
Optimization

Charles L. Byrne
Department of Mathematical Sciences

University of Massachusetts Lowell
Lowell, MA 01854

March 4, 2009

(The most recent draft is available as a pdf file at
http://faculty.uml.edu/cbyrne/cbyrne.html)

2

Contents

1 Introduction 3
1.1 Two Types of Applications 3

1.1.1 Problems of Optimization 3
1.1.2 Problems of Inference 4

1.2 Types of Optimization Problems 5
1.3 Algorithms . 5

1.3.1 Root-Finding . 5
1.3.2 Iterative Descent Methods 6
1.3.3 Solving Systems of Linear Equations 7
1.3.4 Imposing Constraints 7
1.3.5 Operators . 8
1.3.6 Search Techniques 8
1.3.7 Acceleration . 8

2 Optimization without Calculus 9
2.1 The Arithmetic Mean-Geometric Mean Inequality 9
2.2 An Application of the AGM Inequality: the Number e . . . 10
2.3 Extending the AGM Inequality 10
2.4 Optimization Using the AGM Inequality 11

2.4.1 Example 1 . 11
2.4.2 Example 2 . 11
2.4.3 Example 3 . 12

2.5 The Hölder and Minkowski Inequalities 12
2.5.1 Hölder’s Inequality 12
2.5.2 Minkowski’s Inequality 13

2.6 Cauchy’s Inequality . 14
2.7 Optimizing using Cauchy’s Inequality 15

2.7.1 Example 4 . 15
2.7.2 Example 5 . 15
2.7.3 Example 6 . 16

2.8 An Inner Product for Square Matrices 18
2.9 Exercises . 19

i

ii CONTENTS

3 Geometric Programming 21
3.1 An Example of a GP Problem 21
3.2 Posynomials and the GP Problem 22
3.3 The Dual GP Problem . 23
3.4 Solving the GP Problem . 25
3.5 Solving the DGP Problem 25

3.5.1 The MART . 25
3.5.2 Using the MART to Solve the DGP Problem 27

3.6 Constrained Geometric Programming 28
3.7 Exercises . 30

4 Convex Sets 31
4.1 The Geometry of Real Euclidean Space 31

4.1.1 Inner Products . 31
4.1.2 Cauchy’s Inequality 32

4.2 A Bit of Topology . 33
4.3 Convex Sets in RJ . 34

4.3.1 Basic Definitions . 34
4.3.2 Orthogonal Projection onto Convex Sets 36

4.4 Some Results on Projections 38
4.5 Linear and Affine Operators on RJ 39
4.6 The Fundamental Theorems 40

4.6.1 Basic Definitions . 41
4.6.2 The Separation Theorem 41
4.6.3 The Support Theorem 42

4.7 Theorems of the Alternative 43
4.8 Another Proof of Farkas’ Lemma 47
4.9 Exercises . 49

5 Linear Programming 51
5.1 Basic Linear Algebra . 51

5.1.1 Bases and Dimension 51
5.1.2 Systems of Linear Equations 53
5.1.3 Real and Complex Systems of Linear Equations . . . 54

5.2 Primal and Dual Problems 55
5.2.1 An Example . 56
5.2.2 Canonical and Standard Forms 56
5.2.3 Weak Duality . 57
5.2.4 Strong Duality . 58
5.2.5 Gale’s Strong Duality Theorem 61

5.3 Some Examples . 62
5.3.1 The Diet Problem 62
5.3.2 The Transport Problem 62

5.4 The Simplex Method . 63

CONTENTS iii

5.5 An Example of the Simplex Method 65
5.6 Another Example of the Simplex Method 67
5.7 Some Possible Difficulties 69

5.7.1 A Third Example: 69
5.8 Topics for Projects . 70
5.9 Exercises . 70

6 Matrix Games and Optimization 73
6.1 Deterministic Solutions . 73

6.1.1 Optimal Pure Strategies 74
6.1.2 Optimal Randomized Strategies 74
6.1.3 The Min-Max Theorem 75

6.2 Symmetric Games . 77
6.2.1 An Example of a Symmetric Game 77
6.2.2 Comments on the Proof of the Min-Max Theorem . 78

6.3 Positive Games . 78
6.3.1 Exercises . 78
6.3.2 Comments . 79

6.4 Learning the Game . 79
6.4.1 An Iterative Approach 79
6.4.2 Exercise . 80

6.5 Non-Constant-Sum Games 80
6.5.1 The Prisoners’ Dilemma 81
6.5.2 Two Pay-Off Matrices Needed 81
6.5.3 An Example: Illegal Drugs in Sports 82

7 Convex Functions 83
7.1 Functions of a Single Real Variable 83

7.1.1 Fundamental Theorems 83
7.1.2 Some Proofs . 84
7.1.3 Lipschitz Continuity 85
7.1.4 The Convex Case . 85

7.2 Functions of Several Real Variables 89
7.2.1 The Convex Case . 91
7.2.2 Subdifferentials and Subgradients 91

7.3 Exercises . 95

8 Convex Programming 97
8.1 The Primal Problem . 97

8.1.1 The Perturbed Problem 97
8.1.2 The Sensitivity Vector 98

8.2 From Constrained to Unconstrained 99
8.3 Saddle Points . 99

8.3.1 The Primal and Dual Problems 100

iv CONTENTS

8.3.2 The Main Theorem 100
8.3.3 A Duality Approach to Optimization 101

8.4 The Karush-Kuhn-Tucker Theorem 101
8.4.1 The KKT Theorem: Saddle-Point Form 101
8.4.2 The KKT Theorem- The Gradient Form 102

8.5 On the Existence of Lagrange Multipliers 103
8.6 The Problem of Equality Constraints 103

8.6.1 The Problem . 103
8.6.2 The KKT Theorem for Mixed Constraints 104
8.6.3 The KKT Theorem for LP 104

8.7 Two Examples . 105
8.7.1 A Linear Programming Problem 106
8.7.2 A Nonlinear Convex Programming Problem 107

8.8 The Dual Problem . 108
8.8.1 When is MP = MD? 109
8.8.2 The Primal-Dual Method 109
8.8.3 An Example . 110
8.8.4 An Iterative Algorithm for the Dual Problem 110

8.9 Minimum One-Norm Solutions 110
8.9.1 Reformulation as an LP Problem 111
8.9.2 Image Reconstruction 112

8.10 Exercises . 113

9 Iterative Optimization 115
9.1 Optimizing Functions of a Single Real Variable 116

9.1.1 Iteration and Operators 116
9.2 Gradient Operators . 117
9.3 Optimizing Functions of Several Real Variables 118
9.4 The Newton-Raphson Approach 119

9.4.1 Functions of a Single Variable 119
9.4.2 Functions of Several Variables 120

9.5 Approximate Newton-Raphson Methods 121
9.5.1 Avoiding the Hessian Matrix 121
9.5.2 Avoiding the Gradient 122

9.6 Derivative-Free Methods . 122
9.6.1 Multi-directional Search Algorithms 123
9.6.2 The Nelder-Mead Algorithm 123
9.6.3 Comments on the Nelder-Mead Algorithm 124

9.7 Rates of Convergence . 124
9.7.1 Basic Definitions . 124
9.7.2 Illustrating Quadratic Convergence 124
9.7.3 Motivating the Newton-Raphson Method 125

9.8 Feasible-Point Methods . 125
9.8.1 The Reduced Newton-Raphson Method 125

CONTENTS v

9.8.2 A Primal-Dual Approach 127
9.9 Simulated Annealing . 128
9.10 Exercises . 128

10 Operators 131
10.1 Operators . 131
10.2 Strict Contractions . 132
10.3 Two Useful Identities . 133
10.4 Orthogonal Projection Operators 134

10.4.1 Properties of the Operator PC 134
10.5 Averaged Operators . 135

10.5.1 Gradient Operators 136
10.5.2 The Krasnoselskii-Mann Theorem 137

10.6 Affine Linear Operators . 138
10.6.1 The Hermitian Case 138

10.7 Paracontractive Operators 138
10.7.1 Linear and Affine Paracontractions 139
10.7.2 The Elsner-Koltracht-Neumann Theorem 140

10.8 Exercises . 142

11 The Algebraic Reconstruction Technique 143
11.1 Background . 144
11.2 The ART . 144

11.2.1 Calculating the ART 145
11.2.2 Full-cycle ART . 145
11.2.3 Relaxed ART . 145
11.2.4 Constrained ART . 146

11.3 Convergence Results for ART 147
11.3.1 When Ax = b Has Solutions 147
11.3.2 When Ax = b Has No Solutions 147

11.4 The Geometric Least-Squares Solution 148
11.5 Regularized ART . 149
11.6 Avoiding the Limit Cycle 150

11.6.1 Double ART (DART) 150
11.6.2 Strongly Underrelaxed ART 150

11.7 Exercises . 151

12 Partial Gradient Methods 153
12.1 Decomposing the Objective Function 153
12.2 A Partial Gradient Algorithm 154
12.3 Convergence of the PGA . 154
12.4 The Example of the ART 155

vi CONTENTS

13 Block-Iterative ART 157
13.1 Introduction and Notation 157
13.2 Cimmino’s Algorithm . 159
13.3 The Landweber Algorithms 160

13.3.1 Finding the Optimum γ 160
13.3.2 The Projected Landweber Algorithm 162

13.4 Some Upper Bounds for L 163
13.4.1 Our Basic Eigenvalue Inequality 163
13.4.2 Another Upper Bound for L 166

13.5 The Basic Convergence Theorem 167
13.6 Simultaneous Iterative Algorithms 168

13.6.1 The General Simultaneous Iterative Scheme 169
13.6.2 Some Convergence Results 170

13.7 Block-iterative Algorithms 172
13.7.1 The Block-Iterative Landweber Algorithm 173
13.7.2 The BICAV Algorithm 173
13.7.3 A Block-Iterative CARP1 174
13.7.4 Using Sparseness . 175

13.8 Iterative Regularization . 175
13.8.1 Iterative Regularization with Landweber’s Algorithm 176

13.9 Exercises . 176

14 The Split Feasibility Problem 177
14.1 The CQ Algorithm . 177
14.2 Particular Cases of the CQ Algorithm 179

14.2.1 The Landweber algorithm 179
14.2.2 The Projected Landweber Algorithm 179
14.2.3 Convergence of the Landweber Algorithms 179
14.2.4 Application of the CQ Algorithm in Dynamic ET . . 180
14.2.5 Related Methods and Applications 181

14.3 Exercises . 181

15 The Multiplicative ART (MART) 183
15.1 A Special Case of MART 183
15.2 MART in the General Case 184
15.3 ART and MART as Sequential Projection Methods 186

15.3.1 Cross-Entropy or the Kullback-Leibler Distance . . . 186
15.3.2 Convergence of MART 186
15.3.3 Projecting with the KL Distance 187
15.3.4 Weighted KL Projections 188

15.4 Proof of Convergence for MART I 189
15.5 Comments on the Rate of Convergence of MART 190
15.6 Exercises . 190

CONTENTS vii

16 Rescaled Block-Iterative (RBI) Methods 191
16.1 Overview . 191

16.1.1 The SMART and its variants 191
16.1.2 The EMML and its variants 192
16.1.3 Block-iterative versions of SMART and EMML . . . 193
16.1.4 Basic Assumptions 193

16.2 The SMART and the EMML method 193
16.2.1 The SMART Algorithm 194
16.2.2 The EMML Algorithm 194
16.2.3 Likelihood Maximization 195

16.3 A Partial Gradient Approach 196
16.3.1 The EMML Algorithm 196
16.3.2 The SMART Algorithm 197

16.4 Exercises . 199

17 Sequential Unconstrained Minimization Algorithms 201
17.1 Introduction . 201
17.2 Barrier-Function Methods (I) 203

17.2.1 Examples of Barrier Functions 203
17.3 Penalty-Function Methods (I) 204

17.3.1 Imposing Constraints 204
17.3.2 Examples of Penalty Functions 205
17.3.3 The Roles Penalty Functions Play 208

17.4 Proximity-Function Minimization (I) 209
17.4.1 Proximal Minimization Algorithm 209
17.4.2 The Method of Auslander and Teboulle 209

17.5 The Simultaneous MART (SMART) (I) 210
17.5.1 The SMART Iteration 210
17.5.2 SMART as Alternating Minimization 210

17.6 Convergence Theorems for SUMMA 211
17.7 Barrier-Function Methods (II) 213
17.8 Penalty-Function Methods (II) 215

17.8.1 Penalty-Function Methods as Barrier-Function Meth-
ods . 215

17.9 The Proximal Minimization Algorithm (II) 217
17.9.1 The Method of Auslander and Teboulle 219

17.10The Simultaneous MART (II) 220
17.10.1The SMART as a Case of SUMMA 220
17.10.2The SMART as a Case of the PMA 221
17.10.3The EMML Algorithm 222

17.11Minimizing KL(Px, y) with upper and lower bounds on the
vector x . 223

17.12Computation . 224
17.12.1Landweber’s Algorithm 224

viii CONTENTS

17.12.2Extending the PMA 225
17.13Connections with Karmarkar’s Method 227
17.14Exercises . 227

18 Calculus of Variations 229
18.1 Some Examples . 230

18.1.1 The Shortest Distance 230
18.1.2 The Brachistochrone Problem 230
18.1.3 Minimal Surface Area 231
18.1.4 The Maximum Area 231
18.1.5 Maximizing Burg Entropy 232

18.2 Comments on Notation . 232
18.3 The Euler-Lagrange Equation 233
18.4 Special Cases of the Euler-Lagrange Equation 234

18.4.1 If f is independent of v 234
18.4.2 If f is independent of u 234

18.5 Using the Euler-Lagrange Equation 235
18.5.1 The Shortest Distance 235
18.5.2 The Brachistochrone Problem 236
18.5.3 Minimizing the Surface Area 237

18.6 Problems with Constraints 238
18.6.1 The Isoperimetric Problem 238
18.6.2 Burg Entropy . 239

18.7 The Multivariate Case . 239
18.8 Finite Constraints . 241

18.8.1 The Geodesic Problem 241
18.8.2 An Example . 243

18.9 Exercises . 244

19 Appendix: Metric Spaces and Norms 245
19.1 Metric Spaces . 245
19.2 Analysis in Metric Space . 246
19.3 Norms . 247

19.3.1 Some Common Norms on CJ 247
19.4 Eigenvalues and Eigenvectors 248

19.4.1 The Singular-Value Decomposition 249
19.5 Matrix Norms . 250

19.5.1 Induced Matrix Norms 250
19.5.2 Condition Number of a Square Matrix 251
19.5.3 Some Examples of Induced Matrix Norms 251
19.5.4 The Euclidean Norm of a Square Matrix 253
19.5.5 Diagonalizable Matrices 254
19.5.6 Gerschgorin’s Theorem 255
19.5.7 Strictly Diagonally Dominant Matrices 255

CONTENTS ix

19.6 Exercises . 255

20 Appendix: Differentiation 257
20.1 Directional Derivative . 257

20.1.1 Definitions . 257
20.2 Partial Derivatives . 258
20.3 Some Examples . 258

20.3.1 Example 1. 258
20.3.2 Example 2. 259

20.4 Gâteaux Derivative . 259
20.5 Fréchet Derivative . 260

20.5.1 The Definition . 260
20.5.2 Properties of the Fréchet Derivative 260

20.6 The Chain Rule . 260
20.7 Exercises . 261

21 Appendix: Inner Product Spaces 263
21.1 Background . 263

21.1.1 The Vibrating String 263
21.1.2 The Sturm-Liouville Problem 264

21.2 The Complex Vector Dot Product 265
21.2.1 The Two-Dimensional Case 265
21.2.2 Orthogonality . 266

21.3 Generalizing the Dot Product: Inner Products 267
21.3.1 Defining an Inner Product and Norm 267
21.3.2 Some Examples of Inner Products 268

21.4 Best Approximation and the Orthogonality Principle 270
21.4.1 Best Approximation 271
21.4.2 The Orthogonality Principle 271

21.5 Gram-Schmidt Orthogonalization 272

22 Appendix: Conjugate-Direction Algorithms 273
22.1 Iterative Minimization . 273
22.2 Quadratic Optimization . 274
22.3 Conjugate Bases for RJ . 277

22.3.1 Conjugate Directions 277
22.3.2 The Gram-Schmidt Method 278

22.4 The Conjugate Gradient Method 279

23 Appendix: Quadratic Programming 283
23.1 The Quadratic-Programming Problem 283
23.2 Sequential Quadratic Programming 285

x CONTENTS

24 Appendix: Properties of Averaged Operators 287
24.1 General Properties of Averaged Operators 287
24.2 The Main Result . 288
24.3 Averaged Linear Operators 289

24.3.1 Hermitian Linear Operators 290
24.4 Exercises . 291

25 Appendix: Fenchel Duality 293
25.1 The Legendre-Fenchel Transformation 293

25.1.1 The Fenchel Conjugate 293
25.1.2 The Conjugate of the Conjugate 294
25.1.3 Some Examples of Conjugate Functions 294
25.1.4 Conjugates and Sub-gradients 295
25.1.5 The Conjugate of a Concave Function 296

25.2 Fenchel’s Duality Theorem 296
25.2.1 Fenchel’s Duality Theorem: Differentiable Case . . . 297
25.2.2 Optimization over Convex Subsets 298

25.3 An Application to Game Theory 299
25.3.1 Pure and Randomized Strategies 299
25.3.2 The Min-Max Theorem 299

26 Appendix: Proximal Minimization 303
26.1 Moreau’s Proximity Operators 303

26.1.1 The Moreau Envelope 303
26.1.2 Moreau’s Theorem and Applications 304
26.1.3 Iterative Minimization of mfz 305
26.1.4 Forward-Backward Splitting 306
26.1.5 Generalizing the Moreau Envelope 306

26.2 Proximity Operators using Bregman Distances 307
26.2.1 Teboulle’s Entropic Proximal Mappings 307
26.2.2 Proximal Minimization of Censor and Zenios 307

26.3 Exercises . 308

27 Appendix: Bregman-Legendre Functions 309
27.1 Essential Smoothness and Essential Strict Convexity 309
27.2 Bregman Projections onto Closed Convex Sets 310
27.3 Bregman-Legendre Functions 311
27.4 Useful Results about Bregman-Legendre Functions 311

28 Appendix: Likelihood Maximization 313
28.1 Maximizing the Likelihood Function 313

28.1.1 Example 1: Estimating a Gaussian Mean 314
28.1.2 Example 2: Estimating a Poisson Mean 315
28.1.3 Example 3: Estimating a Uniform Mean 315

CONTENTS 1

28.1.4 Example 4: Image Restoration 316
28.1.5 Example 5: Poisson Sums 316
28.1.6 Discrete Mixtures 317

28.2 Alternative Approaches . 318

29 Appendix: Reconstruction from Limited Data 321
29.1 The Optimization Approach 321
29.2 Introduction to Hilbert Space 322

29.2.1 Minimum-Norm Solutions 323
29.3 A Class of Inner Products 324
29.4 Minimum-T -Norm Solutions 324
29.5 The Case of Fourier-Transform Data 325

29.5.1 The L2(−π, π) Case 325
29.5.2 The Over-Sampled Case 325
29.5.3 Using a Prior Estimate of f 326

30 Appendix: Compressed Sensing 329
30.1 Compressed Sensing . 329
30.2 Sparse Solutions . 331

30.2.1 Maximally Sparse Solutions 331
30.2.2 Minimum One-Norm Solutions 331
30.2.3 Why the One-Norm? 331
30.2.4 Comparison with the PDFT 332
30.2.5 Iterative Reweighting 333

30.3 Why Sparseness? . 333
30.3.1 Signal Analysis . 333
30.3.2 Locally Constant Signals 335
30.3.3 Tomographic Imaging 335

30.4 Compressed Sampling . 336

31 Appendix: Urn Models 337
31.1 The Urn Model for Remote Sensing 337
31.2 Hidden Markov Models . 338

Bibliography 339

Index 353

2 CONTENTS

Chapter 1

Introduction

In this course we focus on three things:

• 1. mathematical problems of maximizing or minimizing functions
of one or several variables, possibly subject to constraints on those
variables;

• 2. applications giving rise to such optimization problems; and

• 3. algorithms to solve such problems.

In this chapter we present a brief overview of the topics to be discussed
in more detail later.

1.1 Two Types of Applications

Optimization means maximizing or minimizing some function of one or,
more often, several variables. There are two distinct types of applications
that lead to optimization problems, which, to give them a name, we shall
call problems of optimization and problems of inference. We shall consider
both types in this book.

1.1.1 Problems of Optimization

On the one hand, there are problems of optimization, in which optimizing
the given function is, more or less, the sole and natural objective. The
main goal, maximum profits, shortest commute, is not open to question,
although the precise function involved will depend on the simplifications
adopted as the real-world problem is turned into mathematics. Examples
of such problems are a manufacturer seeking to maximize profits, subject
to whatever restrictions the situation imposes, or a commuter trying to

3

4 CHAPTER 1. INTRODUCTION

minimize the time it takes to get to work, subject, of course, to speed
limits. In converting the real-world problem to a mathematical problem,
the manufacturer may or may not ignore non-linearities such as economies
of scale, and the commuter may or may not employ probabilistic models
of traffic density. The resulting mathematical optimization problem to be
solved will depend on such choices, but the original real-world problem is
one of optimization, nevertheless.

Operations Research (OR) is a broad field involving a variety of applied
optimization problems. Wars and organized violence have always given
impetus to technological advances, most significantly during the twentieth
century. An important step was taken when scientists employed by the
military realized that studying and improving the use of existing technology
could be as important as discovering new technology. Conducting research
into on-going operations, that is, doing operations research, led to the
search for better, indeed, optimal, ways to schedule ships entering port, to
design convoys, to paint the under-sides of aircraft, to hunt submarines, and
many other seemingly mundane tasks [106]. Problems having to do with
the allocation of limited resources arise in a wide variety of applications,
all of which fall under the broad umbrella of OR.

1.1.2 Problems of Inference

On the other hand, there are problems of inference, in which optimization
is a useful tool, but not the primary objective. These are problems in which
estimates are to be made from observations. Such problems arise in many
remote sensing applications, radio astronomy, or medical imaging, for ex-
ample, in which, for practical reasons, the data obtained are insufficient or
too noisy to specify a unique source, and one turns to optimization meth-
ods, such as likelihood maximization or least-squares, to provide usable
approximations. In such cases, it is not the optimization of a function that
concerns us, but the optimization of technique. We cannot know which
reconstructed image is the best, in the sense of most closely describing
the true situation, but we do know which techniques of reconstruction are
“best” in some specific sense. We choose techniques such as likelihood or
entropy maximization, or least-mean-squares minimization, because these
methods are “optimal” in some sense, not because any single result ob-
tained using these methods is guaranteed to be the best. Generally, these
methods are “best”in some average sense; indeed, this is the basic idea in
statistical estimation.

As we shall see, in both types of problems, the optimization usually
cannot be performed by algebraic means alone and iterative algorithms are
required.

The mathematical tools required do not usually depend on which type of
problem we are trying to solve. A manufacturer may use the theory of linear

1.2. TYPES OF OPTIMIZATION PROBLEMS 5

programming to maximize profits, while an oncologist may use likelihood
maximization to image a tumor and linear programming to determine a
suitable spatial distribution of radiation intensities for the therapy. The
only difference, perhaps, is that the doctor may have some choice in how,
or even whether or not, to involve optimization in solving the medical
problems, while the manufacturer’s problem is an optimization problem
from the start, and a linear programming problem once the mathematical
model is selected.

1.2 Types of Optimization Problems

The optimization problems we shall discuss differ, one from another, in the
nature of the functions being optimized and the constraints that may or
may not be imposed. The constraints may, themselves, involve other func-
tions; we may wish to minimize f(x), subject to the constraint g(x) ≤ 0.
The functions may be differentiable, or not, they may be linear, or not. If
they are not linear, they may be convex. They may become linear or convex
once we change variables. The various problem types have names, such as
Linear Programming, Quadratic Programming, Geometric Programming,
and Convex Programming; the use of the term ‘programming’ is an his-
torical accident and has no connection with computer programming.

All of the problems discussed so far involve functions of one or several
real variables. In the Calculus of Variations, the function to be optimized
is a functional, which is a real-valued function of functions. For example,
we may wish to find the curve having the shortest length connecting two
given points, say (0, 0) and (1, 1), in R2. The functional to be minimized
is

J(y) =
∫ 1

0

√
1 +

(dy
dx

)2
dx.

We know that the optimal function is a straight line. In general, the optimal
function y = f(x) will satisfy a differential equation, known as the Euler-
Lagrange Equation.

1.3 Algorithms

The algorithms we shall study include general-purpose optimization meth-
ods, as well as techniques tailored to particular types of problems.

1.3.1 Root-Finding

One of the first applications of the derivative that we encounter in Calcu-
lus I is optimization, maximizing or minimizing a differentiable real-valued

6 CHAPTER 1. INTRODUCTION

function f(x) of a single real variable over x in some interval [a, b]. Since
f(x) is differentiable, it is continuous, so we know that f(x) attains its
maximum and minimum values over the interval [a, b]. The standard pro-
cedure is to differentiate f(x) and compare the values of f(x) at the places
where f ′(x) = 0 with the values f(a) and f(b). These places include the
values of x where the optimal values of f(x) occur. However, we may not
be able to solve the equation f ′(x) = 0 algebraically, and may need to
employ numerical, approximate techniques. It may, in fact, be simpler to
use an iterative technique to minimize f(x) directly.

Perhaps the simplest example of an iterative method is the bi-section
method for finding a root of a continuous function of a single real variable.

Let g : R → R be continuous. Suppose that g(a) < 0 and g(b) > 0.
Then, by the Intermediate Value Theorem, we know that there is a point
c in (a, b) with g(c) = 0. Let m = a+b

2 be the mid-point of the interval.
If g(m) = 0, then we are done. If g(m) < 0, replace a with m; otherwise,
replace b with m. Now calculate the mid-point of the new interval and
continue. At each step, the new interval is half as big as the old one and
still contains a root of g(x). The distance from the left end point to the
root is not greater than the length of the interval, which provides a good
estimate of the accuracy of the approximation.

1.3.2 Iterative Descent Methods

Suppose that we wish to minimize the real-valued function f : RJ → R
of J real variables. If f is Gâteaux-differentiable (see appendix), then the
two-sided directional derivative of f , at the point a, in the direction of the
unit vector d, is

f ′(a; d) = lim
t→0

1
t
[f(a+ td)− f(a)] = 〈∇f(a), d〉.

According to the Cauchy-Schwarz Inequality, we have

|〈∇f(a), d〉| ≤ ||∇f(a)|| ||d||,

with equality if and only if the direction vector d is parallel to the vector
∇f(a). Therefore, from the point a, the direction of greatest increase of f
is d = ∇f(a), and the direction of greatest decrease is d = −∇f(a).

If f is Gâteaux-differentiable, and f(a) ≤ f(x), for all x, then ∇f(a) =
0. Therefore, we can, in theory, find the minimum of f by finding the point
(or points) x = a where the gradient is zero. For example, suppose we wish
to minimize the function

f(x, y) = 3x2 + 4xy + 5y2 + 6x+ 7y + 8.

Setting the partial derivatives to zero, we have

0 = 6x+ 4y + 6,

1.3. ALGORITHMS 7

and
0 = 4x+ 10y + 7.

Therefore, minimizing f(x, y) involves solving this system of two linear
equations in two unknowns. This is easy, but if f has many variables,
not just two, or if f is not a quadratic function, the resulting system will
be quite large and may include nonlinear functions, and we may need to
employ iterative methods to solve this system. Once we decide that we need
to use iterative methods, we may as well consider using them directly on
the original optimization problem, rather than to solve the system derived
by setting the gradient to zero. We cannot hope to solve all optimization
problems simply by setting the gradient to zero and solving the resulting
system of equations algebraically.

For k = 0, 1, ..., having calculated the current estimate xk, we select a
direction vector dk such that f(xk + αdk) is decreasing, as a function of
α > 0, and a step-length αk. Our next estimate is xk+1 = xk + αkd

k. We
may choose αk to minimize f(xk + αdk), as a function of α, although this
is usually computationally difficult. For (Gâteaux) differentiable f , the
gradient, ∇f(x), is the direction of greatest increase of f , as we move away
from the point x. Therefore, it is reasonable, although not required, to
select dk = −∇f(xk) as the new direction vector; then we have a gradient
descent method.

1.3.3 Solving Systems of Linear Equations

Many of the problems we shall consider involve solving, as least approxi-
mately, systems of linear equations. When an exact solution is sought and
the number of equations and the number of unknowns are small, meth-
ods such as Gauss elimination can be used. It is common, in applications
such as medical imaging, to encounter problems involving hundreds or even
thousands of equations and unknowns. It is also common to prefer inexact
solutions to exact ones, when the equations involve noisy, measured data.
Even when the number of equations and unknowns is large, there may not
be enough data to specify a unique solution, and we need to incorporate
prior knowledge about the desired answer. Such is the case with medi-
cal tomographic imaging, in which the images are artificially discretized
approximations of parts of the interior of the body.

1.3.4 Imposing Constraints

The iterative algorithms we shall investigate begin with an initial guess
x0 of the solution, and then generate a sequence {xk}, converging, in the
best cases, to our solution. Suppose we wish to minimize f(x) over all x
in RJ having non-negative entries. An iterative algorithm is said to be an
interior-point method if each vector xk has non-negative entries.

8 CHAPTER 1. INTRODUCTION

1.3.5 Operators

Most of the iterative algorithms we shall study involve an operator, that
is, a function T : RJ → RJ . The algorithms begin with an initial guess,
x0, and then proceed from xk to xk+1 = Txk. Ideally, the sequence {xk}
converges to the solution to our optimization problem. In gradient descent
methods with fixed step-length α, for example, the operator is

Tx = x− α∇f(x).

In problems with non-negativity constraints our solution x is required to
have non-negative entries xj . In such problems, the clipping operator T ,
with (Tx)j = max{xj , 0}, plays an important role.

A subset C of RJ is convex if, for any two points in C, the line segment
connecting them is also within C. As we shall see, for any x outside C,
there is a point c within C that is closest to x; this point c is called the
orthogonal projection of x onto C, and we write c = PCx. Operators of the
type T = PC play important roles in iterative algorithms. The clipping
operator defined previously is of this type, for C the non-negative orthant
of RJ , that is, the set

RJ+ = {x ∈ RJ |xj ≥ 0, j = 1, ..., J}.

1.3.6 Search Techniques

In linear programming, it is known that the solution to the problem is one
of a finite number of vectors, the vertices, each of which can be calculated.
The problem is to avoid having to calculate all of them. Useful algorithms,
such as Dantzig’s simplex method, move from one vertex to another in an
efficient way, and, at least most of the time, solve the problem in a fraction
of the time that would have been required to check each vertex.

1.3.7 Acceleration

For problems involving many variables, it is important to use algorithms
that provide an acceptable approximation of the solution in a reasonable
amount of time. For medical tomography image reconstruction in a clinical
setting, the algorithm must reconstruct a useful image from scanning data
in the time it takes for the next patient to be scanned, which is roughly
fifteen minutes. Some of the algorithms we shall encounter work fine on
small problems, but require far too much time when the problem is large.
Figuring out ways to speed up convergence is an important part of iterative
optimization. One approach we shall investigate in some detail is the use
of partial gradient methods.

Chapter 2

Optimization without
Calculus

In our study of optimization, we shall encounter a number of sophisticated
techniques, involving first and second partial derivatives, systems of linear
equations, nonlinear operators, specialized distance measures, and so on.
It is good to begin by looking at what can be accomplished without sophis-
ticated techniques, even without calculus. It is possible to achieve much
with powerful, yet simple, inequalities. As someone once remarked, exag-
gerating slightly, in the right hands, the Cauchy Inequality and integration
by parts are all that are really needed.

Students typically encounter optimization problems as applications of
differentiation, while the possibility of optimizing without calculus is left
unexplored. In this chapter we discuss optimization methods based on the
Arithmetic Mean-Geometric Mean Inequality and Cauchy’s Inequality.

2.1 The Arithmetic Mean-Geometric Mean
Inequality

Let x1, ..., xN be positive numbers. According to the famous Arithmetic
Mean-Geometric Mean Inequality, abbreviated AGM Inequality,

G = (x1 · x2 · · · xN)1/N ≤ A =
1
N

(x1 + x2 + ...+ xN), (2.1)

with equality if and only if x1 = x2 = ... = xN . To prove this, consider
the following modification of the product x1 · · · xN . Replace the smallest
of the xn, call it x, with A and the largest, call it y, with x+ y −A. This
modification does not change the arithmetic mean of the N numbers, but
the product increases, unless x = y = A already, since xy ≤ A(x+ y − A)

9

10 CHAPTER 2. OPTIMIZATION WITHOUT CALCULUS

(Why?). We repeat this modification, until all the xn approach A, at which
point the product reaches its maximum.

For example, 2 ·3 ·4 ·6 ·20 becomes 3 ·4 ·6 ·7 ·15, and then 4 ·6 ·7 ·7 ·11,
6 · 7 · 7 · 7 · 8, and finally 7 · 7 · 7 · 7 · 7.

2.2 An Application of the AGM Inequality:
the Number e

We can use the AGM Inequality to show that

lim
n→∞

(1 +
1
n

)n = e. (2.2)

Let f(n) = (1 + 1
n)n, the product of the n+ 1 numbers 1, 1 + 1

n , ..., 1 + 1
n .

