 1 for
√

x2 + z2 ≤ R, and zero,
otherwise. Then we have

F (α, β) =

∫ π

−π

∫ R

0

e−i(αr cos θ+βr sin θ)rdrdθ.
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In polar coordinates, with α = ρ cos φ and β = ρ sinφ, we have

F (ρ, φ) =

∫ R

0

∫ π

−π

eirρ cos(θ−φ)dθrdr.

The inner integral is well known;
∫ π

−π

eirρ cos(θ−φ)dθ = 2πJ0(rρ),

where J0 denotes the 0th order Bessel function. Using the identity
∫ z

0

tnJn−1(t)dt = znJn(z),

we have

F (ρ, φ) =
2πR

ρ
J1(ρR).

Notice that, since f(x, z) is a radial function, that is, dependent only on
the distance from (0, 0, 0) to (x, 0, z), its Fourier transform is also radial.

The first positive zero of J1(t) is around t = 4, so when we measure
F at various locations and find F (ρ, φ) = 0 for a particular (ρ, φ), we can
estimate R ≈ 4/ρ. So, even when a distant spherical object, like a star,
is too far away to be imaged well, we can sometimes estimate its size by
finding where the intensity of the received signal is zero.

1.10.3 Two-Dimensional Fourier Inversion

Just as in the one-dimensional case, the Fourier transformation that pro-
duced F (α, β) can be inverted to recover the original f(x, y). The Fourier
Inversion Formula in this case is

f(x, y) =
1

4π2

∫ ∫

F (α, β)e−i(αx+βy)dαdβ. (1.13)

It is important to note that this procedure can be viewed as two one-
dimensional Fourier inversions: first, we invert F (α, β), as a function of,
say, β only, to get the function of α and y

g(α, y) =
1

2π

∫

F (α, β)e−iβydβ;

second, we invert g(α, y), as a function of α, to get

f(x, y) =
1

2π

∫

g(α, y)e−iαxdα.

If we write the functions f(x, y) and F (α, β) in polar coordinates, we obtain
alternative ways to implement the two-dimensional Fourier inversion. We
shall consider these other ways when we discuss the tomography problem
of reconstructing a function f(x, y) from line-integral data.



1.11. BROADBAND SIGNALS 19

1.10.4 Limited Apertures in Two Dimensions

Suppose we have the values of the Fourier transform, F (α, β), for |α| ≤ A,
|β| ≤ B. We describe this limited-data problem using the function H(α, β)
that is one for |α| ≤ A, |β| ≤ B, and zero, otherwise. Then the point-spread
function is the inverse Fourier transform of this H(α, β), given by

h(x, z) =
sinAx

πx

sinBz

πz
.

The resolution in the horizontal (x) direction is on the order of 1
A , and 1

B
in the vertical.

Suppose our aperture is circular, with radius A. Then we have Fourier
transform values F (α, β) for

√

α2 + β2 ≤ A. Let H(α, β) equal one, for
√

α2 + β2 ≤ A, and zero, otherwise. Then the point-spread function of this
limited-aperture system is the inverse Fourier transform of H(α, β), given
by h(x, z) = A

2πr J1(rA), with r =
√

x2 + z2. The resolution of this system
is roughly the distance from the origin to the first null of the function
J1(rA), which means that rA = 4, roughly.

For the solar emission problem, this says that we would need a circular
aperture with radius approximately one kilometer to achieve 3 minutes of
arc resolution. But this holds only if the antenna is stationary; a moving
antenna is different! The solar emission problem was solved by using a
rectangular antenna with a large A, but a small B, and exploiting the
rotation of the earth. The resolution is then good in the horizontal, but bad
in the vertical, so that the imaging system discriminates well between two
distinct vertical lines, but cannot resolve sources within the same vertical
line. Because B is small, what we end up with is essentially the integral
of the function f(x, z) along each vertical line. By tilting the antenna, and
waiting for the earth to rotate enough, we can get these integrals along any
set of parallel lines. The problem then is to reconstruct f(x, z) from such
line integrals. This is also the main problem in tomography, as we shall
see.

1.11 Broadband Signals

We have spent considerable time discussing the case of a distant point
source or an extended object transmitting or reflecting a single-frequency
signal. If the signal consists of many frequencies, the so-called broadband
case, we can still analyze the received signals at the sensors in terms of time
delays, but we cannot easily convert the delays to phase differences, and
thereby make good use of the Fourier transform. One approach is to filter
each received signal, to remove components at all but a single frequency,
and then to proceed as previously discussed. In this way we can process
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one frequency at a time. The object now is described in terms of a function
of both x and ω, with f(x, ω) the complex amplitude associated with the
spatial variable x and the frequency ω. In the case of radar, the function
f(x, ω) tells us how the material at (x, 0, 0) reflects the radio waves at the
various frequencies ω, and thereby gives information about the nature of
the material making up the object near the point (x, 0, 0).

There are times, of course, when we do not want to decompose a broad-
band signal into single-frequency components. A satellite reflecting a TV
signal is a broadband point source. All we are interested in is receiving the
broadband signal clearly, free of any other interfering sources. The direc-
tion of the satellite is known and the antenna is turned to face the satellite.
Each location on the parabolic dish reflects the same signal. Because of its
parabolic shape, the signals reflected off the dish and picked up at the focal
point have exactly the same travel time from the satellite, so they combine
coherently, to give us the desired TV signal.

1.12 The Laplace Transform and the Ozone

Layer

In the farfield propagation example just considered, we found the measured
data to be related to the desired object function by a Fourier transforma-
tion. The image reconstruction problem then became one of estimating
a function fro finitely many noisy values of its Fourier transform. In this
section we consider an inverse problem involving the Laplace transform.
The example is taken from Twomey’s book [86].

1.12.1 The Laplace Transform

The Laplace transform of the function f(x) defined for 0 ≤ x < +∞ is the
function

F (s) =

∫ +∞

0

f(x)e−sxdx.

1.12.2 Scattering of Ultraviolet Radiation

The sun emits ultraviolet (UV) radiation that enters the Earth’s atmo-
sphere at an angle θ0 that depends on the sun’s position, and with intensity
I(0). Let the x-axis be vertical, with x = 0 at the top of the atmosphere
and x increasing as we move down to the Earth’s surface, at x = X. The
intensity at x is given by

I(x) = I(0)e−kx/ cos θ0 .
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Within the ozone layer, the amount of UV radiation scattered in the direc-
tion θ is given by

S(θ, θ0)I(0)ekx/ cos θ0∆p,

where S(θ, θ0) is a known parameter, and ∆p is the change in the pressure
of the ozone within the infinitesmal layer [x, x+∆x], and so is proportional
to the concentration of ozone within that layer.

1.12.3 Measuring the Scattered Intensity

The radiation scattered at the angle θ then travels to the ground, a distance
of X − x, weakened along the way, and reaches the ground with intensity

S(θ, θ0)I(0)e−kx/ cos θ0e−k(X−x)/ cos θ∆p.

The total scattered intensity at angle θ is then a superposition of the in-
tensities due to scattering at each of the thin layers, and is then

S(θ, θ0)I(0)e−kX/ cos θ0

∫ X

0

e−xβdp,

where

β = k[
1

cos θ0
− 1

cos θ
].

This superposition of intensity can then be written as

S(θ, θ0)I(0)e−kX/ cos θ0

∫ X

0

e−xβp′(x)dx.

1.12.4 The Laplace Transform Data

Using integration by parts, we get
∫ X

0

e−xβp′(x)dx = p(X)e−βX − p(0) + β

∫ X

0

e−βxp(x)dx.

Since p(0) = 0 and p(X) can be measured, our data is then the Laplace
transform value

∫ +∞

0

e−βxp(x)dx;

note that we can replace the upper limit X with +∞ if we extend p(x) as
zero beyond x = X.

The variable β depends on the two angles θ and θ0. We can alter θ as
we measure and θ0 changes as the sun moves relative to the earth. In this
way we get values of the Laplace transform of p(x) for various values of β.
The problem then is to recover p(x) from these values. Because the Laplace
transform involves a smoothing of the function p(x), recovering p(x) from
its Laplace transform is more ill-conditioned than is the Fourier transform
inversion problem.
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1.13 Summary

Our goal in this chapter has been to introduce the Fourier transform
through the use of the example of farfield propagation. For a more detailed
discussion of Fourier transforms and Fourier series, see [20]. As our example
of farfield propagation shows, the Fourier transform arises naturally in re-
mote sensing and measured data is often related by Fourier transformation
to what we really want. The theory also connects the Fourier transform to
the important class of convolution filters, which are used to model various
types of signal degradation, such as blurring and point-spreading, as well
as the limitations on the aperture of the array of sensors.



Chapter 2

Reconstruction from

Line-Integral Data

In many tomographic reconstruction problems, the data we have are not
Fourier transform values, but line integrals associated with the function of
interest. However, such data can, in principle, be used to obtain Fourier
transform values, so that reconstruction can be achieved by Fourier inver-
sion. For reasons that we shall explore, this approach is not usually prac-
tical. However, it does suggest approximate solution methods, involving
convolution filtering and backprojection, that lead to useful algorithms.

We saw earlier that the solar emission problem was solved by formulat-
ing it as a problem of reconstruction from line-integral data. We begin here
with several other signal-processing problems that require reconstruction
of a function from its line integrals, including ocean acoustic tomography,
x-ray transmission tomography, and positron- and single-photon emission
tomography. Then we establish the connection between the tomography
problem and Fourier-transform inversion. Finally, we consider several ap-
proaches to Fourier inversion that lead to practical algorithms.

2.1 Ocean Acoustic Tomography

Sound travels in the ocean at approximately c = 1500 mps, with deviations
from this figure due to water temperature, depth at which the sound is
travelling, salinity of the water, and so on. If c is constant, sound emitted
at point A at time t will reach point B at time t + d/c, where d is the
distance from A to B. If we know d and measure the delay in receiving the
signal, we can find c. The sound speed is not truly constant, however, but
is a function c(x, y, z) of position. In fact, it may depend on time, as well,
due, for example, to changing seasons of the year; because temporal changes

23
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are much slower to occur, we usually ignore time-dependence. Determining
the spatial sound-speed profile, the function c(x, y, z), is the objective of
ocean acoustic tomography.

2.1.1 Obtaining Line-Integral Data

Since the sound speed is not constant, the sound travelling from point A to
point B can now take a curved path; the shortest-time route may not be
the shortest-distance route. To keep things from getting too complicated in
this example, we consider the situation in which the sound still moves from
A to B along the straight line segment joining them, but does not travel at a
constant speed. We parameterize this line segment with the variable s, with
s = 0 corresponding to the point A and s = d the point B. We denote by
c(s) the sound speed at the point along the line having parameter value s.
The time required for the sound to travel from s to s+∆s is approximately

∆t = ∆s
c(s) , so that the signal reaches point B after a delay of

∫ d

0
1

c(s)ds

seconds. Ocean acoustic tomography has as its goal the estimation of the
sound speed profile c(x, y, z) from finitely many such line integrals. Because
the sound speed is closely related to ocean temperature, ocean acoustic
tomography has important applications in weather prediction, as well as in
sonar imaging and active and passive sonar detection and surveillance.

2.1.2 The Difficulties

Now let’s consider the various obstacles that we face as we try to solve
this problem. First of all, we need to design a signal to be transmitted. It
must be one from which we can easily and unambiguously determine the
delays. When the delayed signal is received, it will not be the only sound in
the ocean and must be clearly distinguished from the acoustic background.
The processing of the received signals will be performed digitally, which
means that we will have to convert the analog functions of the continuous
time variable into discrete samples. These vectors of discrete samples will
then be processed mathematically to obtain estimates of the line integrals.
Once we have determined the line integrals, we must estimate the function
c(x, y, z) from these line integrals. We will know the line integrals only
approximately and will have only finitely many of them, so the best we
can hope to do is to approximate the function c(x, y, z). How well we do
will depend on which pairs of sources and receivers we have chosen to use.
On the bright side, we have good prior information about the behavior of
the sound speed in the ocean, and can specify a priori upper and lower
bounds on the possible deviations from the nominal speed of 1500 mps.
Even so, we need good algorithms that incorporate our prior information.
As we shall see later, the Fourier transform will provide an important tool
for solving these problems.
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2.1.3 Why “Tomography”?

Although the sound-speed profile c(x, y, z) is a function of the three spatial
variables, accurate reconstruction of such a three-dimensional function from
line integrals would require a large number of lines. In ocean acoustic
tomography, as well as in other applications, such as x-ray transmission
tomography, the three-dimensional object of interest is studied one slice at
a time, so that the function is reduced to a two-dimensional distribution. In
fact, the term tomography, coming as it does from the Greek word for part or
slice, and thereby related to the word atom (“no parts”), is used to describe
such problems, because of the early emphasis placed on computationally
tractable slice-by-slice reconstruction.