Applying the AGM Inequality, we obtain the inequality

f(n) ≤
(n+ 2
n+ 1

)n+1

= f(n+ 1),

so we know that the sequence {f(n)} is increasing. Now define g(n) =
(1+ 1

n)n+1; we show that g(n) ≤ g(n−1) and f(n) ≤ g(m), for all positive
integers m and n. Consider (1 − 1

n)n, the product of the n + 1 numbers
1, 1− 1

n , ..., 1−
1
n . Applying the AGM Inequality, we find that(

1− 1
n+ 1

)n+1

≥
(
1− 1

n

)n
,

or (n

n+ 1

)n+1

≥
(n− 1

n

)n
.

Taking reciprocals, we get g(n) ≤ g(n−1). Since f(n) < g(n) and {f(n)} is
increasing, while {g(n)} is decreasing, we can conclude that f(n) ≤ g(m),
for all positive integers m and n. Both sequences therefore have limits.
Because the difference

g(n)− f(n) =
1
n

(1 +
1
n

)n → 0,

as n → ∞, we conclude that the limits are the same. This common limit
we can define as the number e.

2.3 Extending the AGM Inequality

Suppose, once again, that x1, ..., xN are positive numbers. Let a1, ..., aN be
positive numbers that sum to one. Then the Generalized AGM Inequality
(GAGM Inequality) is

xa1
1 x

a2
2 · · · xaN

N ≤ a1x1 + a2x2 + ...+ aNxN , (2.3)

2.4. OPTIMIZATION USING THE AGM INEQUALITY 11

with equality if and only if x1 = x2 = ... = xN . We can prove this using
the convexity of the function − log x.

A function f(x) is said to be convex over an interval (a, b) if

f(a1t1 + a2t2 + ...+ aN tN) ≤ a1f(t1) + a2f(t2) + ...+ aNf(tN),

for all positive integers N , all an as above, and all real numbers tn in (a, b).
If the function f(x) is twice differentiable on (a, b), then f(x) is convex
over (a, b) if and only if the second derivative of f(x) is non-negative on
(a, b). For example, the function f(x) = − log x is convex on the positive
x-axis. The GAGM Inequality follows immediately.

2.4 Optimization Using the AGM Inequality

We illustrate the use of the AGM Inequality for optimization through sev-
eral examples.

2.4.1 Example 1

Find the minimum of the function

f(x, y) =
12
x

+
18
y

+ xy,

over positive x and y.
We note that the three terms in the sum have a fixed product of 216,

so, by the AGM Inequality, the smallest value of 1
3f(x, y) is (216)1/3 = 6

and occurs when the three terms are equal and each equal to 6, so when
x = 2 and y = 3. The smallest value of f(x, y) is therefore 18.

2.4.2 Example 2

Find the maximum value of the product

f(x, y) = xy(72− 3x− 4y),

over positive x and y.
The terms x, y and 72− 3x− 4y do not have a constant sum, but the

terms 3x, 4y and 72 − 3x − 4y do have a constant sum, namely 72, so we
rewrite f(x, y) as

f(x, y) =
1
12

(3x)(4y)(72− 3x− 4y).

By the AGM Inequality, the product (3x)(4y)(72− 3x− 4y) is maximized
when the factors 3x, 4y and 72 − 3x − 4y are each equal to 24, so when
x = 8 and y = 6. The maximum value of the product is then 1152.

12 CHAPTER 2. OPTIMIZATION WITHOUT CALCULUS

2.4.3 Example 3

Both of the previous two problems can be solved using the standard calculus
technique of setting the two first partial derivatives to zero. Here is an
example that is not so easily solved in that way: minimize the function

f(x, y) = 4x+
x

y2
+

4y
x
,

over positive values of x and y. Try taking the first partial derivatives and
setting them both to zero. Even if we managed to solve this system of
coupled nonlinear equations, deciding if we actually have found the mini-
mum is not easy; take a look at the second derivative matrix, the Hessian
matrix. We can employ the AGM Inequality by rewriting f(x, y) as

f(x, y) = 4
(4x+ x

y2 + 2y
x + 2y

x

4

)
.

The product of the four terms in the arithmetic mean expression is 16, so
the GM is 2. Therefore, 1

4f(x, y) ≥ 2, with equality when all four terms
are equal to 2; that is, 4x = 2, so that x = 1

2 and 2y
x = 2, so y = 1

2 also.
The minimum value of f(x, y) is then 8.

2.5 The Hölder and Minkowski Inequalities

Let c = (c1, ..., cN) and d = (d1, ..., dN) be vectors with complex entries
and let p and q be positive real numbers such that

1
p

+
1
q

= 1.

The p-norm of c is defined to be

‖c‖p =
(N∑
n=1

|cn|p
)1/p

,

with the q-norm of d, denoted ‖d‖q, defined similarly.

2.5.1 Hölder’s Inequality

Hölder’s Inequality is the following:

N∑
n=1

|cndn| ≤ ‖c‖p‖d‖q,

2.5. THE HÖLDER AND MINKOWSKI INEQUALITIES 13

with equality if and only if

(|cn|
‖c‖p

)p
=
(|dn|
‖d‖q

)q
,

for each n.
Hölder’s Inequality follows from the GAGM Inequality. To see this, we

fix n and apply Inequality (2.3), with

x1 =
(|cn|
‖c‖p

)p
,

a1 =
1
p
,

x2 =
(|dn|
‖d‖q

)q
,

and

a2 =
1
q
.

From (2.3) we then have

(|cn|
‖c‖p

)(|dn|
‖d‖q

)
≤ 1
p

(|cn|
‖c‖p

)p
+

1
q

(|dn|
‖d‖q

)q
.

Now sum both sides over the index n.

2.5.2 Minkowski’s Inequality

Minkowski’s Inequality, which is a consequence of Hölder’s Inequality, states
that

‖c+ d‖p ≤ ‖c‖p + ‖d‖p ;

it is the triangle inequality for the metric induced by the p-norm.
To prove Minkowski’s Inequality, we write

N∑
n=1

|cn + dn|p ≤
N∑
n=1

|cn|(|cn + dn|)p−1 +
N∑
n=1

|dn|(|cn + dn|)p−1.

Then we apply Hölder’s Inequality to both of the sums.

14 CHAPTER 2. OPTIMIZATION WITHOUT CALCULUS

2.6 Cauchy’s Inequality

For the choices p = q = 2, Hölder’s Inequality becomes the famous Cauchy
Inequality, which we rederive in a different way in this section. For sim-
plicity, we assume now that the vectors have real entries and for notational
convenience later we use xn and yn in place of cn and dn.

Let x = (x1, ..., xN) and y = (y1, ..., yN) be vectors with real entries.
The inner product of x and y is

〈x, y〉 = x1y1 + x2y2 + ...+ xNyN . (2.4)

The 2-norm of the vector x, which we shall simply call the norm of the
vector x is

‖x‖2 = ‖x‖ =
√
〈x, x〉.

Cauchy’s Inequality is

|〈x, y〉| ≤ ‖x‖ ‖y‖, (2.5)

with equality if and only if there is a real number a such that x = ay.
To prove Cauchy’s Inequality, we begin with the fact that, for every

real number t,

0 ≤ ‖x− ty‖2 = ‖x‖2 − (2〈x, y〉)t+ ‖y‖2t2.

This quadratic in the variable t is never negative, so cannot have two real
roots. It follows that the term under the radical sign in the quadratic
equation must be non-positive, that is,

(2〈x, y〉)2 − 4‖y‖2‖x‖2 ≤ 0. (2.6)

We have equality in (2.6) if and only if the quadratic has a double real
root, say t = a. Then we have

‖x− ay‖2 = 0.

As an aside, suppose we had allowed the variable t to be complex. Clearly
‖x− ty‖ cannot be zero for any non-real value of t. Doesn’t this contradict
the fact that every quadratic has two roots in the complex plane?

The Pólya-Szegö Inequality
We can interpret Cauchy’s Inequality as providing an upper bound for

the quantity (N∑
n=1

xnyn

)2

.

The Pólya-Szegö Inequality provides a lower bound for the same quantity.
Let 0 < m1 ≤ xn ≤M1 and 0 < m2 ≤ yn ≤M2, for all n. Then

N∑
n=1

x2
n

N∑
n=1

y2
n ≤

M1M2 +m1m2

4m1m2M1M2

(N∑
n=1

xnyn

)2

. (2.7)

2.7. OPTIMIZING USING CAUCHY’S INEQUALITY 15

2.7 Optimizing using Cauchy’s Inequality

We present two examples to illustrate the use of Cauchy’s Inequality in
optimization.

2.7.1 Example 4

Find the largest and smallest values of the function

f(x, y, z) = 2x+ 3y + 6z, (2.8)

among the points (x, y, z) with x2 + y2 + z2 = 1.
From Cauchy’s Inequality we know that

49 = (22 + 32 + 62)(x2 + y2 + z2) ≥ (2x+ 3y + 6z)2,

so that f(x, y, z) lies in the interval [−7, 7]. We have equality in Cauchy’s
Inequality if and only if the vector (2, 3, 6) is parallel to the vector (x, y, z),
that is

x

2
=
y

3
=
z

6
.

It follows that x = t, y = 3
2 t, and z = 3t, with t2 = 4

49 . The smallest value
of f(x, y, z) is −7, when x = − 2

7 , and the largest value is +7, when x = 2
7 .

2.7.2 Example 5

The simplest problem in estimation theory is to estimate the value of a
constant c, given J data values zj = c + vj , j = 1, ..., J , where the vj
are random variables representing additive noise or measurement error.
Assume that the expected values of the vj are E(vj) = 0, the vj are uncor-
related, so E(vjvk) = 0 for j different from k, and the variances of the vj
are E(v2

j) = σ2
j > 0. A linear estimate of c has the form

ĉ =
J∑
j=1

bjzj . (2.9)

The estimate ĉ is unbiased if E(ĉ) = c, which forces
∑J
j=1 bj = 1. The best

linear unbiased estimator, the BLUE, is the one for which E((ĉ − c)2) is
minimized. This means that the bj must minimize

E
(J∑
j=1

J∑
k=1

bjbkvjvk

)
=

J∑
j=1

b2jσ
2
j , (2.10)

16 CHAPTER 2. OPTIMIZATION WITHOUT CALCULUS

subject to

J∑
j=1

bj = 1. (2.11)

To solve this minimization problem, we turn to Cauchy’s Inequality.
We can write

1 =
J∑
j=1

bj =
J∑
j=1

(bjσj)
1
σj
.

Cauchy’s Inequality then tells us that

1 ≤

√√√√ J∑
j=1

b2jσ
2
j

√√√√ J∑
j=1

1
σ2
j

,

with equality if and only if there is a constant, say λ, such that

bjσj = λ
1
σj
,

for each j. So we have

bj = λ
1
σ2
j

,

for each j. Summing on both sides and using Equation (2.11), we find that

λ = 1/
J∑
j=1

1
σ2
j

.

The BLUE is therefore

ĉ = λ
J∑
j=1

zj
σ2
j

. (2.12)

When the variances σ2
j are all the same, the BLUE is simply the arithmetic

mean of the data values zj .

2.7.3 Example 6

One of the fundamental operations in signal processing is the filtering the
data vector x = γs + n, to remove the noise component n, while leaving
the signal component s relatively unaltered [44]. This can be done either
to estimate γ, the amount of the signal vector s present, or to detect if
the signal is present at all, that is, to decide if γ = 0 or not. The noise is

2.7. OPTIMIZING USING CAUCHY’S INEQUALITY 17

typically known only through its covariance matrix Q, which is the positive-
definite, symmetric matrix having for its entries Qjk = E(njnk). The filter
usually is linear and takes the form of an estimate of γ:

γ̂ = bTx.

We want |bT s|2 large, and, on average, |bTn|2 small; that is, we want
E(|bTn|2) = bTE(nnT)b = bTQb small. The best choice is the vector b
that maximizes the gain of the filter, that is, the ratio

|bT s|2/bTQb.

We can solve this problem using the Cauchy Inequality.

Definition 2.1 Let S be a square matrix. A non-zero vector u is an eigen-
vector of S if there is a scalar λ such that Su = λu. Then the scalar λ is
said to be an eigenvalue of S associated with the eigenvector u.

Definition 2.2 The transpose, B = AT , of an M by N matrix A is the
N by M matrix having the entries Bn,m = Am,n.

Definition 2.3 A square matrix S is symmetric if ST = S.

A basic theorem in linear algebra is that, for any symmetric N by N
matrix S, RN has an orthogonal basis consisting of eigenvectors of S. If we
then define U to be the matrix whose columns are these eigenvectors and
L the diagonal matrix with the associated eigenvalues on the diagonal, we
can easily see that U is an orthogonal matrix, that is, UTU = I. We can
then write S = ULUT ; this is the eigenvalue/eigenvector decomposition of
S. The eigenvalues of S are always real numbers.

Definition 2.4 A J by J matrix Q is non-negative definite if, for every x
in RJ , we have xTQx ≥ 0. If xTQx > 0 whenever x is not the zero vector,
then Q is said to be positive definite.

We leave it to the reader to show that the eigenvalues of a non-negative
(positive) definite matrix are always non-negative (positive).

A covariance matrix Q is always non-negative definite, since

xTQx = E(|
J∑
j=1

xjnj |2). (2.13)

Therefore, its eigenvalues are non-negative; typically, they are actually pos-
itive, as we shall assume now. We then let C = U

√
LUT , the symmetric

square root of Q. The Cauchy Inequality then tells us that

|bT s|2 = |bTCC−1s|2 ≤ [bTCCT b][sT (C−1)TC−1s],

18 CHAPTER 2. OPTIMIZATION WITHOUT CALCULUS

with equality if and only if the vectors CT b and C−1s are parallel. It follows
that

b = α(CCT)−1s = αQ−1s,

for any constant α. It is standard practice to select α so that bT s = 1,
therefore α = 1/sTQ−1s and the optimal filter b is

b =
1

sTQ−1s
Q−1s.

2.8 An Inner Product for Square Matrices

The trace of a square matrix M , denoted trM , is the sum of the entries
down the main diagonal. Given square matrices A and B with real entries,
the trace of the product BTA defines an inner product, that is

〈A,B〉 = tr(BTA),

where the superscript T denotes the transpose of a matrix. This inner
product can then be used to define a norm of A, called the Frobenius
norm, by

‖A‖F =
√
〈A,A〉 =

√
tr(ATA). (2.14)

From the eigenvector/eigenvalue decomposition, we know that, for every
symmetric matrix S, there is an orthogonal matrix U such that

S = UD(λ(S))UT ,

where λ(S) = (λ1, ..., λN) is a vector whose entries are eigenvalues of the
symmetric matrix S, and D(λ(S)) is the diagonal matrix whose entries are
the entries of λ(S). Then we can easily see that

‖S‖F = ‖λ(S)‖.

Denote by [λ(S)] the vector of eigenvalues of S, ordered in non-increasing
order. We have the following result.

Theorem 2.1 (Fan’s Theorem) Any real symmetric matrices S and R
satisfy the inequality

tr(SR) ≤ 〈[λ(S)], [λ(R)]〉,

with equality if and only if there is an orthogonal matrix U such that

S = UD([λ(S)])UT ,

and
R = UD([λ(R)])UT .

2.9. EXERCISES 19

From linear algebra, we know that S and R can be simultaneously diag-
onalized if and only if they commute; this is a stronger condition than
simultaneous diagonalization.

If S and R are diagonal matrices already, then Fan’s Theorem tells us
that

〈λ(S), λ(R)〉 ≤ 〈[λ(S)], [λ(R)]〉.

Since any real vectors x and y are λ(S) and λ(R), for some symmetric
S and R, respectively, we have the following Hardy-Littlewood-Polya
Inequality:

〈x, y〉 ≤ 〈[x], [y]〉.

Most of the optimization problems discussed in this chapter fall under
the heading of Geometric Programming, which we shall present in a more
formal way in a subsequent chapter.

2.9 Exercises

2.1 Let A be the arithmetic mean of a finite set of positive numbers, with
x the smallest of these numbers, and y the largest. Show that

xy ≤ A(x+ y −A),

with equality if and only if x = y = A.

2.2 Minimize the function

f(x) = x2 +
1
x2

+ 4x+
4
x
,

over positive x. Hint: consider the first two terms and the last two terms
separately. Note that the minimum value of f(x, y) is not the one suggested
by the AGM Inequality, as applied to the four terms taken together.

2.3 Find the maximum value of f(x, y) = x2y, if x and y are restricted to
positive real numbers for which 6x+ 5y = 45. Hint: write 6x as 3x+ 3x.

2.4 Relate Example 4 to eigenvectors and eigenvalues.

2.5 Young’s Inequality Suppose that p and q are positive numbers greater
than one such that 1

p + 1
q = 1. If x and y are positive numbers, then

xy ≤ xp

p
+
yq

q
,

with equality if and only if xp = yq. Hint: use the GAGM Inequality.

20 CHAPTER 2. OPTIMIZATION WITHOUT CALCULUS

2.6 ([126]) For given constants c and d, find the largest and smallest
values of cx+ dy taken over all points (x, y) of the ellipse

x2

a2
+
y2

b2
= 1.

2.7 ([126]) Find the largest and smallest values of 2x + y on the circle
x2 + y2 = 1. Where do these values occur? What does this have to do with
eigenvectors and eigenvalues?

2.8 When a complex M by N matrix A is stored in the computer it is
usually vectorized; that is, the matrix

A =

A11 A12 . . . A1N

A21 A22 . . . A2N

.

.

.
AM1 AM2 . . . AMN

becomes

vec(A) = (A11, A21, ..., AM1, A12, A22, ..., AM2, ..., AMN)T .

(a) Show that the complex dot product vec(A)·vec(B) = vec(B)†vec(A)
can be obtained by

vec(A)·vec(B) = trace (AB†) = tr(AB†).

We can therefore use the trace to define an inner product between matrices:
< A,B >= trace (AB†).

(b) Show that trace (AA†) ≥ 0 for all A, so that we can use the trace to
define the Frobenius norm on matrices: ‖A‖2

F = trace (AA†).

Chapter 3

Geometric Programming

Geometric Programming (GP) involves the minimization of functions of
a special type, known as posynomials. The first systematic treatment of
geometric programming appeared in the book [76], by Duffin, Peterson
and Zener, the founders of geometric programming. As we shall see, the
Generalized Arithmetic-Geometric Mean Inequality plays an important role
in the theoretical treatment of geometric programming.

3.1 An Example of a GP Problem

The following optimization problem was presented originally by Duffin, et
al. [76] and discussed by Peressini et al. in [129]. It illustrates well the
type of problem considered in geometric programming. Suppose that 400
cubic yards of gravel must be ferried across a river in an open box of length
t1, width t2 and height t3. Each round-trip cost ten cents. The sides and
the bottom of the box cost 10 dollars per square yard to build, while the
ends of the box cost twenty dollars per square yard. The box will have no
salvage value after it has been used. Determine the dimensions of the box
that minimize the total cost.

With t = (t1, t2, t3), the cost function is

g(t) =
40

t1t2t3
+ 20t1t3 + 10t1t2 + 40t2t3, (3.1)

which is to be minimized over tj > 0, for j = 1, 2, 3. The function g(t) is
an example of a posynomial.

21

22 CHAPTER 3. GEOMETRIC PROGRAMMING

3.2 Posynomials and the GP Problem

Functions g(t) of the form

g(t) =
n∑
i=1

ci

(m∏
j=1

t
aij

j

)
, (3.2)

with t = (t1, ..., tm), the tj > 0, ci > 0 and aij real, are called posynomials.
The geometric programming problem, denoted (GP), is to minimize a given
posynomial over positive t. In order for the minimum to be greater than
zero, we need some of the aij to be negative.

We denote by ui(t) the function

ui(t) = ci

m∏
j=1

t
aij

j , (3.3)

so that

g(t) =
n∑
i=1

ui(t). (3.4)

For any choice of δi > 0, i = 1, ..., n, with

n∑
i=1

δi = 1,

we have

g(t) =
n∑
i=1

δi

(ui(t)
δi

)
. (3.5)

Applying the Generalized Arithmetic-Geometric Mean (GAGM) Inequal-
ity, we have

g(t) ≥
n∏
i=1

(ui(t)
δi

)δi

. (3.6)

Therefore,

g(t) ≥
n∏
i=1

(ci
δi

)δi

(
n∏
i=1

m∏
j=1

t
aijδi

j

)
, (3.7)

or

g(t) ≥
n∏
i=1

(ci
δi

)δi
(m∏
j=1

t

∑n

i=1
aijδi

j

)
, (3.8)

3.3. THE DUAL GP PROBLEM 23

Suppose that we can find δi > 0 with

n∑
i=1

aijδi = 0, (3.9)

for each j. Then the inequality in (3.8) becomes

g(t) ≥ v(δ), (3.10)

for

v(δ) =
n∏
i=1

(ci
δi

)δi

. (3.11)

3.3 The Dual GP Problem

The dual geometric programming problem, denoted (DGP), is to maximize
the function v(δ), over all feasible δ = (δ1, ..., δn), that is, all positive δ for
which

n∑
i=1

δi = 1, (3.12)

and
n∑
i=1

aijδi = 0, (3.13)

for each j = 1, ...,m. Clearly, we have

g(t) ≥ v(δ), (3.14)

for any positive t and feasible δ. Of course, there may be no feasible δ, in
which case (DGP) is said to be inconsistent.

As we have seen, the inequality in (3.14) is based on the GAGM In-
equality. We have equality in the GAGM Inequality if and only if the terms
in the arithmetic mean are all equal. In this case, this says that there is a
constant λ such that

ui(t)
δi

= λ, (3.15)

for each i = 1, ..., n. Using the fact that the δi sum to one, it follows that

λ =
n∑
i=1

ui(t) = g(t), (3.16)

24 CHAPTER 3. GEOMETRIC PROGRAMMING

and

δi =
ui(t)
g(t)

, (3.17)

for each i = 1, ..., n. As the theorem below asserts, if t∗ is positive and
minimizes g(t), then δ∗, the associated δ from Equation (3.17), is feasible
and solves (DGP). Since we have equality in the GAGM Inequality now,
we have

g(t∗) = v(δ∗).

The main theorem in geometric programming is the following.

Theorem 3.1 If t∗ > 0 minimizes g(t), then (DGP) is consistent. In
addition, the choice

δ∗i =
ui(t∗)
g(t∗)

(3.18)

is feasible and solves (DGP). Finally,

g(t∗) = v(δ∗); (3.19)

that is, there is no duality gap.

Proof: We have

∂ui(t∗)
∂tj

=
aijui(t∗)

t∗j
, (3.20)

so that

t∗j
∂ui(t∗)
∂tj

= aijui(t∗), (3.21)

for each j = 1, ...,m. Since t∗ minimizes g(t), we have

0 =
∂g(t∗)
∂tj

=
n∑
i=1

∂ui(t∗)
∂tj

, (3.22)

so that, from Equation (3.21), we have

0 =
n∑
i=1

aijui(t∗), (3.23)

for each j = 1, ...,m. It follows that δ∗ is feasible. Since we have equality
in the GAGM Inequality, we know

g(t∗) = v(δ∗). (3.24)

Therefore, δ∗ solves (DGP). This completes the proof.

3.4. SOLVING THE GP PROBLEM 25

3.4 Solving the GP Problem

The theorem suggests how we might go about solving (GP). First, we try
to find a feasible δ∗ that maximizes v(δ). This means we have to find a
positive solution to the system of m + 1 linear equations in n unknowns,
given by

n∑
i=1

δi = 1, (3.25)

and
n∑
i=1

aijδi = 0, (3.26)

for j = 1, ...,m, such that v(δ) is maximized. In a later chapter on the
MART and SMART algorithms we shall discuss in some detail iterative
procedures for finding such δ. If there is no such vector, then (GP) has no
minimizer. Once the desired δ∗ has been found, we set

δ∗i =
ui(t∗)
v(δ∗)

, (3.27)

for each i = 1, ..., n, and then solve for the entries of t∗. This last step can
be simplified by taking logs; then we have a system of linear equations to
solve for the values log t∗j .

3.5 Solving the DGP Problem

The iterative multiplicative algebraic reconstruction technique MART can
be used to minimize the function v(δ), subject to linear equality constraints,
provided that the matrix involved has nonnegative entries. We cannot ap-
ply the MART yet, because the matrix AT does not satisfy these conditions.

3.5.1 The MART

The Kullback-Leibler, or KL distance [108] between positive numbers a
and b is

KL(a, b) = a log
a

b
+ b− a.

We also define KL(a, 0) = +∞ and KL(0, b) = b. Extending to non-
negative vectors a = (a1, ..., aJ)T and b = (b1, ..., bJ)T , we have

KL(a, b) =
J∑
j=1

KL(aj , bj) =
J∑
j=1

(
aj log

aj
bj

+ bj − aj

)
.

26 CHAPTER 3. GEOMETRIC PROGRAMMING

The MART is an iterative algorithm for finding a non-negative solution of
the system Px = y, for an I by J matrix P with non-negative entries and
vector y with positive entries. We also assume that

pj =
I∑
i=1

Pij > 0,

for all i = 1, ..., I. When discussing the MART, we say that the system
Px = y is consistent when it has non-negative solutions. We consider two
different versions of the MART.

MART I

The iterative step of the first version of MART, which we shall call MART
I, is the following: for k = 0, 1, ..., and i = k(mod I) + 1, let

xk+1
j = xkj

(yi
(Pxk)i

)Pij/mi

,

for j = 1, ..., J , where the parameter mi is defined to be

mi = max{Pij |j = 1, ..., J}.

The MART I algorithm converges, in the consistent case, to the non-
negative solution for which the KL distance KL(x, x0) is minimized.

MART II

The iterative step of the second version of MART, which we shall call
MART II, is the following: for k = 0, 1, ..., and i = k(mod I) + 1, let

xk+1
j = xkj

(yi
(Pxk)i

)Pij/pjni

,

for j = 1, ..., J , where the parameter ni is defined to be

ni = max{Pijp−1
j |j = 1, ..., J}.

The MART II algorithm converges, in the consistent case, to the non-
negative solution for which the KL distance

J∑
j=1

pjKL(xj , x0
j)

is minimized.

3.5. SOLVING THE DGP PROBLEM 27

3.5.2 Using the MART to Solve the DGP Problem

The entries on the bottom row of AT are all one, as is the bottom en-
try of the column vector u, since these entries correspond to the equation∑I
i=1 δi = 1. By adding suitably large positive multiples of this last equa-

tion to the other equations in the system, we obtain an equivalent system,
BT δ = s, for which the new matrix BT and the new vector s have only
positive entries. Now we can apply the MART I algorithm to the system
BT δ = s, letting P = BT , pi =

∑J+1
j=1 Bij , δ = x, x0 = c and y = s.

In the consistent case, the MART I algorithm will find the non-negative
solution that minimizes KL(x, x0), so we select x0 = c. Then the MART I
algorithm finds the non-negative δ∗ satisfying BT δ∗ = s, or, equivalently,
AT δ∗ = u, for which the KL distance

KL(δ, c) =
I∑
i=1

(
δi log

δi
ci

+ ci − δi

)
is minimized. Since we know that

I∑
i=1

δi = 1,

it follows that minimizing KL(δ, c) is equivalent to maximizing v(δ). Using
δ∗, we find the optimal t∗ solving the GP problem.

For example, the linear system of equations AT δ = u corresponding to
the posynomial in Equation (3.1) is

AT δ = u =

−1 1 1 0
−1 0 1 1
−1 1 0 1
1 1 1 1

δ1
δ2
δ3
δ4

 =

0
0
0
1

 .
Adding two times the last row to the other rows, the system becomes

BT δ = s =

1 3 3 2
1 2 3 3
1 3 2 3
1 1 1 1

δ1
δ2
δ3
δ4

 =

2
2
2
1

 .
The matrix BT and the vector s are now positive. We are ready to apply
the MART.

The MART iteration is as follows. With j = k(modJ + 1) + 1, mj =
max {Bij |i = 1, 2, ..., I} and k = 0, 1, ..., let

δk+1
i = δki

(sj
(BT δk)j

)m−1
j
Bij

.

The optimal δ∗ is δ∗ = (.4, .2, .2, .2)T , the optimal t∗ is t∗ = (2, 1, .5), and
the lowest cost is one hundred dollars.

28 CHAPTER 3. GEOMETRIC PROGRAMMING

3.6 Constrained Geometric Programming

Consider now the following variant of the problem of transporting the gravel
across the river. Suppose that the bottom and the two sides will be con-
structed for free from scrap metal, but only four square yards are available.
The cost function to be minimized becomes

g0(t) =
40

t1t2t3
+ 40t2t3, (3.28)

and the constraint is

g1(t) =
t1t3
2

+
t1t2
4

≤ 1. (3.29)

With δ1 > 0, δ2 > 0, and δ1 + δ2 = 1, we write

g0(t) = δ1
40

δ1t1t2t3
+ δ2

40t2t3
δ2

. (3.30)

Since 0 ≤ g1(t) ≤ 1, we have

g0(t) ≥
(
δ1

40
δ1t1t2t3

+ δ2
40t2t3
δ2

)(
g1(t)

)λ
, (3.31)

for any positive λ. The GAGM Inequality then tells us that

g0(t) ≥

((40
δ1t1t2t3

)δ1(40t2t3
δ2

)δ2)(
g1(t)

)λ
, (3.32)

so that

g0(t) ≥

((40
δ1

)δ1(40
δ2

)δ2)
t−δ11 tδ2−δ12 tδ2−δ13

(
g1(t)

)λ
. (3.33)

From the GAGM Inequality, we also know that, for δ3 > 0, δ4 > 0 and
λ = δ3 + δ4,(

g1(t)
)λ

≥ (λ)λ
((1

2δ3

)δ3(1
4δ4

)δ4)
tδ3+δ41 tδ42 t

δ3
3 . (3.34)

Combining the inequalities in (3.33) and (3.34), we obtain

g0(t) ≥ v(δ)t−δ1+δ3+δ41 t−δ1+δ2+δ42 t−δ1+δ2+δ33 , (3.35)

with

v(δ) =
(40
δ1

)δ1(40
δ2

)δ2(1
2δ3

)δ3(1
4δ4

)δ4(
δ3 + δ4

)δ3+δ4
, (3.36)

3.6. CONSTRAINED GEOMETRIC PROGRAMMING 29

and δ = (δ1, δ2, δ3, δ4). If we can find a positive vector δ with

δ1 + δ2 = 1,

δ3 + δ4 = λ,

−δ1 + δ3 + δ4 = 0,

−δ1 + δ2 + δ4 = 0

−δ1 + δ2 + δ3 = 0, (3.37)

then

g0(t) ≥ v(δ). (3.38)

In this particular case, there is a unique positive δ satisfying the equations
(3.37), namely

δ∗1 =
2
3
, δ∗2 =

1
3
, δ∗3 =

1
3
, and δ∗4 =

1
3
, (3.39)

and

v(δ∗) = 60. (3.40)

Therefore, g0(t) is bounded below by 60. If there is t∗ such that

g0(t∗) = 60, (3.41)

then we must have

g1(t∗) = 1, (3.42)

and equality in the GAGM Inequality. Consequently,

3
2

40
t∗1t

∗
2t
∗
3

= 3(40t∗2t
∗
3) = 60, (3.43)

and
3
2
t∗1t

∗
3 =

3
4
t∗1t

∗
2 = K. (3.44)

Since g1(t∗) = 1, we must have K = 3
2 . We solve these equations by taking

logarithms, to obtain the solution

t∗1 = 2, t∗2 = 1, and t∗3 =
1
2
. (3.45)

The change of variables tj = exj converts the constrained (GP) prob-
lem into a constrained convex programming problem. The theory of the
constrained (GP) problem can then be obtained as a consequence of the
theory for the convex problem, which we shall consider in a later chapter.

30 CHAPTER 3. GEOMETRIC PROGRAMMING

3.7 Exercises

3.1 Minimize the function

g(t1, t2) =
2
t1t2

+ t1t2 + t1, (3.46)

over t1 > 0, t2 > 0.

3.2 Minimize the function

g(t1, t2) =
1
t1t2

+ t1t2 + t1 + t2, (3.47)

over t1 > 0, t2 > 0.

3.3 Minimize the function

g(t1, t2, t3) =
40

t1t2t3
+ 20t1t3 + 10t1t2 + 40t2t3, (3.48)

over tj > 0, for j = 1, 2, 3.

Chapter 4

Convex Sets

Convex sets and convex functions play important roles in optimization. In
this chapter we survey the basic facts concerning the geometry of convex
sets. We begin with the geometry of RJ .

4.1 The Geometry of Real Euclidean Space

We denote by RJ the real Euclidean space consisting of all J-dimensional
column vectors x = (x1, ..., xJ)T with real entries xj ; here the superscript
T denotes the transpose of the 1 by J matrix (or, row vector) (x1, ..., xJ).

4.1.1 Inner Products

For x = (x1, ..., xJ)T and y = (y1, ..., yJ)T in RJ , the dot product x · y is
defined to be

x · y =
J∑
j=1

xjyj . (4.1)

Note that we can write

x · y = yTx = xT y, (4.2)

where juxtaposition indicates matrix multiplication. The 2-norm, or Eu-
clidean norm, or Euclidean length, of x is

||x||2 =
√
x · x =

√
xTx. (4.3)

The Euclidean distance between two vectors x and y in RJ is ||x− y||2.
The space RJ , along with its dot product, is an example of a finite-

dimensional Hilbert space.