2.1.4 An Algebraic Approach

There is a more algebraic way to reconstruct a function from line integrals.
Suppose that we transmit our signal from points Ai, i = 1, ..., I and receive
them at points Bj , j = 1, ..., J . Then we have N = IJ transmitter-receiver
pairs, so we have N line integrals, corresponding to N line segments, which
we denote Ln, n = 1, ..., N . Imagine the part of the ocean involved to be
discretized into M cubes or voxels, or, in the slice-by slice approach, two-
dimensional squares, or pixels, and suppose that within the mth voxel the
sound speed is equal to cm; also let xm = 1/cm. For each line segment Ln

let Pnm be the length of the intersection of line segment Ln with the mth
voxel. The time it takes for the acoustic signal to traverse line segment Ln

is then approximately

(Px)n =

M
∑

m=1

Pnmxm,

where P denotes the matrix with entries Pnm and x denotes the vector with
entries xm. Our problem now is to solve the system of linear equations
Px = t, where the entries of the vector t are the travel times we have
measured for each line segment. This system can be solved by any number
of well known algorithms. Notice that the entries of P , x and t are all
nonnegative. This suggests that algorithms designed specifically to deal
with nonnegative problems may work better. In many cases, both M and N
are large, making some algorithms, such as Gauss elimination, impractical,
and iterative algorithms competitive.

Although we have presented tomography within the context of ocean
acoustics, most of what we have discussed in this section carries over, nearly
unchanged, to a number of medical imaging problems.
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2.2 X-ray Transmission Tomography

Computer-assisted tomography (CAT) scans have revolutionized medical
practice. One example of CAT is x-ray transmission tomography. The goal
here is to image the spatial distribution of various matter within the body,
by estimating the distribution of x-ray attenuation. Once again, the data
are line integrals of the function of interest.

2.2.1 The Exponential-Decay Model

As an x-ray beam passes through the body, it encounters various types of
matter, such as soft tissue, bone, ligaments, air, each weakening the beam
to a greater or lesser extent. If the intensity of the beam upon entry is Iin

and Iout is its lower intensity after passing through the body, then

Iout = Iine
−

∫

L
f
,

where f = f(x, y) ≥ 0 is the attenuation function describing the two-
dimensional distribution of matter within the slice of the body being scanned
and

∫

L
f is the integral of the function f over the line L along which the

x-ray beam has passed. To see why this is the case, imagine the line L
parameterized by the variable s and consider the intensity function I(s)
as a function of s. For small ∆s > 0, the drop in intensity from the start
to the end of the interval [s, s + ∆s] is approximately proportional to the
intensity I(s), to the attenuation f(s) and to ∆s, the length of the interval;
that is,

I(s) − I(s + ∆s) ≈ f(s)I(s)∆s.

Dividing by ∆s and letting ∆s approach zero, we get

dI

ds
= −f(s)I(s).

Exercise 2.1 Show that the solution to this differential equation is

I(s) = I(0) exp(−
∫ u=s

u=0

f(u)du).

Hint: Use an integrating factor.

From knowledge of Iin and Iout, we can determine
∫

L
f . If we know

∫

L
f

for every line in the x, y-plane we can reconstruct the attenuation function
f . In the real world we know line integrals only approximately and only
for finitely many lines. The goal in x-ray transmission tomography is to
estimate the attenuation function f(x, y) in the slice, from finitely many
noisy measurements of the line integrals. As in the case of ocean acous-
tic tomography, we usually have prior information about the values that
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f(x, y) can take on. We also expect to find sharp boundaries separating
regions where the function f(x, y) varies only slightly. Therefore, we need
algorithms capable of providing such images.

2.2.2 Difficulties to be Overcome

Once again, there are hurdles to be overcome. X-ray beams are not ex-
actly straight lines; the beams tend to spread out. The x-rays are not
monochromatic, and their various frequency components are attenuated at
different rates. The beams consist of photons obeying statistical laws, so
our algorithms probably should be based on these laws. How we choose
the line segments is determined by the nature of the problem; in certain
cases we are somewhat limited in our choice of these segments. Patients
move; they breathe, their heart beats, and, occasionally, they shift position
during the scan. Compensating for these motions is an important, and dif-
ficult, aspect of the image reconstruction process. Finally, to be practical
in a clinical setting, the processing that leads to the reconstructed image
must be completed in a short time, usually around fifteen minutes. This
time constraint is what motivates viewing the three-dimensional attenua-
tion function in terms of its two-dimensional slices.

The mathematical similarities between x-ray transmission tomography
and ocean acoustic tomography suggest that the reconstruction algorithms
used will be similar, and this is the case. As we shall see later, the Fourier
transform and the associated theory of convolution filters play important
roles.

The data we actually obtain at the detectors are counts of detected
photons. These counts are not the line integrals; they are random quan-
tities whose means, or expected values, are related to the line integrals.
The Fourier inversion methods for solving the problem ignore its statistical
aspects; in contrast, other methods, such as likelihood maximization, are
based on a statistical model that involves Poisson-distributed emissions.

2.3 Positron Emission Tomography

In positron emission tomography (PET) and single photon emission to-
mography (SPECT) the patient inhales, or is injected with, chemicals to
which radioactive material has been chemically attached [88]. The chemi-
cals are designed to accumulate in that specific region of the body we wish
to image. For example, we may be looking for tumors in the abdomen,
weakness in the heart wall, or evidence of brain activity in a selected re-
gion. The patient is placed on a table surrounded by detectors that count
the number of emitted photons. On the basis of where the various counts
were obtained, we wish to determine the concentration of radioactivity at
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various locations throughout the region of interest within the patient.

2.3.1 The Coincidence-Detection Model

In PET the radionuclide emits individual positrons, which travel, on aver-
age, between 4 mm and 2.5 cm (depending on their kinetic energy) before
encountering an electron. The resulting annihilation releases two gamma-
ray photons that then proceed in essentially opposite directions. Detection
in the PET case means the recording of two photons at nearly the same
time at two different detectors. The locations of these two detectors then
provide the end points of the line segment passing, more or less, through
the site of the original positron emission. Therefore, each possible pair of
detectors determines a line of response (LOR). When a LOR is recorded,
it is assumed that a positron was emitted somewhere along that line. The
PET data consists of a chronological list of LOR that are recorded. Be-
cause the two photons detected at either end of the LOR are not detected
at exactly the same time, the time difference can be used in time-of-flight

PET to further localize the site of the emission to a smaller segment of
perhaps 8 cm in length.

2.3.2 Line-Integral Data

Let the LOR be parameterized by the variable s, with s = 0 and s = L
denoting the two ends, and L the distance from one end to the other.
For a fixed value s = s0, let P (s) be the probability of reaching s for a
photon resulting from an emission at s0. For small ∆s > 0 the probability
that a photon that reached s is absorbed in the interval [s, s + ∆s] is
approximately µ(s)∆s, where µ(s) ≥ 0 is the photon attenuation density
at s. Then P (s + ∆s) ≈ P (s)[1 − µ(s)∆s], so that

P (s + ∆s) − P (s) ≈ −P (s)µ(s)∆s.

Dividing by ∆s and letting ∆s go to zero, we get

P ′(s) = −P (s)µ(s).

It follows that

P (s) = e
−

∫

s

s0

µ(t)dt
.

The probability that the photon will reach s = L and be detected is then

P (L) = e
−

∫

L

s0

µ(t)dt
.

Similarly, we find that the probability that a photon will succeed in reaching
s = 0 from s0 is

P (0) = e
−

∫

s0

0
µ(t)dt

.
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Since having one photon reach s = 0 and the other reach s = L are in-
dependent events, their probabilities multiply, so that the probability of a
coincident detection along the LOR, due to an emission at s0, is

e
−

∫

L

0
µ(t)dt

.

The expected number of coincident detections along the LOR is then pro-
portional to

∫ L

0

f(s)e
−

∫

L

0
µ(t)dt

ds = e
−

∫

L

0
µ(t)dt

∫ L

0

f(s)ds,

where f(s) is the intensity of radionuclide at s. Assuming we know the

attenuation function µ(s), we can estimate the line integral
∫ L

0
f(s)ds from

the number of coincident detections recorded along the LOR. So, once
again, we have line-integral data pertaining to the function of interest.

2.4 Single-Photon Emission Tomography

Single-photon emission tomography (SPECT) is similar to PET and has
the same objective: to image the distribution of a radionuclide within the
body of the patient. In SPECT the radionuclide emits single photons,
which then travel through the body of the patient and, in some fraction
of the cases, are detected. Detections in SPECT correspond to individual
sensor locations outside the body. The data in SPECT are the photon
counts at each of the finitely many detector locations. Lead collimators are
used in front of the gamma-camera detectors to eliminate photons arriving
at oblique angles. While this helps us narrow down the possible sources
of detected photons, it also reduces the number of detected photons and
thereby decreases the signal-to-noise ratio.

2.4.1 The Line-Integral Model

To solve the reconstruction problem we need a model that relates the count
data to the radionuclide density function. A somewhat unsophisticated,
but computationally attractive, model is to view the count at a particular
detector as the line integral of the radionuclide density function along the
line from the detector that is perpendicular to the camera face. The count
data then provide many such line integrals and the reconstruction problem
becomes the familiar one of estimating a function from noisy measurements
of line integrals. Viewing the data as line integrals allows us to use the
Fourier transform in reconstruction. The resulting filtered backprojection

(FBP) algorithm is a commonly used method for medical imaging in clinical
settings.
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2.4.2 Problems with the Line-Integral Model

It is not really accurate, however, to view the photon counts at each de-
tector as line integrals. Consequently, applying filtered backprojection to
the counts at each detector can lead to distorted reconstructions. There
are at least three degradations that need to be corrected before FBP can
be successfully applied [64]: attenuation, scatter, and spatially dependent
resolution.

Some photons never reach the detectors because they are absorbed in
the body. As in the PET case, correcting for attenuation requires knowl-
edge of the patient’s body; this knowledge can be obtained by performing
a transmission scan at the same time. In contrast to the PET case, the
attenuation due to absorption is difficult to correct, since it does not in-
volve merely the line integral of the attenuation function, but a half-line
integral that depends on the distribution of matter between each photon
source and each detector.

As in the PET case previously discussed, the probability that a photon
emitted at the point on the line corresponding to the variable s = s0 will
reach s = L and be detected is then

P (s0) = e
−

∫

L

s0

µ(t)dt
.

If f(s) is the expected number of photons emitted from point s during the
scanning, then the expected number of photons detected at L is propor-
tional to

∫ L

0

f(s)e
−

∫

L

s
µ(t)dt

ds.

This quantity varies with the line being considered; the resulting function of
lines is called the attenuated Radon transform. If the attenuation function µ
is constant, then the attenuated Radon transform is called the exponential

Radon transform.
While some photons are absorbed within the body, others are first de-

flected and then detected; this is called scatter. Consequently, some of
the detected photons do not come from where we think they come from.
The scattered photons often have reduced energy, compared to primary, or
unscattered, photons, and scatter-correction can be based on this energy
difference; see [64].

Finally, even if there were no attenuation and no scatter, it would be
incorrect to view the detected photons as having originated along a straight
line from the detector. The detectors have a cone of acceptance that widens
as it recedes from the detector. This results in spatially varying resolu-
tion. There are mathematical ways to correct for both spatially varying
resolution and uniform attenuation [84]. Correcting for the more realistic
non-uniform and patient-specific attenuation is more difficult and is the
subject of on-going research.
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Spatially varying resolution complicates the quantitation problem, which
is the effort to determine the exact amount of radionuclide present within
a given region of the body, by introducing the partial volume effect and
spill-over (see [88]). To a large extent, these problems are shortcomings
of reconstruction based on the line-integral model. If we assume that all
photons detected at a particular detector came from points within a narrow
strip perpendicular to the camera face, and we reconstruct the image us-
ing this assumption, then photons coming from locations outside this strip
will be incorrectly attributed to locations within the strip (spill-over), and
therefore not correctly attributed to their true source location. If the true
source location also has its counts raised by spill-over, the net effect may
not be significant; if, however, the true source is a hot spot surrounded
by cold background, it gets no spill-over from its neighbors and its true
intensity value is underestimated, resulting in the partial-volume effect.
The term “partial volume” indicates that the hot spot is smaller than the
region that the line-integral model offers as the sources of the emitted pho-
tons. One way to counter these effects is to introduce a description of the
spatially dependent blur into the reconstruction, which is then performed
by iterative methods [80].

In the SPECT case, as in most such inverse problems, there is a trade-
off to be made between careful modelling of the physical situation and
computational tractability. The FBP method slights the physics in favor
of computational simplicity and speed. In recent years, iterative methods
that incorporate more of the physics have become competitive.

2.4.3 The Stochastic Model: Discrete Poisson Emit-

ters

In iterative reconstruction we begin by discretizing the problem; that is,
we imagine the region of interest within the patient to consist of finitely
many tiny squares, called pixels for two-dimensional processing or cubes,
called voxels for three-dimensional processing. In what follows we shall
not distinguish the two cases, but as a linguistic shorthand, we shall refer
to ‘pixels’ indexed by j = 1, ..., J . The detectors are indexed by i =
1, ..., I, the count obtained at detector i is denoted yi, and the vector y =
(y1, ..., yI)

T is our data. In practice, for the fully three-dimensional case, I
and J can be several hundred thousand.

We imagine that each pixel j has its own level of concentration of ra-
dioactivity and these concentration levels are what we want to determine.
Proportional to these concentration levels are the average rates of emission
of photons; the average rate for j we denote by xj . The goal is to determine
the vector x = (x1, ..., xJ)T from y.

To achieve our goal we must construct a model that relates y to x.
The standard way to do this is to adopt the model of independent Poisson
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emitters. For i = 1, ..., I and j = 1, ..., J , denote by Zij the random
variable whose value is to be the number of photons emitted from pixel j,
and detected at detector i, during the scanning time. We assume that the
members of the collection {Zij |i = 1, ..., I, j = 1, ..., J} are independent. In
keeping with standard practice in modelling radioactivity, we also assume
that the Zij are Poisson-distributed.

We assume that Zij is a Poisson random variable whose mean value
(and variance) is λij = Pijxj . Here the xj ≥ 0 is the average rate of
emission from pixel j, as discussed previously, and Pij ≥ 0 is the probability
that a photon emitted from pixel j will be detected at detector i. We
then define the random variables Yi =

∑J
j=1 Zij , the total counts to be

recorded at detector i; our actual count yi is then the observed value of the
random variable Yi. Note that the actual values of the individual Zij are
not observable.

2.4.4 Reconstruction as Parameter Estimation

The goal is to estimate the distribution of radionuclide intensity by cal-
culating the vector x. The entries of x are parameters and the data are
instances of random variables, so the problem looks like a fairly standard
parameter estimation problem of the sort studied in beginning statistics.
One of the basic tools for statistical parameter estimation is likelihood
maximization, which is playing an increasingly important role in medical
imaging. There is several problems, however. One is that the number of
parameters is quite large, as large as the number of data values, in most
cases. Standard statistical parameter estimation usually deals with the es-
timation of a handful of parameters. Another problem is that we do not
know what the Pij are. These values will vary from one patient to the next,
since whether or not a photon makes it from a given pixel to a given de-
tector depends on the geometric relationship between detector i and pixel
j, as well as what is in the patient’s body between these two locations. If
there are ribs or skull getting in the way, the probability of making it goes
down. If there are just lungs, the probability goes up. These values can
change during the scanning process, when the patient moves. Some motion
is unavoidable, such as breathing and the beating heart. Determining good
values of the Pij in the absence of motion, and correcting for the effects of
motion, are important parts of SPECT image reconstruction.

2.5 Reconstruction from Line Integrals

As we have just seen, a wide variety of applications involve the determi-
nation of a function of several variables from knowledge of line integrals of
that function. We turn now to the underlying problem of reconstructing
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such functions from line-integral data.

2.5.1 The Radon Transform

Our goal is to reconstruct the function f(x, y) from line-integral data. Let
θ be a fixed angle in the interval [0, π), and consider the rotation of the
x, y -coordinate axes to produce the t, s-axis system, where

t = x cos θ + y sin θ,

and
s = −x sin θ + y cos θ.

We can then write the function f as a function of the variables t and s.
For each fixed value of t, we compute the integral

∫

f(x, y)ds, obtaining
the integral of f(x, y) = f(t cos θ − s sin θ, t sin θ + s cos θ) along the single
line L corresponding to the fixed values of θ and t. We repeat this process
for every value of t and then change the angle θ and repeat again. In this
way we obtain the integrals of f over every line L in the plane. We denote
by rf (θ, t) the integral

rf (θ, t) =

∫

L

f(x, y)ds.

The function rf (θ, t) is called the Radon transform of f .

2.5.2 The Central Slice Theorem

For fixed θ the function rf (θ, t) is a function of the single real variable t;
let Rf (θ, ω) be its Fourier transform. Then,

Rf (θ, ω) =

∫

(

∫

f(x, y)ds)eiωtdt,

which we can write as

Rf (θ, ω) =

∫ ∫

f(x, y)eiω(x cos θ+y sin θ)dxdy = F (ω cos θ, ω sin θ),

where F (ω cos θ, ω sin θ) is the two-dimensional Fourier transform of the
function f(x, y), evaluated at the point (ω cos θ, ω sin θ); this relationship
is called the central slice theorem. For fixed θ, as we change the value of ω,
we obtain the values of the function F along the points of the line making
the angle θ with the horizontal axis. As θ varies in [0, π), we get all the
values of the function F . Once we have F , we can obtain f using the
formula for the two-dimensional inverse Fourier transform. We conclude
that we are able to determine f from its line integrals.
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The Fourier-transform inversion formula for two-dimensional functions
tells us that the function f(x, y) can be obtained as

f(x, y) =
1

4π2

∫ ∫

F (u, v)e−i(xu+yv)dudv. (2.1)

We now derive alternative inversion formulas.

2.5.3 Ramp Filter, then Backproject

Expressing the double integral in Equation (2.1) in polar coordinates (ω, θ),
with ω ≥ 0, u = ω cos θ, and v = ω sin θ, we get

f(x, y) =
1

4π2

∫ 2π

0

∫ ∞

0

F (u, v)e−i(xu+yv)ωdωdθ,

or

f(x, y) =
1

4π2

∫ π

0

∫ ∞

−∞

F (u, v)e−i(xu+yv)|ω|dωdθ.

Now write
F (u, v) = F (ω cos θ, ω sin θ) = Rf (θ, ω),

where Rf (θ, ω) is the FT with respect to t of rf (θ, t), so that
∫ ∞

−∞

F (u, v)e−i(xu+yv)|ω|dω =

∫ ∞

−∞

Rf (θ, ω)|ω|e−iωtdω.

The function gf (θ, t) defined for t = x cos θ + y sin θ by

gf (θ, x cos θ + y sin θ) =
1

2π

∫ ∞

−∞

Rf (θ, ω)|ω|e−iωtdω (2.2)

is the result of a linear filtering of rf (θ, t) using a ramp filter with transfer
function H(ω) = |ω|. Then,

f(x, y) =
1

2π

∫ π

0

gf (θ, x cos θ + y sin θ)dθ (2.3)

gives f(x, y) as the result of a backprojection operator; for every fixed value
of (θ, t) add gf (θ, t) to the current value at the point (x, y) for all (x, y)
lying on the straight line determined by θ and t by t = x cos θ + y sin θ.
The final value at a fixed point (x, y) is then the average of all the values
gf (θ, t) for those (θ, t) for which (x, y) is on the line t = x cos θ + y sin θ.
It is therefore said that f(x, y) can be obtained by filtered backprojection

(FBP) of the line-integral data.
Knowing that f(x, y) is related to the complete set of line integrals by

filtered backprojection suggests that, when only finitely many line integrals
are available, a similar ramp filtering and backprojection can be used to
estimate f(x, y); in the clinic this is the most widely used method for the
reconstruction of tomographic images.
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2.5.4 Backproject, then Ramp Filter

There is a second way to recover f(x, y) using backprojection and filtering,
this time in the reverse order; that is, we backproject the Radon transform
and then ramp filter the resulting function of two variables. We begin again
with the relation

f(x, y) =
1

4π2

∫ 2π

0

∫ ∞

0

F (u, v)e−i(xu+yv)ωdωdθ,

which we write as

f(x, y) =
1

4π2

∫ 2π

0

∫ ∞

0

F (u, v)√
u2 + v2

√

u2 + v2e−i(xu+yv)ωdωdθ

=
1

4π2

∫ 2π

0

∫ ∞

0

G(u, v)
√

u2 + v2e−i(xu+yv)ωdωdθ, (2.4)

using

G(u, v) =
F (u, v)√
u2 + v2

for (u, v) 6= (0, 0). Equation (2.4) expresses f(x, y) as the result of per-
forming a two-dimensional ramp filtering of g(x, y), the inverse Fourier
transform of G(u, v). We show now that g(x, y) is the backprojection of
the function rf (ω, t); that is, we show that

g(x, y) =
1

2π

∫ π

0

rf (θ, x cos θ + y sin θ)dθ.

From the central slice theorem we know that g(x, y) can be written as

g(x, y) =
1

2π

∫ π

0

hg(θ, x cos θ + y sin θ)dθ,

where

hg(θ, x cos θ + y sin θ) =
1

2π

∫ ∞

−∞

Rg(θ, ω)|ω|e−iω(x cos θ+y sin θ)dω.

Since

Rg(θ, ω) = G(ω cos θ, ω sin θ),

we have

g(x, y) =
1

4π2

∫ π

0

∫ ∞

−∞

G(ω cos θ, ω sin θ)|ω|e−iω(x cos θ+y sin θ)dωdθ
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=
1

4π2

∫ π

0

∫ ∞

−∞

F (ω cos θ, ω sin θ)e−iω(x cos θ+y sin θ)dωdθ

=
1

4π2

∫ π

0

∫ ∞

−∞

Rf (θ, ω)e−iω(x cos θ+y sin θ)dωdθ

=
1

2π

∫ π

0

rf (θ, x cos θ + y sin θ)dθ,

as required.

2.5.5 Radon’s Inversion Formula

To get Radon’s inversion formula, we need two basic properties of the
Fourier transform. First, if f(x) has Fourier transform F (γ) then the
derivative f ′(x) has Fourier transform −iγF (γ). Second, if F (γ) = sgn(γ),
the function that is γ

|γ| for γ 6= 0, and equal to zero for γ = 0, then its

inverse Fourier transform is f(x) = 1
iπx .

Writing equation (2.3) as

hf (θ, t) =
1

2π

∫ ∞

−∞

ωRf(θ, ω)sgn(ω)e−iωtdω,

we see that hf is the inverse Fourier transform of the product of the two
functions ωRf(θ, ω) and sgn(ω). Consequently, hf is the convolution of
their individual inverse Fourier transforms, i ∂

∂trf (θ, t) and 1
iπt ; that is,

hf (θ, t) =
1

π

∫ ∞

−∞

∂

∂t
rf (θ, s)

1

t − s
ds,

which is the Hilbert transform of the function ∂
∂trf (θ, t), with respect to

the variable t. Radon’s inversion formula is then

f(x, y) =
1

2π

∫ π

0

HT (
∂

∂t
rf (θ, t))dθ.

2.5.6 Practical Issues

Of course, we never have the Radon transform rf (θ, t) for all values of its
variables. Only finitely many angles θ are used, and, for each θ, we will have
(approximate) values of line integrals for only finitely many t. Therefore,
taking the Fourier transform of rf (θ, t), as a function of the single varable t,
is not something we can actually do. At best, we can approximate Rf (θ, ω)
for finitely many θ. From the Central Slice Theorem, we can then say that
we have approximate values of F (ω cos θ, ω sin θ), for finitely many θ. This
means that we have (approximate) Fourier transform values for f(x, y)
along finitely many lines through the origin, like the spokes of a wheel. The
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farther from the origin we get, the fewer values we have, so the coverage in
Fourier space is quite uneven. The low-spatial-frequencies are much better
estimated than higher ones, meaning that we have a low-pass version of
the desired f(x, y). The filtered backprojection approaches we have just
discussed both involve ramp filtering, in which the higher frequencies are
increased, relative to the lower ones. This too can only be implemented
approximately, since the data is noisy and careless ramp filtering will cause
the reconstructed image to be unacceptably noisy.

2.6 Summary

We have seen how the problem of reconstructing a function from line in-
tegrals arises in a number of applications. The Central Slice Theorem
connects the line integrals and the Radon transform to the Fourier trans-
form of the desired distribution. Various approaches to implementing the
Fourier Inversion Formula lead to filtered backprojection algorithms for the
reconstruction. In x-ray tomography and PET, viewing the data as line
integrals ignores the statistical aspects of the problem, and in SPECT, it
ignores, as well, the important physical effects of attenuation. To incor-
porate more of the physics of the problem, iterative algorithms based on
statistical models have been developed. We shall consider some of these
algorithms later.
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Chapter 3

Discrete Signal Processing

Although we usually model real-world distributions as functions of contin-
uous variables, while the data we actually obtain are finite, it is standard
practice to develop signal processing fundamentals within the context of in-
finite sequences, or functions of discrete variables. Infinite sequences arise
when we sample functions of continuous variables, or when we extend fi-
nite data. Within the context of discrete signal processing, Fourier series
replace Fourier transforms as the key mathematical tool. The Shannon
sampling theorem provides the link between these two branches of Fourier
analysis.

3.1 Discrete Signals

A discrete signal is a function x = {x(n)} defined for all integers n. In
signal processing, such discrete signals are often the result of sampling a
function of a continuous variable. In our discussion of farfield propagation,
we saw that the data gathered at each sensor effected a sampling of the
Fourier transform, F (γ), of the distant distribution f(x). In the theoretical
situation in which we had available an infinite discrete set of sensors, we
would have an infinite sequence, obtained by sampling the function F (γ).
In many applications, the function that is being sampled is a function of
time, say f(t); we shall use this example in our discussion here.