31

32 CHAPTER 4. CONVEX SETS

Definition 4.1 Let V be a real vector space. The scalar-valued function
〈u, v〉 is called an inner product on V if the following four properties hold,
for all u, w, and v in V , and all real c:

〈u+ w, v〉 = 〈u, v〉+ 〈w, v〉; (4.4)

〈cu, v〉 = c〈u, v〉; (4.5)

〈v, u〉 = 〈u, v〉; (4.6)

and

〈u, u〉 ≥ 0, (4.7)

with equality in Inequality (4.7) if and only if u = 0.

The dot product of vectors is an example of an inner product. The prop-
erties of an inner product are precisely the ones needed to prove Cauchy’s
Inequality, which then holds for any inner product. We shall favor the dot
product notation u · v for the inner product of vectors, although we shall
occasionally use the matrix multiplication form, vTu or the inner product
notation 〈u, v〉.

4.1.2 Cauchy’s Inequality

Cauchy’s Inequality, also called the Cauchy-Schwarz Inequality, tells us
that

|〈x, y〉| ≤ ||x||2||y||2, (4.8)

with equality if and only if y = αx, for some scalar α. The Cauchy-Schwarz
Inequality holds for any inner product.

A simple application of Cauchy’s inequality gives us

||x+ y||2 ≤ ||x||2 + ||y||2; (4.9)

this is called the Triangle Inequality. We say that the vectors x and y are
mutually orthogonal if 〈x, y〉 = 0.

The Parallelogram Law is an easy consequence of the definition of the
2-norm:

||x+ y||22 + ||x− y||22 = 2||x||22 + 2||y||22. (4.10)

It is important to remember that Cauchy’s Inequality and the Parallelo-
gram Law hold only for the 2-norm.

4.2. A BIT OF TOPOLOGY 33

4.2 A Bit of Topology

Having the norm allows us to define the distance between two points x and
y in RJ as ||x− y||. Being able to talk about how close points are to each
other enables us to define continuity of functions on RJ and to consider
topological notions of closed set, open set, interior of a set and boundary
of a set.

Definition 4.2 A subset B of RJ is closed if, whenever xk is in B for
each non-negative integer k and ||x − xk|| → 0, as k → +∞, then x is in
B.

For example, B = [0, 1] is closed as a subset of R, but B = (0, 1) is not.

Definition 4.3 We say that d ≥ 0 is the distance from the point x to the
set B if, for every ε > 0, there is bε in B, with ||x− bε||2 < d+ ε, and no
b in B with ||x− b||2 < d.

The distance from the point 0 in R to the set (0, 1) is zero, while its distance
to the set (1, 2) is one. It follows easily from the definitions that, if B is
closed and d = 0, then x is in B.

Definition 4.4 The closure of a set B is the set of all points x whose
distance from B is zero.

The closure of the interval B = (0, 1) is [0, 1].

Definition 4.5 A subset U of RJ is open if its complement, the set of all
points not in U , is closed.

Definition 4.6 Let C be a subset of RJ . A point x in C is said to be
an interior point of set C if there is ε > 0 such that every point z with
||x− z|| < ε is in C. The interior of the set C, written int(C), is the set of
all interior points of C. It is also the largest open set contained within C.

For example, the open interval (0, 1) is the interior of the intervals (0, 1]
and [0, 1]. A set C is open if and only if C = int(C).

Definition 4.7 A point x in RJ is said to be a boundary point of set C if,
for every ε > 0, there are points yε in C and zε not in C, both depending
on the choice of ε, with ||x − yε|| < ε and ||x − zε|| < ε. The boundary of
C is the set of all boundary points of C. It is also the intersection of the
closure of C with the closure of its complement.

For example, the points x = 0 and x = 1 are boundary points of the set
(0, 1].

34 CHAPTER 4. CONVEX SETS

Definition 4.8 For k = 0, 1, 2, ..., let xk be a vector in RJ . The sequence
of vectors {xk} is said to converge to the vector z if, given any ε > 0, there
is positive integer n, usually depending on ε, such that, for every k > n,
we have ||z − xk|| ≤ ε. Then we say that z is the limit of the sequence.

For example, the sequence {xk = 1
k+1} in R converges to z = 0. The

sequence {(−1)k} alternates between 1 and −1, so does not converge. How-
ever, the subsequence associated with odd k converges to z = −1, while the
subsequence associated with even k converges to z = 1. The values z = −1
and z = 1 are called subsequential limit points, or, sometimes, cluster points
of the sequence.

Definition 4.9 A sequence {xk} of vectors in RJ is said to be bounded if
there is a constant b > 0, such that ||xk|| ≤ b, for all k.

A fundamental result in analysis is the following.

Proposition 4.1 Every convergent sequence of vectors in RJ is bounded.
Every bounded sequence of vectors in RJ has at least one convergent sub-
sequence, therefore, has at least one cluster point.

4.3 Convex Sets in RJ

In preparation for our discussion of linear and nonlinear programming, we
consider some of the basic concepts from the geometry of convex sets.

4.3.1 Basic Definitions

We begin with the basic definitions.

Definition 4.10 A vector z is said to be a convex combination of the vec-
tors x and y if there is α in the interval [0, 1] such that z = (1−α)x+αy.

Definition 4.11 A nonempty set C in RJ is said to be convex if, for any
distinct points x and y in C, and for any real number α in the interval
(0, 1), the point (1 − α)x + αy is also in C; that is, C is closed to convex
combinations.

For example, the unit ball B in RJ , consisting of all x with ||x||2 ≤ 1, is
convex, while the surface of the ball, the set of all x with ||x||2 = 1, is not
convex.

Definition 4.12 The convex hull of a set S, denoted conv(S), is the small-
est convex set containing S.

4.3. CONVEX SETS IN RJ 35

Proposition 4.2 The convex hull of a set S is the set C of all convex
combinations of members of S.

Definition 4.13 A subset S of RJ is a subspace if, for every x and y in
S and scalars α and β, the linear combination αx+ βy is again in S.

A subspace is necessarily a convex set.

Definition 4.14 The orthogonal complement of a subspace S is the set

S⊥ = {u|uT s = 0, for every s ∈ S}, (4.11)

the set of all vectors u in RJ that are orthogonal to every member of S.

For example, in R3, the x, y-plane is a subspace and has for its orthogonal
complement the z-axis.

Definition 4.15 A subset M of RJ is a linear manifold if there is a sub-
space S and a vector b such that

M = S + b = {x|x = s+ b, for some s inS}.

Any linear manifold is convex.

Definition 4.16 For a fixed column vector a with Euclidean length one
and a fixed scalar γ the hyperplane determined by a and γ is the set

H(a, γ) = {z|〈a, z〉 = γ}.

The hyperplanes H(a, γ) are linear manifolds, and the hyperplanes H(a, 0)
are subspaces.

Definition 4.17 Given a subset C of RJ , the affine hull of C, denoted
aff(C), is the smallest linear manifold containing C.

For example, let C be the line segment connecting the two points (0, 1)
and (1, 2) in R2. The affine hull of C is the straight line whose equation is
y = x+ 1.

Definition 4.18 The dimension of a subset of RJ is the dimension of its
affine hull, which is the dimension of the subspace of which it is a translate.

The set C above has dimension one. A set containing only one point is its
own affine hull, since it is a translate of the subspace {0}.

In R2, the line segment connecting the points (0, 1) and (1, 2) has no
interior; it is a one-dimensional subset of a two-dimensional space and can
contain no two-dimensional ball. But, the part of this set without its two
end points is a sort of interior, called the relative interior.

36 CHAPTER 4. CONVEX SETS

Definition 4.19 The relative interior of a subset C of RJ , denoted ri(C),
is the interior of C, as defined by considering C as a subset of its affine
hull.

Since a set consisting of a single point is its own affine hull, it is its own
relative interior.

Definition 4.20 A point x in a convex set C is said to be an extreme point
of C if the set obtained by removing x from C remains convex.

Said another way, x ∈ C is an extreme point of C if x cannot be written
as

x = (1− α)y + αz, (4.12)

for y, z 6= x and α ∈ (0, 1). For example, the point x = 1 is an extreme
point of the convex set C = [0, 1]. Every point on the boundary of a sphere
in RJ is an extreme point of the sphere. The set of all extreme points of a
convex set is denoted Ext(C).

Definition 4.21 A non-zero vector d is said to be a direction of unbound-
edness of a convex set C if, for all x in C and all γ ≥ 0, the vector x+ γd
is in C.

For example, if C is the non-negative orthant in RJ , then any non-negative
vector d is a direction of unboundedness.

Definition 4.22 A vector a is normal to a convex set C at the point s in
C if

〈a, c− s〉 ≤ 0, (4.13)

for all c in C.

Definition 4.23 Let C be convex and s in C. The normal cone to C at
s, denoted NC(s), is the set of all vectors a that are normal to C at s.

4.3.2 Orthogonal Projection onto Convex Sets

The following proposition is fundamental in the study of convexity and can
be found in most books on the subject; see, for example, the text by Goebel
and Reich [91].

Proposition 4.3 Given any nonempty closed convex set C and an arbi-
trary vector x in RJ , there is a unique member of C closest to x, denoted
PCx, the orthogonal (or metric) projection of x onto C.

4.3. CONVEX SETS IN RJ 37

Proof: If x is in C, then PCx = x, so assume that x is not in C. Then
d > 0, where d is the distance from x to C. For each positive integer n,
select cn in C with ||x−cn||2 < d+ 1

n . Then the sequence {cn} is bounded;
let c∗ be any cluster point. It follows easily that ||x − c∗||2 = d and that
c∗ is in C. If there is any other member c of C with ||x − c||2 = d, then,
by the Parallelogram Law, we would have ||x− (c∗ + c)/2||2 < d, which is
a contradiction. Therefore, c∗ is PCx.

For example, if C = U , the unit ball, then PCx = x/||x||2, for all x such
that ||x||2 > 1, and PCx = x otherwise. If C is RJ+, the nonnegative cone
of RJ , consisting of all vectors x with xj ≥ 0, for each j, then PCx = x+,
the vector whose entries are max (xj , 0). For any closed, convex set C, the
distance from x to C is ||x− PCx||.

If a nonempty set S is not convex, then the orthogonal projection of
a vector x onto S need not be well defined; there may be more than one
vector in S closest to x. In fact, it is known that a set S is convex if and
only if, for every x not in S, there is a unique point in S closest to x; this is
Motzkin’s Theorem (see [16], p. 447). Note that there may well be some x
for which there is a unique closest point in S, but if S is not convex, then
there must be at least one point without a unique closest point in S.

Lemma 4.1 For H = H(a, γ), z = PHx is the vector

z = PHx = x+ (γ − 〈a, x〉)a. (4.14)

We shall use this fact in our discussion of the ART algorithm.
For an arbitrary nonempty closed convex set C in RJ , the orthogonal

projection T = PC is a nonlinear operator, unless, of course, C is a sub-
space. We may not be able to describe PCx explicitly, but we do know a
useful property of PCx.

Proposition 4.4 For a given x, a vector z in C is PCx if and only if

〈c− z, z − x〉 ≥ 0, (4.15)

for all c in the set C.

Proof: Let c be arbitrary in C and α in (0, 1). Then

||x− PCx||22 ≤ ||x− (1− α)PCx− αc||22 = ||x− PCx+ α(PCx− c)||22

= ||x− PCx||22 − 2α〈x− PCx, c− PCx〉+ α2||PCx− c||22. (4.16)

Therefore,

−2α〈x− PCx, c− PCx〉+ α2||PCx− c||22 ≥ 0, (4.17)

38 CHAPTER 4. CONVEX SETS

so that

2〈x− PCx, c− PCx〉 ≤ α||PCx− c||22. (4.18)

Taking the limit, as α→ 0, we conclude that

〈c− PCx, PCx− x〉 ≥ 0. (4.19)

If z is a member of C that also has the property

〈c− z, z − x〉 ≥ 0, (4.20)

for all c in C, then we have both

〈z − PCx, PCx− x〉 ≥ 0, (4.21)

and

〈z − PCx, x− z〉 ≥ 0. (4.22)

Adding on both sides of these two inequalities lead to

〈z − PCx, PCx− z〉 ≥ 0. (4.23)

But,

〈z − PCx, PCx− z〉 = −||z − PCx||22, (4.24)

so it must be the case that z = PCx. This completes the proof.

4.4 Some Results on Projections

The characterization of the orthogonal projection operator PC given by
Proposition 4.4 has a number of important consequences.

Corollary 4.1 Let S be any subspace of RJ . Then, for any x in RJ and
s in S, we have

〈PSx− x, s〉 = 0. (4.25)

Proof: Since S is a subspace, s+ PSx is again in S, for all s, as is cs, for
every scalar c.

This corollary enables us to prove the Decomposition Theorem.

Theorem 4.1 Let S be any subspace of RJ and x any member of RJ .
Then there are unique vectors s in S and u in S⊥ such that x = s+u. The
vector s is PSx and the vector u is PS⊥x.

4.5. LINEAR AND AFFINE OPERATORS ON RJ 39

Proof: For the given x we take s = PSx and u = x − PSx. Corollary 4.1
assures us that u is in S⊥. Now we need to show that this decomposition
is unique. To that end, suppose that we can write x = s1 +u1, with s1 in S
and u1 in S⊥. Then Proposition 4.4 tells us that, since s1−x is orthogonal
to every member of S, s1 must be PSx.

This theorem is often presented in a slightly different manner.

Theorem 4.2 Let A be a real I by J matrix. Then every vector b in RI

can be written uniquely as b = Ax+ w, where ATw = 0.

To derive Theorem 4.2 from Theorem 4.1, we simply let S = {Ax|x ∈ RJ}.
Then S⊥ is the set of all w such that ATw = 0. It follows that w is the
member of the null space of AT closest to b.

Here are additional consequences of Proposition 4.4.

Corollary 4.2 Let S be any subspace of RJ , d a fixed vector, and V the
linear manifold V = S+ d = {v = s+ d|s ∈ S}, obtained by translating the
members of S by the vector d. Then, for every x in RJ and every v in V ,
we have

〈PV x− x, v − PV x〉 = 0. (4.26)

Proof: Since v and PV x are in V , they have the form v = s + d, and
PV x = ŝ+ d, for some s and ŝ in S. Then v − PV x = s− ŝ.

Corollary 4.3 Let H be the hyperplane H(a, γ). Then, for every x, and
every h in H, we have

〈PHx− x, h− PHx〉 = 0. (4.27)

Corollary 4.4 Let S be a subspace of RJ . Then (S⊥)⊥ = S.

Proof: Every x in RJ has the form x = s + u, with s in S and u in S⊥.
Suppose x is in (S⊥)⊥. Then u = 0.

4.5 Linear and Affine Operators on RJ

If A is a J by J real matrix, then we can define an operator T by setting
Tx = Ax, for each x in RJ ; here Ax denotes the multiplication of the
matrix A and the column vector x.

Definition 4.24 An operator T is said to be a linear operator if

T (αx+ βy) = αTx+ βTy, (4.28)

for each pair of vectors x and y and each pair of scalars α and β.

40 CHAPTER 4. CONVEX SETS

Any operator T that comes from matrix multiplication, that is, for which
Tx = Ax, is linear.

Lemma 4.2 For H = H(a, γ), H0 = H(a, 0), and any x and y in RJ , we
have

PH(x+ y) = PHx+ PHy − PH0, (4.29)

so that

PH0(x+ y) = PH0x+ PH0y, (4.30)

that is, the operator PH0 is an additive operator. In addition,

PH0(αx) = αPH0x, (4.31)

so that PH0 is a linear operator.

Definition 4.25 If A is a J by J real matrix and d is a fixed nonzero
vector in RJ , the operator defined by Tx = Ax + d is an affine linear
operator.

Lemma 4.3 For any hyperplane H = H(a, γ) and H0 = H(a, 0),

PHx = PH0x+ PH0, (4.32)

so PH is an affine linear operator.

Lemma 4.4 For i = 1, ..., I let Hi be the hyperplane Hi = H(ai, γi),
Hi0 = H(ai, 0), and Pi and Pi0 the orthogonal projections onto Hi and
Hi0, respectively. Let T be the operator T = PIPI−1 · · · P2P1. Then
Tx = Bx + d, for some square matrix B and vector d; that is, T is an
affine linear operator.

4.6 The Fundamental Theorems

The Separation Theorem and the Support Theorem provide the foundation
for the geometric approach to the calculus of functions of several variables.

A real-valued function f(x) defined for real x has a derivative at x = x0

if and only if there is a unique line through the point (x0, f(x0)) tangent
to the graph of f(x) at that point. If f(x) is not differentiable at x0, there
may be more than one such tangent line, as happens with the function
f(x) = |x| at x0 = 0. For functions of several variables the geometric view
of differentiation involves tangent hyperplanes.

4.6. THE FUNDAMENTAL THEOREMS 41

4.6.1 Basic Definitions

Definition 4.26 Let S be a subset of RJ and f : S → [−∞,∞] a function
defined on S. The subset of RJ+1 defined by

epi(f) = {(x, γ)|f(x) ≤ γ}

is the epi-graph of f . Then we say that f is convex if its epi-graph is a
convex set.

Alternative definitions of convex function are presented in the exercises.

Definition 4.27 The effective domain of a convex function f , denoted
dom(f), is the projection onto RJ of its epi-graph; that is,

dom(f) = {x| (x, γ) ∈ epi(f)} = {x| f(x) < +∞}.

The effective domain of a convex function is a convex set.

Definition 4.28 A convex function f(x) is proper if there is no x for
which f(x) = −∞ and some x for which f(x) < +∞.

The important role played by hyperplanes tangent to the epigraph of
f motivates our study of the relationship between hyperplanes and convex
sets.

4.6.2 The Separation Theorem

The Separation Theorem, sometimes called the Geometric Hahn-Banach
Theorem, is an easy consequence of the existence of orthogonal projections
onto closed convex sets.

Theorem 4.3 (The Separation Theorem) Let C be a closed nonempty
convex set in RJ and x a point not in C. Then there is non-zero vector a
in RJ and real number α such that

〈a, c〉 ≤ α < 〈a, x〉,

for every c in C.

Proof: Let z = PCx, a = x − z, and α = 〈a, z〉. Then using Proposition
4.4, we have

〈−a, c− z〉 ≥ 0,

or, equivalently,
〈a, c〉 ≤ 〈a, z〉 = α ,

for all c in C. But, we also have

〈a, x〉 = 〈a, x− z〉+ 〈a, z〉 = ||x− z||2 + α > α.

This completes the proof.

42 CHAPTER 4. CONVEX SETS

4.6.3 The Support Theorem

The Separation Theorem concerns a closed convex set C and a point x
outside the set C, and asserts the existence of a hyperplane separating
the two. Now we concerned with a point z on the boundary of a convex
set C, such as the point (x, f(x)) on the boundary of the epigraph of f .
The Support Theorem asserts the existence of a hyperplane through such
a point, having the convex set entirely contained in one of its half-spaces.
If we knew a priori that the point z is PCx for some x outside C, then
we could simply take the vector a = x − z as the normal to the desired
hyperplane. The essence of the Support Theorem is to provide such a
normal vector without assuming that z = PCx.

For the proofs that follow we shall need the following definitions.

Definition 4.29 For subsets A and B of RJ , and scalar γ, let the set
A+B consist of all vectors v of the form v = a+ b, and γA consist of all
vectors w of the form w = γa, for some a in A and b in B. Let x be a
fixed member of RJ . Then the set x+A is the set of all vectors y such that
y = x+ a, for some a in A.

Lemma 4.5 Let B be the unit ball in RJ , that is, B is the set of all
vectors u with ||u|| ≤ 1. Let S be an arbitrary subset of RJ . Then x is in
the interior of S if and only if there is some ε > 0 such that x + εB ⊆ S,
and y is in the closure of S if and only if, for every ε > 0, the set y + εB
has nonempty intersection with S.

We begin with the Accessibility Lemma. Note that the relative interior
of any non-empty convex set is always non-empty (see [133], Theorem 6.2).

Lemma 4.6 (The Accessibility Lemma) Let C be a convex set. Let x
be in the relative interior of C and y in the closure of C. Then, for all
scalars α in the interval (0, 1], the point (1 − α)x + αy is in the relative
interior of C.

Proof: If the dimension of C is less than J , we can transform the problem
into a space of smaller dimension. Therefore, without loss of generality, we
can assume that the dimension of C is J , its affine hull is all of RJ , and its
relative interior is its interior. Let α be fixed, and B = {z| ||z|| ≤ 1}. We
have to show that there is some ε > 0 such that the set (1−α)x+αy+ εB
is a subset of the set C. We know that y is in the set C + εB for every
ε > 0, since y is in the closure of C. Therefore, for all ε > 0 we have

(1− α)x+ αy + εB ⊆ (1− α)x+ α(C + εB) + εB

= (1− α)x+ (1 + α)εB + αC

= (1− α)[x+ ε(1 + α)(1− α)−1B] + αC.

4.7. THEOREMS OF THE ALTERNATIVE 43

Since x is in the interior of the set C, we know that

[x+ ε(1 + α)(1− α)−1B] ⊆ C,

for ε small enough. This completes the proof.
Now we come to the Support Theorem.

Theorem 4.4 (Support Theorem) Let C be convex, and let z be on the
boundary of C. Then there is a non-zero vector a in RJ with 〈a, z〉 ≥ 〈a, c〉,
for all c in C.

Proof: If the dimension of C is less than J , then every point of C is on
the boundary of C. Let the affine hull of C be M = S + b. Then the set
C − b is contained in the subspace S, which, in turn, can be contained in
a hyperplane through the origin, H(a, 0). Then

〈a, c〉 = 〈a, b〉,

for all c in C. So we focus on the case in which the dimension of C is J , in
which case the interior of C must be non-empty.

Let y be in the interior of C, and, for each s > 1, let zs = y + s(z − y).
Note that zs is not in the closure of C, for any s > 1, by the Accessibility
Lemma, since z is not in the interior of C. By the Separation Theorem,
there are vectors bs such that

〈bs, c〉 < 〈bs, zs〉,

for all c in C. For convenience, we assume that ||bs|| = 1, and that {sk}
is a sequence with sk > 1 and {sk} → 1, as k → ∞. Let ak = bsk

. Then
there is a subsequence of the {ak} converging to some a, with ||a|| = 1, and

〈a, c〉 ≤ 〈a, z〉,

for all c in C. This completes the proof.
If we knew that there was a vector x not in C, such that z = PCx, then

we could choose a = x− z, as in the proof of the Separation Theorem. The
point of the Support Theorem is that we cannot assume, a priori, that there
is such an x. Once we have the vector a, however, any point x = z + λa,
for λ ≥ 0, has the property that z = PCx.

4.7 Theorems of the Alternative

The following theorem is a good illustration of a type of theorem known as
Theorems of the Alternative. These theorems assert that precisely one of
two problems will have a solution. The proof illustrates how we should go
about proving such theorems.

44 CHAPTER 4. CONVEX SETS

Theorem 4.5 (Gale I)[88] Precisely one of the following is true:

• (1) there is x such that Ax = b;

• (2) there is y such that AT y = 0 and bT y = 1.

Proof: First, we show that it is not possible for both to be true at the same
time. Suppose that Ax = b and AT y = 0. Then bT y = xTAT y = 0, so that
we cannot have bT y = 1. By Theorem 4.1, the fundamental decomposition
theorem from linear algebra, we know that, for any b, there are unique
x and w with ATw = 0 such that b = Ax + w. Clearly, b = Ax if and
only if w = 0. Also, bT y = wT y. Therefore, if alternative (1) does not
hold, we must have w non-zero, in which case AT y = 0 and bT y = 1, for
y = w/||w||2, so alternative (2) holds.

In this section we consider several other theorems of this type.

Theorem 4.6 (Farkas’ Lemma)[83] Precisely one of the following is
true:

• (1) there is x ≥ 0 such that Ax = b;

• (2) there is y such that AT y ≥ 0 and bT y < 0.

Proof: We can restate the lemma as follows: there is a vector y with
AT y ≥ 0 and bT y < 0 if and only if b is not a member of the convex set
C = {Ax|x ≥ 0}. If b is not in C, which is closed and convex, then, by the
Separation Theorem, there is a non-zero vector a and real α with

aT b < α ≤ aTAx = (ATa)Tx,

for all x ≥ 0. Since (ATa)Tx is bounded below, as x runs over all non-
negative vectors, it follows that ATa ≥ 0. Choosing x = 0, we have α ≤ 0.
Then let y = a. Conversely, if Ax = b does have a non-negative solution x,
then AT y ≥ 0 implies that 0 ≤ yTAx = yT b ≥ 0.

The next theorem can be obtained from Farkas’ Lemma.

Theorem 4.7 (Gale II)[88] Precisely one of the following is true:

• (1) there is x such that Ax ≤ b;

• (2) there is y ≥ 0 such that AT y = 0 and bT y < 0.

Proof: First, if both are true, then 0 ≤ yT (b − Ax) = yT b − 0 = yT b,
which is a contradiction. Now assume that (2) does not hold. Therefore,
for every y ≥ 0 with AT y = 0, we have bT y ≥ 0. Let B = [A b]. Then the
system BT y = [0 −1]T has no non-negative solution. Applying Farkas’
Lemma, we find that there is a vector w = [z γ]T with Bw ≥ 0 and
[0 −1]w < 0. So, Az + γb ≥ 0 and γ > 0. Let x = − 1

γ z to get Ax ≤ b,
so that (1) holds.

4.7. THEOREMS OF THE ALTERNATIVE 45

Theorem 4.8 (Gordan)[93] Precisely one of the following is true:

• (1) there is x such that Ax < 0;

• (2) there is y ≥ 0, y 6= 0, such that AT y = 0.

Proof: First, if both are true, then 0 < −yTAx = 0, which cannot be
true. Now assume that there is no non-zero y ≥ 0 with AT y = 0. Then,
with e = (1, 1, ..., 1)T , C = [A e], and d = (0, 0, ..., 0, 1)T , there is no
non-negative solution of CT y = d. From Farkas’ Lemma we then know
that there is a vector z = [u γ]T , with Cz = Au+ γe ≥ 0, and dT z < 0.
Then Ax < 0 for x = −u.

Here are several more theorems of the alternative.

Theorem 4.9 (Stiemke I)[142] Precisely one of the following is true:

• (1) there is x such that Ax ≤ 0 and Ax 6= 0;

• (2) there is y > 0 such that AT y = 0.

Theorem 4.10 (Stiemke II)[142] Let c be a fixed non-zero vector. Pre-
cisely one of the following is true:

• (1) there is x such that Ax ≤ 0 and cTx ≥ 0 and not both Ax = 0
and cTx = 0;

• (2) there is y > 0 such that AT y = c.

Theorem 4.11 (Gale III)[88] Let c be a fixed non-zero vector. Precisely
one of the following is true:

• (1) there is x ≥ 0 such that Ax ≥ 0 and cTx < 0;

• (2) there is y ≥ 0 such that AT y ≤ c.

Proof: First, note that we cannot have both true at the same time, since
we would then have

0 < xT (c−AT y) = cTx− (Ax)T y ≤ cTx,

which is a contradiction. Now suppose that (2) does not hold. Then there
is no w ≥ 0 such that

[AT I]w = c.

By Farkas’ Lemma (Theorem 4.6), it follows that there is x with[
A
I

]
x ≥ 0,

and cTx < 0. Therefore, Ax ≥ 0, Ix = x ≥ 0, and cTx < 0; therefore, (1)
holds.

46 CHAPTER 4. CONVEX SETS

Theorem 4.12 (Von Neumann)[125] Precisely one of the following is
true:

• (1) there is x ≥ 0 such that Ax > 0;

• (2) there is y ≥ 0, y 6= 0, such that AT y ≤ 0.

Proof: If both were true, then we would have

0 < (Ax)T y = xT (AT y),

so that AT y ≤ 0 would be false. Now suppose that (2) does not hold.
Then there is no y ≥ 0, y 6= 0, with AT y ≤ 0. Consequently, there is no
y ≥ 0, y 6= 0, such that[

AT

−uT
]
y =

[
AT y
−uT y

]
≤
[

0
−1

]
,

where uT = (1, 1, ..., 1). By Theorem 4.11, there is

z =
[
x
α

]
≥ 0,

such that

[A −u] z = [A −u]
[
x
α

]
≥ 0,

and

[0 −1] z = [0 −1]
[
x
α

]
= −α < 0.

Therefore, α > 0 and (Ax)i − α ≥ 0 for each i, and so Ax > 0 and (1)
holds.

Theorem 4.13 (Tucker)[145] Precisely one of the following is true:

• (1) there is x ≥ 0 such that Ax ≥ 0, Ax 6= 0;

• (2) there is y > 0 such that AT y ≤ 0.

Theorem 4.14 (Theorem 21.1, [133]) Let C be a convex set, and let
f1, ..., fm be proper convex functions, with ri(C) ⊆ dom(fi), for each i.
Precisely one of the following is true:

• (1) there is x ∈ C such that fi(x) < 0, for i = 1, ...,m;

• (2) there are λi ≥ 0, not all equal to zero, such that

λ1f1(x) + ...+ λmfm(x) ≥ 0,

for all x in C.

4.8. ANOTHER PROOF OF FARKAS’ LEMMA 47

Theorem 4.14 is fundamental in proving Helly’s Theorem:

Theorem 4.15 (Helly’s Theorem) [133] Let {Ci |i = 1, ..., I} be a fi-
nite collection of (not necessarily closed) convex sets in RN . If every sub-
collection of N+1 or fewer sets has non-empty intersection, then the entire
collection has non-empty intersection.

For instance, in the two-dimensional plane, if a finite collection of lines
is such that every two intersect and every three have a common point of
intersection, then they all have a common point of intersection. There is
another version of Helly’s Theorem that applies to convex inequalities.

Theorem 4.16 Let there be given a system of the form

f1(x) < 0, ..., fk(x) < 0, fk+1(x) ≤ 0, ..., fm(x) ≤ 0,

where the fi are convex functions on RJ , and the inequalities may be all
strict or all weak. If every subsystem of J + 1 or fewer inequalities has a
solution in a given convex set C, then the entire system has a solution in
C.

4.8 Another Proof of Farkas’ Lemma

In the previous section, we proved Farkas’ Lemma, Theorem 4.6, using the
Separation Theorem, the proof of which, in turn, depended here on the
existence of the orthogonal projection onto any closed convex set. It is
possible to prove Farkas’ Lemma directly, along the lines of Gale [88].

Suppose that Ax = b has no non-negative solution. If, indeed, it has
no solution whatsoever, then b = Ax + w, where w 6= 0 and ATw = 0.
Then we take y = −w/||w||2. So suppose that Ax = b does have solutions,
but not any non-negative ones. The approach is to use induction on the
number of columns of the matrix involved in the lemma.

If A has only one column, denoted a1, then Ax = b can be written as

x1a
1 = b.

Assuming that there are no non-negative solutions, it must follow that
x1 < 0. We take y = −b. Then

bT y = −bT b = −||b||2 < 0,

while
AT y = (a1)T (−b) =

−1
x1
bT b > 0.

Now assume that the lemma holds whenever the involved matrix has no
more than m− 1 columns. We show the same is true for m columns.

48 CHAPTER 4. CONVEX SETS

If there is no non-negative solution of the system Ax = b, then clearly
there are no non-negative real numbers x1, x2, ..., xm−1 such that

x1a
1 + x2a

2 + ...+ xm−1a
m−1 = b,

where aj denotes the jth column of the matrix A. By the induction hy-
pothesis, there must be a vector v with

(aj)T v ≥ 0,

for j = 1, ...,m− 1, and bT v < 0. If it happens that (am)T v ≥ 0 also, then
we are done. If, on the other hand, we have (am)T v < 0, then let

cj = (aj)Tam − (am)Taj , j = 1, ...,m− 1,

and
d = (bT v)am − ((am)T v)b.

Then there are no non-negative real numbers z1, ..., zm−1 such that

z1c
1 + z2c

2 + ...+ zm−1c
m−1 = d, (4.33)

since, otherwise, it would follow from simple calculations that

−1
(am)T v

(
[
m−1∑
j=1

zj((aj)T v)]− bT v
)
am −

m−1∑
j=1

zj((am)T v)aj = b.

Close inspection of this shows all the coefficients to be non-negative, which
implies that the system Ax = b has a non-negative solution, contrary to
our assumption. It follows, therefore, that there can be no non-negative
solution to the system in Equation (4.33).

By the induction hypothesis, it follows that there is a vector u such that

(cj)Tu ≥ 0, j = 1, ...,m− 1,

and
dTu < 0.

Now let
y = ((am)Tu)v − ((am)T v)u.

We can easily verify that

(aj)T y = (cj)Tu ≥ 0, j = 1, ...,m− 1,

bT y = dTu < 0,

and
(am)T y = 0,

4.9. EXERCISES 49

so that
AT y ≥ 0,

and
bT y < 0.

This completes the proof.

4.9 Exercises

4.1 Prove Proposition 4.2.

4.2 Show that the subset of RJ consisting of all vectors x with ||x||2 = 1
is not convex.

4.3 Prove that every subspace of RJ is convex, and every linear manifold
is convex.

4.4 Prove that every hyperplane H(a, γ) is a linear manifold.

4.5 Prove Lemmas 4.2, 4.3 and 4.4.

4.6 Let C be a convex set and f : C ⊆ RJ → (−∞,∞]. Prove that f(x) is
a convex function if and only if, for all x and y in C, and for all 0 < α < 1,
we have

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y).