In the most common case, that of equispaced sampling, we have x(n) =
f(n∆), where ∆ > 0 is the sampling interval. Generally, such discrete sig-
nals are neither a realistic model of the physical situation nor an accurate
description of what we have actually obtained through measurement. Nev-
ertheless, discrete signals provide the most convenient framework within
which to study the the basic tools of signal processing coming from Fourier
analysis.

39
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3.2 Notation

It is common practice to denote functions of a discrete variable by the
letters x, y or z, as well as f, g or h. So we speak of the discrete signals x =
{x(n) = 2n − 1, −∞ < n < ∞} or y = {y(n) = −n3 + n, −∞ < n < ∞}.
For convenience, we often just say x(n) = 2n − 1 or y(n) = n3 + n when
we mean the whole function x or y. However, if k is regarded as a fixed,
but unspecified, integer, x(k) means the value of the function x at k. This
is really the same thing that we do in calculus, when we define a function
f(x) = x2 − 6 and then speak about the value of this function at the point
x = a, denoted f(a). Speaking more precisely, in the first instance, n is a
variable, while k is a parameter, and in the second instance, x is a variable,
while a is a parameter; variables change their values during the course of
the problem, while parameters have values that are chosen at the outset
and retain their chosen values throughout the problem.

There are two special discrete signals with reserved names, δ and u:
δ(0) = 1 and δ(n) = 0, for n 6= 0; u(n) = 1, for n ≥ 0 and u(n) = 0 for
n < 0. When we say that their names are reserved we mean that whenever
you see these names you can (usually) assume that they refer to the same
functions as just defined; in calculus ex and sinx are reserved names, while
in signal processing δ and u are reserved names.

3.3 Operations on Discrete Signals

Because discrete signals are functions, we can perform on them many of the
operations we perform on functions of a continuous variable. For instance,
we can add discrete signals x and y, to get the discrete signal x+y, we can
multiply x by a real number c to get the discrete signal cx, we can multiply
x and y to get xy, and so on. We can shift x to the right k units to get y
with y(n) = x(n − k). Notice that, if we shift x = δ to the right k units,
we have y with y(k) = 1 and y(n) = 0 for n 6= k; we call this function δk,
so we sometimes say that δ = δ0.

In general, an operation, or, to use the official word, an operator, T
works on a discrete signal x to produce another discrete signal y; we de-
scribe this situation by writing y = T (x). For example, the operator T = Sk

shifts any x to the right by k units; for example, S3(δ) = δ3. We are par-
ticularly interested in operators that possess certain nice properties.

3.3.1 Linear Operators

An operator T is called linear if, for any x and z and numbers a and b we
have T (ax + bz) = aT (x) + bT (z); for example, the operator T = Sk is
linear.
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Exercise 3.1 Which of the following operators are linear?

a. T (x)(n) = x(n − 1) + x(n);

b. T (x)(n) = nx(n);

c. T (x)(n) = x(n)2.

3.3.2 Shift-invariant Operators

Notice that operators are also functions, although not the sort that we
usually study; their domains and ranges consist of functions. We have seen
such operator-type functions in calculus class- the operator that transforms
a function into its derivative is an operator-type function. Therefore we
can combine operators using composition, in the same way we compose
functions. The composition of operators T and S is the operator that first
performs S and then performs T on the result; that is, the composition
of T and S begins with x and ends with y = T (S(x)). Notice that, just
as with ordinary functions, the order of the operators in the composition
matters; T (S(x)) and S(T (x)) need not be the same discrete signal. We
say that operators T and S commute if T (S(x)) = S(T (x)), for all x; in
that case we write TS = ST .

An operator T is said to be shift-invariant if TSk = SkT for all integers
k. This means that if y is the output of the system described by T when
the input is x, then when we shift the input by k, from x to Skx, all that
happens to the output is that the y is also shifted by k, from y to Sky.
For example, suppose that T is the squaring operator, defined by T (x) = y
with y(n) = x(n)2. Then T is shift-invariant. On the other hand, the
operator T with y = T (x) such that y(n) = x(−n) is not shift-invariant.

Exercise 3.2 Which of the following operators are shift-invariant?

a. T (x)(n) = x(0) + x(n);

b. T (x)(n) = x(n) + x(−n);

c. T (x)(n) =
∑2

k=−2 x(n + k).

We are most interested in operators T that are both linear and shift-
invariant; these are called LSI operators. An LSI operator T is often viewed
as a linear system having inputs called x and outputs called y, where y =
T (x), and we speak of a LSI system.

3.3.3 Convolution Operators

Let h be a fixed discrete signal. For any discrete signal x define y = T (x)
by

y(n) =

∞
∑

k=−∞

h(k)x(n − k),
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for any integer n. We then say that y is the convolution of x with h and
write y = x ∗ h. Notice that x ∗ h = h ∗ x; that is,

∞
∑

k=−∞

h(k)x(n − k) =

∞
∑

k=−∞

x(k)h(n − k).

The operator T is then the convolution with h operator. Any such T is
linear.

3.3.4 LSI Filters are Convolutions

The operator T that is convolution with h is linear and shift-invariant. The
most important fact in signal processing is that every T that is linear and

shift-invariant (LSI) must be convolution with h, for some fixed discrete
signal h.

Because of the importance of this result we give a proof now. First,
we must find the h. To do this we let x = δ; the h we seek is then the
output h = T (δ). Now we must show that, for any other input x, we have
T (x) = x ∗ h. Note that for any k we have δk = Sk(δ), so that

T (δk) = T (Sk(δ)) = Sk(T (δ)) = Sk(h),

and so
T (δk)(n) = Sk(h)(n) = h(n − k).

We can write an arbitrary x in terms of the δk as

x =

∞
∑

k=−∞

x(k)δk.

Then

T (x)(n) = T (

∞
∑

k=−∞

x(k)δk)(n) =

∞
∑

k=−∞

x(k)T (δk)(n) =

∞
∑

k=−∞

x(k)h(n−k).

Therefore, T (x) = x ∗ h, as we claimed. Because the h associated with the
operator T is h = T (δ), the discrete signal h is called the impulse-response

function of the system.

3.4 Special Types of Discrete Signals

Some of our calculations, such as convolution, involve infinite sums. In or-
der for these sums to make sense we would need to impose certain restric-
tions on the discrete signals involved. Some books consider only discrete
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signals x that are absolutely summable, that is, for which

∞
∑

n=−∞

|x(n)| < ∞,

or, at least, x that are bounded, which means that there is a positive con-
stant b > 0 with |x(n)| ≤ b for all n. Sometimes the condition of absolute
summability is imposed only on discrete functions h that are to be asso-
ciated with LSI operators. Operators T whose h is absolutely summable
have the desirable property of stability; that is, if the input function x is
bounded, so is the output function y = T (x). This property is also called
the bounded in, bounded out (BIBO) property.

Exercise 3.3 Show that the operator T is a stable operator if and only

if its associated h is absolutely summable. Hint: If h is not absolutely

summable, consider the input sequence with x(n) = h(−n)/|h(n)|.
In order to make use of the full power of Fourier methods some texts

require that discrete signals x be absolutely square-summable, that is,

∞
∑

n=−∞

|x(n)|2 < ∞.

Exercise 3.4 Show that the discrete signal x(n) = 1
|n|+1 is absolutely

square-summable, but not absolutely summable.

Our approach will be to avoid discussing specific requirements, with the
understanding that some requirements will usually be needed to make the
mathematics rigorous.

3.5 The Frequency-Response Function

Just as sine and cosine functions play important roles in calculus, so do
their discrete counterparts in signal processing. The discrete sine function
with frequency ω is the discrete signal sinω with

sinω(n) = sin(ωn),

for each integer n. Similarly, the discrete cosine function with frequency ω
is cosω with

cosω(n) = cos(ωn).

It is convenient to include in the discussion the complex exponential eω

defined by
eω(n) = cosω(n) + i sinω(n) = eiωn.

Since these discrete signals are the same for ω and ω + 2π we assume that
ω lies in the interval [−π, π).
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3.5.1 The Response of a LSI System to x = eω

Let T denote a LSI system and let ω be fixed. We show now that

T (eω) = Heω,

for some constant H. Since the H can vary as we change ω it is really a
function of ω, so we denote it H = H(ω).

Let v = {v(n)} be the signal v = eω − S1(eω). Then we have

v(n) = einω − ei(n−1)ω = (1 − e−iω)einω.

Therefore, we can write

v = (1 − e−iω)eω,

from which it follows that

T (v) = (1 − e−iω)T (eω). (3.1)

But we also have

T (v) = T (eω − S1(eω)) = T (eω) − TS1(eω),

and, since T is shift-invariant, TS1 = S1T , we know that

T (v) = T (eω) − S1T (eω). (3.2)

Combining Equations (3.1) and (3.2), we get

(1 − e−iω)T (eω) = T (eω) − S1T (eω).

Therefore,

S1T (eω) = e−iωT (eω),

or

T (eω)(n − 1) = S1T (eω)(n) = e−iωT (eω)(n).

We conclude from this that

einωT (eω)(0) = T (eω)(n),

for all n. Finally, we let H(ω) = T (eω)(0).

It is useful to note that we did not use here the fact that T is a convolu-
tion operator. However, since we do know that T (x) = x ∗ h, for h = T (δ),
we can relate the function H(ω) to h.
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3.5.2 Relating H(ω) to h = T (δ)

Since T is a LSI operator, T operates by convolving with h = T (δ). Con-
sider what happens when we select for the input the discrete signal x = eω.
Then the output is y = T (eω) with

y(n) =

∞
∑

k=−∞

h(k)eiω(n−k) = H(eiω)eiωn,

where

H(eiω) =

∞
∑

k=−∞

h(k)e−iωk (3.3)

is the value, at ω, of the frequency-response function of T . The point
here is that when the input is x = eω the output is a multiple of eω,
the multiplier being the (possibly complex) number H(eiω). Linear, shift-
invariant systems T do not alter the frequency of the input, but just change
its amplitude and/or phase. The constant H(eiω) is the same as H(ω)
obtained earlier; having two different notations for the same function is an
unfortunate, but common, occurrence in the signal-processing literature.

It is important to note that the infinite sum in Equation (3.3) need not
converge for arbitrary h = {h(k)}. It does converge, obviously, whenever
h is finitely nonzero; it will also converge for infinitely nonzero sequences
that are suitably restricted.

A common problem in signal processing is to design a LSI filter with
a desired frequency-response function H(eiω). To determine h(m), given
H(eiω), we multiply both sides of Equation (3.3) by eiωm, multiply by 1

2π ,
integrate over the interval [−π, π], and use the helpful fact that

∫ π

−π

ei(m−k)ωdω = 0,

for m 6= k. The result is

h(m) =
1

2π

∫ π

−π

H(eiω)eiωmdω. (3.4)

It is useful to extend the definition of H(eiω) to permit eiω to be replaced
by any complex number z. Then we get the z-transform of h, given by

H(z) =

∞
∑

k=−∞

h(k)z−k.

We can study the working of the system T on more general inputs x by
representing x as a sum of complex-exponential discrete signals eω.
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The representation, in Equation (3.4), of the infinite sequence h =
{h(k)} as a superposition of complex-exponential discrete signals suggests
the possibility that such a representation is available for general infinite
discrete signals, a notion we take up in the next section.

3.6 The Discrete Fourier Transform

A common theme running through mathematics is the representation of
complicated objects in terms of simpler ones. Taylor-series expansion en-
ables us to view quite general functions as infinite versions of polynomials
by representing them as infinite sums of the power functions. Fourier-series
expansions give representations of quite general functions as infinite sums
of sines and cosines. Here we obtain similar representation for discrete
signals, as infinite sums of the complex exponentials, eω, for ω in [−π, π).

Our goal is to represent a general discrete signal x as a sum of the eω,
for ω in the interval [−π, π). Such a sum is, in general, an integral over ω.
So we seek to represent x as

x(n) =
1

2π

∫ π

−π

X(ω)eiωndω, (3.5)

where X(ω) is a function to be determined. As we shall see, the function
we seek is the discrete Fourier transform (DFT) of x, defined by

X(ω) =

∞
∑

m=−∞

x(m)e−iωm. (3.6)

This follows from the discussion leading up to Equation (3.4). Notice that
in the case x = h the function H(ω) is the same as the frequency-response
function H(eiω) defined earlier. For this reason the notation X(ω) and
X(eiω) are used interchangably. The DFT of the discrete signal x is some-
times called the discrete-time Fourier transform (DTFT).

The sum in Equation (3.6) is the Fourier-series expansion for the func-
tion X(ω), over the interval [−π, π); the x(n) are its Fourier coefficients.

The infinite series in Equation (3.4) that is used to define X(ω) may
not converge. For example, suppose that x is an exponential signal, with
x(n) = eiω0n. Then the infinite sum would be

∞
∑

m=−∞

ei(ω0−ω)m,

which obviously does not converge, at least in any ordinary sense. Consider,
though, what happens when we put this sum inside an integral and reverse
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the order of integration and summation. Specifically, consider

1

2π

∫ π

−π

F (ω)

∞
∑

m=−∞

ei(ω0−ω)mdω,

=

∞
∑

m=−∞

(
1

2π

∫ π

−π

F (ω)ei(ω0−ω)mdω),

=

∞
∑

m=−∞

eiω0mf(m) = F (ω0).

So, the infinite sum acts like the Dirac delta δ(ω −ω0). This motivates the
following definition of the infinite sum:

∞
∑

m=−∞

ei(ω0−ω)m = δ(ω − ω0). (3.7)

A different approach to the infinite sum is to consider

lim
N→+∞

1

2N + 1

N
∑

m=−N

ei(ω0−ω)m.

According to Equation (??), we have

N
∑

n=−N

eiωn =
sin(ω(N + 1

2 ))

sin(ω
2 )

.

Therefore,

lim
N→+∞

1

2N + 1

N
∑

m=−N

ei(ω0−ω)m = 1, (3.8)

for ω = ω0, and zero, otherwise.

3.7 The Convolution Theorem

Once again, let y = T (x), where T is a LSI operator with associated filter
h = {h(k)}. Because we can write

x(n) =
1

2π

∫ π

−π

X(ω)eω(n)dω,

or, in shorthand, leaving out the n, as

x =
1

2π

∫ π

−π

X(ω)eωdω,
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we have

y = T (x) =
1

2π

∫ π

−π

X(ω)T (eω)dω,

=
1

2π

∫ π

−π

X(ω)H(ω)eωdω,

or

y(n) =
1

2π

∫ π

−π

X(ω)H(ω)eω(n)dω.

But we also have

y(n) =
1

2π

∫ π

−π

Y (ω)eω(n)dω,

from which we conclude that

Y (ω) = X(ω)H(ω), (3.9)

for each ω in [−π, π).
Equation (3.9) is the most important equation in signal processing. It

describes the activity of an LSI system by telling us that the system simply
multiplies the DFT of the input x by the DFT of the h, the frequency-
response function of the system, to produce the DFT of the output y.
Since y = x ∗h it also tells us that whenever y is formed by convolving two
discrete signals x and h, its DFT is the product of the DFT of x and the
DFT of h.

3.8 Sampling and Aliasing

The term sampling refers to the transition from a function f(t) of a con-
tinuous variable to a discrete signal x, defined by x(n) = f(n∆), where
∆ > 0 is the sample spacing. For example, suppose that f(t) = sin(γt) for
some frequency γ > 0. Then x(n) = sin(γn∆) = sin(ωn), where ω = γ∆.
We define X(ω), the DFT of the discrete signal x, for |ω| ≤ π, so we need
|γ|∆ ≤ π. This means we must select ∆ so that ∆ ≤ π/|γ|. In general, if
the function f(t) has sinusoidal components with frequencies γ such that
|γ| ≤ Γ then we should select ∆ ≤ π/Γ.

If we select ∆ too large, then a frequency component of f(t) correspond-
ing to |γ| > π/∆ will be mistaken for a frequency with smaller magnitude.
This is aliasing. For example, if f(t) = sin(3t), but ∆ = π/2, then the
frequency γ = 3 is mistaken for the frequency γ = −1, which lies in [−2, 2].
When we sample we get

x(n) = sin(3∆n) = sin(−∆n + 4∆n) = sin(−∆n + 2πn) = sin(−∆n),

for each n.
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3.9 Important Problems in Discrete Signal

Processing

A number of important problems in signal processing involve the relation
between a discrete signal and its DFT. One problem is the design of a
system to achieve a certain desired result, such as low-pass filtering. A
second problem is to estimate the X(ω) when we do not have all the values
x(n), but only finitely many of them.

3.9.1 Low-pass Filtering

When we represent a discrete signal x using

x(n) =
1

2π

∫ π

−π

X(ω)eω(n)dω,

we take the point of view that the function x is made up of the various dis-
crete sinusoids, the functions eω, each contributing in the amount 1

2π X(ω).
Since X(ω) is usually complex we must interpret this in terms of both an
amplitude modulation and a phase change. Suppose that, for some fixed
Ω in the interval (0, π), we wish to design a system that will leave X(ω)
unchanged for those ω in the interval [−Ω,Ω] and change X(ω) to zero oth-
erwise; such a system is called the (ideal) Ω-low-pass filter. To achieve this
result we need to take H(ω) to be χΩ(ω), the characteristic function of the
interval [−Ω,Ω], with χΩ(ω) = 1, for |ω| ≤ Ω, and χΩ(ω) = 0, otherwise.
We find the h(k) using

h(k) =
1

2π

∫ π

−π

χΩ(ω)eiωkdω.

Performing the integration, we find that h(0) = Ω/π and, for k 6= 0,

h(k) =
sin Ωk

πk
.

To calculate the low-pass output

y(n) =

∞
∑

k=−∞

sin Ωk

πk
x(n − k)

we need infinitely many values x(m) for m > n, as well as infinitely many
values for m < n. If we think of n as time, then to calculate the value of y
at time n we need to know the values of x for the entire infinite past before
time n, as well as the values for the entire infinite future after time n.
Clearly, this is inconvenient if we wish to perform the filtering in real-time.
One goal of signal processing is to approximate such filters with ones that
are more convenient, using, say, only finitely many past and future values
of the input.
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3.9.2 The Finite-Data Problem

In practice we have finite data obtained from measurements. We view these
data as values x(n) for finitely many values of n, say n = 0, 1, ..., N − 1.
The function X(ω) often is an important object in the problem and must
be estimated from the data. One possible estimate is

X̂(ω) =

N−1
∑

n=0

x(n)e−iωn.

To distinguish this from the DFT, which involves the infinite sum, we shall
call X̂(ω) the DFT of the vector x = (x(0), ..., x(N −1))T . If N is large, the
DFT of x will usually be a satisfactory approximation of X(ω). However,
in many applications N is not large and the DFT of x is not adequate.
The finite-data problem is how to find better estimates of X(ω) from the
limited data we have.

Because the finite-data problem involves approximating one function
of a continuous variable by another, we need some way to measure how
far apart two such functions are. The way most commonly used in signal
processing is the so-called Hilbert-space distance, given by

||X(ω) − Y (ω)|| =

√

∫ π

−π

|X(ω) − Y (ω)|2dω.

We shall return later to the problem of describing best approximations in
Hilbert space.

3.9.3 The Extrapolation Problem

If x(n) is obtained from f(t) by sampling, that is, x(n) = f(n∆), we have

f(n∆) =
1

2π

∫ π

−π

X(ω)einωdω. (3.10)

Changing to the variable γ = ω/∆, and defining Γ = π/∆ , we can write

f(n∆) =
∆

2π

∫ Γ

−Γ

X(γ∆)ei(n∆)γdγ, (3.11)

which makes clearer the use of the sampling time t = n∆.
The representation in Equation (3.11) is suggestive! Let us define g(t)

for all t by the formula

g(t) =
∆

2π

∫ Γ

−Γ

X(γ∆)eitγdγ. (3.12)
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Do we have g(t) = f(t) for all t? On the face of it, it would seem that
the answer is clearly no. How could a function of a continuous variable
be completely determined by such a sequence of its values? How can we
capture all of a function f(t) from discrete samples? It fact, under certain
conditions, the answer is yes. Let us investigate what those conditions
might be.

Let ε > 0 and let hε(t) = sin((Γ+ε)t)−sin((−Γ+ε)t). Then hε(n∆) = 0
for each integer n. From the data we have, we cannot decide if f(t) = g(t)
or f(t) = g(t) + hε(t), or, perhaps, f(t) = g(t) + hε(t) for some other ε.
Notice that, in order to construct hε(t) we need a sine function with a
frequency outside the interval [−Γ,Γ].

On the other hand, if F (γ), the Fourier transform of f(t), is zero outside
[−Γ,Γ], then f(t) = g(t). This is because the function F (γ) has a Fourier-
series representation

F (γ) =

∞
∑

n=−∞

aneiγn∆,

where, as in our discussion of the DFT, we have

an =
1

2Γ

∫ Γ

−Γ

F (γ)e−iγn∆dγ.

But the expression on the right side of this equation equals ∆f(n∆), ac-
cording to the Fourier Inversion Formula. Therefore

F (γ) = ∆

∞
∑

n=−∞

f(n∆)eiγn∆

= ∆

∞
∑

n=−∞

x(n)eiγn∆

= ∆

∞
∑

n=−∞

x(n)eiωn = ∆X(−γ∆).

So, we can write

f(t) =
1

2π

∫ Γ

−Γ

F (γ)e−itγdγ,

=
∆

2π

∫ Γ

−Γ

X(γ∆)eitγdγ = g(t).

For an arbitrary function f(t) we seek a representation of f(t) as a
superposition of complex exponential functions, that is,

f(t) =
1

2π

∫ ∞

−∞

A(γ)eitγdγ, (3.13)
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for some function A(γ). The function A(γ) that does the job is A(γ) =
F (−γ), where F (γ) is the Fourier transform of f(t). If F (γ) = 0 for |γ| > Γ,
then f(t) is said to be Γ-bandlimited; in this case F (γ) = ∆X(−γ∆), as
discussed previously.

It is important to note that we cannot tell from the samples x(n) =
f(n∆) whether or not f(t) is Γ-bandlimited. If f(t) is not Γ-bandlimited,
but we assume that it is, there will be components of f(t) with frequen-
cies outside the band [−Γ,Γ] that will be mistaken for sinusoids having
frequencies inside the band; this is aliasing.

3.10 Discrete Signals from Finite Data

In problems involving actual data obtained from measurements we may
have a vector x = (x1, ..., xN )T that we wish to associate with a discrete
function x. There are, of course, any number of ways to do this. Two of the
most commonly used ways employ zero extension and periodic extension.

3.10.1 Zero-extending the Data

We define x(n) to be xn+1, for n = 0, ..., N − 1 and x(n) = 0 otherwise.
Then x is a discrete function that extends the data. The DFT of x is now

X(ω) =

N−1
∑

n=0

x(n)e−inω, (3.14)

for |ω| ≤ π and, from the fact that

0 =

∫ π

−π

ei(m−n)ωdω

for m 6= n, we have

x(m) =
1

2π

∫ π

−π

X(ω)eimωdω,

for all integers m.
The DFT of x obtained by zero-extending the data provides a way

to represent the data as a (continuous) sum, or integral, of the discrete
exponential functions eω:

xn =
1

2π

∫ π

−π

X(ω)ei(n−1)ωdω,

for n = 1, ..., N .
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3.10.2 Periodically Extending the Data

Another way to associate a discrete function x̃ with the data vector x is by
extending the data periodically. For n = 0, ..., N − 1 let x̃(n) = xn+1 and
for any integer n define x̃(n) = x̃(n mod N). Then x̃ extends the data and
is N -periodic; that is, x̃(n + N) = x̃(n) for all integers n.

Now we want to represent the N -periodic x̃ as a sum of the discrete
exponential functions eω. Notice, however, that most of the eω are not N -
periodic; in order for ei(n+N)ω = einω for all integers n we need eiNω = 1.
This means that ω = 2πk/N , for some integer k. Therefore, we shall seek
to represent x̃ as a sum of the discrete exponential functions eω only for
ω = 2πk/N . Let us denote such functions as ek. Notice also that ek+N and
ek are the same function, for any integer k. Therefore, we seek to represent
x̃ as a sum of the discrete exponential functions ek, for k = 0, 1, ..., N − 1;
that is, we want

x̃(n) =

N−1
∑

k=0

Xke2πikn/N , (3.15)

for some choice of numbers Xk.
To determine the Xk we multiply both sides of Equation (3.15) by

e−2πijn/N and sum over n. Using the fact that

N−1
∑

n=0

e2πi(k−j)n/N = 0,

if k 6= j, it follows that

Xj =
1

N

N−1
∑

n=0

x(n)e−2πijn/N , (3.16)

for j = 0, ..., N − 1.
We began with a finite vector x = (x1, ..., xN )T , which we chose to write

as x = (x(0), ..., x(N −1))T , and ended with a finite set of numbers Xj , j =
0, ..., N − 1, which we used to form the vector X = (X0, ..., XN−1)

T . It is
common practice to call the vector X the DFT of the vector x, but to avoid
confusion, we shall refer to the vector X as the vector DFT (vDFT) of the
vector x, leaving the terminology DFT of x to refer to the DFT of the zero-
extended discrete function x in equation (3.14). Notice, though, that the
vDFT and the DFT are related; for 0 ≤ k ≤ N/2 we have Xk = X(2πk/N)
and for N/2 < k ≤ N − 1 we have Xk = X(−π + 2πk/N). The vector
DFT plays an important role in signal processing because, as we shall see
later, there is a fast algorithm for calculating it from the data, called the
fast Fourier transform (FFT).
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3.10.3 A Third Way to Extend the Data

Another way to extend the data vector to a discrete function is to zero-

pad and then to perform periodic extension. Given the data x(n), n =
0, ..., N − 1, let x(n) = 0, n = N, N + 1, ..., M − 1. Then extend these M
numbers M -periodically, so that x̃(n) = x(n mod M), for each integer n.
Then x̃(n + M) = x̃(n), for all n.