4.7 Let f : RJ → [−∞,∞]. Prove that f(x) is a convex function if and
only if, for all 0 < α < 1, we have

f(αx+ (1− α)y) < αb+ (1− α)c,

whenever f(x) < b and f(y) < c.

4.8 Show that the vector a is orthogonal to the hyperplane H = H(a, γ);
that is, if u and v are in H, then a is orthogonal to u− v.

4.9 Given a point s in a convex set C, where are the points x for which
s = PCx?

4.10 Let C be a closed non-empty convex set in RJ , x a vector not in C,
and d > 0 the distance from x to C. Let

σC(a) = sup
x∈C

〈a, x〉 ,

the support function of C. Show that

d = max
||a||≤1

{〈a, x〉 − σC(a)}.

Hints: Consider the unit vector 1
d (x − PCx), and use Cauchy’s Inequality

and Proposition 4.4.

50 CHAPTER 4. CONVEX SETS

Remark: If, in the definition of the support function, we take the vectors
a to be unit vectors, with a = (cos θ, sin θ), for 0 ≤ θ < 2π, then we can
define the function

f(θ) = sup
(x,y)∈C

x cos θ + y sin θ.

In [118] Tom Marzetta considers this function, as well as related functions
of θ, such as the radius of curvature function, and establishes relationships
between the behavior of these functions and the convex set itself.

4.11 (R̊adström Cancellation [15])

• (a) Show that, for any subset S of RJ , we have 2S ⊆ S + S, and
2S = S + S if S is convex.

• (b) Find three finite subsets of R, say A, B, and C, with A not
contained in B, but with the property that A+ C ⊆ B + C.

• (c) Show that, if A and B are convex, B is closed, and C is bounded,
then A + C ⊆ B + C implies that A ⊆ B. Hint: Note that, under
these assumptions, 2A+ C = A+ (A+ C) ⊆ 2B + C.

Chapter 5

Linear Programming

The term linear programming (LP) refers to the problem of optimizing a
linear function of several variables over linear equality or inequality con-
straints. In this chapter we present the problem and establish the basic
facts. For a much more detailed discussion, consult [122]. We begin with
a review of basic linear algebra.

5.1 Basic Linear Algebra

In this section we discuss systems of linear equations, Gaussian elimination,
and the notions of basic and non-basic variables.

5.1.1 Bases and Dimension

The notions of a basis and of linear independence are fundamental in linear
algebra. Let V be a vector space.

Definition 5.1 A collection of vectors {u1, ..., uN} in V is linearly inde-
pendent if there is no choice of scalars α1, ..., αN , not all zero, such that

0 = α1u
1 + ...+ αNu

N . (5.1)

Definition 5.2 The span of a collection of vectors {u1, ..., uN} in V is the
set of all vectors x that can be written as linear combinations of the un;
that is, for which there are scalars c1, ..., cN , such that

x = c1u
1 + ...+ cNu

N . (5.2)

Definition 5.3 A collection of vectors {w1, ..., wN} in V is called a span-
ning set for a subspace S if the set S is their span.

51

52 CHAPTER 5. LINEAR PROGRAMMING

Definition 5.4 A collection of vectors {u1, ..., uN} in V is called a basis
for a subspace S if the collection is linearly independent and S is their span.

Definition 5.5 A collection of vectors {u1, ..., uN} in V is called orthonor-
mal if ‖un‖2 = 1, for all n, and 〈um, un〉 = 0, for m 6= n.

Suppose that S is a subspace of V, that {w1, ..., wN} is a spanning set
for S, and {u1, ..., uM} is a linearly independent subset of S. Beginning
with w1, we augment the set {u1, ..., uM} with wj if wj is not in the span of
the um and the wk previously included. At the end of this process, we have
a linearly independent spanning set, and therefore, a basis, for S (Why?).
Similarly, beginning with w1, we remove wj from the set {w1, ..., wN} if wj
is a linear combination of the wk, k = 1, ..., j − 1. In this way we obtain
a linearly independent set that spans S, hence another basis for S. The
following lemma will allow us to prove that all bases for a subspace S have
the same number of elements.

Lemma 5.1 Let W = {w1, ..., wN} be a spanning set for a subspace S
in RI , and V = {v1, ..., vM} a linearly independent subset of S. Then
M ≤ N .

Proof: Suppose that M > N . Let B0 = {w1, ..., wN}. To obtain the set
B1, form the set C1 = {v1, w1, ..., wN} and remove the first member of C1

that is a linear combination of members of C1 that occur to its left in the
listing; since v1 has no members to its left, it is not removed. Since W is a
spanning set, v1 is a linear combination of the members of W , so that some
member of W is a linear combination of v1 and the remaining members of
W ; remove the first member of W for which this is true.

We note that the set B1 is a spanning set for S and has N members.
Having obtained the spanning set Bk, with N members and whose first k
members are vk, ..., v1, we form the set Ck+1 = Bk ∪ {vk+1}, listing the
members so that the first k+1 of them are {vk+1, vk, ..., v1}. To get the set
Bk+1 we remove the first member of Ck+1 that is a linear combination of
the members to its left; there must be one, since Bk is a spanning set, and
so vk+1 is a linear combination of the members of Bk. Since the set V is
linearly independent, the member removed is from the set W . Continuing
in this fashion, we obtain a sequence of spanning sets B1, ..., BN , each with
N members. The set BN is BN = {v1, ..., vN} and vN+1 must then be
a linear combination of the members of BN , which contradicts the linear
independence of V .

Corollary 5.1 Every basis for a subspace S has the same number of ele-
ments.

Definition 5.6 The dimension of a subspace S is the number of elements
in any basis.

5.1. BASIC LINEAR ALGEBRA 53

Lemma 5.2 For any matrix A, the number of linearly independent rows
equals the number of linearly independent columns.

Proof: See Exercise 5.3.

Definition 5.7 The rank of A is the number of linearly independent rows
or of linearly independent columns of A.

5.1.2 Systems of Linear Equations

Consider the system of three linear equations in five unknowns given by

x1 +2x2 +2x4 +x5 = 0
−x1 −x2 +x3 +x4 = 0
x1 +2x2 −3x3 −x4 −2x5 = 0

. (5.3)

This system can be written in matrix form as Ax = 0, with A the coefficient
matrix

A =

 1 2 0 2 1
−1 −1 1 1 0
1 2 −3 −1 −2

 , (5.4)

and x = (x1, x2, x3, x4, x5)T . Applying Gaussian elimination to this sys-
tem, we obtain a second, simpler, system with the same solutions:

x1 −2x4 +x5 = 0
x2 +2x4 = 0

x3 +x4 +x5 = 0
. (5.5)

From this simpler system we see that the variables x4 and x5 can be freely
chosen, with the other three variables then determined by this system of
equations. The variables x4 and x5 are then independent, the others de-
pendent. The variables x1, x2 and x3 are then called basic variables. To
obtain a basis of solutions we can let x4 = 1 and x5 = 0, obtaining the
solution x = (2,−2,−1, 1, 0)T , and then choose x4 = 0 and x5 = 1 to get
the solution x = (−1, 0,−1, 0, 1)T . Every solution to Ax = 0 is then a
linear combination of these two solutions. Notice that which variables are
basic and which are non-basic is somewhat arbitrary, in that we could have
chosen as the non-basic variables any two whose columns are independent.

Having decided that x4 and x5 are the non-basic variables, we can write
the original matrix A as A = [B N], where B is the square invertible
matrix

B =

 1 2 0
−1 −1 1
1 2 −3

 , (5.6)

54 CHAPTER 5. LINEAR PROGRAMMING

and N is the matrix

N =

 2 1
1 0
−1 −2

 . (5.7)

With xB = (x1, x2, x3)T and xN = (x4, x5)T we can write

Ax = BxB +NxN = 0, (5.8)

so that

xB = −B−1NxN . (5.9)

5.1.3 Real and Complex Systems of Linear Equations

A system Ax = b of linear equations is called a complex system, or a real
system if the entries of A, x and b are complex, or real, respectively. For any
matrix A, we denote by AT and A† the transpose and conjugate transpose
of A, respectively.

Any complex system can be converted to a real system in the following
way. A complex matrix A can be written as A = A1 + iA2, where A1 and
A2 are real matrices and i =

√
−1. Similarly, x = x1 + ix2 and b = b1 + ib2,

where x1, x2, b1 and b2 are real vectors. Denote by Ã the real matrix

Ã =
[
A1 −A2

A2 A1

]
, (5.10)

by x̃ the real vector

x̃ =
[
x1

x2

]
, (5.11)

and by b̃ the real vector

b̃ =
[
b1

b2

]
. (5.12)

Then x satisfies the system Ax = b if and only if x̃ satisfies the system
Ãx̃ = b̃.

Definition 5.8 A square matrix A is symmetric if AT = A and Hermitian
if A† = A.

Definition 5.9 A non-zero vector x is said to be an eigenvector of the
square matrix A if there is a scalar λ such that Ax = λx. Then λ is said
to be an eigenvalue of A.

5.2. PRIMAL AND DUAL PROBLEMS 55

If x is an eigenvector of A with eigenvalue λ, then the matrix A − λI has
no inverse, so its determinant is zero; here I is the identity matrix with
ones on the main diagonal and zeros elsewhere. Solving for the roots of the
determinant is one way to calculate the eigenvalues of A. For example, the
eigenvalues of the Hermitian matrix

B =
[

1 2 + i
2− i 1

]
(5.13)

are λ = 1 +
√

5 and λ = 1 −
√

5, with corresponding eigenvectors u =
(
√

5, 2 − i)T and v = (
√

5, i − 2)T , respectively. Then B̃ has the same
eigenvalues, but both with multiplicity two. Finally, the associated eigen-
vectors of B̃ are [

u1

u2

]
, (5.14)

and [
−u2

u1

]
, (5.15)

for λ = 1 +
√

5, and [
v1

v2

]
, (5.16)

and [
−v2

v1

]
, (5.17)

for λ = 1−
√

5.

5.2 Primal and Dual Problems

The fundamental problem in linear programming is to minimize the func-
tion

f(x) = cTx, (5.18)

over the feasible set F , that is, the convex set of all x ≥ 0 with Ax = b.
Shortly, we shall present an algebraic description of the extreme points of
the feasible set F , in terms of basic feasible solutions, show that there are
at most finitely many extreme points of F and that every member of F can
be written as a convex combination of the extreme points, plus a direction

56 CHAPTER 5. LINEAR PROGRAMMING

of unboundedness. These results will be used to prove the basic theorems
about the primal and dual linear programming problems and to describe
the simplex algorithm.

Associated with the basic problem in LP, called the primary problem,
there is a second problem, the dual problem. Both of these problems can be
written in two equivalent ways, the canonical form and the standard form.

5.2.1 An Example

Consider the problem of maximizing the function f(x1, x2) = x1 + 2x2,
over all x1 ≥ 0 and x2 ≥ 0, for which the inequalities

x1 + x2 ≤ 40,

and
2x1 + x2 ≤ 60

are satisfied. The set of points satisfying all four inequalities is the quadri-
lateral with vertices (0, 0), (30, 0), (20, 20), and (0, 40); draw a picture.
Since the level curves of the function f are straight lines, the maximum
value must occur at one of these vertices; in fact, it occurs at (0, 40) and
the maximum value of f over the constraint set is 80. Rewriting the prob-
lem as minimizing the function −x1 − 2x2, subject to x1 ≥ 0, x2 ≥ 0,

−x1 − x2 ≥ −40,

and
−2x1 − x2 ≥ −60,

the problem is now in what is called primal canonical form.

5.2.2 Canonical and Standard Forms

Let b and c be fixed vectors and A a fixed matrix. The problem

minimize z = cTx, subject toAx ≥ b, x ≥ 0 (PC) (5.19)

is the so-called primary problem of LP, in canonical form. The dual problem
in canonical form is

maximizew = bT y, subject toAT y ≤ c, y ≥ 0. (DC) (5.20)

The primary problem, in standard form, is

minimize z = cTx, subject toAx = b, x ≥ 0 (PS) (5.21)

with the dual problem in standard form given by

maximizew = bT y, subject toAT y ≤ c. (DS) (5.22)

5.2. PRIMAL AND DUAL PROBLEMS 57

Notice that the dual problem in standard form does not require that y be
nonnegative. Note also that the standard problems make sense only if the
system Ax = b is under-determined and has infinitely many solutions. For
that reason, we shall assume, for the standard problems, that the I by J
matrix A has more columns than rows, so J > I, and has full row rank.

If we are given the primary problem in canonical form, we can convert
it to standard form by augmenting the variables, that is, by defining

ui = (Ax)i − bi, (5.23)

for i = 1, ..., I, and rewriting Ax ≥ b as

Ãx̃ = b, (5.24)

for Ã = [A −I] and x̃ = [xTuT]T .
If we are given the primary problem in standard form, we can convert

it to canonical form by writing the equations as inequalities, that is, by
replacing Ax = b with the two matrix inequalities Ax ≥ b, and (−A)x ≥
−b.

5.2.3 Weak Duality

Consider the problems (PS) and (DS). Say that x is feasible if x ≥ 0 and
Ax = b. Let F be the set of feasible x. Say that y is feasible if AT y ≤ c.
The Weak Duality Theorem is the following:

Theorem 5.1 Let x and y be feasible vectors. Then

z = cTx ≥ bT y = w. (5.25)

Corollary 5.2 If z is not bounded below, then there are no feasible y.

Corollary 5.3 If x and y are both feasible, and z = w, then both x and y
are optimal for their respective problems.

The proof of the theorem and its corollaries are left as exercises.
The nonnegative quantity cTx − bT y is called the duality gap. The

complementary slackness condition says that, for optimal x and y, we have

xj(cj − (AT y)j) = 0, (5.26)

for each j, which says that the duality gap is zero. Primal-dual algorithms
for solving linear programming problems are based on finding sequences
{xk} and {yk} that drive the duality gap down to zero [122].

58 CHAPTER 5. LINEAR PROGRAMMING

5.2.4 Strong Duality

The Strong Duality Theorem makes a stronger statement.

Theorem 5.2 If one of the problems (PS) or (DS) has an optimal solu-
tion, then so does the other and z = w for the optimal vectors.

Before we consider the proof of the theorem, we need a few preliminary
results.

Recall that, for (PS) we assume that the I by J matrix A has more
columns than rows, that is, J > I, and the rank of A is I. If, for any
nonnegative vector x, the columns j for which xj is positive are linearly
independent, then xj is positive for at most I values of j.

Definition 5.10 A point x in F is said to be a basic feasible solution if the
columns of A corresponding to positive entries of x are linearly independent.

Therefore, a basic feasible solution can have at most I positive entries.
Now let x be an arbitrary basic feasible solution. Denote by B an

invertible matrix obtained from A by deleting J−I columns associated with
zero entries of x. Note that, if x has fewer than I positive entries, then some
of the columns of A associated with zero values of xj are retained. The
entries of an arbitrary vector y corresponding to the columns not deleted
are called the basic variables. Then, assuming that the columns of B are
the first I columns of A, we write yT = (yTB , y

T
N), and

A = [B N] , (5.27)

so that Ay = ByB +NyN , Ax = BxB = b, and xB = B−1b.
The following theorems are taken from the book by Nash and Sofer

[122]. We begin with a characterization of the extreme points of F (recall
Definition 4.20).

Theorem 5.3 A point x is in Ext(F) if and only if x is a basic feasible
solution.

Proof: Suppose that x is a basic feasible solution, and we write xT =
(xTB , 0

T), A = [B N]. If x is not an extreme point of F , then there are
y 6= x and z 6= x in F , and α in (0, 1), with

x = (1− α)y + αz. (5.28)

Then yT = (yTB , y
T
N), zT = (zTB , z

T
N), and yN ≥ 0, zN ≥ 0. From

0 = xN = (1− α)yN + (α)zN (5.29)

it follows that

yN = zN = 0, (5.30)

5.2. PRIMAL AND DUAL PROBLEMS 59

and b = ByB = BzB = BxB . But, since B is invertible, we have xB =
yB = zB . This is a contradiction, so x must be in Ext(F).

Conversely, suppose that x is in Ext(F). Since it is in F , we know that
Ax = b and x ≥ 0. By reordering the variables if necessary, we may assume
that xT = (xTB , x

T
N), with xB > 0 and xN = 0; we do not know that xB is

a vector of length I, however, so when we write A = [B N], we do not
know that B is square. If B is invertible, then x is a basic feasible solution.
If not, we shall construct y 6= x and z 6= x in F , such that

x =
1
2
y +

1
2
z. (5.31)

If {B1, B2, ..., BK} are the columns of B and are linearly dependent,
then there are constants p1, p2, ..., pK , not all zero, with

p1B1 + ...+ pKBK = 0. (5.32)

With pT = (p1, ..., pK), we have

B(xB + αp) = B(xB − αp) = BxB = b, (5.33)

for all α ∈ (0, 1). We then select α so small that both xB + αp > 0 and
xB − αp > 0. Let

yT = (xTB + αpT , xTN) (5.34)

and

zT = (xTB − αpT , xTN). (5.35)

Therefore x is not an extreme point of F , which is a contradiction. This
completes the proof.

Lemma 5.3 There are at most finitely many basic feasible solutions, so
there are at most finitely many members of Ext(F).

Theorem 5.4 If F is not empty, then Ext(F) is not empty. In that case,
let {v1, ..., vM} be the members of Ext(F). Every x in F can be written as

x = d+ α1v
1 + ...+ αMv

M , (5.36)

for some αm ≥ 0, with
∑M
m=1 αm = 1, and some direction of unbounded-

ness, d.

Proof: We consider only the case in which F is bounded, so there is no
direction of unboundedness; the unbounded case is similar. Let x be a
feasible point. If x is an extreme point, fine. If not, then x is not a basic

60 CHAPTER 5. LINEAR PROGRAMMING

feasible solution. The columns of A that correspond to the positive entries
of x are not linearly independent. Then we can find a vector p such that
Ap = 0 and pj = 0 if xj = 0. If |ε| is small, x+ εp ≥ 0 and (x+ εp)j = 0 if
xj = 0, then x + εp is in F . We can alter ε in such a way that eventually
y = x + εp has one more zero entry than x has, and so does z = x − εp.
Both y and z are in F and x is the average of these points. If y and z are
not basic, repeat the argument on y and z, each time reducing the number
of positive entries. Eventually, we will arrive at the case where the number
of non-zero entries is I, and so will have a basic feasible solution.

Proof of the Strong Duality Theorem: Suppose now that x∗ is a
solution of the problem (PS) and z∗ = cTx∗. Without loss of generality,
we may assume that x∗ is a basic feasible solution, hence an extreme point
of F . Then we can write

xT∗ = ((B−1b)T , 0T), (5.37)

cT = (cTB , c
T
N), (5.38)

and A = [B N]. Every feasible solution has the form

xT = ((B−1b)T , 0T) + ((B−1Nv)T , vT), (5.39)

for some v ≥ 0. From cTx ≥ cTx∗ we find that

(cTN − cTBB
−1N)(v) ≥ 0, (5.40)

for all v ≥ 0. It follows that

cTN − cTBB
−1N = 0. (5.41)

Nw let y∗ = (B−1)T cB , or yT∗ = cTBB
−1. We show that y∗ is feasible for

(DS); that is, we show that

AT y∗ ≤ cT . (5.42)

Since

yT∗ A = (yT∗ B, y
T
∗ N) = (cTB , y

T
∗ N) = (cTB , c

T
BB

−1N) (5.43)

and

cTN ≥ cTBB
−1N, (5.44)

we have

yT∗ A ≤ cT , (5.45)

5.2. PRIMAL AND DUAL PROBLEMS 61

so y∗ is feasible for (DS). Finally, we show that

cTx∗ = yT∗ b. (5.46)

We have

yT∗ b = cTBB
−1b = cTx∗. (5.47)

This completes the proof.

5.2.5 Gale’s Strong Duality Theorem

In [88] Gale presents the following theorem:

Theorem 5.5 Gale’s Strong Duality Theorem If both problems (PC)
and (DC) have feasible solutions, then both have optimal solutions and the
optimal values are equal.

Proof: We show that there are non-negative vectors x and y such that
Ax ≥ b, AT y ≤ c, and bT y − cTx ≥ 0. It will then follow that z = cTx =
bT y = w, so that x and y are both optimal. In matrix notation, we want
to find x ≥ 0 and y ≥ 0 such that

 A 0
0 −AT

−cT bT

[x
y

]
≥

 b
−c
0

 . (5.48)

We assume that there are no x ≥ 0 and y ≥ 0 for which the inequalities
in (5.48) hold. Then, according to Theorem 4.11, there are non-negative
vectors s and t, and non-negative scalar ρ such that

[
−AT 0 c

0 A −b

] st
ρ

 ≥ 0, (5.49)

and

[−bT cT 0]

 st
ρ

 < 0. (5.50)

Note that ρ cannot be zero, for then we would have AT s ≤ 0 and
At ≥ 0. Taking feasible vectors x and y, we would find that sTAx ≤ 0,
which implies that bT s ≤ 0, and tTAT y ≥ 0, which implies that cT t ≥ 0.
Therefore, we could not also have cT t− bT s < 0.

62 CHAPTER 5. LINEAR PROGRAMMING

Writing out the inequalities, we have

ρcT t ≥ sTAt ≥ sT (ρb) = ρsT b.

Using ρ > 0, we find that
cT t ≥ bT s,

which is a contradiction. Therefore, there do exist x ≥ 0 and y ≥ 0 such
that Ax ≥ b, AT y ≤ c, and bT y − cTx ≥ 0.

5.3 Some Examples

We give two well known examples of LP problems.

5.3.1 The Diet Problem

There are nutrients indexed by i = 1, ..., I and our diet must contain at
least bi units of the ith nutrient. There are J foods, indexed by j = 1, ..., J ,
and one unit of the jth food cost cj dollars and contains Aij units of the
ith nutrient. The problem is to minimize the cost, while obtaining at least
the minimum amount of each nutrient.

Let xj ≥ 0 be the amount of the jth food that we consume. Then we
need Ax ≥ b, where A is the matrix with entries Aij , b is the vector with
entries bi and x is the vector with entries xj ≥ 0. With c the vector with
entries cj , the total cost of our food is z = cTx. The problem is then to
minimize z = cTx, subject to Ax ≥ b and x ≥ 0. This is the primary LP
problem, in canonical form.

5.3.2 The Transport Problem

We must ship products from sources to destinations. There are I sources,
indexed by i = 1, ..., I, and J destinations, indexed by j = 1, ..., J . There
are ai units of product at the ith source, and we must have at least bj units
reaching the jth destination. The customer will pay Cij dollars to get one
unit from i to j. Let xij be the number of units of product to go from
the ith source to the jth destination. The producer wishes to maximize
income, that is,

maximize
∑
i,j

Cijxij ,

subject to
xij ≥ 0,

I∑
i=1

xij ≥ bj ,

5.4. THE SIMPLEX METHOD 63

and
J∑
j=1

xij ≤ ai.

Obviously, we must assume that

I∑
i=1

ai ≥
J∑
j=1

bj .

This problem is not yet in the form of the LP problems considered so far.
It also introduces a new feature, namely, it may be necessary to have xij a
non-negative integer, if the products exist only in whole units. This leads
to integer programming.

5.4 The Simplex Method

In this section we sketch the main ideas of the simplex method. For further
details see [122].

Begin with a basic feasible solution of (PS) x̂. Assume, as previously,
that

A = [B N] , (5.51)

where B is an I by I invertible matrix obtained by deleting from A some
(but perhaps not all) columns associated with zero entries of x̂. As before,
we assume the variables have been ordered so that the zero entries of x̂
have the highest index values. The entries of an arbitrary x corresponding
to the first I columns are the basic variables. We write xT = (xTB , x

T
N), and

so that x̂N = 0, Ax̂ = Bx̂B = b, and x̂B = B−1b. The current value of z is

ẑ = cTBx̂B = cTBB
−1b.

We are interested in what happens to z as xN takes on positive entries.
For any feasible x we have Ax = b = BxB +Nxn, so that

xB = B−1b−B−1NxN ,

and

z = cTx = cTBxB + cTNxN = cTB(B−1b−B−1NxN) + cTNxN .

Therefore,

z = cTBB
−1b+ (cTN − cTBB

−1N)xN = ẑ + rTxN ,

64 CHAPTER 5. LINEAR PROGRAMMING

where
rT = (cTN − cTBB

−1N).

The vector r is called the reduced cost vector. We define the vector yT =
cTBB

−1 of simplex multipliers, and write

z − ẑ = rTxN = (cTN − yTN)xN .

We are interested in how z changes as we move away from x̂ and permit
xN to have positive entries.

If xN is non-zero, then z changes by rTxN . Therefore, if r ≥ 0, the
current ẑ cannot be made smaller by letting xN have some positive entries;
the current x̂ is then optimal. Initially, at least, r will have some negative
entries, and we use these as a guide in deciding how to select xN .

Keep in mind that the vectors xN and r have length J − I and the jth
column of N is the (I + j)th column of A.

Select an index j such that

rj < 0, (5.52)

and rj is the most negative of the negative entries of r. Then xI+j is called
the entering variable. Compute dj = B−1aj , where aj is the (I + j)th
column of A, which is the jth column of N . If we allow (xN)j = xI+j to
be positive, then

xB = B−1b−B−1aj = B−1b− xI+jd
j .

We need to make sure that xB remains non-negative, so we need

(B−1b)i − xI+jd
j
i ≥ 0,

for all indices i = 1, ..., I. If the ith entry dji is negative, then (xB)i increases
as xI+j becomes positive; if dji = 0, then (xB)i remains unchanged. The
problem arises when dji is positive.

Find an index s in {1, ..., I} for which

(B−1b)s
djs

= min{ (B−1b)i
dji

: dji > 0}. (5.53)

Then xs is the leaving variable, replacing xI+j ; that is, the new set of
indices corresponding to new basic variables will now include I + j, and no
longer include s. The new entries of x̂ are x̂s = 0 and

x̂I+j =
(B−1b)s
djs

.

5.5. AN EXAMPLE OF THE SIMPLEX METHOD 65

We then rearrange the columns of A to redefine B and N , and rearrange
the positions of the entries of x, to get the new basic variables vector xB ,
the new xN and the new c. Then we repeat the process.

It is helpful to note that when the columns of A are rearranged and a
new B is defined, the new B differs from the old B in only one column.
Therefore

Bnew = Bold − uvT , (5.54)

where u is the column vector that equals the old column minus the new one,
and v is the column of the identity matrix corresponding to the column of
Bold being altered. The inverse of Bnew can be obtained fairly easily from
the inverse of Bold using the Sherman-Morrison-Woodbury Identity:

The Sherman-Morrison-Woodbury Identity:

(B − uvT)−1 = B−1 + α(B−1u)(vTB−1), (5.55)

where

α =
1

1− vTB−1u
.

We shall illustrate this in the example below.

5.5 An Example of the Simplex Method

Consider once again the problem of maximizing the function f(x1, x2) =
x1 + 2x2, over all x1 ≥ 0 and x2 ≥ 0, for which the inequalities

x1 + x2 ≤ 40,

and
2x1 + x2 ≤ 60

are satisfied. In (PS) form, the problem is to minimize the function −x1 −
2x2, subject to x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0,

−x1 − x2 − x3 = −40,

and
−2x1 − x2 − x4 = −60.

The matrix A is then

A =
[
−1 −1 −1 0
−2 −1 0 −1

]
, (5.56)

66 CHAPTER 5. LINEAR PROGRAMMING

the matrix B is

B =
[
−1 −1
−2 −1

]
, (5.57)

with inverse

B−1 =
[

1 −1
−2 1

]
, (5.58)

and the matrix N is

N =
[
−1 0
0 −1

]
. (5.59)

The vector b is b = (−40,−60)T . A general vector x is x = (x1, x2, x3, x4)T ,
with xB = (x1, x2)T and xN = (x3, x4)T , and c = (−1,−2, 0, 0)T , with
cB = (−1,−2)T and cN = (0, 0)T . The feasible set of points satisfy-
ing all four inequalities is the quadrilateral in R2 with vertices (0, 0),
(30, 0), (20, 20), and (0, 40). In R4, these vertices correspond to the vec-
tors (0, 0, 40, 60)T , (30, 0, 10, 0)T , (20, 20, 0, 0)T , and (0, 40, 0, 20)T . Since
we have chosen to start with x1 and x2 as our basic variables, we let our
starting vector be x̂ = (20, 20, 0, 0)T , so that x̂B = B−1b = (20, 20)T ,
and x̂N = (0, 0)T . Then we find that yT = cTBB

−1 = (3,−1)T , and
yTN = (−3, 1)T . The reduced cost vector is then

rT = cTN − yTN = (0, 0)T − (−3, 1)T = (3,−1)T .

Since rT has a negative entry in its second position, j = 2, we learn that
the entering variable is going to be x2+j = x4. The fourth column of A is
(0,−1)T , so the vector d2 is

d2 = B−1(0,−1)T = (1,−1)T .

Therefore, we must select a new positive value for x4 that satisfies

(20, 20) ≥ x4(1,−1).

The single positive entry of d2 is the first one, from which we conclude that
the leaving variable will be x1. We therefore select as the new values of the
variables x̂1 = 0, x̂2 = 40, x̂3 = 0, and x̂4 = 20. We then reorder the vari-
ables as x = (x4, x2, x3, x1)T and rearrange the columns of A accordingly.
Having done this, we see that we now have

B = Bnew =
[

0 −1
−1 −1

]
, (5.60)

with inverse

B−1 =
[

1 −1
−1 0

]
, (5.61)

5.6. ANOTHER EXAMPLE OF THE SIMPLEX METHOD 67

and the matrix N is

N =
[
−1 −1
0 −2

]
. (5.62)

Since

Bnew = Bold −
[
−1
−1

]
[1 0] ,

we can apply the Sherman-Morrison-Woodbury Identity to get B−1
new.

The reduced cost vector is now rT = (2, 1)T . Since it has no negative
entries, we have reached the optimal point; the solution is x̂1 = 0, x̂2 = 40,
with slack variables x̂3 = 0 and x̂4 = 20.

5.6 Another Example of the Simplex Method

The following example is taken from Fang and Puthenpura [82]. Minimize
the function

f(x1, x2, x3, x4, x5, x6) = −x1 − x2 − x3,

subject to
2x1 + x4 = 1;

2x2 + x5 = 1;

2x3 + x6 = 1;

and xi ≥ 0, for i = 1, ..., 6. The variables x4, x5, and x6 appear to be slack
variables, introduced to obtain equality constraints.

Initially, we define the matrix A to be

A =

 2 0 0 1 0 0
0 2 0 0 1 0
0 0 2 0 0 1

 , (5.63)

b = (1, 1, 1)T , c = (−1,−1,−1, 0, 0, 0)T and x = (x1, x2, x3, x4, x5, x6)T .
Suppose we begin with x4, x5, and x6 as the basic variables. We then

rearrange the entries of the vector of unknowns so that

x = (x4, x5, x6, x1, x2, x3)T .

Now we have to rearrange the columns of A as well; the new A is

A =

 1 0 0 2 0 0
0 1 0 0 2 0
0 0 1 0 0 2

 . (5.64)

The vector cmust also be redefined; the new one is c = (0, 0, 0,−1,−1,−1)T ,
so that cN = (−1,−1,−1)T and cB = (0, 0, 0)T .

68 CHAPTER 5. LINEAR PROGRAMMING

For this first step of the simplex method we have

B =

 1 0 0
0 1 0
0 0 1

 ,
and

N =

 2 0 0
0 2 0
0 0 2

 .
Note that one advantage in choosing the slack variables as the basic vari-
ables is that it is easy then to find the corresponding basic feasible solution,
which is now

x̂ =

x̂4

x̂5

x̂6

x̂1

x̂2

x̂3

 =
[
x̂B
x̂N

]
=

1
1
1
0
0
0

 .
The reduced cost vector r is then

r = (−1,−1,−1)T ;

since it has negative entries, the current basic feasible solution is not opti-
mal.

Suppose that we select a non-basic variable with negative reduced cost,
say x1, which, we must remember, is the fourth entry of the redefined x,
so j = 1 and I + j = 4. Then x1 is the entering basic variable, and the
vector d1 is then

d1 = B−1aj = (1, 0, 0)T .

The only positive entry of d1 is the first one, which means, according to
Equation (5.53), that the exiting variable should be x4. Now the new set
of basic variables is {x5, x6, x1} and the new set of non-basic variables is
{x2, x3, x4}. The new matrices B and N are

B =

 0 0 2
1 0 0
0 1 0

 ,
and

N =

 0 0 1
2 0 0
0 2 0

 .
Continuing through two more steps, we find that the optimal solution is
−3/2, and it occurs at the vector

x = (x1, x2, x3, x4, x5, x6)T = (1/2, 1/2, 1/2, 0, 0, 0)T .

5.7. SOME POSSIBLE DIFFICULTIES 69

5.7 Some Possible Difficulties

In the first example of the simplex method, we knew all four of the vertices
of the feasible region, so we could choose any one of them to get our initial
basic feasible solution. We chose to begin with x1 and x2 as our basic
variables, which meant that the slack variables were zero and our first
basic feasible solution was x̂ = (20, 20, 0, 0)T . In the second example, we
chose the slack variables to be the initial basic variables, which made it
easy to find the initial basic feasible solution. Generally, however, finding
an initial basic feasible solution may not be easy.

You might think that we can always simply take the slack variables as
our initial basic variables, so that the initial B is just the identity matrix,
and the initial basic feasible solution is merely the concatenation of the
column vectors b and 0, as in the second example. The following example
shows why this may not always work.

5.7.1 A Third Example:

Consider the problem of minimizing the function z = 2x1 +3x2, subject to

3x1 + 2x2 = 14,

2x1 − 4x2 − x3 = 2,

4x1 + 3x2 + x4 = 19,

and xi ≥ 0, for i = 1, ..., 4. The matrix A is now

A =

 3 2 0 0
2 −4 −1 0
4 3 0 1

 . (5.65)

There are only two slack variables, so we cannot construct our set of basic
variables using only slack variables, since the matrix B must be square.
We cannot begin with x̂1 = x̂2 = 0, since this would force x̂3 = −2, which
is not permitted. We can choose x̂2 = 0 and solve for the other three, to
get x̂1 = 14

3 , x̂3 = 22
3 , and x̂4 = 1

3 . This is relatively easy only because the
problem is artificially small. The point here is that, for realistically large
LP problems, finding a place to begin the simplex algorithm may not be a
simple matter. For more on this matter, see [122].

In both of our first two examples, finding the inverse of the matrix B
is easy, since B is only 2 by 2, or 3 by 3. In larger problems, finding B−1,
or better, solving yTB = cTB for yT , is not trivial and can be an expensive
part of each iteration. The Sherman-Morrison-Woodbury identity is helpful
here.

70 CHAPTER 5. LINEAR PROGRAMMING

5.8 Topics for Projects

The simplex method provides several interesting topics for projects.

• 1. Investigate the issue of finding a suitable starting basic feasible
solution. Reference [122] can be helpful in this regard.

• 2. How can we reduce the cost associated with solving yTB = cTB for
yT at each step of the simplex method?

• 3. Suppose that, instead of needing the variables to be nonnegative,
we need each xi to lie in the interval [αi, βi]. How can we modify the
simplex method to incorporate these constraints?

• 4. Investigate the role of linear programming and the simplex method
in graph theory and networks, with particular attention to the trans-
port problem.

• 5. There is a sizable literature on the computational complexity
of the simplex method. Investigate this issue and summarize your
findings.

5.9 Exercises

5.1 Let W = {w1, ..., wN} be a spanning set for a subspace S in RI ,
and V = {v1, ..., vM} a linearly independent subset of S. Then, according
to Lemma 5.1, M ≤ N . Let A be the I by M matrix whose columns
are the vectors vm and B the I by N matrix whose columns are the wn.
Since W is a spanning set for S, there is an N by M matrix C such that
A = BC. Prove Lemma 5.1 by considering the space of solutions of the
system Ax = 0.

5.2 Prove Theorem 5.1 and its corollaries.

5.3 Prove Lemma 5.2. Hints: Suppose that A is an I by J matrix, and
that the column space of A, that is, the subspace CS(A) of RI spanned by
the columns of A, has dimension K, for some K ≤ J . Show that there is
an I by K matrix U and a K by J matrix M such that A = UM . Use
AT = MTUT to show that the column space of AT , the subspace CS(AT)
of RJ spanned by the columns of AT , has a spanning set with K members.
Use the fact that the columns of AT are the transposes of the rows of A, so
that CS(AT) = RS(A)T , to conclude that the dimensions of RS(A), the
row space of A, and CS(A) are the same; this number is the rank of A.

5.4 Complete the calculation of the optimal solution for the problem in
the second example of the simplex method.

5.9. EXERCISES 71

5.5 Consider the following problem, taken from [82]. Minimize the func-
tion

f(x1, x2, x3, x4) = −3x1 − 2x2,

subject to
x1 + x2 + x3 = 40,

2x1 + x2 + x4 = 60,

and
xj ≥ 0,

for j = 1, ..., 4. Use the simplex method to find the optimum solution. Take
as a starting vector (x0)T = (0, 0, 40, 60)T .

5.6 Redo the first example of the simplex method, starting with the vertex
x1 = 0 and x2 = 0.

5.7 Consider the LP problem of maximizing the function f(x1, x2) = x1+
2x2, subject to

−2x1 + x2 ≤ 2,

−x1 + 2x2 ≤ 7,

x1 ≤ 3,

and x1 ≥ 0, x2 ≥ 0. Start at x1 = 0, x2 = 0. You will find that you have
a choice for the entering variable; try it both ways.

5.8 Apply the simplex method to the problem of minimizing z = −x1−2x2,
subject to

−x1 + x2 ≤ 2,

−2x1 + x2 ≤ 1,

and x1 ≥ 0, x2 ≥ 0.

72 CHAPTER 5. LINEAR PROGRAMMING

Chapter 6

Matrix Games and
Optimization

The theory of two-person games is largely the work of John von Neumann,
and was developed somewhat later by von Neumann and Morgenstern [125]
as a tool for economic analysis. Two-person zero-sum games provide a nice
example of optimization and an opportunity to apply some of the linear
algebra and linear programming tools previously discussed. In this chapter
we introduce the idea of two-person matrix games and use results from
linear programming to prove the Fundamental Theorem of Game Theory.

A two-person game is called a constant-sum game if the total payout
is the same, each time the game is played. In such cases, we can subtract
half the total payout from the payout to each player and record only the
difference. Then the total payout appears to be zero, and such games are
called zero-sum games. We can then suppose that whatever one player wins
is paid by the other player. Except for the final section, we shall consider
only two-person, zero-sum games.

6.1 Deterministic Solutions

In this two-person game, the first player, call him P1, selects a row of the I
by J real matrix A, say i, and the second player selects a column of A, say
j. The second player, call her P2, pays the first player Aij . If some Aij < 0,
then this means that the first player pays the second. Since whatever the
first player wins, the second loses, and vice versa, we need only one matrix
to summarize the situation.

73

74 CHAPTER 6. MATRIX GAMES AND OPTIMIZATION

6.1.1 Optimal Pure Strategies

In our first example, the matrix is

A =
[

7 8 4
4 7 2

]
. (6.1)

The first player notes that by selecting row i = 1, he will get at least 4,
regardless of which column the second player plays. The second player
notes that, by playing column j = 3, she will pay the first player no more
than 4, regardless of which row the first player plays. If the first player
then begins to play i = 1 repeatedly, and the second player notices this
consistency, she will still have no motivation to play any column except
j = 3, because the other pay-outs are both worse than 4. Similarly, so
long as the second player is playing j = 3 repeatedly, the first player has
no motivation to play anything other than i = 1, since he will be paid less
if he switches. Therefore, both players adopt a pure strategy of i = 1 and
j = 3. This game is said to be deterministic and the entry A1,3 = 4 is a
saddle-point because it is the maximum of its column and the minimum of
its row. We then have

max
i

min
j
Aij = 4 = min

j
max
i
Aij .

Not all such two-person games have saddle-points, however.

6.1.2 Optimal Randomized Strategies

Consider now the two-person game with pay-off matrix

A =
[

4 1
2 3

]
. (6.2)

The first player notes that by selecting row i = 2, he will get at least 2,
regardless of which column the second player plays. The second player
notes that, by playing column j = 2, she will pay the first player no more
than 3, regardless of which row the first player plays. If both begin by
playing in this conservative manner, the first player will play i = 2 and the
second player will play j = 2.

If the first player plays i = 2 repeatedly, and the second player notices
this consistency, she will be tempted to switch to playing column j = 1,
thereby losing only 2, instead of 3. If she makes the switch and the first
player notices, he will be motivated to switch his play to row i = 1, to get
a pay-off of 4, instead of 2. The second player will then soon switch to
playing j = 2 again, hoping that the first player sticks with i = 1. But the
first player is not stupid, and quickly returns to playing i = 2. There is no
saddle-point in this game.

6.1. DETERMINISTIC SOLUTIONS 75

For such games, it makes sense for both players to select their play at
random, with the first player playing i = 1 with probability p and i = 2
with probability 1 − p, and the second player playing column j = 1 with
probability q and j = 2 with probability 1−q. These are called randomized
strategies.

When the first player plays i = 1, he expects to get 4q+(1−q) = 3q+1,
and when he plays i = 2 he expects to get 2q + 3(1− q) = 3− q. Since he
plays i = 1 with probability p, he expects to get

p(3q + 1) + (1− p)(3− q) = 4pq − 2p− q + 3 = (4p− 1)q + 3− 2p.

He notices that if he selects p = 1
4 , then he expects to get 5

2 , regardless
of what the second player does. If he plays something other than p = 1

4 ,
his expected winnings will depend on what the second player does. If he
selects a value of p less than 1

4 , and q = 1 is selected, then he wins 2p+ 2,
but this is less than 5

2 . If he selects p > 1
4 and q = 0 is selected, then he

wins 3− 2p, which again is less than 5
2 . The maximum of these minimum

pay-offs occurs when p = 1
4 and the max-min win is 5

2 .
Similarly, the second player, noticing that

p(3q + 1) + (1− p)(3− q) = (4q − 2)p+ 3− q,

sees that she will pay out 5
2 if she takes q = 1

2 . If she selects a value of q
less than 1

2 , and p = 0 is selected, then she pays out 3 − q, which is more
than 5

2 . If, on the other hand, she selects a value of q that is greater than
1
2 , and p = 1 is selected, then she will pay out 3q+1, which again is greater
than 5

2 . The only way she can be certain to pay out no more than 5
2 is to

select q = 1
2 . The minimum of these maximum pay-outs occurs when she

chooses q = 1
2 , and the min-max pay-out is 5

2 .
This leads us to the question of whether or not there will always be

probability vectors for the players that will lead to the equality of the
max-min win and the min-max pay-out.

We make a notational change at this point. From now on the letters p
and q will denote probability column vectors, and not individual probabil-
ities, as in this section.

6.1.3 The Min-Max Theorem

Let A be an I by J pay-off matrix. Let

P = {p = (p1, ..., pI) | pi ≥ 0,
I∑
i=1

pi = 1},

Q = {q = (q1, ..., qJ) | qj ≥ 0,
J∑
j=1

qj = 1},

76 CHAPTER 6. MATRIX GAMES AND OPTIMIZATION

and
R = A(Q) = {Aq |q ∈ Q}.

The first player selects a vector p in P and the second selects a vector q in
Q. The expected pay-off to the first player is

E = 〈p,Aq〉 = pTAq.

Let
m0 = max

r∈R
min
p∈P

〈p, r〉,

and
m0 = min

p∈P
max
r∈R

〈p, r〉.

Clearly, we have
min
p∈P

〈p, r〉 ≤ 〈p, r〉 ≤ max
r∈R

〈p, r〉,

for all p ∈ P and r ∈ R. It follows that m0 ≤ m0. The Min-Max Theorem,
also known as the Fundamental Theorem of Game Theory, asserts that
m0 = m0.

Theorem 6.1 The Fundamental Theorem of Game Theory Let A
be an arbitrary real I by J matrix. Then there are vectors p̂ in P and q̂ in
Q such that

pTAq̂ ≤ p̂TAq̂ ≤ p̂TAq, (6.3)

for all p in P and q in Q.

The quantity ω = p̂TAq̂ is called the value of the game. Notice that if
P1 knows that P2 plays according to the mixed-strategy vector q̂, P1 could
examine the entries (Aq̂)i, which are his expected pay-offs should he play
strategy i, and select the one for which this expected pay-off is largest. It
follows from the inequalities in (6.3) that

(Aq̂)i ≤ ω

for all i, and
(Aq̂)i = ω

for all i for which p̂i > 0. However, if P2 notices what P1 is doing, she can
abandon q̂ to her advantage.

There are a number of different proofs of the Fundamental Theorem. In
an appendix, we present a proof using Fenchel Duality. For the remainder
of this chapter we consider various proofs, focusing mainly on linear algebra
methods, linear programming, and theorems of the alternative.

6.2. SYMMETRIC GAMES 77

6.2 Symmetric Games

A game is said to be symmetric if the available strategies are the same for
both players, and if the players switch strategies, the outcomes switch also.
In other words, the pay-off matrix A is skew-symmetric, that is, A is square
and Aji = −Aij . For symmetric games, we can use Theorem 4.12 to prove
the existence of a randomized solution.

First, we show that there is a probability vector p̂ ≥ 0 such that p̂TA ≥
0. Then we show that

pTAp̂ ≤ 0 = p̂TAp̂ ≤ p̂TAq,

for all probability vectors p and q. It will then follow that p̂ and q̂ = p̂ are
the optimal mixed strategies.

If there is no non-zero x ≥ 0 such that xTA ≥ 0, then there is no non-
zero x ≥ 0 such that ATx ≥ 0. Then, by Theorem 4.12, we know that
there is y ≥ 0 with Ay < 0; obviously y is not the zero vector, in this case.
Since AT = −A, it follows that yTA > 0. Consequently, there is a non-zero
x ≥ 0, such that xTA ≥ 0; it is x = y. This is a contradiction. So p̂ exists.

Since the game is symmetric, we have

p̂TAp̂ = (p̂TAp̂)T = p̂TAT p̂ = −p̂TAp̂,

so that p̂TAp̂ = 0.
For any probability vectors p and q we have

pTAp̂ = p̂TAT p = −p̂TAp ≤ 0,

and
0 ≤ p̂TAq.

We conclude that the mixed strategies p̂ and q̂ = p̂ are optimal.

6.2.1 An Example of a Symmetric Game

We present now a simple example of a symmetric game and compute the
optimal randomized strategies.

Consider the pay-off matrix

A =
[

0 1
−1 0

]
. (6.4)

This matrix is skew-symmetric, so the game is symmetric. Let p̂T = [1, 0];
then p̂TA = [0, 1] ≥ 0. We show that p̂ and q̂ = p̂ are the optimal random-
ized strategies. For any probability vectors pT = [p1, p2] and qT = [q1, q2],
we have

pTAp̂ = −p2 ≤ 0,

78 CHAPTER 6. MATRIX GAMES AND OPTIMIZATION

p̂TAp̂ = 0,

and
p̂TAq = q2 ≥ 0.

It follows that the pair of strategies p̂ = q̂ = [1, 0]T are optimal randomized
strategies.

6.2.2 Comments on the Proof of the Min-Max Theo-
rem

In [88], Gale proves the existence of optimal randomized solutions for an
arbitrary matrix game by showing that there is associated with such a game
a symmetric matrix game and that an optimal randomized solution exists
for one if and only if such exists for the other.

6.3 Positive Games

As Gale notes in [88], it is striking that two fundamental mathematical tools
in linear economic theory, linear programming and game theory, developed
simultaneously, and independently, in the years following the Second World
War. More remarkable still was the realization that these two areas are
closely related. Gale’s proof of the Min-Max Theorem, which relates the
game to a linear programming problem and employs his Strong Duality
Theorem, provides a good illustration of this close connection.

If the I by J pay-off matrix A has only positive entries, we can use
Gale’s Strong Duality Theorem 5.5 for linear programming to prove the
Min-Max Theorem.

Let b and c be the vectors whose entries are all one. Consider the LP
problem of minimizing z = cTx, over all x ≥ 0 with ATx ≥ b; this is the
(PC) problem. The (DC) problem is then to maximize w = bT y, over all
y ≥ 0 with Ay ≤ c. Since A has only positive entries, both (PC) and (DC)
are feasible, so, by Gale’s Strong Duality Theorem 5.5, we know that there
are feasible non-negative vectors x̂ and ŷ and non-negative µ such that

ẑ = cT x̂ = µ = bT ŷ = ŵ.

Since x̂ cannot be zero, µ must be positive.

6.3.1 Exercises

6.1 Show that the vectors p̂ = 1
µ x̂ and q̂ = 1

µ ŷ are probability vectors and
are optimal randomized strategies for the matrix game.

6.4. LEARNING THE GAME 79

6.2 Given an arbitrary I by J matrix A, there is α > 0 so that the matrix
B with entries Bij = Aij + α has only positive entries. Show that any
optimal randomized probability vectors for the game with pay-off matrix B
are also optimal for the game with pay-off matrix A.

It follows from these exercises that there exist optimal randomized so-
lutions for any matrix game.

6.3.2 Comments

This proof of the Min-Max Theorem shows that we can associate with a
given matrix game a linear programming problem. It follows that we can
use the simplex method to find optimal randomized solutions for matrix
games. It also suggests that a given linear programming problem can be
associated with a matrix game; see Gale [88] for more discussion of this
point.

6.4 Learning the Game

In our earlier discussion we saw that the matrix game involving the pay-off
matrix

A =
[

4 1
2 3

]
(6.5)

is not deterministic. The best thing the players can do is to select their play
at random, with the first player playing i = 1 with probability p and i = 2
with probability 1 − p, and the second player playing column j = 1 with
probability q and j = 2 with probability 1− q. If the first player, call him
P1, selects p = 1

4 , then he expects to get 5
2 , regardless of what the second

player, call her P2, does; otherwise his fortunes depend on what P2 does.
His optimal mixed-strategy (column) vector is [1/4, 3/4]T . Similarly, the
second player notices that the only way she can be certain to pay out no
more than 5

2 is to select q = 1
2 . The minimum of these maximum pay-outs

occurs when she chooses q = 1
2 , and the min-max pay-out is 5

2 .
Because the pay-off matrix is two-by-two, we are able to determine

easily the optimal mixed-strategy vectors for each player. When the pay-
off matrix is larger, finding the optimal mixed-strategy vectors is not a
simple matter. As we have seen, one approach is to obtain these vectors by
solving a related linear-programming problem. In this section we consider
other approaches to finding the optimal mixed-strategy vectors.

6.4.1 An Iterative Approach

In [88] Gale presents an iterative approach to learning how best to play a
matrix game. The assumptions are that the game is to be played repeatedly

80 CHAPTER 6. MATRIX GAMES AND OPTIMIZATION

and that the two players adjust their play as they go along, based on the
earlier plays of their opponent.

Suppose, for the moment, that P1 knows that P2 is playing the ran-
domized strategy q, where, as earlier, we denote by p and q probability
column vectors. The entry (Aq)i of the column vector Aq is the expected
pay-off to P1 if he plays strategy i. It makes sense for P1 then to find the
index i for which this expected pay-off is largest and to play that strategy
every time. Of course, if P2 notices what P1 is doing, she will abandon q
to her advantage.

After the game has been played n times, the players can examine the
previous plays and make estimates of what the opponent is doing. Suppose
that P1 has played strategy i ni times, where ni ≥ 0 and n1 + n2 + ... +
nI = n. Denote by pn the probability column vector whose ith entry is
ni/n. Similarly, calculate qn. These two probability vectors summarize the
tendencies of the two players over the first n plays. It seems reasonable
that an attempt to learn the game would involve these probability vectors.

For example, P1 could see which entry of qn is the largest, assume that
P2 is most likely to play that strategy the next time, and play his best
strategy against that play of P2. However, if there are several strategies
for P2 to choose, it is still unlikely that P2 will choose this strategy the
next time. Perhaps P1 could do better by considering his long-run fortunes
and examining the vector Aqn of expected pay-offs. In the exercise below,
you are asked to investigate this matter.

6.4.2 Exercise

6.3 Suppose that both players are attempting to learn how best to play
the game by examining the vectors pn and qn after n plays. Devise an
algorithm for the players to follow that will lead to optimal mixed strategies
for both. Simulate repeated play of a particular matrix game to see how
your algorithm performs. If the algorithm does its job, but does it slowly,
that is, it takes many plays of the game for it to begin to work, investigate
how it might be speeded up.

6.5 Non-Constant-Sum Games

In this final section we consider non-constant-sum games. These are more
complicated and the mathematical results more difficult to obtain than in
the constant-sum games. Such non-constant-sum games can be used to
model situations in which the players may both gain by cooperation, or,
when speaking of economic actors, by collusion [74]. We begin with the
most famous example of a non-constant-sum game, the Prisoners’ Dilemma.

6.5. NON-CONSTANT-SUM GAMES 81

6.5.1 The Prisoners’ Dilemma

Imagine that you and your partner are arrested for robbing a bank and
both of you are guilty. The two of you are held in separate rooms and
given the following options by the district attorney: (1) if you confess, but
your partner does not, you go free, while he gets three years in jail; (2) if
he confesses, but you do not, he goes free and you get the three years; (3) if
both of you confess, you each get two years; (4) if neither of you confesses,
each of you gets one year in jail. Let us call you player number one, and
your partner player number two. Let strategy one be to remain silent, and
strategy two be to confess.

Your pay-off matrix is

A =
[
−1 −3
0 −2

]
, (6.6)

so that, for example, if you remain silent, while your partner confesses, your
pay-off is A1,2 = −3, where the negative sign is used because jail time is
undesirable. From your perspective, the game has a deterministic solution;
you should confess, assuring yourself of no more than two years in jail.
Your partner views the situation the same way and also should confess.
However, when the game is viewed, not from one individual’s perspective,
but from the perspective of the pair of you, we see that by sticking together
you each get one year in jail, instead of each of you getting two years; if
you cooperate, you both do better.

6.5.2 Two Pay-Off Matrices Needed

In the case of non-constant-sum games, one pay-off matrix is not enough to
capture the full picture. Consider the following example of a non-constant-
sum game. Let the matrix

A =
[

5 4
3 6

]
(6.7)

be the pay-off matrix for Player One (P1), and

B =
[

5 6
7 2

]
(6.8)

be the pay-off matrix for Player Two (P2); that is, A1,2 = 4 and B2,1 = 7
means that if P1 plays the first strategy and P2 plays the second strategy,
then P1 gains four and P2 gains seven. Notice that the total pay-off for
each play of the game is not constant, so we require two matrices, not one.

Player One, considering only the pay-off matrix A, discovers that the
best strategy is a randomized strategy, with the first strategy played three

82 CHAPTER 6. MATRIX GAMES AND OPTIMIZATION

quarters of the time. Then P1 has expected gain of 9
2 . Similarly, Player

Two, applying the same analysis to his pay-off matrix, B, discovers that
he should also play a randomized strategy, playing the first strategy five
sixths of the time; he then has an expected gain of 16

3 . However, if P1

switches and plays the first strategy all the time, while P2 continues with
his randomized strategy, P1 expects to gain 29

6 > 27
6 , while the expected

gain of P2 is unchanged. This is very different from what happens in
the case of a constant-sum game; there, the sum of the expected gains is
constant, and equals zero for a zero-sum game, so P1 would not be able to
increase his expected gain, if P2 plays his optimal randomized strategy.

6.5.3 An Example: Illegal Drugs in Sports

In a recent article in Scientific American [137], Michael Shermer uses the
model of a non-constant-sum game to analyze the problem of doping, or
illegal drug use, in sports, and to suggest a solution. He is a former com-
petitive cyclist and his specific example comes from the Tour de France. He
is the first player, and his opponent the second player. The choices are to
cheat by taking illegal drugs or to stay within the rules. The assumption he
makes is that a cyclist who sticks to the rules will become less competitive
and will be dropped from his team.

Currently, the likelihood of getting caught is low, and the penalty for
cheating is not too high, so, as he shows, the rational choice is for everyone
to cheat, as well as for every cheater to lie. He proposes changing the
pay-off matrices by increasing the likelihood of being caught, as well as
the penalty for cheating, so as to make sticking to the rules the rational
choice.

Chapter 7

Convex Functions

In this chapter we investigate further the properties of convex functions, in
preparation for our discussion of iterative optimization algorithms.

7.1 Functions of a Single Real Variable

We begin by recalling some of the basic results concerning functions of a
single real variable.

7.1.1 Fundamental Theorems

• The Intermediate Value Theorem:

Theorem 7.1 Let f(x) be continuous on the interval [a, b]. If d is
between f(a) and f(b), then there is c between a and b with f(c) = d.

• The Mean Value Theorem (MVT):

Theorem 7.2 Let f(x) be continuous on the closed interval [a, b] and
differentiable on (a, b). Then, there is c in (a, b) with

f(b)− f(a) = f ′(c)(b− a).

• The Extended Mean Value Theorem (EMVT):

Theorem 7.3 Let f(x) be twice differentiable on the interval (u, v)
and let a and b be in (u, v). Then there is c between a and b with

f(b) = f(a) + f ′(a)(b− a) +
1
2
f ′′(c)(b− a)2.

83

84 CHAPTER 7. CONVEX FUNCTIONS

• A MVT for Integrals:

Theorem 7.4 Let g(x) be continuous and h(x) integrable with con-
stant sign on the interval [a, b]. Then there is c in (a, b) such that∫ b

a

g(x)h(x)dx = g(c)
∫ b

a

h(x)dx.

If f(x) is a function with f ′′(x) > 0 for all x and f ′(a) = 0, then, from
the EMVT, we know that f(b) > f(a), unless b = a, so that x = a is a
global minimizer of the function f(x). As we shall see, such functions are
strictly convex.

7.1.2 Some Proofs

We begin with a proof of the Mean Value Theorem for Integrals. Since
g(x) is continuous on the interval [a, b], it takes on its minimum value,
say m, and its maximum value, say M , and, by the Intermediate Value
Theorem, g(x) also takes on any value in the interval [m,M]. Assume,
without loss of generality, that h(x) ≥ 0, for all x in the interval [a, b], so
that

∫ b
a
h(x)dx ≥ 0. Then we have

m

∫ b

a

h(x)dx ≤
∫ b

a

g(x)h(x)dx ≤M

∫ b

a

h(x)dx,

which says that the ratio ∫ b
a
g(x)h(x)dx∫ b
a
h(x)dx

lies in the interval [m,M]. Consequently, there is a value c in (a, b) for
which g(c) has the value of this ratio. This completes the proof.

Now we present two proofs of the EMVT. We begin by using integration
by parts, with u(x) = f ′(x) and v(x) = x− b, to get

f(b)− f(a) =
∫ b

a

f ′(x)dx = f ′(x)(x− b)|ba −
∫ b

a

f ′′(x)(x− b)dx,

or

f(b)− f(a) = −f ′(a)(a− b)−
∫ b

a

f ′′(x)(x− b)dx.

Then, using the MVT for integrals, with g(x) = f ′′(x) assumed to be
continuous, and h(x) = x− b, we have

f(b) = f(a) + f ′(a)(b− a)− f ′′(c)
∫ b

a

(x− b)dx,

7.1. FUNCTIONS OF A SINGLE REAL VARIABLE 85

from which the assertion of the theorem follows immediately.
A second proof of the EMVT is as follows. Let a and b be fixed and set

F (x) = f(x) + f ′(x)(b− x) +A(b− x)2,

for some constant A to be determined. Then F (b) = f(b). Select A so that
F (a) = f(b). Then F (b) = F (a), so there is c in (a, b) with F ′(c) = 0, by
the MVT, or, more simply, from Rolle’s Theorem. Therefore,

0 = F ′(c) = f ′(c)+f ′′(c)(b−c)+f ′(c)(−1)−2A(b−c) = (f ′′(c)−2A)(b−c).

So A = 1
2f

′′(c) and

F (x) = f(x) + f ′(x)(b− x) +
1
2
f ′′(c)(b− x)2,

from which we get

F (a) = f(b) = f(a) + f ′(a)(b− a) +
1
2
f ′′(c)(b− a)2.

This completes the second proof.

7.1.3 Lipschitz Continuity

Let f : R→ R be a differentiable function. From the Mean-Value Theorem
we know that

f(b) = f(a) + f ′(c)(b− a), (7.1)

for some c between a and b. If there is a constant L with |f ′(x)| ≤ L for
all x, that is, the derivative is bounded, then we have

|f(b)− f(a)| ≤ L|b− a|, (7.2)

for all a and b; functions that satisfy Equation (7.2) are said to be L-
Lipschitz.

7.1.4 The Convex Case

We focus now on the special case of convex functions. Earlier, we said that
a function g : S → [−∞,∞] is convex if its epi-graph is a convex set, in
which case the effective domain of the function g must be a convex set.
For a real-valued function g defined on the whole real line we have several
conditions on g that are equivalent to being a convex function.

86 CHAPTER 7. CONVEX FUNCTIONS

Proposition 7.1 The following are equivalent:
1) the epi-graph of g(x) is convex;
2) for all points a < x < b

g(x) ≤ g(b)− g(a)
b− a

(x− a) + g(a); (7.3)

3) for all points a < x < b

g(x) ≤ g(b)− g(a)
b− a

(x− b) + g(b); (7.4)

4) for all points a and b in R and for all α in the interval (0, 1)

g((1− α)a+ αb) ≤ (1− α)g(a) + αg(b). (7.5)

The proof of Proposition 7.1 is left as an exercise.
As a result of Proposition 7.1, we can use the following definition of a

convex real-valued function.

Definition 7.1 A function g : R → R is called convex if, for each pair of
distinct real numbers a and b, the line segment connecting the two points
A = (a, g(a)) and B = (b, g(b)) is on or above the graph of g(x); that is,
for every α in (0, 1),

g((1− α)a+ αb) ≤ (1− α)g(a) + αg(b).

If the inequality is always strict, then g(x) is strictly convex.

The function g(x) = x2 is a simple example of a convex function. If g(x) is
convex on an open set in R, then g(x) is continuous there, as well ([129], p.
47).It follows from Proposition 7.1 that, if g(x) is convex, then, for every
triple of points a < x < b, we have

g(x)− g(a)
x− a

≤ g(b)− g(a)
b− a

≤ g(b)− g(x)
b− x

. (7.6)

Therefore, for fixed a, the ratio

g(x)− g(a)
x− a

is an increasing function of x, and, for fixed b, the ratio

g(b)− g(x)
b− x

7.1. FUNCTIONS OF A SINGLE REAL VARIABLE 87

is an increasing function of x.
If g(x) is a differentiable function, then convexity can be expressed

in terms of properties of the derivative, g′(x); for every triple of points
a < x < b, we have

g′(a) ≤ g(b)− g(a)
b− a

≤ g′(b). (7.7)

If g(x) is differentiable and convex, then g′(x) is an increasing function.
In fact, the converse is also true, as we shall see shortly.

Recall that the line tangent to the graph of g(x) at the point x = a has
the equation

y = g′(a)(x− a) + g(a). (7.8)

Theorem 7.5 For the differentiable function g(x), the following are equiv-
alent:
1) g(x) is convex;
2) for all a and x we have

g(x) ≥ g(a) + g′(a)(x− a); (7.9)

3) the derivative, g′(x), is an increasing function, or, equivalently,

(g′(x)− g′(a))(x− a) ≥ 0, (7.10)

for all a and x.

Proof: Assume that g(x) is convex. If x > a, then

g′(a) ≤ g(x)− g(a)
x− a

, (7.11)

while, if x < a, then

g(a)− g(x)
a− x

≤ g′(a). (7.12)

In either case, the inequality in (7.9) holds. Now, assume that the inequality
in (7.9) holds. Then

g(x) ≥ g′(a)(x− a) + g(a), (7.13)

and

g(a) ≥ g′(x)(a− x) + g(x). (7.14)

Adding the two inequalities, we obtain

g(a) + g(x) ≥ (g′(x)− g′(a))(a− x) + g(a) + g(x), (7.15)

88 CHAPTER 7. CONVEX FUNCTIONS

from which we conclude that

(g′(x)− g′(a))(x− a) ≥ 0. (7.16)

So g′(x) is increasing. Finally, we assume the derivative is increasing and
show that g(x) is convex. If g(x) is not convex, then there are points a < b
such that, for all x in (a, b),

g(x)− g(a)
x− a

>
g(b)− g(a)
b− a

. (7.17)

By the Mean Value Theorem there is c in (a, b) with

g′(c) =
g(b)− g(a)
b− a

. (7.18)

Select x in the interval (a, c). Then there is d in (a, x) with

g′(d) =
g(x)− g(a)
x− a

. (7.19)

Then g′(d) > g′(c), which contradicts the assumption that g′(x) is increas-
ing. This concludes the proof.

If g(x) is twice differentiable, we can say more. If we multiply both
sides of the inequality in (7.16) by (x− a)−2, we find that

g′(x)− g′(a)
x− a

≥ 0, (7.20)

for all x and a. This inequality suggests the following theorem.

Theorem 7.6 If g(x) is twice differentiable, then g(x) is convex if and
only if g′′(x) ≥ 0, for all x.

Proof: According to the Mean Value Theorem, as applied to the function
g′(x), for any points a < b there is c in (a, b) with g′(b)−g′(a) = g′′(c)(b−a).
If g′′(x) ≥ 0, the right side of this equation is nonnegative, so the left side
is also. Now assume that g(x) is convex, which implies that g′(x) is an
increasing function. Since g′(x+h)−g′(x) ≥ 0 for all h > 0, it follows that
g′′(x) ≥ 0.

The following result, as well as its extension to higher dimensions, will
be helpful in our study of iterative optimization.

Theorem 7.7 Let h(x) be convex and differentiable and its derivative,
h′(x), non-expansive, that is,

|h′(b)− h′(a)| ≤ |b− a|, (7.21)

7.2. FUNCTIONS OF SEVERAL REAL VARIABLES 89

for all a and b. Then h′(x) is firmly non-expansive, which means that

(h′(b)− h′(a))(b− a) ≥ (h′(b)− h′(a))2. (7.22)

Proof: Assume that h′(b)− h′(a) 6= 0, since the alternative case is trivial.
If h′(x) is non-expansive, then the inequality in (7.20) tells us that

0 ≤ h′(b)− h′(a)
b− a

≤ 1,

so that
b− a

h′(b)− h′(a)
≥ 1.

Now multiply both sides by (h′(b)− h′(a))2.
In the next section we extend these results to functions of several vari-

ables.

7.2 Functions of Several Real Variables

In this section we consider the differentiability of a function of several vari-
ables. For more details, see the chapter on differentiability in the appendix.