Now, when we represent x̃ as a sum of sinusoids we have

x̃(n) =

M−1
∑

k=0

Xke2πikn/M , (3.17)

for some choice of numbers Xk. Arguing as before, we find that now we
have

Xk =
1

M

M−1
∑

n=0

x(n)e−2πikn/M , (3.18)

for k = 0, ..., M − 1.

3.10.4 A Fourth Way: Bandlimited Extrapolation

Suppose that f(t) is Γ-bandlimited, so that

f(t) =
∆

2π

∫ Γ

−Γ

X(γ∆)eitγdγ. (3.19)

Inserting X(γ∆) as in Equation (3.6) into Equation (3.19) and performing
the indicated integration, we obtain

f(t) = ∆

∞
∑

n=−∞

f(n∆)
sin Γ(t − n∆)

π(t − n∆)
. (3.20)

This formula illustrates Shannon’s sampling theorem, by showing how to
reconstruct the Γ-bandlimited function f(t) from the infinite sequence of
samples {f(n∆)}, for any ∆ < π

Γ . We shall use this formula to extend our
finite data to obtain a Γ-bandlimited function that is consistent with the
finite data. It is not required that the data be equispaced.

Arbitrarily Spaced Data

Now suppose that our data are the values f(tm), m = 1, ..., N , where the
tm are arbitrary. From Equation (3.20) we have

f(tm) = ∆

∞
∑

n=−∞

f(n∆)
sin Γ(tm − n∆)

π(tm − n∆)
, (3.21)
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for each tm. In this case, however, we do not know the f(n∆). Can we find
a sequence {f(n∆)} for which Equation (3.21) is satisfied for each m? The
answer is yes; in fact, there are infinitely many ways to do this, as we shall
see shortly. But, first, we need a useful identity concerning Γ-bandlimited
functions.

A Useful Identity

The function G(γ) = χΓ(γ) that is one for |γ| ≤ Γ and is zero other-
wise is the Fourier transform of the function g(x) = sin Γx

πx . Therefore,

its sequence of Fourier coefficients is {∆g(n∆) = ∆ sin Γn∆
πn∆ }. For any

fixed t, the function Ht(γ) = G(γ)eiγt has, for its sequence of Fourier

coefficients ht = {∆ sin Γ(n∆−t)
π(n∆−t) }. Since Ht(γ)H−s(γ) = Ht−s(γ), we have

ht ∗ h−s = ht−s. Writing this out, we get

sin Γ(n∆ − t + s)

π(n∆ − t + s)
=

∆

∞
∑

k=−∞

sin Γ(k∆ − t)

π(k∆ − t)

sin Γ((n − k)∆ + s)

π((n − k)∆ + s)
. (3.22)

Minimum-Norm Extrapolation

One possibility is to provide a finite-parameter model for the desired se-
quence {f(n∆)}, as

f(n∆) =

N
∑

j=1

zj
sin Γ(tj − n∆)

π(tj − n∆)
. (3.23)

Inserting this f(n∆) into Equation (3.21), reversing the order of summa-
tion, and using the identity in Equation (3.22), we obtain

f(tm) = ∆

N
∑

j=1

zj
sin Γ(tj − tm)

π(tj − tm)
. (3.24)

This system of N equations in N unknowns can be solved uniquely for
the zj . Placing these zj into Equation (3.23) to get the f(n∆) and then
using these f(n∆) in Equation (3.20), we obtain a Γ-bandlimited function

f̂(t) that extrapolates the finite data. The function f̂(t) can be written
explicitly as

f̂(t) = ∆

N
∑

j=1

zj
sin Γ(tj − t)

π(tj − t)
. (3.25)
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It can be shown that this choice of f̂(t) is the Γ-bandlimited function ex-

trapolating the data for which the energy
∑∞

n=−∞ |f̂(n∆)|2 is the smallest.

Estimating the Fourier Transform

We take the Fourier transform of f̂(t) in Equation (3.25), to obtain an
explicit formula for F̂ (γ), our estimate of the Fourier transform of f(t):

F̂ (γ) = ∆χΓ(γ)

J
∑

j=1

zje
itjγ .

When tj = j∆, with ∆ = π
Γ , we find that ∆zj = f(j∆), so that our

estimate of F (γ) becomes

F̂ (γ) =

J
∑

j=1

f(j∆)eij∆γ .

So our estimate of X(ω) is

X̂(ω) = F̂ (− ω

∆
) =

J
∑

j=1

f(j∆)e−ijω,

which is the DFT we get when we zero-extend the finite data.
Note that if f(t) is known to be Γ-bandlimited, then f(t) is (Γ + ε)-

bandlimited, for any ε > 0. Therefore, we can use Γ + ε in place of Γ,
in the calculations above, to achieve a bandlimited extrapolation of the
finite data. So there are infinitely many different ways to extend the finite
data as samples of a bandlimited function. Each of these ways leads to a
different estimate for the Fourier transform.

3.11 Is this Analysis or Representation?

As we just saw, we can represent the finite data x(n), n = 0, ..., N − 1, in
any number of different ways as sums of discrete exponential functions. In
the first way we have

x(n) =
1

2π

∫ π

−π

X(ω)einωdω, (3.26)

in the second way

x(n) =

N−1
∑

k=0

Xke2πikn/N , (3.27)
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and in yet a third way

x(n) =

M−1
∑

k=0

Xke2πikn/M . (3.28)

Using the bandlimited extrapolation approach, we can also write

x(n) =
1

2π

∫ Γ

−Γ

F̂ (γ)e−in∆γdγ. (3.29)

In each of these cases it would appear that the data contains certain sinu-
soidal components, and yet in each of these ways the sinusoidal frequencies
involved are different. How can this be?

By analysis we mean the identification of the components of the data, in
this case, the complex-exponential components or complex sinusoids, that
are really there in the data. When we have at least two different ways to
represent the data as a sum of such complex exponentials, can either of
these be said to provide true analysis of the data? Equation (3.26) seems
to say that the data is made up of complex exponentials whose frequencies
encompass the entire interval [−π, π), while Equation (3.27) exhibits the
same data as consisting only of N complex exponentials, with frequencies
equispaced through the interval [−π, π), and Equation (3.28) employs a
whole new set of M frequencies, equispaced through the interval [−π, π).
Equation (3.29) says the frequencies are spread over the interval [−Γ,Γ].
Which one is correct? This is not really the right question to ask. The
proper response depends on the context, that is, on what the problem is
that we are trying to solve.

If the goal is to perform some operation on the data, it may not mat-
ter greatly how it is represented. However, as we saw in our discussion of
farfield propagation, the data can be finitely many samples of an under-
lying continuous-variable function f(t) or a discrete function x, for which
the frequency-space representation has real physical significance. In the
discrete case, the DFT of x can have physical significance beyond simply
providing a way to represent the x as a sum of exponential functions. For
example, in sonar and radar array processing, the arguments ω may cor-
respond to a direction of a distant object of interest, and ω may take on
any value in [−π, π). In such cases we would like to have all of x, but must
settle for the finite data vector x. The goal then is to use the finite data
to approximate or estimate X(ω), the DFT of x. The DFT of the data is
then a finite Fourier-series approximation of the infinite Fourier series that
is X(ω). The vector DFT X of the data gives us N equispaced values of
this approximation, which can be calculated efficiently using the FFT.

There is an added twist to the story, however. Given only the data,
we have no way of knowing the complete x; there are infinitely many x
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that extend the data. Which one is the correct one? In most applications
we have some prior information about the nature of the function X(ω)
that we seek to estimate from the data. Effective estimation procedures
make use of this additional information to obtain better estimates when
the data, by itself, is insufficient. Our fourth way to extend the finite data
includes, in the extrapolation process, the prior knowledge that f(t) is Γ-
bandlimited. Later, we shall consider other ways to employ prior knowledge
to extrapolate the data.

3.12 Oversampling

In many applications, we are essentially free to take as many samples as we
wish, but are required to take those samples from within some finite region.
In the model of farfield propagation, for example, there may be physical
limitations on length of our array of sensors, but within that length, we
may place as many sensors as seems reasonable. In synthetic-aperture
radar, the array of sensors is moving, simulating a longer array, the length
of which is limited, in practice, by the need to correct for time differences in
the receipt of the signals. In sampling a function of time, the signal being
sampled may only last for a short while, but while it lasts, we may take as
many samples as we wish; this is the case in seismic exploration, magnetic
resonance imaging, and speech processing. In our discussion previously, we
saw that if the function f(t) is Γ-bandlimited, then we must sample at a
spacing ∆ ≤ π

Γ . If we are required to take all our samples from within the
time interval [0, T ], and if we use ∆ = π

Γ , we may not be able to take a
large number of samples. Would it be better, under these circumstances,
to oversample, that is, to use, say ∆

2 , in order to generate more data? Is
there any limit on how small the spacing should be?

Suppose we begin with the samples f(n∆), for n = 0, 1, ..., N − 1,
∆ = π

Γ , and T = N∆. The DFT of the zero-extended data,

F̂ (γ) = ∆

N−1
∑

n=0

f(n∆)ein∆γ ,

for |γ| ≤ Γ, is then a reasonable estimate of the Fourier transform, F (γ).
Now let us take samples at spacing ∆

2 ; that is, we take f(m∆
2 ), for m =

0, ..., 2N − 1. The DFT of the zero-extension of this data is

F̃ (γ) =
∆

2

2N−1
∑

m=0

f(m
∆

2
)eim ∆

2
γ .

But now the interval outside of which the sum repeats itself is no longer
[−Γ,Γ], but [−2Γ, 2Γ]; F̃ (γ) is an estimate of F (γ) for γ in this larger
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interval. If we consider F̃ (γ) only for γ within the smaller interval [−Γ,Γ],
we find that F̃ (γ) is not much different from F̂ (γ) for those values of γ.
What has happened is that, when we chose to sample faster, the DFT
estimation “believes” that our function f(t) is 2Γ-bandlimited, which is
true, but not precise. We do get twice as many data points, but we then
are forced to use them to estimate the Fourier transform over an interval
that is twice as wide as before.

There is a way out of this predicament, however. The bandlimited
extrapolation method discussed earlier permits us to use any finite set
of samples, tj , j = 1, ..., J . Therefore, we can take tj = (j − 1)∆

2 , j =
1, ..., J = 2N . Then our estimate of F (γ) has the form

F̂ (γ) = ∆χΓ(γ)

2N−1
∑

m=0

zm+1e
im ∆

2
γ ,

but, unlike for F̃ (γ), the zm+1 are not 1
∆f(m∆

2 ).
Simulation experiments show that this method of estimating the Fourier

transform from oversampled data does lead to improved estimates, but
becomes increasingly sensitive to noise in the data, as the sample spacing
gets smaller. The signal-to-noise ratio in the data provides the ultimate
limitation on how small we can make the sample spacing.

3.13 Finite Data and the Fast Fourier Trans-

form

Given the finite measurements x1, ..., xN , we chose to write these as samples
of a function x(t), so that xn = x(n−1), for n = 1, ..., N . We then analyzed
the vector x = (x(0), ..., x(N − 1))T in an attempt to uncover interesting
components of the function x(t). One approach involved estimating the
Fourier transform X(ω) of x(t) by means of the DFT,

X̂(ω) =

N−1
∑

n=0

x(n − 1)e−inω,

for |ω| ≤ π. As we noted previously, the Fast Fourier Transform algorithm
can be used to calculate finitely many equi-spaced values of X̂(ω).

There is another way to view the problem. Our data consists of the
vector x and we choose to write x as a linear combination of other vectors,
in the hope of discovering information that lies within the data. There are
infinitely many ways to do this, however.

One way is to select N arbitrary distinct frequencies ωm, m = 0, 1, ..., N−
1 in [−π, π) and define the vectors eωm

by

eωm
(n) = einωm ,
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for n = 0, ..., N − 1. We then write

x =

N−1
∑

m=0

ameωm
,

where the coefficients am are found by solving the system of linear equations

x(n) =

N−1
∑

m=0

ameωm
(n),

n = 0, ..., N − 1.
We write the system of linear equations in matrix form as

x = Ea, (3.30)

for a = (a0, ..., aN−1)
T and E the N by N matrix with the entries

Enm = einωm .

Such a system will have a unique solution, and we will always be able to
write the data vector as a finite sum of N arbitrarily chosen sinusoidal
vectors eωm

.
In general, the matrix E is invertible, but solving the system in Equation

(3.30) when N is large can be computationally expensive. Since we are
choosing the frequencies ωm arbitrarily, why not select them so that the
matrix E is easily inverted. This is motivation for the vector DFT of the
data.

We now select the frequencies ωm more carefully. We take

ωm = −π +
2π

N
m,

for m = 0, ..., N − 1.