Let F : D ⊆ RJ → RN be a RN -valued function of J real variables,
defined on domain D with nonempty interior int(D).

Definition 7.2 The function F (x) is said to be (Frechet) differentiable at
point x0 in int(D) if there is an N by J matrix F ′(x0) such that

lim
h→0

1
||h||2

[F (x0 + h)− F (x0)− F ′(x0)h] = 0. (7.23)

It can be shown that, if F is differentiable at x = x0, then F is continuous
there as well [87].

If f : RJ → R is differentiable, then f ′(x0) = ∇f(x0), the gradient
of f at x0. The function f(x) is differentiable if each of its first partial
derivatives is continuous. If the derivative f ′ : RJ → RJ is, itself, differ-
entiable, then f ′′ : RJ → RJ , and f ′′(x) = H(x) = ∇2f(x), the Hessian
matrix whose entries are the second partial derivatives of f . The function
f(x) will be twice differentiable if each of the second partial derivatives is
continuous. In that case, the mixed second partial derivatives are indepen-
dent of the order of the variables, the Hessian matrix is symmetric, and
the chain rule applies.

90 CHAPTER 7. CONVEX FUNCTIONS

Let f : RJ → R be a differentiable function. From the Mean-Value
Theorem ([87], p. 41) we know that, for any two points a and b, there is α
in (0, 1) such that

f(b) = f(a) + 〈∇f((1− α)a+ αb), b− a〉. (7.24)

If there is a constant L with ||∇f(x)||2 ≤ L for all x, that is, the gradient
is bounded in norm, then we have

|f(b)− f(a)| ≤ L||b− a||2, (7.25)

for all a and b; functions that satisfy Equation (7.25) are said to be L-
Lipschitz.

We can study multivariate functions f : RJ → R by using them to
construct functions of a single real variable, given by

φ(t) = f(x0 + t(x− x0)),

where x and x0 are fixed (column) vectors in RJ . If f(x) is differentiable,
then

φ′(t) = 〈∇f(x0 + t(x− x0)), x− x0〉.
If f(x) is twice continuously differentiable, then

φ′′(t) = (x− x0)T∇2f(x0 + t(x− x0))(x− x0).

In addition to real-valued functions f : RJ → R, we shall also be
interested in functions F : RJ → RJ , such as F (x) = ∇f(x), whose range
is RJ , not R. We say that F : RJ → RJ is L-Lipschitz if there is L > 0
such that

||F (b)− F (a)||2 ≤ L||b− a||2, (7.26)

for all a and b.
Suppose g : RJ → R is differentiable and attains its minimum value.

We want to minimize the function g(x). Solving ∇g(x) = 0 to find the
optimal x = x∗ may not be easy, so we may turn to an iterative algorithm
for finding roots of ∇g(x), or one that minimizes g(x) directly. In the latter
case, we may again consider a steepest descent algorithm of the form

xk+1 = xk − γ∇g(xk), (7.27)

for some γ > 0. We denote by T the operator

Tx = x− γ∇g(x). (7.28)

Then, using ∇g(x∗) = 0, we find that

||x∗ − xk+1||2 = ||Tx∗ − Txk||2. (7.29)

We would like to know if there are choices for γ that imply convergence of
the iterative sequence. As in the case of functions of a single variable, for
functions g(x) that are convex, the answer is yes.

7.2. FUNCTIONS OF SEVERAL REAL VARIABLES 91

7.2.1 The Convex Case

We begin with some definitions.

Definition 7.3 The function g(x) : RJ → R is said to be convex if, for
each pair of distinct vectors a and b and for every α in the interval (0, 1)
we have

g((1− α)a+ αb) ≤ (1− α)g(a) + αg(b). (7.30)

If the inequality is always strict, then g(x) is called strictly convex.

The function g(x) is convex if and only if, for every x and z in RJ and
real t, the function f(t) = g(x + tz) is a convex function of t. Therefore,
the theorems for the multi-variable case can also be obtained from previous
results for the single-variable case.

Definition 7.4 A convex function g : RJ → [−∞,+∞] is proper if there
is no x with g(x) = −∞ and some x with g(x) < +∞.

Definition 7.5 The effective domain of g is dom(g)=D = {x|g(x) <
+∞}.

Definition 7.6 A proper convex function g is closed if it is lower semi-
continuous, that is, if g(x) = lim inf g(y), as y → x.

A function g is closed if and only if its epi-graph is a closed set. If g is
convex and finite on an open subset of dom(g), then g is continuous there,
as well ([133]).

7.2.2 Subdifferentials and Subgradients

Suppose that g : RJ → (−∞,+∞] is convex and g(x) is finite for x in
the non-empty closed convex set C. Applying the Support Theorem to the
epigraph of g, we obtain the following theorem.

Theorem 7.8 If x0 is an interior point of the set C, then there is a non-
zero vector d with

g(x) ≥ g(x0) + 〈d, x− x0〉,

for all x.

Proof: The point (x0, g(x0)) is a boundary point of the epigraph of g.
According to the Support Theorem, there is a non-zero vector a = (b, c) in
RJ+1, with b in RJ and c real, such that

〈b, x〉+ cr = 〈a, (x, r)〉 ≤ 〈a, (x0, g(x0))〉 = 〈b, x0〉+ cg(x0),

92 CHAPTER 7. CONVEX FUNCTIONS

for all (x, r) in the epigraph of g, that is, all (x, r) with g(x) ≤ r. The real
number c cannot be positive, since 〈b, x〉 + cr is bounded above, while r
can be increased arbitrarily. Also c cannot be zero: if c = 0, then b cannot
be zero and we would have 〈b, x〉 ≤ 〈b, x0〉 for all x in C. But, since x0 is
in the interior of C, there is t > 0 such that x = x0 + tb is in C. So c < 0.
We then select d = − 1

c b.
Note that it can happen that b = 0; therefore d = 0 is possible; see

Exercise 7.2.

Definition 7.7 A vector d is said to be a subgradient of the function g(x)
at x = x0 if, for all x, we have

g(x) ≥ g(x0) + 〈d, x− x0〉.

The collection of all subgradients of g at x = x0 is called the subdifferential
of g at x = x0, denoted ∂g(x0). The domain of ∂g is the set dom ∂g =
{x|∂g(x) 6= ∅}.

Theorem 7.8 says that the subdifferential of a convex function at an interior
point of its domain is non-empty. If the subdifferential consists of a single
vector, then g is differentiable at x = x0 and that single vector is its gradient
at x = x0.

Note that, by the chain rule, f ′(t) = ∇g(x + tz) · z, for the function
f(t) = g(x+ tz).

Theorem 7.9 Let g : RJ → R be differentiable. The following are equiv-
alent:
1) g(x) is convex;
2) for all a and b we have

g(b) ≥ g(a) + 〈∇g(a), b− a〉 ; (7.31)

3) for all a and b we have

〈∇g(b)−∇g(a), b− a〉 ≥ 0. (7.32)

As in the case of functions of a single variable, we can say more when the
function g(x) is twice differentiable. To guarantee that the second deriva-
tive matrix is symmetric, we assume that the second partial derivatives are
continuous. Note that, by the chain rule again, f ′′(t) = zT∇2g(x+ tz)z.

Theorem 7.10 Let each of the second partial derivatives of g(x) be contin-
uous, so that g(x) is twice continuously differentiable. Then g(x) is convex
if and only if the second derivative matrix ∇2g(x) is non-negative definite,
for each x.

7.2. FUNCTIONS OF SEVERAL REAL VARIABLES 93

Suppose that g(x) : RJ → R is convex and the function F (x) = ∇g(x)
is L-Lipschitz. We have the following analog of Theorem 7.7.

Theorem 7.11 Let h(x) be convex and differentiable and its derivative,
∇h(x), non-expansive, that is,

||∇h(b)−∇h(a)||2 ≤ ||b− a||2, (7.33)

for all a and b. Then ∇h(x) is firmly non-expansive, which means that

〈∇h(b)−∇h(a), b− a〉 ≥ ||∇h(b)−∇h(a)||22. (7.34)

Unlike the proof of Theorem 7.7, the proof of this theorem is not trivial.
In [92] Golshtein and Tretyakov prove the following theorem, from which
Theorem 7.11 follows immediately.

Theorem 7.12 Let g : RJ → R be convex and differentiable. The follow-
ing are equivalent:

||∇g(x)−∇g(y)||2 ≤ ||x− y||2; (7.35)

g(x) ≥ g(y) + 〈∇g(y), x− y〉+
1
2
||∇g(x)−∇g(y)||22; (7.36)

and

〈∇g(x)−∇g(y), x− y〉 ≥ ||∇g(x)−∇g(y)||22. (7.37)

Proof: The only difficult step in the proof is showing that Inequality (7.35)
implies Inequality (7.36). To prove this part, let x(t) = (1 − t)y + tx, for
0 ≤ t ≤ 1. Then

g′(x(t)) = 〈∇g(x(t)), x− y〉, (7.38)

so that∫ 1

0

〈∇g(x(t))−∇g(y), x− y〉dt = g(x)− g(y)− 〈∇g(y), x− y〉. (7.39)

Therefore,
g(x)− g(y)− 〈∇g(y), x− y〉 ≤

∫ 1

0

||∇g(x(t))−∇g(y)||2||x(t)− y||2dt (7.40)

94 CHAPTER 7. CONVEX FUNCTIONS

≤
∫ 1

0

||x(t)− y||22dt =
∫ 1

0

||t(x− y)||22dt =
1
2
||x− y||22, (7.41)

according to Inequality (7.35). Therefore,

g(x) ≤ g(y) + 〈∇g(y), x− y〉+
1
2
||x− y||22. (7.42)

Now let x = y −∇g(y), so that

g(y −∇g(y)) ≤ g(y) + 〈∇g(y),∇g(y)〉+
1
2
||∇g(y)||22. (7.43)

Consequently,

g(y −∇g(y)) ≤ g(y)− 1
2
||∇g(y)||22. (7.44)

Therefore,

inf g(x) ≤ g(y)− 1
2
||∇g(y)||22, (7.45)

or

g(y) ≥ inf g(x) +
1
2
||∇g(y)||22. (7.46)

Now fix y and define the function h(x) by

h(x) = g(x)− g(y)− 〈∇g(y), x− y〉. (7.47)

Then h(x) is convex, differentiable, and non-negative,

∇h(x) = ∇g(x)−∇g(y), (7.48)

and h(y) = 0, so that h(x) attains its minimum at x = y. Applying
Inequality (7.46) to the function h(x), with z in the role of x and x in the
role of y, we find that

inf h(z) = 0 ≤ h(x)− 1
2
||∇h(x)||22. (7.49)

From the definition of h(x), it follows that

0 ≤ g(x)− g(y)− 〈∇g(y), x− y〉 − 1
2
||∇g(x)−∇g(y)||22. (7.50)

This completes the proof of the implication.

If g(x) is convex and f(x) = ∇g(x) is L-Lipschitz, then 1
L∇g(x) is non-

expansive, so, by Theorem 7.11, it is firmly non-expansive. It follows that,
for γ > 0, the operator

Tx = x− γ∇g(x) (7.51)

is averaged, whenever 0 < γ < 2
L . By the KM Theorem 10.2, the iterative

sequence xk+1 = Txk = xk − γ∇g(xk) converges to a minimizer of g(x),
whenever minimizers exist.

7.3. EXERCISES 95

7.3 Exercises

7.1 Prove Proposition 7.1.

7.2 Show that, if x̂ minimizes the function g(x) over all x in RJ , then
x = 0 is in the sub-differential ∂g(x̂).

7.3 If f(x) and g(x) are convex functions on RJ , is f(x) + g(x) convex?
Is f(x)g(x) convex?

7.4 Let ιC(x) be the indicator function of the closed convex set C, that is,

ιC(x) =

{
0, if x ∈ C;

+∞, if x /∈ C.

Show that the subdifferential of the function ιC at a point c in C is the
normal cone to C at the point c, that is, ∂ιC(c) = NC(c), for all c in C.

96 CHAPTER 7. CONVEX FUNCTIONS

Chapter 8

Convex Programming

8.1 The Primal Problem

Let f and gi, i = 1, ..., I, be convex functions defined on a non-empty closed
convex subset C of RJ . The primal problem in convex programming (CP)
is the following:

minimize f(x), subject to gi(x) ≤ 0, for i = 1, ..., I. (P) (8.1)

For notational convenience, we define g(x) = (g1(x), ..., gI(x)). Then (P)
becomes

minimize f(x), subject to g(x) ≤ 0. (P) (8.2)

The feasible set for (P) is

F = {x|g(x) ≤ 0}. (8.3)

Definition 8.1 The problem (P) is said to be consistent if F is not empty,
and super-consistent if there is x in F with gi(x) < 0 for all i = 1, ..., I.
Such a point x is then called a Slater point.

8.1.1 The Perturbed Problem

For each z in RI let

MP (z) = inf{f(x)|x ∈ C, g(x) ≤ z}, (8.4)

and MP = MP (0). The convex programming problem (P(z)) is to min-
imize the function f(x) over x in C with g(x) ≤ z. The feasible set for
(P(z)) is

F (z) = {x|g(x) ≤ z}. (8.5)

97

98 CHAPTER 8. CONVEX PROGRAMMING

We shall be interested in properties of the function MP (z), in particular,
how the function MP (z) behaves as z moves away from z = 0.

For example, let f(x) = x2; the minimum occurs at x = 0. Now
consider the perturbed problem, minimize f(x) = x2, subject to x ≤ z.
For z ≤ 0, the minimum of the perturbed problem occurs at x = z, and we
have MP (z) = z2. For z > 0 the minimum of the perturbed problem is the
global minimum, which is at x = 0, so MP (z) = 0. The global minimum
of MP (z) also occurs at z = 0.

We have the following theorem concerning the function MP (z); see the
exercises for related results.

Theorem 8.1 The function MP (z) is convex and its domain, the set of
all z for which F (z) is not empty, is convex. If (P) is super-consistent,
then z = 0 is an interior point of the domain of MP (z).

Proof: See [129], Theorem 5.2.6.
From Theorem 7.8 we know that if (P) is super-consistent, then there

is a vector d such that

MP (z) ≥MP (0) + 〈d, z − 0〉. (8.6)

In fact, we can show that, in this case, d ≤ 0. Suppose that di > 0 for
some i. Since z = 0 is in the interior of the domain of MP (z), there is
r > 0 such that F (z) is not empty for all z with ||z|| < r. Let wj = 0 for
j 6= i and wi = r/2. Then F (w) is not empty and MP (0) ≥MP (w), since
F ⊆ F (w). But from Equation (8.6) we have

MP (w) ≥MP (0) +
r

2
di > MP (0). (8.7)

This is a contradiction, and we conclude that d ≤ 0.

8.1.2 The Sensitivity Vector

From now on we shall use λ∗ = −d instead of d. For z ≥ 0 we have
MP (z) ≤MP (0), and

〈λ∗, z〉 ≥MP (0)−MP (z) ≥ 0. (8.8)

The quantity 〈λ∗, z〉 measures how much MP (z) changes as we increase z
away from z = 0; for that reason, λ∗ is called the sensitivity vector, as well
as the vector of Lagrange multipliers.

The Lagrangian for the problem (P) is the function

L(x, λ) = f(x) +
I∑
i=1

λigi(x), (8.9)

defined for all x in C and λ ≥ 0.

8.2. FROM CONSTRAINED TO UNCONSTRAINED 99

8.2 From Constrained to Unconstrained

In addition to being a measure of the sensitivity of MP (z) to changes in z,
the vector λ∗ can be used to convert the original constrained minimization
problem (P) into an unconstrained one.

Theorem 8.2 If the problem (P) has a sensitivity vector λ∗ ≥ 0, in par-
ticular, when (P) is super-consistent, then

MP (0) = inf
x∈C

(
f(x) + 〈λ∗, g(x)〉

)
= inf
x∈C

L(x, λ∗). (8.10)

Proof: For any x in the set C, the set F (g(x)) is non-empty, and

MP (g(x)) + 〈λ∗, g(x)〉 ≥MP (0). (8.11)

Since

f(x) ≥MP (g(x)), (8.12)

it follows that

f(x) + 〈λ∗, g(x)〉 ≥MP (0). (8.13)

Therefore,

inf
x∈C

(
f(x) + 〈λ∗, g(x)〉

)
≥MP (0). (8.14)

But

inf
x∈C

(
f(x) + 〈λ∗, g(x)〉

)
≤ inf
x∈C,g(x)≤0

(
f(x) + 〈λ∗, g(x)〉

)
, (8.15)

and

inf
x∈C,g(x)≤0

(
f(x) + 〈λ∗, g(x)〉

)
≤ inf
x∈C,g(x)≤0

f(x) = MP (0), (8.16)

since λ∗ ≥ 0 and g(x) ≤ 0.
Note that the theorem tells us that the two sides of Equation (8.10) are

equal, but we cannot conclude from the theorem that if both sides have a
minimizer then the minimizers are the same vector.

8.3 Saddle Points

To prepare for our discussion of the Karush-Kuhn-Tucker Theorem and
duality, we consider the notion of saddle points.

100 CHAPTER 8. CONVEX PROGRAMMING

8.3.1 The Primal and Dual Problems

Suppose that X and Y are two non-empty sets and K : X×Y → (−∞,∞)
is a function of two variables. For each x in X, define the function f(x) by
the supremum

f(x) = sup
y
K(x, y), (8.17)

where the supremum is the least upper bound of the real numbers K(x, y),
over all y in Y . Then we have

K(x, y) ≤ f(x), (8.18)

for all x. Similarly, for each y in Y , define the function g(y) by

g(y) = inf
x
K(x, y); (8.19)

here the infimum is the greatest lower bound of the numbers K(x, y), over
all x in X. Then we have

g(y) ≤ K(x, y), (8.20)

for all y in Y . Putting together (8.18) and (8.20), we have

g(y) ≤ K(x, y) ≤ f(x), (8.21)

for all x and y. Now we consider two problems: the primal problem is
minimizing f(x) and the dual problem is maximizing g(y).

Definition 8.2 The pair (x̂, ŷ) is called a saddle point for the function
K(x, y) if, for all x and y, we have

K(x̂, y) ≤ K(x̂, ŷ) ≤ K(x, ŷ). (8.22)

The number K(x̂, ŷ) is called the saddle value.

For example, the function K(x, y) = x2 − y2 has (0, 0) for a saddle
point, with saddle value zero.

8.3.2 The Main Theorem

We have the following theorem, with the proof left to the reader.

Theorem 8.3 Let (x̂, ŷ) be a saddle point for K(x, y). Then x̂ solves the
primal problem, that is, x̂ minimizes f(x), over all x in X, and ŷ solves
the dual problem, that is, ŷ maximizes g(y), over all y in Y . In addition,
we have

g(y) ≤ K(x̂, ŷ) ≤ f(x), (8.23)

for all x and y, so that the maximum value of g(y) and the minimum value
of f(x) are both equal to K(x̂, ŷ).

8.4. THE KARUSH-KUHN-TUCKER THEOREM 101

8.3.3 A Duality Approach to Optimization

Suppose that our original problem is to minimize a function f(x) over x in
some set X. One approach is to find a second set Y and a function K(x, y)
of two variables for which Equation (8.17) holds, use Equation (8.19) to
construct a second function g(y), defined for y in Y , and then maximize
g(y). If a saddle point exists, then, according to the theorem, we have
solved the original problem.

8.4 The Karush-Kuhn-Tucker Theorem

The Karush-Kuhn Tucker Theorem gives necessary and sufficient condi-
tions for a vector x∗ to be a solution of a super-consistent problem (P).

8.4.1 The KKT Theorem: Saddle-Point Form

This form of the KKT Theorem does not require that the functions in-
volved be differentiable. The saddle-point form of the Karush-Kuhn-Tucker
(KKT) Theorem is the following.

Theorem 8.4 Let (P) be super-consistent. Then x∗ solves (P) if and only
if there is a vector λ∗ such that

• 1) λ∗ ≥ 0;

• 2) L(x∗, λ) ≤ L(x∗, λ∗) ≤ L(x, λ∗), for all x and λ;

• 3) λ∗i gi(x
∗) = 0, for all i = 1, ..., I.

Proof: Since (P) is super-consistent and x∗ solves (P), we know from
Theorem 8.2 that there is λ∗ ≥ 0 such that

f(x∗) = inf
x∈C

L(x, λ∗). (8.24)

We do not yet know that f(x∗) = L(x∗, λ∗), however. We do have

f(x∗) ≤ L(x∗, λ∗) = f(x∗) + 〈λ∗, g(x∗)〉, (8.25)

though, and since λ∗ ≥ 0 and g(x∗) ≤ 0, we also have

f(x∗) + 〈λ∗, g(x∗)〉 ≤ f(x∗). (8.26)

Now we can conclude that f(x∗) = L(x∗, λ∗) and 〈λ∗, g(x∗)〉 = 0. It follows
that λ∗i gi(x

∗) = 0, for all i = 1, ..., I. Since

L(x∗, λ∗)− L(x∗, λ) = 〈λ∗ − λ, g(x∗)〉 = 〈−λ, g(x∗)〉 ≥ 0, (8.27)

102 CHAPTER 8. CONVEX PROGRAMMING

we also have

L(x∗, λ) ≤ L(x∗, λ∗), (8.28)

for all λ ≥ 0.
Conversely, suppose that x∗ and λ∗ satisfy the three conditions of the

theorem. First, we show that x∗ is feasible for (P), that is, g(x∗) ≤ 0. Let i
be fixed and take λ to have the same entries as λ∗, except that λi = λ∗i +1.
then, λ ≥ 0 and

0 ≤ L(x∗, λ∗)− L(x∗, λ) = −gi(x∗). (8.29)

Also,

f(x∗) = L(x∗, 0) ≤ L(x∗, λ∗) = f(x∗) + 〈λ∗, g(x∗)〉 = f(x∗), (8.30)

so

f(x∗) = L(x∗, λ∗) ≤ L(x, λ∗). (8.31)

But we also have

L(x∗, λ∗) ≤ inf
x∈C

(
f(x) + 〈λ∗, g(x)〉

)
≤ inf
x∈C,g(x)≤0

f(x) = MP (0). (8.32)

We conclude that f(x∗) = MP (0), and since x∗ is feasible for (P), x∗ solves
(P).

Condition 3) is called complementary slackness. If gi(x∗) = 0, we say
that the ith constraint is binding.

8.4.2 The KKT Theorem- The Gradient Form

Now we assume that the functions f(x) and gi(x) are differentiable.

Theorem 8.5 Let (P) be super-consistent. Then x∗ solves (P) if and only
if there is a vector λ∗ such that

• 1) λ∗ ≥ 0;

• 2) λ∗i gi(x
∗) = 0, for all i = 1, ..., I;

• 3) ∇f(x∗) +
∑I
i=1 λ

∗
i∇gi(x∗) = 0.

The proof is similar to the previous one and we omit it. The interested
reader should consult [129], p. 185.

8.5. ON THE EXISTENCE OF LAGRANGE MULTIPLIERS 103

8.5 On the Existence of Lagrange Multipliers

As we saw previously, if (P) is super-consistent, then z = 0 is in the interior
of the domain of the function MP (z), and so the sub-differential of MP (z)
is non-empty at z = 0. The sub-gradient d was shown to be non-positive
and we defined the sensitivity vector, or the vector of Lagrange multipliers,
to be λ∗ = −d. Theorem 8.5 tells us that if (P) is super-consistent and x∗

solves (P), then the vector ∇f(x∗) is a non-negative linear combination of
the vectors −∇gi(x∗). This sounds like the assertion in Farkas’ Lemma.

For any point x, define the set

B = {i|gi(x) = 0},

and
Z(x) = {z|zT∇gi(x) ≤ 0, i ∈ B(x), and zT∇f(x) < 0}.

If Z(x) is empty, then
zT (−∇gi(x)) ≥ 0

for i ∈ B(x) implies
∇f(x) ≥ 0,

which, by Farkas’ Lemma, implies that ∇f(x) is a non-negative linear
combination of the vectors −∇gi(x) for i ∈ B(x). The objective, then, is
to find some condition which, if it holds at the solution x∗, will imply that
Z(x∗) is empty; first-order necessary conditions are of this sort. It will then
follow that there are non-negative Lagrange multipliers for which

∇f(x∗) +
I∑
i=1

λ∗i∇gi(x∗) = 0;

for i not in B(x∗) we let λ∗i = 0. For more discussion of this issue, see
Fiacco and McCormick [85]

8.6 The Problem of Equality Constraints

We consider now what happens when some of the constraints are equalities.

8.6.1 The Problem

Let f and gi, i = 1, ..., I, be differentiable functions defined on RJ . We
consider the following problem: minimize f(x), subject to the constraints{

gi(x) = 0, for i = 1, ...,m− 1;
gi(x) ≤ 0, for i = m, ..., p.

(8.33)

104 CHAPTER 8. CONVEX PROGRAMMING

If 1 < m − 1 < p, the constraints are said to be mixed. If m = 1, there
are only inequality constraints, so, for convex f(x) and gi(x), the problem
is (P), given by (8.1). If m > 1, we cannot convert it to a CP problem by
rewriting the equality constraints as gi(x) ≤ 0 and −gi(x) ≤ 0, since then
we would lose the convexity property of the constraint functions. Never-
theless, a version of the KKT Theorem holds for such problems.

Definition 8.3 The feasible set for this problem is the set F of all x sat-
isfying the constraints.

Definition 8.4 The problem is said to be consistent if F is not empty.

Definition 8.5 Let I(x) be the set of all indices 1 ≤ i ≤ p for which
gi(x) = 0. The point x is regular if the set of gradients {∇gi(x)|i ∈ I(x)}
is linear independent.

8.6.2 The KKT Theorem for Mixed Constraints

The following version of the KKT Theorem provides a necessary condition
for a regular point x∗ to be a local constrained minimizer.

Theorem 8.6 Let x∗ be a regular point for the problem in (8.33). If x∗ is
a local constrained minimizer of f(x), then there is a vector λ∗ such that

• 1) λ∗i ≥ 0, for i = m, ..., p;

• 2) λ∗i gi(x
∗) = 0, for i = m, ..., p;

• 3) ∇f(x∗) +
∑p
i=1 λ

∗
i∇gi(x∗) = 0.

Note that, if there are some equality constraints, then the vector λ need
not be non-negative.

8.6.3 The KKT Theorem for LP

Consider the LP problem (PS): minimize z = cTx, subject to Ax = b and
x ≥ 0. We let

z = f(x) = cTx,

gi(x) = bi − (Ax)i,

for i = 1, ..., I, and
gi(x) = −xj ,

for i = I + 1, ..., I + J and j = i− I. We assume that I < J and that the I
by J matrix A has rank I. Then, since ∇gi(x) is ai, the ith column of AT ,
the vectors {∇gi(x) |i = 1, ..., I} are linearly independent and every x > 0
is a regular point.

8.7. TWO EXAMPLES 105

Suppose that a regular point x∗ solves (PS). Let λ∗ be the vector in
RI+J whose existence is guaranteed by Theorem 8.6. Denote by y∗ the
vector in RI whose entries are the first I entries of λ∗, and r the non-
negative vector in RJ whose entries are the last J entries of λ∗. Then,
applying Theorem 8.6, we have rTx∗ = 0, Ax∗ = b, and

c−
I∑
i=1

λ∗i a
i +

J∑
j=1

rj(−δj) = 0,

or,

c−AT y∗ = r ≥ 0,

where δj is the column vector whose jth entry is one and the rest are zero.
The KKT Theorem for this problem is then the following.

Theorem 8.7 Let A have full rank I. The regular point x∗ solves (PS) if
and only if there are vectors y∗ in RI and r ≥ 0 in RJ such that

• 1) Ax∗ = b;

• 2) r = c−AT y∗;

• 3) rTx∗ = 0.

Then y∗ solves (DS).

The first condition in the theorem is primal feasibility, the second one is
dual feasibility, and the third is complementary slackness. The first two
conditions tell us that x∗ is feasible for (PS) and y∗ is feasible for (DS).
Combining these two conditions with complementary slackness, we can
write

z∗ = cTx∗ = (AT y∗ + r)Tx∗ = (AT y∗)Tx∗ + rTx∗ = (y∗)T b = w∗,

so z∗ = w∗ and there is no duality gap. Invoking Corollary 5.3 to the
Weak Duality Theorem, we conclude that x∗ and y∗ solve their respective
problems.

8.7 Two Examples

We illustrate the use of the gradient form of the KKT Theorem with two
examples that appeared in the paper of Driscoll and Fox [75].

106 CHAPTER 8. CONVEX PROGRAMMING

8.7.1 A Linear Programming Problem

Minimize f(x1, x2) = 3x1 +2x2, subject to the constraints 2x1 +x2 ≥ 100,
x1 + x2 ≥ 80, x1 ≥ 0 and x2 ≥ 0. We define

g1(x1, x2) = 100− 2x1 − x2 ≤ 0, (8.34)

g2(x1, x2) = 80− x1 − x2, (8.35)

g3(x1, x2) = −x1, (8.36)

and

g4(x1, x2) = −x2. (8.37)

The Lagrangian is then

L(x, λ) = 3x1 + 2x2 + λ1(100− 2x1 − x2)

+λ2(80− x1 − x2)− λ3x1 − λ4x2.
(8.38)

From the KKT Theorem, we know that if there is a solution x∗, then there
is λ∗ ≥ 0 with

f(x∗) = L(x∗, λ∗) ≤ L(x, λ∗),

for all x. For notational simplicity, we write λ in place of λ∗.
Taking the partial derivatives of L(x, λ) with respect to the variables

x1 and x2, we get

3− 2λ1 − λ2 − λ3 = 0, (8.39)

and

2− λ1 − λ2 − λ4 = 0. (8.40)

The complementary slackness conditions are

λ1 = 0 , if 2x1 + x2 6= 100, (8.41)

λ2 = 0 , if x1 + x2 6= 80, (8.42)

λ3 = 0 , if x1 6= 0, (8.43)

8.7. TWO EXAMPLES 107

and

λ4 = 0 , if x2 6= 0. (8.44)

A little thought reveals that precisely two of the four constraints must be
binding. Examining the six cases, we find that the only case satisfying all
the conditions of the KKT Theorem is λ3 = λ4 = 0. The minimum occurs
at x1 = 20 and x2 = 60 and the minimum value is f(20, 60) = 180.

We can use these results to illustrate Theorem 8.2. The sensitivity
vector is λ∗ = (1, 1, 0, 0) and the Lagrangian function at λ∗ is

L(x, λ∗) = 3x1 + 2x2 + 1(100− 2x1 − x2). (8.45)

In this case, we find that L(x, λ∗) = 180, for all x.

8.7.2 A Nonlinear Convex Programming Problem

Minimize the function

f(x1, x2) = (x1 − 14)2 + (x2 − 11)2,

subject to

g1(x1, x2) = (x1 − 11)2 + (x2 − 13)2 − 49 ≤ 0,

and
g2(x1, x2) = x1 + x2 − 19 ≤ 0.

The Lagrangian is then

L(x, λ) = (x1 − 14)2 + (x2 − 11)2+

λ1

(
(x1 − 11)2 + (x2 − 13)2 − 49

)
+ λ2

(
x1 + x2 − 19

)
. (8.46)

Again, we write λ in place of λ∗. Setting the partial derivatives, with
respect to x1 and x2, to zero, we get the KKT equations

2x1 − 28 + 2λ1x1 − 22λ1 + λ2 = 0, (8.47)

and

2x2 − 22 + 2λ1x2 − 26λ1 + λ2 = 0. (8.48)

The complementary slackness conditions are

λ1 = 0 , if (x1 − 11)2 + (x2 − 13)2 6= 49, (8.49)

108 CHAPTER 8. CONVEX PROGRAMMING

and

λ2 = 0 , if x1 + x2 6= 19. (8.50)

There are four cases to consider. First, if neither constraint is binding, the
KKT equations have solution x1 = 14 and x2 = 11, which is not feasible. If
only the first constraint is binding, we obtain two solutions, neither feasible.
If only the second constraint is binding, we obtain x∗1 = 11, x∗2 = 8, and
λ2 = 6. This is the optimal solution. If both constraints are binding,
we obtain, with a bit of calculation, two solutions, neither feasible. The
minimum value is f(11, 8) = 18, and the sensitivity vector is λ∗ = (0, 6).
Using these results, we once again illustrate Theorem 8.2.

The Lagrangian function at λ∗ is

L(x, λ∗) = (x1 − 14)2 + (x2 − 11)2 + 6(x1 + x2 − 19). (8.51)

Setting to zero the first partial derivatives of L(x, λ∗), we get

0 = 2(x1 − 14) + 6,

and
0 = 2(x2 − 11) + 6,

so that x∗1 = 11 and x∗2 = 8. Note that Theorem 8.2 only guarantees that
18 is the infimum of the function L(x, λ∗). It does not say that this smallest
value must occur at x = x∗ or even occurs anywhere; that is, it does not
say that L(x∗, λ∗) ≤ L(x, λ∗). This stronger result comes from the KKT
Theorem.

8.8 The Dual Problem

The dual problem (DP) corresponding to (P) is

maximize h(λ) = inf
x∈C

L(x, λ), forλ ≥ 0. (DP) (8.52)

Let

MD = sup
λ≥0

h(λ). (8.53)

A vector λ ≥ 0 is feasible for (DP) if h(λ) > −∞. Then (DP) is consistent
if there are feasible λ. Recall that Theorem 8.2 tells us that if a sensitivity
vector λ∗ ≥ 0 exists, then h(λ∗) = MP .

8.8. THE DUAL PROBLEM 109

8.8.1 When is MP = MD?

We have the following theorem.

Theorem 8.8 Assume that (P) is super-consistent, so that there is a sen-
sitivity vector λ∗ ≥ 0, and that MP is finite. Then

• 1) MP = MD;

• 2) MD = h(λ∗), so the supremum in Equation (8.53) is attained at
λ∗;

• 3) if the infimum in the definition of MP is attained at x∗, then
〈λ∗, g(x∗)〉 = 0;

• 4) such an x∗ also minimizes L(x, λ∗) over x ∈ C.

Proof: For all λ ≥ 0 we have

h(λ) = inf
x∈C

L(x, λ) ≤ inf
x∈C,g(x)≤0

L(x, λ) ≤ inf
x∈C,g(x)≤0

f(x) = MP.

Therefore, MD ≤MP . But we also know that

MP = h(λ∗) ≤MD,

so MP = MD, and the supremum in the definition of MD is attained at
λ∗. From

f(x∗) = MP = inf
x∈C

L(x, λ∗) ≤ inf
x∈C,g(x)≤0

L(x, λ∗)

≤ L(x∗, λ∗) ≤ f(x∗),

it follows that 〈λ∗, g(x∗)〉 = 0.

8.8.2 The Primal-Dual Method

From Theorem 8.8 we see that one approach to solving (P) is to solve
(DP) for λ∗ and then minimize L(x, λ∗) over x ∈ C. This is useful only
if solving (DP) is simpler than solving (P) directly. Each evaluation of
h(λ) involves minimizing L(x, λ) over x ∈ C. Once we have found λ∗, we
find x∗ by minimizing L(x, λ∗) over x ∈ C. The advantage is that all the
minimizations are over all x ∈ C, not over just the feasible vectors.

110 CHAPTER 8. CONVEX PROGRAMMING

8.8.3 An Example

Let f(x) = 1
2 ||x||

2
2. The primary problem is to minimize f(x) over all x for

which Ax ≥ b. Then gi = bi − (Ax)i, for i = 1, ..., I, and the set C is all of
RJ . The Lagrangian is then

L(x, λ) =
1
2
||x||22 − λTAx+ λT b. (8.54)

The infimum over x occurs when x = ATλ and so

h(λ) = λT b− 1
2
||ATλ||22. (8.55)

For any x satisfying Ax ≥ b and any λ ≥ 0 we have h(λ) ≤ f(x). If x∗ is
the unique solution of the primal problem and λ∗ any solution of the dual
problem, we have f(x∗) = h(λ∗). The point here is that the constraints
in the dual problem are easier to implement in an iterative algorithm, so
solving the dual problem is the simpler task.

8.8.4 An Iterative Algorithm for the Dual Problem

In [114] Lent and Censor present the following sequential iterative algo-
rithm for solving the dual problem above. At each step only one entry of
the current λ is altered.

Algorithm 8.1 (Lent-Censor) Let ai denote the i-th row of the matrix
A. Having calculated xk and λk > 0, let i = k(mod I) + 1. Then let

θ = (bi − (ai)Txk)/aTi ai, (8.56)

δ = max{−λki , ωθ}, (8.57)

and set

λk+1
i = λki + δ, (8.58)

and

xk+1 = xk + δai. (8.59)

8.9 Minimum One-Norm Solutions

When the system of linear equations Ax = b is under-determined, it is
common practice to seek a solution that also minimizes some objective

8.9. MINIMUM ONE-NORM SOLUTIONS 111

function. For example, the minimum two-norm solution is the vector x
satisfying Ax = b for which the (square of the) two-norm,

||x||22 =
J∑
j=1

x2
j ,

is minimized. Alternatively, we may seek the minimum one-norm solution,
for which the one-norm,

||x||1 =
J∑
j=1

|xj |,

is minimized.
If the vector x is required to be non-negative, then the one-norm is

simply the sum of the entries, and minimizing the one-norm subject to
Ax = b becomes a linear programming problem. This is the situation in
applications involving image reconstruction.

In compressed sampling [73] one seeks a solution of Ax = b having
relatively few non-zero entries. The vector x here is not assumed to be non-
negative, and the solution is found by minimizing the one-norm, subject to
the constraints Ax = b. The one-norm is not a linear functional of x, but
the problem can still be converted into a linear programming problem.

8.9.1 Reformulation as an LP Problem

The entries of x need not be non-negative, so the problem is not yet a linear
programming problem. Let

B = [A −A] ,

and consider the linear programming problem of minimizing the function

cT z =
2J∑
j=1

zj ,

subject to the constraints z ≥ 0, and Bz = b. Let z∗ be the solution. We
write

z∗ =
[
u∗

v∗

]
.

Then x∗ = u∗ − v∗ minimizes the one-norm, subject to Ax = b. To see
why this is true, let x̂ be the minimum one-norm solution. Write ûj = x̂j ,
if x̂j ≥ 0, and ûj = 0, otherwise. Let v̂j = ûj − x̂j . Then let

ẑ =
[
û
v̂

]
.

The one-norm of ẑ is the same as the one-norm of x̂, and Bẑ = b. Therefore,
x̂ must be a minimum one-norm solution.

112 CHAPTER 8. CONVEX PROGRAMMING

8.9.2 Image Reconstruction

In image reconstruction from limited linear-functional data, the vector x
is non-negative and arises as a vectorization of a two-dimensional image.
The data we have pertaining to x is linear and takes the form Ax = b, for
some matrix A and vector b. Typically, the problem is under-determined,
since the number of entries of x is the number of pixels in the image, which
we can make as large as we wish. The problem then is to select, from
among all the feasible images, one particular one that has a good chance
of being near the correct image. One approach is to take the solution of
Ax = b having the minimum Euclidean norm, ||x||2. Algorithms such as
the projected ART and projected Landweber iterative methods can be used
to find such solutions.

Another approach is to find the non-negative solution of Ax = b for
which the one-norm,

||x||1 =
J∑
j=1

|xj |,

is minimized [73]. Since the xj are to be non-negative, the problem becomes
the following: minimize

f(x) =
J∑
j=1

xj ,

subject to

gi(x) = (Ax)i − bi = 0,

for i = 1, ..., I, and

gi(x) = −xi−I ≤ 0,

for i = I + 1, ..., I + J .
When the system Ax = b is under-determined, the minimum one-norm

solution tends to be sparser than the minimum two-norm solution. A simple
example will illustrate this point.

Consider the equation x+ 2y = 1. The minimum two-norm solution is
(0.2, 0.4), with two-norm

√
5

5 , which is about 0.4472, but one-norm equal
to 0.6. The solution (0, 0.5) has two-norm and one-norm equal to 0.5, and
the solution (1.0, 0) has two-norm and one-norm equal to 1.0. Therefore,
the minimum one-norm solution is (0, 0.5), not (0.2, 0.4).

We can write the one-norm of the vector x as

||x||1 =
J∑
j=1

|xj |2

|xj |
.

8.10. EXERCISES 113

The PDFT approach to image reconstruction [44] selects the solution of
Ax = b that minimizes the weighted two-norm

||x||2w =
J∑
j=1

|xj |2

pj
=

J∑
j=1

|xj |2wj ,

where pj > 0 is a prior estimate of the non-negative image x to be recon-
structed, and wj = p−1

j . To the extent that pj accurately models the main
features of x, such as which xj are nearly zero and which are not, the two
approaches should give similar reconstructions. The PDFT can be imple-
mented using the ART algorithm (see [138, 139, 140]. For more discussion
of one-norm minimization, see the appendix on compressed sensing.

8.10 Exercises

8.1 Prove Theorem 8.3.

8.2 Apply the gradient form of the KKT Theorem to minimize the func-
tion f(x, y) = (x+ 1)2 + y2 over all x ≥ 0 and y ≥ 0.

8.3 ([85]) Consider the following problem : minimize the function

f(x, y) = |x− 2|+ |y − 2|,

subject to
g(x, y) = y2 − x ≤ 0,

and
h(x, y) = x2 + y2 − 1 = 0.

Illustrate this problem graphically, showing lines of constant value of f and
the feasible region of points satisfying the constraints. Where is the solution
of the problem? Where is the solution, if the equality constraint is removed?
Where is the solution, if both constraints are removed?

8.4 ([129], Ex. 5.2.9 (a)) Minimize the function

f(x, y) =
√
x2 + y2,

subject to
x+ y ≤ 0.

Show that the function MP (z) is not differentiable at z = 0.

114 CHAPTER 8. CONVEX PROGRAMMING

8.5 ([129], Ex. 5.2.9 (b)) Minimize the function

f(x, y) = −2x− y,

subject to
x+ y ≤ 1,

0 ≤ x ≤ 1,

and
y ≥ 0.

Again, show that the function MP (z) is not differentiable at z = 0.

8.6 (Duffin; [129], Ex. 5.2.9 (c)) Minimize the function

f(x, y) = e−y,

subject to √
x2 + y2 − x ≤ 0.

Show that the function MP (z) is not continuous at z = 0.

8.7 Apply the theory of convex programming to the primal Quadratic Pro-
gramming Problem (QP), which is to minimize the function

f(x) =
1
2
xTQx,

subject to
aTx ≤ c,

where a and c are given vectors in RJ .

8.8 Use Theorem 8.6 to prove that any real N by N symmetric matrix
has N mutually orthonormal eigenvectors.

Chapter 9

Iterative Optimization

We know from beginning calculus that, if we want to optimize a differen-
tiable function g(x) of a single real variable x, we begin by finding the places
where the derivative is zero, g′(x) = 0. Similarly, if we want to optimize a
differentiable function g(x) of a real vector variable x, we begin by finding
the places where the gradient is zero, ∇g(x) = 0. Generally, though, this is
not the end of the story, for we still have to solve an equation for the opti-
mal x. Unless we are fortunate, solving this equation algebraically may be
computationally expensive, or may even be impossible, and we will need
to turn to iterative methods. This suggests that we might use iterative
methods to minimize g(x) directly, and not solve an equation.

For example, suppose we wish to solve the over-determined system of
linear equations Ax = b, but we don’t know if the system has solutions. In
that case, we may wish to minimize the function

g(x) =
1
2
‖Ax− b‖2

2,

to get a least-squares solution. We know from linear algebra that if the
matrix ATA is invertible, then the unique minimizer of g(x) is given by

x∗ = (ATA)−1AT b.

In many applications, the number of equations and the number of unknowns
may be quite large, making it expensive even to calculate the entries of the
matrix ATA. In such cases, we can find x∗ using an iterative method such
as Landweber’s Algorithm, which has the iterative step

xk+1 = xk + γAT (b−Axk).

The sequence {xk} converges to x∗ for any value of γ in the interval
(0, 2/λmax), where λmax is the largest eigenvalue of the matrix ATA.

115

116 CHAPTER 9. ITERATIVE OPTIMIZATION

In this chapter we shall focus on the optimization of differentiable func-
tions g, leaving to a later chapter the non-differentiable, or non-smooth,
case.

9.1 Optimizing Functions of a Single Real Vari-
able

Suppose g : R → R is differentiable and attains its minimum value. We
want to minimize the function g(x). Solving g′(x) = 0 to find the optimal
x = x∗ may not be easy, so we may turn to an iterative algorithm for
finding roots of g′(x), or one that minimizes g(x) directly. In the latter
case, we may consider an iterative procedure

xk+1 = xk − γkg
′(xk), (9.1)

for some sequence {γk} of positive numbers. Such iterative procedures are
called descent algorithms because, if g′(xk) > 0, then we want to move to
the left of xk, while, if g′(xk) < 0, we want to move to the right.

We shall be particularly interested in algorithms in which γk = γ for
all k. We denote by T the operator

Tx = x− γg′(x). (9.2)

Then, using g′(x∗) = 0, we find that

|x∗ − xk+1| = |Tx∗ − Txk|. (9.3)

9.1.1 Iteration and Operators

The iterative methods we shall consider involve the calculation of a se-
quence {xk} of vectors in RJ , according to the formula xk+1 = Txk, where
T is some function T : RJ → RJ ; such functions are called operators on
RJ . The operator Tx = x− g′(x) above is an operator on R.

Definition 9.1 An operator T on RJ is continuous at x in the interior of
its domain if

lim
z→x

‖Tz − Tx‖ = 0.

All the operators we shall consider are continuous.
The sequences generated by iterative methods can then be written

{T kx0}, where x = x0 is the starting point for the iteration and T k means
apply the operator T k times. If the sequence {xk} converges to a limit
vector x̂ in the domain of T , then, taking the limit, as k → +∞, on both
sides of

xk+1 = Txk,

9.2. GRADIENT OPERATORS 117

and using the continuity of the operator T , we have

x̂ = T x̂,

that is, the limit vector x̂ is a fixed point of T .

Definition 9.2 A vector x in the domain of the operator T is a fixed point
of T if T x̂ = x̂. The set of all fixed points of T is denoted Fix(T).

We have several concerns, when we use iterative methods:

• Does the operator T have any fixed points?

• Does the sequence {T kx0} converge?

• Does convergence depend on the choice of x0?

• When the sequence {T kx0} converges, is the limit a solution to our
problem?

• How fast does the sequence {T kx0} converge?

• How difficult is it to perform a single step, going from xk to xk+1?

• How does the limit depend on the starting vector x0?

To answer these questions, we will need to learn about the properties of
the particular operator T being used. We begin our study of iterative
optimization algorithms with the gradient descent methods, particularly
as they apply to convex functions.

9.2 Gradient Operators

Suppose that g(x) is convex and the function f(x) = g′(x) is L-Lipschitz.
If g(x) is twice differentiable, this would be the case if

0 ≤ g′′(x) ≤ L, (9.4)

for all x. If γ is in the interval (0, 2
L), then the operator Tx = x − γg′(x)

is an averaged operator; from the KM Theorem 10.2, we know that the
iterative sequence {T kx0} converges to a minimizer of g(x), whenever a
minimizer exists.

If g(x) is convex and f(x) = g′(x) is L-Lipschitz, then 1
Lg

′(x) is non-
expansive, so that, by Theorem 7.11 1

Lg
′(x) is fne and g′(x) is 1

L -ism. Then,
as we shall see later, the operator

Tx = x− γg′(x) (9.5)

is av whenever 0 < γ < 2
L , and so the iterative sequence xk+1 = Txk =

xk − γg′(xk) converges to a minimizer of g(x), whenever minimizers exist.
In the next section we extend these results to functions of several vari-

ables.

118 CHAPTER 9. ITERATIVE OPTIMIZATION

9.3 Optimizing Functions of Several Real Vari-
ables

Suppose g : RJ → R is differentiable and attains its minimum value. We
want to minimize the function g(x). Solving ∇g(x) = 0 to find the optimal
x = x∗ may not be easy, so we may turn to an iterative algorithm for
finding roots of ∇g(x), or one that minimizes g(x) directly. From Cauchy’s
Inequality, we know that the directional derivative of g(x), at x = a, and
in the direction of the vector unit vector d, satisfies

|g′(a; d)| = |〈∇g(a), d〉| ≤ ‖∇g(a)‖2 ‖d‖2,

and that g′(a; d) attains its most positive value when the direction d is a
positive multiple of ∇g(a). This suggests steepest descent optimization.

Steepest descent iterative optimization makes use of the fact that the
direction of greatest increase of g(x) away from x = xk is in the direc-
tion d = ∇g(xk). Therefore, we select as the next vector in the iterative
sequence

xk+1 = xk − γk∇g(xk), (9.6)

for some γk > 0. Ideally, we would choose γk so that

g(xk + γk∇g(xk)) ≤ g(xk + α∇g(xk)),

for all α; that is, we would proceed away from xk, in the direction of
−∇g(xk), stopping just as g(x) begins to increase. Then we call this point
xk+1 and repeat the process. In practice, finding the optimal γk is not a
simple matter. Instead, one can try a few values of α and accept the best
of these few, or one can try to find a constant value γ of the parameter
having the property that the iterative step

xk+1 = xk − γ∇g(xk)

leads to a convergent sequence. It is this latter approach that we shall
consider here.

We denote by T the operator

Tx = x− γ∇g(x). (9.7)

Then, using ∇g(x∗) = 0, we find that

‖x∗ − xk+1‖2 = ‖Tx∗ − Txk‖2. (9.8)

We would like to know if there are choices for γ that imply convergence of
the iterative sequence. As in the case of functions of a single variable, for
functions g(x) that are convex, the answer is yes.

9.4. THE NEWTON-RAPHSON APPROACH 119

If g(x) is convex and f(x) = ∇g(x) is L-Lipschitz, then 1
L∇g(x) is

non-expansive, Then, as we shall see later, for γ > 0, the operator

Tx = x− γ∇g(x) (9.9)

is averaged, whenever 0 < γ < 2
L . It follows that the iterative sequence

xk+1 = Txk = xk − γ∇g(xk) converges to a minimizer of g(x), whenever
minimizers exist.

For example, the function g(x) = 1
2‖Ax− b‖

2
2 is convex and its gradient

is
f(x) = ∇g(x) = AT (Ax− b).

A steepest descent algorithm for minimizing g(x) then has the iterative
step

xk+1 = xk − γkA
T (Axk − b),

where the parameter γk should be selected so that

g(xk+1) < g(xk).

The linear operator that transforms each vector x into ATAx has the prop-
erty that

‖ATAx−ATAy‖2 ≤ λmax‖x− y‖2,

where λmax is the largest eigenvalue of the matrix ATA; this operator is
then L-Lipschitz, for L = λmax. Consequently, the operator that trans-
forms x into 1

LA
TAx is non-expansive.

9.4 The Newton-Raphson Approach

The Newton-Raphson approach to minimizing a real-valued function f :
RJ → R involves finding x∗ such that ∇f(x∗) = 0.

9.4.1 Functions of a Single Variable

We begin with the problem of finding a root of a function g : R→ R. If x0

is not a root, compute the line tangent to the graph of g at x = x0 and let
x1 be the point at which this line intersects the horizontal axis; that is,

x1 = x0 − g(x0)/g′(x0). (9.10)

Continuing in this fashion, we have

xk+1 = xk − g(xk)/g′(xk). (9.11)

This is the Newton-Raphson algorithm for finding roots. Convergence,
when it occurs, is usually more rapid than gradient descent, but requires
that x0 be sufficiently close to the solution.

120 CHAPTER 9. ITERATIVE OPTIMIZATION

Now suppose that f : R → R is a real-valued function that we wish
to minimize by solving f ′(x) = 0. Letting g(x) = f ′(x) and applying the
Newton-Raphson algorithm to g(x) gives the iterative step

xk+1 = xk − f ′(xk)/f ′′(xk). (9.12)

This is the Newton-Raphson optimization algorithm. Now we extend these
results to functions of several variables.

9.4.2 Functions of Several Variables

The Newton-Raphson algorithm for finding roots of functions g : RJ → RJ

has the iterative step

xk+1 = xk − [J (g)(xk)]−1g(xk), (9.13)

where J (g)(x) is the Jacobian matrix of first partial derivatives, ∂gm

∂xj
(xk),

for g(x) = (g1(x), ..., gJ(x))T .
To minimize a function f : RJ → R, we let g(x) = ∇f(x) and find a

root of g. Then the Newton-Raphson iterative step becomes

xk+1 = xk − [∇2f(xk)]−1∇f(xk), (9.14)

where ∇2f(x) = J (g)(x) is the Hessian matrix of second partial derivatives
of f .

The quadratic approximation to f(x) around the point xk is

f(x) ≈ f(xk) + 〈∇f(xk), x− xk〉+
1
2
(x− xk)T∇2f(xk)(x− xk).

The right side of this equation attains its minimum value when

0 = ∇f(xk) +∇2f(xk)(x− xk),

that is, when x = xk+1 as given by Equation (9.14).
If f(x) is a quadratic function, that is,

f(x) = xTQx+ xT b+ c,

for constant invertible matrix Q and constant vectors b and c, then the
Newton-Raphson iteration converges to the answer in one step. Therefore,
if f(x) is close to quadratic, the convergence should be reasonably rapid.
This leads to the notion of self-concordant functions, for which the third
derivative of f(x) is small, relative to the second derivative [122].

9.5. APPROXIMATE NEWTON-RAPHSON METHODS 121

9.5 Approximate Newton-Raphson Methods

To implement the NR method in this case, at each step of the iteration
we need to solve a system of equations involving the Hessian matrix for
f . There are many iterative procedures designed to retain much of the
advantages of the NR method, but without the use of the Hessian matrix,
or, indeed, without the use of the gradient. These methods are discussed
in most texts on numerical methods [122]. We sketch briefly some of these
approaches.

9.5.1 Avoiding the Hessian Matrix

Quasi-Newton methods, designed to avoid having to calculate the Hessian
matrix, are often used instead of the Newton-Raphson algorithm. The
iterative step of the quasi-Newton methods is

xk+1 = xk −B−1
k ∇f(xk), (9.15)

where the matrix Bk is an approximation of ∇2f(xk) that is easier to
compute.

In the case of g : R→ R, the second derivative of g(x) is approximately

g′′(xk) ≈ g′(xk)− g′(xk−1)
xk − xk−1

. (9.16)

This suggests that, for the case of functions of several variables, the matrix
Bk should be selected so that

Bk(xk − xk−1) = ∇f(xk)−∇f(xk−1). (9.17)

In addition to satisfying Equation (9.17), the matrix Bk should also be
symmetric and positive-definite. Finally, we should be able to obtain Bk+1

relatively easily from Bk.

The BFGS Method

The Broyden, Fletcher, Goldfarb, and Shanno (BFGS) method uses the
rank-two update formula

Bk+1 = Bk −
(Bksk)(Bksk)T

(sk)TBksk
+
yk(yk)T

(yk)T sk
, (9.18)

with

sk = xk+1 − xk, (9.19)

and

yk = ∇f(xk+1)−∇f(xk). (9.20)

122 CHAPTER 9. ITERATIVE OPTIMIZATION

The Broyden Class

A general class of update methods, known as the Broyden class, uses the
update formula

Bk+1 = Bk −
(Bksk)(Bksk)T

(sk)TBksk
+
yk(yk)T

(yk)T sk
+ φ((sk)TBksk)uk(uk)T , (9.21)

with φ a scalar and

uk =
yk

(yk)T sk
− Bks

k

(sk)TBksk
. (9.22)

When φ = 0 we get the BFGS method, while the choice of φ = 1 gives the
Davidon, Fletcher, and Powell (DFP) method.

Note that for the updates in the Broyden class, the matrix Bk+1 has
the form

Bk+1 = Bk + xk(xk)T + zk(zk)T ,

for certain vectors xk and zk. Therefore, using the Sherman-Morrison-
Woodbury Identity (see Exercise 9.40), the inverse of Bk+1 can be obtained
easily from the inverse of Bk.

9.5.2 Avoiding the Gradient

Quasi-Newton methods use an approximation of the Hessian matrix that
is simpler to calculate, but still employ the gradient at each step. For func-
tions g : R→ R, the derivative can be approximated by a finite difference,
that is,

g′(xk) ≈ g(xk)− g(xk−1)
xk − xk−1

. (9.23)

In the case of functions of several variables, the gradient vector can be
approximated by using a finite-difference approximation for each of the
first partial derivatives.

9.6 Derivative-Free Methods

In many important applications, calculating values of the function to be
optimized is expensive and calculating gradients impractical. In such cases,
it is common to use direct-search methods. Generally, these are iterative
methods that are easy to program, do not employ derivatives or their ap-
proximations, require relatively few function evaluations, and are useful
even when the measurements are noisy.

9.6. DERIVATIVE-FREE METHODS 123

9.6.1 Multi-directional Search Algorithms

Methods such as the multi-directional search algorithms begin with the
values of the function f(x) at J + 1 points, where x is in RJ , and then
use these values to move to a new set of points. These points are chosen
to describe a simplex pattern in RJ , that is, they do not all lie on a single
hyperplane in RJ . For that reason, these methods are sometimes called
simplex methods, although they are unrelated to Dantzig’s method of the
same name. The Nelder-Mead algorithm [123, 109, 119] is one such simplex
algorithm.

9.6.2 The Nelder-Mead Algorithm

For simplicity, we follow McKinnon [119] and describe the Nelder-Mead
(NM) algorithm only for the case of J = 2. The NM algorithm begins with
the choice of vertices:

ORDER: obtain b, s, and w, with

f(b) ≤ f(s) ≤ f(w).

Then take
m =

1
2
(b+ s).

Let the search line be

L(ρ) = m+ ρ(m− w),

and
r = L(1) = 2m− w.

• {if f(r) < f(b)} let e = L(2). If f(e) < f(b) accept e; otherwise
accept r.

• {if f(b) ≤ f(r)} then

– {if f(r) < f(s)} accept r.

– {if f(s) ≤ f(r)}
∗ {if f(r) < f(w)} let c = L(0.5)

· {if f(c) ≤ f(r)} accept c;
· {if f(r) < f(c)} go to SHRINK.

∗ {if f(w) ≤ f(r)} let c = L(−0.5).
· {if f(c) < f(w)} accept c; otherwise go to SHRINK.

Replace w with the accepted point and go to ORDER.
SHRINK: Replace s with 1

2 (s+ b) and w with 1
2 (w + b); go to ORDER.

124 CHAPTER 9. ITERATIVE OPTIMIZATION

9.6.3 Comments on the Nelder-Mead Algorithm

Although the Nelder-Mead algorithm is quite popular in many areas of ap-
plications, relatively little of a theoretical nature is known. The interested
reader is directed to the papers [109, 119], as well as to more recent work
by Margaret Wright of NYU.

9.7 Rates of Convergence

In this section we illustrate the concept of rate of convergence [22] by con-
sidering the fixed-point iteration xk+1 = g(xk), for the twice continuously
differentiable function g : R → R. We suppose that g(z) = z and we are
interested in the distance |xk − z|.

9.7.1 Basic Definitions

Definition 9.3 Suppose the sequence {xk} converges to z. If there are
positive constants λ and α such that

lim
k→∞

|xk+1 − z|
|xk − z|α

= λ, (9.24)

then {xk} is said to converge to z with order α and asymptotic error con-
stant λ. If α = 1, the convergence is said to be linear; if α = 2, the
convergence is said to be quadratic.

9.7.2 Illustrating Quadratic Convergence

According to the Mean Value Theorem,

g(x) = g(z) + g′(z)(x− z) +
1
2
g′′(c)(x− z)2, (9.25)

for some c between x and z. Suppose now that xk → z and, in addition,
g′(z) = 0. Then we have

xk+1 = g(xk) = z +
1
2
g′′(ck)(xk − z)2, (9.26)

for some ck between xk and z. Therefore,

|xk+1 − z| = 1
2
|g′′(ck)| |xk − z|2, (9.27)

and the convergence is quadratic, with λ = |g′′(z)|.

9.8. FEASIBLE-POINT METHODS 125

9.7.3 Motivating the Newton-Raphson Method

Suppose that we are seeking a root z of the function f : R→ R. We define

g(x) = x− h(x)f(x), (9.28)

for some function h(x) to be determined. Then f(z) = 0 implies that
g(z) = z. In order to have quadratic convergence of the iterative sequence
xk+1 = g(xk), we want g′(z) = 0. From

g′(x) = 1− h′(x)f(x)− h(x)f ′(x), (9.29)

it follows that we want

h(z) = 1/f ′(z). (9.30)

Therefore, we choose

h(x) = 1/f ′(x), (9.31)

so that

g(x) = x− f(x)/f ′(x). (9.32)

The iteration then takes the form

xk+1 = g(xk) = xk − f(xk)/f ′(xk), (9.33)

which is the Newton-Raphson iteration.

9.8 Feasible-Point Methods

We consider now the problem of minimizing the function f(x) : RJ → R,
subject to the equality constraints Ax = b, where A is an I by J real
matrix, with rank I and I < J . The two methods we consider here are
feasible-point methods, also called interior-point methods.

9.8.1 The Reduced Newton-Raphson Method

The first method we consider is a modification of the Newton-Raphson
method, in which we begin with a feasible point and each NR step is pro-
jected into the null space of the matrix A, to maintain the condition Ax = b.
The discussion here is taken from [122].

Let x̂ be a feasible point, that is, Ax̂ = b. Then x = x̂+p is also feasible
if p is in the null space of A, that is, Ap = 0. Let Z be a J − I by J matrix

126 CHAPTER 9. ITERATIVE OPTIMIZATION

whose columns form a basis for the null space of A. We want p = Zv for
some v. The best v will be the one for which the function

φ(v) = f(x̂+ Zv)

is minimized. We can apply to the function φ(v) the steepest descent
method, or Newton-Raphson or any other minimization technique. The
steepest descent method, applied to φ(v), is called the reduced steepest
descent method; the Newton-Raphson method, applied to φ(v), is called
the reduced Newton-Raphson method. The gradient of φ(v), also called the
reduced gradient, is

∇φ(v) = ZT∇f(x),

and the Hessian matrix of φ(v), also called the reduced Hessian matrix, is

∇2φ(v) = ZT∇2f(x)Z,

where x = x̂+Zv, so algorithms to minimize φ(v) can be written in terms
of the gradient and Hessian of f itself.

An Example

Consider the problem of minimizing the function

f(x) =
1
2
x2

1 −
1
2
x2

3 + 4x1x2 + 3x1x3 − 2x2x3,

subject to
x1 − x2 − x3 = −1.

Let x̂ = [1, 1, 1]T . Then the matrix A is A = [1,−1,−1] and the vector b is
b = [−1]. Let the matrix Z be

Z =

 1 1
1 0
0 1

 . (9.34)

The reduced gradient at x̂ is then

ZT∇f(x̂) =
[

1 1 0
1 0 1

] 8
2
0

 =
[

10
8

]
, (9.35)

and the reduced Hessian matrix at x̂ is

ZT∇2f(x̂)Z =
[

1 1 0
1 0 1

] 1 4 3
4 0 −2
3 −2 −1

 1 1
1 0
0 1

 =
[

9 6
6 6

]
. (9.36)

9.8. FEASIBLE-POINT METHODS 127

Then the reduced Newton-Raphson equation yields

v =
[
−2/3
−2/3

]
, (9.37)

and the reduced Newton-Raphson direction is

p = Zv =

−4/3
−2/3
−2/3

 . (9.38)

Since the function φ(v) is quadratic, one reduced Newton-Raphson step
suffices to obtain the solution, x∗ = [−1/3, 1/3, 1/3]T .

9.8.2 A Primal-Dual Approach

In this approach we begin with the Lagrangian,

L(x, λ) = f(x) + λT (b−Ax).

Setting to zero the x-gradient of L(x, λ), we have to solve the equations

∇f(x)−ATλ = 0

and
Ax = b.

We define the function G(x, λ) taking values in R2 to be

G(x, λ) = (∇f(x)−ATλ,Ax− b).

We then apply the NR method to find a zero of the function G. The
Jacobian matrix for G is

JG(x, λ) =
[
∇2f(x) −AT
A 0

]
,

so one step of the NR method is

(xk+1, λk+1)T = (xk, λk)T − JG(xk, λk)−1G(xk, λk). (9.39)

Therefore
A(xk+1 − xk) = 0.

If we begin with a feasible x0, that is, with Ax0 = b, then each successive
step of the Newton-Raphson iteration produces a feasible xk.

128 CHAPTER 9. ITERATIVE OPTIMIZATION

9.9 Simulated Annealing

In this chapter we have focused on the minimization of convex functions.
For such functions, a local minimum is necessarily a global one. For non-
convex functions, this is not the case. For example, the function f(x) =
x4−8x3+20x2−16.5x+7 has a local minimum around x = 0.6 and a global
minimum around x = 3.5. The descent methods we have discussed can get
caught at a local minimum that is not global, since we insist on always
taking a step that reduces f(x). The simulated annealing algorithm [1,
121], also called the Metropolis algorithm is sometimes able to avoid being
trapped at a local minimum by permitting an occasional step that increases
f(x). The name comes from the analogy with the physical problem of
lowering the energy of a solid by first raising the temperature, to bring
the particles into a disorganized state, and then gradually reducing the
temperature, so that a more organized state is achieved.

Suppose we have calculated xk. We now generate a random direction
and a small random step length. If the new vector xk + ∆x makes f(x)
smaller, we accept the vector as xk+1. If not, then we accept this vector,
with probability

Prob(accept) = exp
(f(xk)− f(xk + ∆x)

ck

)
,

where ck > 0, known as the temperature, is chosen by the user. As the it-
eration proceeds, the temperature ck is gradually reduced, making it easier
to accept increases in f(x) early in the process, but harder later. How to
select the temperatures is an art, not a science.

9.10 Exercises

9.1 Apply the Newton-Raphson method to obtain an iterative procedure
for finding

√
a, for any positive a. For which x0 does the method converge?

There are two answers, of course; how does the choice of x0 determine
which square root becomes the limit?

9.2 Apply the Newton-Raphson method to obtain an iterative procedure
for finding a1/3, for any real a. For which x0 does the method converge?

9.3 Extend the Newton-Raphson method to complex variables. Redo the
previous exercises for the case of complex a. For the complex case, a has
two square roots and three cube roots. How does the choice of x0 affect
the limit? Warning: The case of the cube root is not as simple as it may
appear.