Exercise 3.5 Show that, for this choice of the ωm, the inverse of the ma-

trix E is

E−1 =
1

N
E†.

Using the result of this exercise, we find that the coefficient vector a has
entries

am =
1

N

N−1
∑

n=0

x(n)e−2πimn/N ,

for m = 0, ..., N − 1. These are the entries of the vector DFT, X, as given
in Equation (3.16). These am are what the FFT calculates.
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When we consider the problem from this viewpoint, we see that the
representaton of the data vector x as a superposition of sinusoidal vectors
involves a completely arbitrary selection of the frequencies ωm to be used,
and yet, once the am are found, the data vector is completely described
as that superposition. The equi-spaced frequencies used in the previous
paragraph were chosen merely to facilitate the inversion of E. What does
it mean to say that the data actually contains the components with fre-
quencies ωm, when we are free to select whichever ones we wish? What
does it mean to say that the function x(t) that was sampled to get the data
actually contains sinusoids at these frequencies?
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Chapter 4

Randomness in Signal

Processing

We begin our discussion of randomness in signal processing with the ex-
ample of farfield propagation.

4.1 Randomness in Farfield Propagation

In our earlier discussion of farfield propagation in the one-dimensional case,
we imagined that each point (x, 0, 0) on the x-axis transmitting or reflect-
ing a sinusoidal signal f(x)eiωt, where the complex number f(x) denotes
the magnitude and phase of the signal associated with this point. Our goal
was to determine f(x), in order to learn something about the extent of the
object and what it is made of. The data collected in the farfield turned
out to be. esentially, values of the Fourier transform of f(x). The goal
then became reconstructing a function from finitely many noisy values of
its Fourier transform. Except for the additive noise, this model is com-
pletely deterministic and, as such, a somewhat unrealistic model for many
situations.

We suppose now that, for each x, the complex number f(x) = |f(x)|eiθ(x)

is a random variable, with both its magnitude, |f(x)|, and its phase, θ(x)
real-valued random variables. The randomness is often introduced to ac-
count for perturbations caused by the medium through which the signals
must travel, such as light passing through the atmosphere, or sound through
the ocean with changing sound speed.

One simple way to model such a complex random variable is to write
f(x) = a(x)+ ib(x), with both a(x) and b(x) real-valued random variables.
If a(x) and b(x) are independent Gaussian random variables with the same
variance, then f(x) is called a complex Gaussian random variable. In that

63
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case, its magnitude has the Rayleigh distribution and its phase is uniformly
distributed on the interval [−π, π]. For some applications we assume that
the random variables f(x) corresponding to different x are independent; in
other cases, the f(x) for neighboring values of x may be assumed correlated.
Our goal is no longer to determine a particular value of f(x), for each x,
but to estimate the mean value of |f(x)|, which is then the average intensity
of the signal from the point x.

Suppose, for example, that the object function f(x) consists of finitely
many point sources, that is,

f(x) =

J
∑

j=1

f(xj)δ(x − xj),

where the amplitudes f(xj) are independent complex random variables. We
assume that the random phase of each f(xj) is distributed uniformly over
the interval [−π, π], so that the expected value of f(xj) is zero. Then the
variance of f(xj) is E(|f(xj)|2). The Fourier transform of f(xj)δ(x − xj)
is

Fj(γ) = f(xj)e
iγ(x−xj),

so the signals received at the points (s, D, 0) are values of

F (γ) =

J
∑

j=1

f(xj)e
iγ(x−xj).

Correlating F (γ) and F (α), we obtain

E(F (γ)F (α)) =

J
∑

j=1

E(|f(xj)|2)ei(γ−α)xj .

Notice that the correlation is a function, not of γ and α separately, but of
their difference. This prompts the following definition of the autocorrelation

function of f(x):

R(τ) = E(F (γ)F (γ − τ)) =

J
∑

j=1

E(|f(xj)|2)eiτxj .

The inverse Fourier transform of the function R(τ) is then

r(x) =

J
∑

j=1

E(|f(xj)|2)δ(x − xj).

This suggests that we can estimate the values E(|f(xj)|2) by using our
measured data to obtain estimates of the cross-correlation function R(τ).
We shall return to this issue later.
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4.2 Random Variables as Models

When we use mathematical tools, such as differential equations, probabil-
ity, or systems of linear equations, to describe a real-world situation, we say
that we are employing a mathematical model. Such models must be suffi-
ciently sophisticated to capture the essential features of the situation, while
remaining computationally manageable. In this chapter we are interested
in one particular type of mathematical model, the random variable.

Imagine that you are holding a baseball four feet off the ground. If you
drop it, it will land on the ground directly below where you held it. The
height of the ball at any time during the fall is described by the function h(t)
satisfying the ordinary differential equation h′′(t) = −32 ft

sec2 . Solving this

differential equation with the initial conditions h(0) = 4 ft , h′(0) = 0 ft
sec ,

we find that h(t) = 4 − 16t2. Solving h(T ) = 0 for T we find the elapsed
time T until impact is T = 0.5 sec.. The velocity of the ball at impact is
h′(T ) = −32T = −16 ft

sec .
Now imagine that, instead of a baseball, you are holding a feather. The

feather and the baseball are both subject to the same laws of gravity, but
now other aspects of the situation, which we could safely ignore in the case
of the baseball, become important in the case of the feather. Like the base-
ball, the feather is subjected to air resistance and to whatever fluctuations
in air currents may be present during its fall. Unlike the baseball, however,
the effects of the air matter to the flight of the feather; in fact, they become
the dominant factors. When we designed our differential-equation model
for the falling baseball we performed no experiments to help us understand
its behavior. We simply ignored all other aspects of the situation, and
included only gravity in our mathematical model. Even the modeling of
gravity was slightly simplified, in that we assumed a constant gravitational
acceleration, even though Newton’s Laws tell us that it increases as we
approach the center of the earth. When we drop the ball and find that our
model is accurate we feel no need to change it. When we drop the feather
we discover immediately that a new model is needed; but what?

The first thing we observe is that the feather falls in a manner that is
impossible to predict with accuracy. Dropping it once again, we notice that
it behaves differently this time, landing in a different place and, perhaps,
taking longer to land. How are we to model such a situation, in which
repeated experiments produce different results? Can we say nothing useful
about what will happen when we drop the feather the next time?

As we continue to drop the feather, we notice that, while the feather
usually does not fall directly beneath the point of release, it does not fall
too far away. Suppose we draw a grid of horizontal and vertical lines on
the ground, dividing the ground into a pattern of squares of equal area.
Now we repeatedly drop the feather and record the proportion of times
the feather is (mainly) contained within each square; we also record the
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elapsed time. As we are about to drop the feather the next time, we may
well assume that the outcome will be consistent with the behavior we have
observed during the previous drops. While we cannot say for certain where
the feather will fall, nor what the elapsed time will be, we feel comfortable
making a probabilistic statement about the likelihood that the feather will
land in any given square and about the elapsed time.

The squares into which the feather may land are finite, or, if we insist
on creating an infinite grid, discretely infinite, while the elapsed time can
be any positive real number. Let us number the squares as n = 1, 2, 3, ...
and let pn be the proportion of drops that resulted in the feather landing
mainly in square n. Then pn ≥ 0 and

∑∞
n=1 pn = 1. The sequence p =

{pn|n = 1, 2, ...} is then a discrete probability sequence (dps), or a probability

sequence, or a discrete probability. Now let N be the number of the square
that will contain the feather on the next drop. All we can say about N
is that, according to our model, the probability that N will equal n is pn.
We call N a discrete random variable with probability sequence p.

It is difficult to be more precise about what probability really means.
When we say that the probability is pn that the feather will land in square
n on the next drop, where does that probability reside? Do we believe that
the numbers pn are in the feather somehow? Do these numbers simply
describe our own ignorance, so are in our heads? Are they a combination
of the two, in our heads as a result of our having experienced what the
feather did previously? Perhaps it is best simply to view probablity as a
type of mathematical model that we choose to adopt in certain situations.

Now let T be the elapsed time for the next feather to hit the ground.
What can we say about T? Based on our prior experience, we are willing
to say that, for any interval [a, b] within (0,∞), the probability that T
will take on a value within [a, b] is the proportion of prior drops in which
the elapsed time was between a and b. Then T is a continuous random

variable, in that the values it may take on (in theory, at least) lie in a
continuum. To help us calculate the probabilities associated with T we
use our prior experience to specify a function fT (t), called the probability

density function (pdf) of T , having the property that the probability that

T will lie between a and b can be calculated as
∫ b

a
fT (t)dt. Such fT (t) will

have the properties fT (t) ≥ 0 for all positive t and
∫ ∞

0
fT (t)dt = 1.

In the case of the falling feather we had to perform experiments to
determine appropriate ps p and pdf fT (t). In practice, we often describe
our random variables using a ps or pdf from a well-studied parametric
family of such mathematical objects. Popular examples of such ps and pdf,
such as Poisson probabilities and Gaussian pdf, are discussed early in most
courses in probability theory.

It is simplest to discuss the main points of random signal processing
within the context of discrete signals, so we return there now.
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4.3 Discrete Random Signal Processing

Previously, we have encountered specific discrete functions, such as δk,
u, eω, whose values at each integer n are given by an exact formula. In
signal processing we must also concern ourselves with discrete functions
whose values are not given by such formulas, but rather, seem to obey
only probabilistic laws. We shall need such discrete functions to model
noise. For example, imagine that, at each time n, a fair coin is tossed and
x(n) = 1 if the coin shows heads, x(n) = −1 if the coin shows tails. We
cannot determine the value of x(n) from any formula; we must simply toss
the coins. Given any discrete function x with values x(n) that are either
1 or −1, we cannot say if x was generated by such a coin-flipping manner.
In fact, any such x could have been the result of coin flips. All we can
say is how likely it is that a particular x was so generated. For example,
if x(n) = 1 for n even and x(n) = −1 for n odd, we feel, intuitively,
that it is highly unlikely that such an x came from random coin tossing.
What bothers us, of course, is that the values x(n) seem so predictable;
randomness seems to require some degree of unpredictability. If we were
given two such sequences, the first being the one described above, with
1 and −1 alternating, and the second exhibiting no obvious pattern, and
asked to select the one generated by independent random coin tossing, we
would clearly choose the second one. There is a subtle point here, however.
When we say that we are “given an infinite sequence” what do we really
mean? Because the issue here is not the infinite nature of the sequences,
let us reformulate the discussion in terms of finite vectors of length, say,
100, with entries 1 or −1. If we are shown a print-out of two such vectors,
the first with alternating 1 and −1, and the second vector exhibiting no
obvious pattern, we would immediately say that it was the second one
that was generated by the coin-flipping procedure, even though the two
vectors are equally likely to have been so generated. The point is that
we associate randomness with the absence of a pattern, more than with
probability. When there is a pattern, the vector can be described in a
way that is significantly shorter than simply listing its entries. Indeed, it
has been suggested that a vector is random if it cannot be described in a
manner shorter than simply listing its members.

4.3.1 The Simplest Random Sequence

We say that a sequence x = {x(n)} is a random sequence or a discrete

random process if x(n) is a random variable for each integer n. A simple,
yet remarkably useful, example is the random-coin-flip sequence, which we
shall denote by c = {c(n)}. In this model a coin is flipped for each n and
c(n) = 1 if the coin comes up heads, with c(n) = −1 if the coin comes
up tails. It will be convenient to allow for the coin to be biased, that is,
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for the probabilities of heads and tails to be unequal. We denote by p the
probability that heads occurs and 1 − p the probability of tails; the coin
is called unbiased or fair if p = 1/2. To find the expected value of c(n),
written E(c(n)), we multiply each possible value of c(n) by its probability
and sum; that is,

E(c(n)) = (+1)p + (−1)(1 − p) = 2p − 1.

If the coin is fair then E(c(n)) = 0. The variance of the random vari-
able c(n), measuring its tendency to deviate from its expected value, is
var(c(n)) = E([c(n) − E(c(n))]2). We have

var(c(n)) = [+1 − (2p − 1)]2p + [−1 − (2p − 1)]2(1 − p) = 4p − 4p2.

If the coin is fair then var(c(n)) = 1. It is important to note that we do not
change the coin at any time during the generation of the random sequence
c; in particular, the p does not depend on n.

The random-coin-flip sequence c is the simplest example of a discrete
random process or a random discrete function. It is important to remember
that a random discrete function is not any one particular discrete function,
but rather a probabilistic model chosen to allow us to talk about the prob-
abilities associated with the values of the x(n). In the next section we
shall use this discrete random process to generate a wide class of discrete
random processes, obtained by viewing c = c(n) as the input into a linear,
shift-invariant (LSI) filter.

4.4 Random Discrete Functions or Discrete

Random Processes

A linear, shift-invariant (LSI) operator T with impulse response function
h = {h(k)} operates on any input sequence x = {x(n)} to produce the
output sequence y = {y(n)} according to the convolution formula

y(n) =

∞
∑

k=−∞

h(k)x(n − k) =

∞
∑

k=−∞

x(k)h(n − k). (4.1)

We learn more about the system that T represents when we select as input
sinusoids at fixed frequencies. Let ω be a fixed frequency in the interval
[−π, π) and let x = eω, so that x(n) = einω for each integer n. Then
Equation (4.1) shows us that the output is

y(n) = H(eiω)x(n),

where

H(eiω) =

∞
∑

k=−∞

h(k)e−ikω. (4.2)
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This function of ω is called the frequency-response function of the system.
We can learn even more about the system by selecting as input the sequence
x(n) = zn, where z is an arbitrary complex number. Then Equation (4.1)
gives the output as

y(n) = H(z)x(n),

where

H(z) =

∞
∑

k=−∞

h(k)z−k. (4.3)

Note that if we select z = eiω then H(z) = H(eiω) as given by Equation
(4.2). The function H(z) of the complex variable z is the z-transform of
the sequence h and also the transfer function of the system determined by
h.

Now we take this approach one step further. Let us select as our input
x = {x(n)} the random-coin-flip sequence c = {c(n)}, with p = 0.5. It
is important to note that such an x is not one specific discrete function,
but a random model for such functions. The output y = {y(n)} is again a
random sequence, with

y(n) =

∞
∑

k=−∞

h(k)c(n − k). (4.4)

Clearly, in order for the infinite sum to converge we would need to place
restrictions on the sequence h; if h(k) is zero except for finitely many values
of k then we have no problem. We shall put off discussion of convergence
issues and focus on statistical properties of the output random sequence y.

Let u and v be (possibly complex-valued) random variables with ex-
pected values E(u) and E(v), respectively. The covariance between u and
v is defined to be

cov(u, v) = E([u − E(u))(v − E(v))]),

and the cross-correlation between u and v is

corr(u, v) = E(uv).

It is easily shown that cov(u, v) = corr(u, v) − E(u)E(v). When u = v we
get cov(u, u) = var(u) and corr(u, u) = E(|u|2). If E(u) = E(v) = 0 then
cov(u, v) = corr(u, v).

To illustrate, let u = c(n) and v = c(n − m). Then, since the coin is
fair, E(c(n)) = E(c(n − m)) = 0 and

cov(c(n), c(n − m)) = corr(c(n), c(n − m)) = E(c(n)c(n − m)).
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Because the c(n) are independent, E(c(n)c(n − m)) = 0 for m not equal to
0, and E(|c(n)|2) = var(c(n)) = 1. Therefore

cov(c(n), c(n − m)) = corr(c(n), c(n − m)) = 0, form 6= 0,

and
cov(c(n), c(n)) = corr(c(n), c(n)) = 1.

Returning now to the output sequence y = {y(n)} we compute the
correlation corr(y(n), y(n−m)) = E(y(n)y(n − m)). Using the convolution
formula Equation (4.4) we find that

corr(y(n), y(n − m)) =

∞
∑

k=−∞

∞
∑

j=−∞

h(k)h(j)corr(c(n − k), c(n − m − j)).

Since
corr(c(n − k), c(n − m − j)) = 0, for k 6= m + j,

we have

corr(y(n), y(n − m)) =

∞
∑

k=−∞

h(k)h(k − m). (4.5)

The expression of the right side of Equation (4.5) is the definition of the
autocorrelaton of the sequence h, denoted ρh(m); that is,

ρh(m) =

∞
∑

k=−∞

h(k)h(k − m). (4.6)

It is important to note that the expected value of y(n) is

E(y(n)) =

∞
∑

k=−∞

h(k)E(c(n − k)) = 0

and the correlation corr(y(n), y(n−m)) depends only on m; neither quan-
tity depends on n and the sequence y is therefore called weak-sense sta-

tionary. Let’s consider an example.
Take h(0) = h(1) = 0.5 and h(k) = 0 otherwise. Then the system is

the two-point moving-average, with

y(n) = 0.5x(n) + 0.5x(n − 1).

With x(n) = c(n) we have

y(n) = 0.5c(n) + 0.5c(n − 1).
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In the case of the random-coin-flip sequence c each c(n) is unrelated to
any other c(m); the coin flips are independent. This is no longer the case
for the y(n); one effect of the filter h is to introduce correlation into the
output. To illustrate, since y(0) and y(1) both depend, to some degree, on
the value c(0), they are related. Using Equation (4.6) we have

ρh(0) = h(0)h(0) + h(1)h(1) = 0.25 + 0.25 = 0.5,

ρh(−1) = h(0)h(1) = 0.25,

ρh(+1) = h(1)h(0) = 0.25,

and
ρh(m) = 0, otherwise.

So we see that y(n) and y(n − m) are related, for m = −1, 0,+1, but not
otherwise.

4.5 Correlation Functions and Power Spectra

As we have seen, any nonrandom sequence h = {h(k)} has its autocorrela-
tion function defined, for each integer m, by

ρh(m) =

∞
∑

k=−∞

h(k)h(k − m).

For a random sequence y(n) that is wide-sense stationary, its correlation
function is defined to be

ρy(m) = E(y(n)y(n − m)).

The power spectrum of h is defined for ω in [−π, π] by

Sh(ω) =

∞
∑

m=−∞

ρh(m)e−imω.

It is easy to see that
Sh(ω) = |H(eiω)|2,

so that Sh(ω) ≥ 0. The power spectrum of the random sequence y = {y(n)}
is defined as

Sy(ω) =

∞
∑

m=−∞

ρy(m)e−imω.

Although it is not immediately obvious, we also have Sy(ω) ≥ 0. One way
to see this is to consider

Y (eiω) =

∞
∑

n=−∞

y(n)e−inω
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and to calculate

E(|Y (eiω)|2) =

∞
∑

m=−∞

E(y(n)y(n − m))e−imω = Sy(ω).

Given any power spectrum Sy(ω) we can construct H(eiω) by selecting an
arbitrary phase angle θ and letting

H(eiω) =
√

Sy(ω)eiθ.

We then obtain the nonrandom sequence h associated with H(eiω) using

h(n) =

∫ π

−π

H(eiω)einωdω/2π.

It follows that ρh(m) = ρy(m) for each m and Sh(ω) = Sy(ω) for each ω.
What we have discovered is that, when the input to the system is the

random-coin-flip sequence c, the output sequence y has a correlation func-
tion ρy(m) that is equal to the autocorrelation of the sequence h. As we
just saw, for any weak-sense stationary random sequence y with expected
value E(y(n)) constant and correlation function corr(y(n), y(n − m)) in-
dependent of n, there is a LSI system h with ρh(m) = ρy(m) for each m.
Therefore, any weak-sense stationary random sequence y can be viewed
as the output of an LSI system, when the input is the random-coin-flip
sequence c = {c(n)}.

4.6 Random Sinusoidal Sequences

If A = |A|eiθ, with amplitude |A| a positive-valued random variable and
phase angle θ a random variable taking values in the interval [−π, π] then
A is a complex-valued random variable. For a fixed frequency ω0 we define
a random sinusoidal sequence s = {s(n)} by s(n) = Aeinω0 . We assume
that θ has the uniform distribution over [−π, π] so that the expected value
of s(n) is zero. The correlation function for s is

ρs(m) = E(s(n)s(n − m)) = E(|A|2)eimω0

and the power spectrum of s is

Ss(ω) = E(|A|2)
∞
∑

m=−∞

eim(ω0−ω),

so that, by Equation (3.7), we have

Ss(ω) = E(|A|2)δ(ω − ω0).
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We generalize this example to the case of multiple independent sinusoids.
Suppose that, for j = 1, ..., J , we have fixed frequencies ωj and indepen-
dent complex-valued random variables Aj . We let our random sequence be
defined by

s(n) =

J
∑

j=1

Aje
inωj .

Then the correlation function for x is

ρs(m) =

J
∑

j=1

E(|Aj |2)eimωj

and the power spectrum for s is

Ss(ω) =

J
∑

j=1

E(|Aj |2)δ(ω − ωj).

A commonly used model in signal processing is that of independent sinu-
soids in additive noise.

Let q = {q(n)} be an arbitrary weak-sense stationary discrete random
sequence, with correlation function ρq(m) and power spectrum Sq(ω). We
say that q is white noise if ρq(m) = 0 for m not equal to zero, or, equiv-
alently, if the power spectrum Sq(ω) is constant over the interval [−π, π].
The independent sinusoids in additive noise model is a random sequence
of the form

x(n) =

J
∑

j=1

Aje
inωj + q(n).

The signal power is defined to be ρs(0), which is the sum of the E(|Aj |2),
while the noise power is ρq(0). The signal-to-noise ratio (SNR) is the ratio
of signal power to noise power.

It is often the case that the SNR is quite low and it is desirable to
process the x to enhance this ratio. The data we have is typically finitely
many values of x(n), say for n = 1, 2, ..., N . One way to process the data is
to estimate ρx(m) for some small number of integers m around zero, using,
for example, the lag products estimate

ρ̂x(m) =
1

N − m

N−m
∑

n=1

x(n)x(n − m),

for m = 0, 1, ..., M < N and ρ̂x(−m) = ρ̂x(m). Because ρq(m) = 0 for
m not equal to zero, we will have ρ̂x(m) approximating ρs(m) for nonzero
values of m, thereby reducing the effect of the noise.
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The additive noise is said to be correlated or non-white if it is not
the case that ρx(m) = 0 for all nonzero m. In this case the noise power
spectrum is not constant, and so may be concentrated in certain regions of
the interval [−π, π].

4.7 Spread-Spectrum Communication

In this section we return to the random-coin-flip model, this time allowing
the coin to be biased, that is, p need not be 0.5. Let s = {s(n)} be a random
sequence, such as s(n) = Aeinω0 , with E(s(n)) = µ and correlation function
ρs(m). Define a second random sequence x by

x(n) = s(n)c(n).

The random sequence x is generated from the random signal s by randomly
changing its signs. We can show that

E(x(n)) = µ(2p − 1)

and, for m not equal to zero,

ρx(m) = ρs(m)(2p − 1)2,

with ρx(0) = ρs(0) + 4p(1 − p)µ2. Therefore, if p = 1 or p = 0 we get
ρx(m) = ρs(m) for all m, but for p = 0.5 we get ρx(m) = 0 for m not equal
to zero. If the coin is unbiased, then the random sign changes convert the
original signal s into white noise. Generally, we have

Sx(ω) = (2p − 1)2Ss(ω) + (1 − (2p − 1)2)(µ2 + ρs(0)),

which says that the power spectrum of x is a combination of the signal
power spectrum and a white-noise power spectrum, approaching the white-
noise power spectrum as p approaches 0.5. If the original signal power
spectrum is concentrated within a small interval, then the effect of the
random sign changes is to spread that spectrum. Once we know what the
sequence c is we can recapture the original signal from s(n) = x(n)c(n).
The use of such a spread spectrum permits the sending of multiple narrow-
band signals, without confusion, as well as protecting against any narrow-
band additive interference.

4.8 Stochastic Difference Equations

The ordinary first-order differential equation y′(t) + ay(t) = f(t), with

initial condition y(0) = 0 has for its solution y(t) = e−at
∫ t

0
easf(s)ds.
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One way to look at such differential equations is to consider f(t) to be
the input to a system having y(t) as its output. The system determines
which terms will occur on the left side of the differential equation. In many
applications the input f(t) is viewed as random noise and the output is then
a continuous-time random process. Here we want to consider the discrete
analog of such differential equations.

We replace the first derivative with the first difference, y(n + 1) − y(n)
and we replace the input with the random-coin-flip sequence c = {c(n)},
to obtain the random difference equation

y(n + 1) − y(n) + ay(n) = c(n). (4.7)

With b = 1 − a and 0 < b < 1 we have

y(n + 1) − by(n) = c(n). (4.8)

The solution is y = {y(n)} given by

y(n) = bn
n

∑

k=−∞

b−kc(k). (4.9)

Comparing this with the solution of the differential equation, we see that
the term bn plays the role of e−at = (e−a)t, so that b = 1 − a is substitut-
ing for e−a. The infinite sum replaces the infinite integral, with b−kc(k)
replacing the integrand easf(s).

The solution sequence y given by Equation (4.9) is a weak-sense sta-
tionary random sequence and its correlation function is

ρy(m) = bm/(1 − b2).

Since

bn
n

∑

k=−∞

b−k = 1 − b

the random sequence (1 − b)−1y(n) is an infinite moving-average random
sequence formed from the random sequence c.

We can derive the solution in Equation (4.9) using z-transforms. The
expression y(n) − by(n − 1) can be viewed as the output of a LSI system
with h(0) = 1 and h(1) = −b. Then H(z) = 1 − bz−1 = (z − b)/z and the
inverse H(z)−1 = z/(z − b) describes the inverse system. Since

H(z)−1 = z/(z − b) = 1/(1 − bz−1) = 1 + bz−1 + b2z−2 + ...

the inverse system applied to input c = {c(n)} is

y(n) = 1c(n) + bc(n − 1) + b2c(n − 2) + ... = bn
n

∑

k=−∞

b−kc(k).
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