9.10. EXERCISES 129

9.4 (The Sherman-Morrison-Woodbury Identity) Let A be an in-
vertible matrix. Show that, if ω = 1 + vTA−1u 6= 0, then A + uvT is
invertible and

(A+ uvT)−1 = A−1 − 1
ω
A−1uvTA−1. (9.40)

9.5 Use the reduced Newton-Raphson method to minimize the function
1
2x

TQx, subject to Ax = b, where

Q =

0 −13 −6 −3

−13 23 −9 3
−6 −9 −12 1
−3 3 1 −1

 ,
A =

[
2 1 2 1
1 1 3 −1

]
,

and

b =
[

3
2

]
.

Start with

x0 =

1
1
0
0

 .
9.6 Use the reduced steepest descent method with an exact line search to

solve the problem in the previous exercise.

130 CHAPTER 9. ITERATIVE OPTIMIZATION

Chapter 10

Operators

In a broad sense, all iterative algorithms generate a sequence {xk} of vec-
tors. The sequence may converge for any starting vector x0, or may con-
verge only if the x0 is sufficiently close to a solution. The limit, when it
exists, may depend on x0, and may, or may not, solve the original problem.
Convergence to the limit may be slow and the algorithm may need to be
accelerated. The algorithm may involve measured data. The limit may be
sensitive to noise in the data and the algorithm may need to be regularized
to lessen this sensitivity. The algorithm may be quite general, applying to
all problems in a broad class, or it may be tailored to the problem at hand.
Each step of the algorithm may be costly, but only a few steps generally
needed to produce a suitable approximate answer, or, each step may be
easily performed, but many such steps needed. Although convergence of
an algorithm is important, theoretically, sometimes in practice only a few
iterative steps are used.

10.1 Operators

For most of the iterative algorithms we shall consider, the iterative step is

xk+1 = Txk, (10.1)

for some operator T . If T is a continuous operator (and it usually is), and
the sequence {T kx0} converges to x̂, then T x̂ = x̂, that is, x̂ is a fixed point
of the operator T . We denote by Fix(T) the set of fixed points of T . The
convergence of the iterative sequence {T kx0} will depend on the properties
of the operator T .

Our approach here will be to identify several classes of operators for
which the iterative sequence is known to converge, to examine the conver-
gence theorems that apply to each class, to describe several applied prob-

131

132 CHAPTER 10. OPERATORS

lems that can be solved by iterative means, to present iterative algorithms
for solving these problems, and to establish that the operator involved in
each of these algorithms is a member of one of the designated classes.

10.2 Strict Contractions

The strict contraction operators are perhaps the best known class of oper-
ators associated with iterative algorithms.

Definition 10.1 An operator T on RJ is Lipschitz continuous, with re-
spect to a vector norm || · ||, or L-Lipschitz, if there is a positive constant
L such that

||Tx− Ty|| ≤ L||x− y||, (10.2)

for all x and y in RJ .

Definition 10.2 An operator T on RJ is a strict contraction (sc), with
respect to a vector norm || · ||, if there is r ∈ (0, 1) such that

||Tx− Ty|| ≤ r||x− y||, (10.3)

for all vectors x and y.

For strict contractions, we have the Banach-Picard Theorem [78]:

Theorem 10.1 Let T be sc. Then, there is a unique fixed point of T and,
for any starting vector x0, the sequence {T kx0} converges to the fixed point.

The key step in the proof is to show that {xk} is a Cauchy sequence,
therefore, it has a limit.

Lemma 10.1 Let T be an affine operator, that is, T has the form Tx =
Bx + d, where B is a linear operator, and d is a fixed vector. Then T is
a strict contraction if and only if ||B||, the induced matrix norm of B, is
less than one.

The spectral radius of B, written ρ(B), is the maximum of |λ|, over all
eigenvalues λ of B. Since ρ(B) ≤ ||B|| for every norm on B induced by
a vector norm, B is sc implies that ρ(B) < 1. When B is Hermitian, the
matrix norm of B induced by the Euclidean vector norm is ||B||2 = ρ(B),
so if ρ(B) < 1, then B is sc with respect to the Euclidean norm.

When B is not Hermitian, it is not as easy to determine if the affine
operator T is sc with respect to a given norm. Instead, we often tailor the
norm to the operator T . Suppose that B is a diagonalizable matrix, that
is, there is a basis for RJ consisting of eigenvectors of B. Let {u1, ..., uJ}

10.3. TWO USEFUL IDENTITIES 133

be such a basis, and let Buj = λju
j , for each j = 1, ..., J . For each x in

RJ , there are unique coefficients aj so that

x =
J∑
j=1

aju
j . (10.4)

Then let

||x|| =
J∑
j=1

|aj |. (10.5)

Lemma 10.2 The expression || · || in Equation (10.5) defines a norm on
RJ . If ρ(B) < 1, then the affine operator T is sc, with respect to this norm.

According to Lemma 19.6, for any square matrix B and any ε > 0, there is
a vector norm for which the induced matrix norm satisfies ||B|| ≤ ρ(B)+ ε.
Therefore, if B is an arbitrary square matrix with ρ(B) < 1, there is a
vector norm with respect to which B is sc.

In many of the applications of interest to us, there will be multiple
fixed points of T . Therefore, T will not be sc for any vector norm, and the
Banach-Picard fixed-point theorem will not apply. We need to consider
other classes of operators. These classes of operators will emerge as we
investigate the properties of orthogonal projection operators.

10.3 Two Useful Identities

The identities in the next two lemmas relate an arbitrary operator T to
its complement, G = I − T , where I denotes the identity operator. These
identities will allow us to transform properties of T into properties of G
that may be easier to work with. A simple calculation is all that is needed
to establish the following lemma.

Lemma 10.3 Let T be an arbitrary operator T on RJ and G = I − T .
Then

||x− y||22 − ||Tx− Ty||22 = 2(〈Gx−Gy, x− y〉) − ||Gx−Gy||22. (10.6)

Lemma 10.4 Let T be an arbitrary operator T on RJ and G = I − T .
Then

〈Tx− Ty, x− y〉 − ||Tx− Ty||22 =

〈Gx−Gy, x− y〉 − ||Gx−Gy||22. (10.7)

Proof: Use the previous lemma.

134 CHAPTER 10. OPERATORS

10.4 Orthogonal Projection Operators

If C is a closed, non-empty convex set in RJ , and x is any vector, then, as
we have seen, there is a unique point PCx in C closest to x, in the sense
of the Euclidean distance. This point is called the orthogonal projection
of x onto C. If C is a subspace, then we can get an explicit description
of PCx in terms of x; for general convex sets C, however, we will not be
able to express PCx explicitly, and certain approximations will be needed.
Orthogonal projection operators are central to our discussion, and, in this
overview, we focus on problems involving convex sets, algorithms involving
orthogonal projection onto convex sets, and classes of operators derived
from properties of orthogonal projection operators.

10.4.1 Properties of the Operator PC

Although we usually do not have an explicit expression for PCx, we can,
however, characterize PCx as the unique member of C for which

〈PCx− x, c− PCx〉 ≥ 0, (10.8)

for all c in C; see Proposition 4.4.

PC is Non-expansive

Recall that an operator T is non-expansive (ne), with respect to a given
norm, if, for all x and y, we have

||Tx− Ty|| ≤ ||x− y||. (10.9)

Lemma 10.5 The orthogonal projection operator T = PC is non-expansive,
with respect to the Euclidean norm, that is,

||PCx− PCy||2 ≤ ||x− y||2, (10.10)

for all x and y.

Proof: Use Inequality (10.8) to get

〈PCy − PCx, PCx− x〉 ≥ 0, (10.11)

and

〈PCx− PCy, PCy − y〉 ≥ 0. (10.12)

Add the two inequalities to obtain

〈PCx− PCy, x− y〉 ≥ ||PCx− PCy||22, (10.13)

and use the Cauchy Inequality.
Because the operator PC has multiple fixed points, PC cannot be a

strict contraction, unless the set C is a singleton set.

10.5. AVERAGED OPERATORS 135

PC is Firmly Non-expansive

Definition 10.3 An operator T is said to be firmly non-expansive (fne) if

〈Tx− Ty, x− y〉 ≥ ||Tx− Ty||22, (10.14)

for all x and y in RJ .

Lemma 10.6 An operator T is fne if and only if G = I − T is fne.

Proof: Use the identity in Equation (10.7).

From Equation (10.13), we see that the operator T = PC is not simply
ne, but fne, as well. A good source for more material on these topics is the
book by Goebel and Reich [91].

The Search for Other Properties of PC

The class of non-expansive operators is too large for our purposes; the
operator Tx = −x is non-expansive, but the sequence {T kx0} does not
converge, in general, even though a fixed point, x = 0, exists. The class
of firmly non-expansive operators is too small for our purposes. Although
the convergence of the iterative sequence {T kx0} to a fixed point does
hold for firmly non-expansive T , whenever fixed points exist, the product
of two or more fne operators need not be fne; that is, the class of fne
operators is not closed to finite products. This poses a problem, since, as
we shall see, products of orthogonal projection operators arise in several of
the algorithms we wish to consider. We need a class of operators smaller
than the ne ones, but larger than the fne ones, closed to finite products,
and for which the sequence of iterates {T kx0} will converge, for any x0,
whenever fixed points exist. The class we shall consider is the class of
averaged operators.

10.5 Averaged Operators

The term ‘averaged operator’ appears in the work of Baillon, Bruck and
Reich [20, 8]. There are several ways to define averaged operators. One
way is in terms of the complement operator.

Definition 10.4 An operator G on RJ is called ν-inverse strongly mono-
tone (ν-ism)[92] (also called co-coercive in [65]) if there is ν > 0 such
that

〈Gx−Gy, x− y〉 ≥ ν||Gx−Gy||22. (10.15)

136 CHAPTER 10. OPERATORS

Lemma 10.7 An operator T is ne if and only if its complement G = I−T
is 1

2 -ism, and T is fne if and only if G is 1-ism, and if and only if G is
fne. Also, T is ne if and only if F = (I + T)/2 is fne. If G is ν-ism and
γ > 0 then the operator γG is ν

γ -ism.

Definition 10.5 An operator T is called averaged (av) if G = I − T is
ν-ism for some ν > 1

2 . If G is 1
2α -ism, for some α ∈ (0, 1), then we say

that T is α-av.

It follows that every av operator is ne, with respect to the Euclidean norm,
and every fne operator is av.

The averaged operators are sometimes defined in a different, but equiv-
alent, way, using the following characterization of av operators.

Lemma 10.8 An operator T is av if and only if, for some operator N that
is non-expansive in the Euclidean norm, and α ∈ (0, 1), we have

T = (1− α)I + αN.

Consequently, the operator T is av if and only if, for some α in (0, 1), the
operator

N =
1
α
T − 1− α

α
I = I − 1

α
(I − T) = I − 1

α
G

is non-expansive.

Proof: We assume first that there is α ∈ (0, 1) and ne operator N such
that T = (1 − α)I + αN , and so G = I − T = α(I − N). Since N is ne,
I − N is 1

2 -ism and G = α(I − N) is 1
2α -ism. Conversely, assume that G

is ν-ism for some ν > 1
2 . Let α = 1

2ν and write T = (1 − α)I + αN for
N = I − 1

αG. Since I −N = 1
αG, I −N is αν-ism. Consequently I −N is

1
2 -ism and N is ne.

An averaged operator is easily constructed from a given ne operator N
by taking a convex combination of N and the identity I. The beauty of the
class of av operators is that it contains many operators, such as PC , that
are not originally defined in this way. As we shall show in an appendix,
finite products of averaged operators are again averaged, so the product of
finitely many orthogonal projections is av.

Proposition 10.1 An operator F is firmly non-expansive if and only if
F = 1

2 (I +N), for some non-expansive operator N .

10.5.1 Gradient Operators

Another type of operator that is averaged can be derived from gradient
operators.

10.5. AVERAGED OPERATORS 137

Definition 10.6 An operator T on RJ is monotone if

〈Tx− Ty, x− y〉 ≥ 0, (10.16)

for all x and y.

Firmly non-expansive operators on RJ are monotone operators. Let g(x) :
RJ → R be a differentiable convex function and f(x) = ∇g(x) its gradient.
The operator ∇g is also monotone. If ∇g is non-expansive, then, according
to Theorem 7.11, ∇g is fne . If, for some L > 0, ∇g is L-Lipschitz, for the
2-norm, that is,

||∇g(x)−∇g(y)||2 ≤ L||x− y||2, (10.17)

for all x and y, then 1
L∇g is ne, therefore fne, and the operator T = I−γ∇g

is av, for 0 < γ < 2
L .

10.5.2 The Krasnoselskii-Mann Theorem

For any operator T that is averaged, convergence of the sequence {T kx0}
to a fixed point of T , whenever fixed points of T exist, is guaranteed by
the Krasnoselskii-Mann (KM) Theorem [116]:

Theorem 10.2 Let T be averaged. Then the sequence {T kx0} converges
to a fixed point of T , whenever Fix(T) is non-empty.

Proof: Let z be a fixed point of non-expansive operator N and let α ∈
(0, 1). Let T = (1− α)I + αN , so the iterative step becomes

xk+1 = Txk = (1− α)xk + αNxk. (10.18)

The identity in Equation (10.6) is the key to proving Theorem 10.2.
Using Tz = z and (I − T)z = 0 and setting G = I − T we have

||z − xk||22 − ||Tz − xk+1||22 = 2〈Gz −Gxk, z − xk〉 − ||Gz −Gxk||22.
(10.19)

Since, by Lemma 10.8, G is 1
2α -ism, we have

||z − xk||22 − ||z − xk+1||22 ≥ (
1
α
− 1)||xk − xk+1||22. (10.20)

Consequently the sequence {xk} is bounded, the sequence {||z − xk||2} is
decreasing and the sequence {||xk−xk+1||2} converges to zero. Let x∗ be a
cluster point of {xk}. Then we have Tx∗ = x∗, so we may use x∗ in place of
the arbitrary fixed point z. It follows then that the sequence {||x∗−xk||2}
is decreasing; since a subsequence converges to zero, the entire sequence
converges to zero. The proof is complete.

A version of the KM Theorem 10.2, with variable coefficients, appears
in Reich’s paper [130].

138 CHAPTER 10. OPERATORS

10.6 Affine Linear Operators

It may not always be easy to decide if a given operator is averaged. The
class of affine linear operators provides an interesting illustration of the
problem.

The affine operator Tx = Bx + d will be ne, sc, fne, or av precisely
when the linear operator given by multiplication by the matrix B is the
same.

10.6.1 The Hermitian Case

As we shall see later, when B is Hermitian, we can determine if B belongs
to these classes by examining its eigenvalues λ:

• B is non-expansive if and only if −1 ≤ λ ≤ 1, for all λ;

• B is averaged if and only if −1 < λ ≤ 1, for all λ;

• B is a strict contraction if and only if −1 < λ < 1, for all λ;

• B is firmly non-expansive if and only if 0 ≤ λ ≤ 1, for all λ.

Affine linear operators T that arise, for instance, in splitting methods
for solving systems of linear equations, generally have non-Hermitian linear
part B. Deciding if such operators belong to these classes is more difficult.
Instead, we can ask if the operator is paracontractive, with respect to some
norm.

10.7 Paracontractive Operators

By examining the properties of the orthogonal projection operators PC ,
we were led to the useful class of averaged operators. The orthogonal
projections also belong to another useful class, the paracontractions.

Definition 10.7 An operator T is called paracontractive (pc), with respect
to a given norm, if, for every fixed point y of T , we have

||Tx− y|| < ||x− y||, (10.21)

unless Tx = x.

Paracontractive operators are studied by Censor and Reich in [61].

Proposition 10.2 The operators T = PC are paracontractive, with respect
to the Euclidean norm.

10.7. PARACONTRACTIVE OPERATORS 139

Proof: It follows from Cauchy’s Inequality that

||PCx− PCy||2 ≤ ||x− y||2,

with equality if and only if

PCx− PCy = α(x− y),

for some scalar α with |α| = 1. But, because

0 ≤ 〈PCx− PCy, x− y〉 = α||x− y||22,

it follows that α = 1, and so

PCx− x = PCy − y.

When we ask if a given operator T is pc, we must specify the norm.
We often construct the norm specifically for the operator involved, as we
did earlier in our discussion of strict contractions, in Equation (10.5). To
illustrate, we consider the case of affine operators.

10.7.1 Linear and Affine Paracontractions

Let the matrix B be diagonalizable and let the columns of V be an eigen-
vector basis. Then we have V −1BV = D, where D is the diagonal matrix
having the eigenvalues of B along its diagonal.

Lemma 10.9 A square matrix B is diagonalizable if all its eigenvalues are
distinct.

Proof: Let B be J by J . Let λj be the eigenvalues of B, Bxj = λjx
j , and

xj 6= 0, for j = 1, ..., J . Let xm be the first eigenvector that is in the span
of {xj |j = 1, ...,m− 1}. Then

xm = a1x
1 + ...am−1x

m−1, (10.22)

for some constants aj that are not all zero. Multiply both sides by λm to
get

λmx
m = a1λmx

1 + ...am−1λmx
m−1. (10.23)

From

λmx
m = Axm = a1λ1x

1 + ...am−1λm−1x
m−1, (10.24)

it follows that

a1(λm − λ1)x1 + ...+ am−1(λm − λm−1)xm−1 = 0, (10.25)

140 CHAPTER 10. OPERATORS

from which we can conclude that some xn in {x1, ..., xm−1} is in the span
of the others. This is a contradiction.

We see from this Lemma that almost all square matrices B are diago-
nalizable. Indeed, all Hermitian B are diagonalizable. If B has real entries,
but is not symmetric, then the eigenvalues of B need not be real, and the
eigenvectors of B can have non-real entries. Consequently, we must con-
sider B as a linear operator on CJ , if we are to talk about diagonalizability.
For example, consider the real matrix

B =
[

0 1
−1 0

]
. (10.26)

Its eigenvalues are λ = i and λ = −i. The corresponding eigenvectors are
(1, i)T and (1,−i)T . The matrix B is then diagonalizable as an operator
on C2, but not as an operator on R2.

Proposition 10.3 Let T be an affine linear operator whose linear part B
is diagonalizable, and |λ| < 1 for all eigenvalues λ of B that are not equal to
one. Then the operator T is pc, with respect to the norm given by Equation
(10.5).

Proof: This is Exercise 10.8.
We see from Proposition 10.3 that, for the case of affine operators T

whose linear part is not Hermitian, instead of asking if T is av, we can ask
if T is pc; since B will almost certainly be diagonalizable, we can answer
this question by examining the eigenvalues of B.

Unlike the class of averaged operators, the class of paracontractive op-
erators is not necessarily closed to finite products, unless those factor op-
erators have a common fixed point.

10.7.2 The Elsner-Koltracht-Neumann Theorem

Our interest in paracontractions is due to the Elsner-Koltracht-Neumann
(EKN) Theorem [81]:

Theorem 10.3 Let T be pc with respect to some vector norm. If T has
fixed points, then the sequence {T kx0} converges to a fixed point of T , for
all starting vectors x0.

We follow the development in [81].

Theorem 10.4 Suppose that there is a vector norm on RJ , with respect
to which each Ti is a pc operator, for i = 1, ..., I, and that F = ∩Ii=1Fix(Ti)
is not empty. For k = 0, 1, ..., let i(k) = k(mod I)+1, and xk+1 = Ti(k)x

k.
The sequence {xk} converges to a member of F , for every starting vector
x0.

10.7. PARACONTRACTIVE OPERATORS 141

Proof: Let y ∈ F . Then, for k = 0, 1, ...,

||xk+1 − y|| = ||Ti(k)xk − y|| ≤ ||xk − y||, (10.27)

so that the sequence {||xk − y||} is decreasing; let d ≥ 0 be its limit. Since
the sequence {xk} is bounded, we select an arbitrary cluster point, x∗.
Then d = ||x∗ − y||, from which we can conclude that

||Tix∗ − y|| = ||x∗ − y||, (10.28)

and Tix∗ = x∗, for i = 1, ..., I; therefore, x∗ ∈ F . Replacing y, an arbitrary
member of F , with x∗, we have that ||xk − x∗|| is decreasing. But, a
subsequence converges to zero, so the whole sequence must converge to
zero. This completes the proof.

Corollary 10.1 If T is pc with respect to some vector norm, and T has
fixed points, then the iterative sequence {T kx0} converges to a fixed point
of T , for every starting vector x0.

Corollary 10.2 If T = TITI−1 · · · T2T1, and F = ∩Ii=1Fix (Ti) is not
empty, then F = Fix (T).

Proof: The sequence xk+1 = Ti(k)x
k converges to a member of Fix (T), for

every x0. Select x0 in F .

Corollary 10.3 The product T of two or more pc operators Ti, i = 1, ..., I
is again a pc operator, if F = ∩Ii=1Fix (Ti) is not empty.

Proof: Suppose that for T = TITI−1 · · · T2T1, and y ∈ F = Fix (T), we
have

||Tx− y|| = ||x− y||. (10.29)

Then, since

||TI(TI−1 · · · T1)x− y|| ≤ ||TI−1 · · · T1x− y|| ≤ ... ≤ ||T1x− y|| ≤ ||x− y||,(10.30)

it follows that

||Tix− y|| = ||x− y||, (10.31)

and Tix = x, for each i. Therefore, Tx = x.

142 CHAPTER 10. OPERATORS

10.8 Exercises

10.1 Show that a strict contraction can have at most one fixed point.

10.2 Let T is sc. Show that the sequence {T kx0} is a Cauchy sequence.
Hint: consider

||xk − xk+n|| ≤ ||xk − xk+1||+ ...+ ||xk+n−1 − xk+n||, (10.32)

and use

||xk+m − xk+m+1|| ≤ rm||xk − xk+1||. (10.33)

Since {xk} is a Cauchy sequence, it has a limit, say x̂. Let ek = x̂ − xk.
Show that {ek} → 0, as k → +∞, so that {xk} → x̂. Finally, show that
T x̂ = x̂.

10.3 Suppose that we want to solve the equation

x =
1
2
e−x.

Let Tx = 1
2e
−x for x in R. Show that T is a strict contraction, when re-

stricted to non-negative values of x, so that, provided we begin with x0 > 0,
the sequence {xk = Txk−1} converges to the unique solution of the equa-
tion. Hint: use the mean value theorem from calculus.

10.4 Prove Lemma 10.2.

10.5 Show that, if the operator T is α-av and 1 > β > α, then T is β-av.

10.6 Prove Lemma 10.7.

10.7 Prove Proposition 10.1.

10.8 Prove Proposition 10.3.

10.9 Show that, if B is a linear av operator, then |λ| < 1 for all eigenval-
ues λ of B that are not equal to one.

Chapter 11

The Algebraic
Reconstruction Technique

In this chapter and the next several, we study iterative algorithms for
solving systems of linear equations, sometimes subject to restrictions on
the matrix, the solution, or both. Such problems can arise as optimization
problems in their own right, and also as part of procedures for solving other
optimization problems.

In our discussion of the geometric programming problem we saw that
we need to solve a system of linear equations, subject to positivity con-
straints, in order to solve the original GP problem. In the simplex algo-
rithm, the Newton-Raphson algorithm and elsewhere, there is a system of
linear equations to be solved at each step of the iteration. Obtaining the
least-squares approximate solution to an over-determined system of linear
equations can be viewed both as an optimization problem and as solving
the related system of normal equations. Finding the solution of a system
of under-determined linear equations that is closest to a given vector is an-
other optimization problem that can be solved using the methods we shall
discuss. Maximizing entropy, subject to linear equality constraints, and
maximizing likelihood for estimating the parameters of multivariate Pois-
son distributions also can be formulated as finding exact or approximate
solutions of systems of linear equations.

We begin our detailed discussion of algorithms with a simple problem,
solving a general system of linear equations, and a simple method, the
algebraic reconstruction technique (ART). We shall permit complex entries
for the matrix and vectors involved.

143

144CHAPTER 11. THE ALGEBRAIC RECONSTRUCTION TECHNIQUE

11.1 Background

The ART was introduced by Gordon, Bender and Herman [94] as a method
for image reconstruction in transmission tomography. It was noticed some-
what later that the ART is a special case of Kaczmarz’s algorithm [104].
For i = 1, ..., I, let Li be the set of pixel indices j for which the j-th pixel
intersects the i-th line segment, and let |Li| be the cardinality of the set
Li. Let Aij = 1 for j in Li, and Aij = 0 otherwise. With i = k(mod I)+1,
the iterative step of the ART algorithm is

xk+1
j = xkj +

1
|Li|

(bi − (Axk)i), (11.1)

for j in Li, and

xk+1
j = xkj , (11.2)

if j is not in Li. In each step of ART, we take the error, bi − (Axk)i,
associated with the current xk and the i-th equation, and distribute it
equally over each of the pixels that intersects Li.

A somewhat more sophisticated version of ART allows Aij to include
the length of the i-th line segment that lies within the j-th pixel; Aij is
taken to be the ratio of this length to the length of the diagonal of the
j-pixel.

More generally, ART can be viewed as an iterative method for solving
an arbitrary system of linear equations, Ax = b.

11.2 The ART

Let A be a complex matrix with I rows and J columns, and let b be a
member of CI . We want to solve the system Ax = b.

For each index value i, letHi be the hyperplane of J-dimensional vectors
given by

Hi = {x|(Ax)i = bi}, (11.3)

and Pi the orthogonal projection operator onto Hi. Let x0 be arbitrary
and, for each nonnegative integer k, let i(k) = k(mod I) + 1. The iterative
step of the ART is

xk+1 = Pi(k)x
k. (11.4)

Because the ART uses only a single equation at each step, it has been called
a row-action method .

11.2. THE ART 145

11.2.1 Calculating the ART

Given any vector z the vector inHi closest to z, in the sense of the Euclidean
distance, has the entries

xj = zj +Aij(bi − (Az)i)/
J∑

m=1

|Aim|2. (11.5)

Assumption: To simplify our calculations, we shall assume, throughout
this chapter, that the rows of A have been rescaled to have Euclidean length
one; that is

J∑
j=1

|Aij |2 = 1, (11.6)

for each i = 1, ..., I, and that the entries of b have been rescaled accordingly,
to preserve the equations Ax = b.

The ART is then the following: begin with an arbitrary vector x0; for each
nonnegative integer k, having found xk, the next iterate xk+1 has entries

xk+1
j = xkj +Aij(bi − (Axk)i). (11.7)

When the system Ax = b has exact solutions the ART converges to the
solution closest to x0, in the 2-norm. How fast the algorithm converges
will depend on the ordering of the equations and on whether or not we use
relaxation. In selecting the equation ordering, the important thing is to
avoid particularly bad orderings, in which the hyperplanes Hi and Hi+1

are nearly parallel.

11.2.2 Full-cycle ART

We also consider the full-cycle ART, with iterative step zk+1 = Tzk, for

T = PIPI−1 · · · P2P1. (11.8)

When the system Ax = b has solutions, the fixed points of T are solutions.
When there are no solutions of Ax = b, the operator T will still have fixed
points, but they will no longer be exact solutions.

11.2.3 Relaxed ART

The ART employs orthogonal projections onto the individual hyperplanes.
If we permit the next iterate to fall short of the hyperplane, or somewhat
beyond it, we get a relaxed version of ART.The relaxed ART algorithm is
as follows:

146CHAPTER 11. THE ALGEBRAIC RECONSTRUCTION TECHNIQUE

Algorithm 11.1 (Relaxed ART) With ω ∈ (0, 2), x0 arbitrary, and
i = k(mod I) + 1, let

xk+1
j = xkj + ωAij(bi − (Axk)i)). (11.9)

The relaxed ART converges to the solution closest to x0, in the consis-
tent case. In the inconsistent case, it does not converge, but subsequences
associated with the same i converge to distinct vectors, forming a limit
cycle.

11.2.4 Constrained ART

Let C be a closed, nonempty convex subset of CJ and PCx the orthogonal
projection of x onto C. If there are solutions of Ax = b that lie within C,
we can find them using the constrained ART algorithm:

Algorithm 11.2 (Constrained ART) Let x0 be arbitrary. For k =
0, 1, ... and i = k(mod I) + 1, let

xk+1
j = PC(xkj +Aij(bi − (Axk)i)). (11.10)

For example, if A and b are real and we seek a nonnegative solution to
Ax = b, we can use

Algorithm 11.3 (Non-negative ART) Let x0 be arbitrary. For k =
0, 1, ... and i = k(mod I) + 1, let

xk+1
j = (xkj +Aij(bi − (Axk)i))+, (11.11)

where, for any real number a, a+ = max{a, 0}.

The constrained ART converges to a solution of Ax = b within C, whenever
such solutions exist.

Noise in the data can manifest itself in a variety of ways; we have seen
what can happen when we impose positivity on the calculated least-squares
solution, that is, when we minimize ||Ax−b||2 over all non-negative vectors
x. Theorem 11.1 tells us that when J > I, but Ax = b has no non-negative
solutions, the non-negatively constrained least-squares solution typically
can have at most I − 1 non-zero entries, regardless of how large J is. This
phenomenon also occurs with several other approximate methods, such as
those that minimize the cross-entropy distance.

Definition 11.1 The matrix A has the full-rank property if A and every
matrix Q obtained from A by deleting columns have full rank.

11.3. CONVERGENCE RESULTS FOR ART 147

Theorem 11.1 Let A have the full-rank property. Suppose there is no
nonnegative solution to the system of equations Ax = b. Then there is a
subset S of the set {j = 1, 2, ..., J}, with cardinality at most I − 1, such
that, if x̂ is any minimizer of ||Ax− b||2 subject to x ≥ 0, then x̂j = 0 for
j not in S. Therefore, x̂ is unique.

Proof: According to the gradient form of the Karush-Kuhn-Tucker Theo-
rem 8.5, the vector Ax̂ must satisfy the condition

I∑
i=1

Aij((Ax̂)i − bi) = 0 (11.12)

for all j for which x̂j > 0 for some nonnegative solution x̂. Let S be the
set of all indices j for which there exists a nonnegative solution x̂ with
x̂j > 0. Then Equation (11.12) must hold for all j in S. Let Q be the
matrix obtained from A by deleting those columns whose index j is not in
S. Then QT (Ax̂ − b) = 0. If Q has full rank and the cardinality of S is
greater than or equal to I, then QT is one-to-one and Ax̂ = b.

11.3 Convergence Results for ART

How the ART behaves depends on whether or not the system Ax = b has
solutions.

11.3.1 When Ax = b Has Solutions

For the consistent case, in which the system Ax = b has exact solutions,
we have the following result.

Theorem 11.2 Let Ax̂ = b and let x0 be arbitrary. Let {xk} be generated
by Equation (11.7). Then the sequence {||x̂−xk||2} is decreasing and {xk}
converges to the solution of Ax = b closest to x0.

11.3.2 When Ax = b Has No Solutions

When there are no exact solutions, the ART does not converge to a single
vector, but, for each fixed i, the subsequence {xnI+i, n = 0, 1, ...} converges
to a vector zi and the collection {zi |i = 1, ..., I} is called the limit cycle.
This was shown by Tanabe [143] and also follows from the results of De
Pierro and Iusem [70]. For simplicity, we assume that I > J , and that
the matrix A has full rank, which implies that Ax = 0 if and only if
x = 0. Because the operator T = PIPi−1 · · · P2P1 is av, this subsequential
convergence to a limit cycle will follow from the KM Theorem 10.2, once we

148CHAPTER 11. THE ALGEBRAIC RECONSTRUCTION TECHNIQUE

have established that T has fixed points. A different proof of subsequential
convergence is given in [44].

The ART limit cycle will vary with the ordering of the equations, and
contains more than one vector unless an exact solution exists. There are
several open questions about the limit cycle.

Open Question: For a fixed ordering, does the limit cycle depend on the
initial vector x0? If so, how?

11.4 The Geometric Least-Squares Solution

When the system Ax = b has no solutions, it is reasonable to seek an ap-
proximate solution, such as the least squares solution, xLS = (A†A)−1A†b,
which minimizes ||Ax−b||2. It is important to note that the system Ax = b
has solutions if and only if the related system WAx = Wb has solutions,
where W denotes an invertible matrix; when solutions of Ax = b exist, they
are identical to those of WAx = Wb. But, when Ax = b does not have
solutions, the least-squares solutions of Ax = b, which need not be unique,
but usually are, and the least-squares solutions of WAx = Wb need not
be identical. In the typical case in which A†A is invertible, the unique
least-squares solution of Ax = b is

(A†A)−1A†b, (11.13)

while the unique least-squares solution of WAx = Wb is

(A†W †WA)−1A†W †b, (11.14)

and these need not be the same.
A simple example is the following. Consider the system

x = 1

x = 2, (11.15)

which has the unique least-squares solution x = 1.5, and the system

2x = 2

x = 2, (11.16)

which has the least-squares solution x = 1.2.

Definition 11.2 The geometric least-squares solution of Ax = b is the
least-squares solution of WAx = Wb, for W the diagonal matrix whose
entries are the reciprocals of the Euclidean lengths of the rows of A.

11.5. REGULARIZED ART 149

In our example above, the geometric least-squares solution for the first
system is found by using W11 = 1 = W22, so is again x = 1.5, while the
geometric least-squares solution of the second system is found by using
W11 = 0.5 and W22 = 1, so that the geometric least-squares solution is
x = 1.5, not x = 1.2.

Open Question: If there is a unique geometric least-squares solution,
where is it, in relation to the vectors of the limit cycle? Can it be calculated
easily, from the vectors of the limit cycle?

There is a partial answer to the second question. In [35] (see also
[44]) it was shown that if the system Ax = b has no exact solution, and if
I = J+1, then the vectors of the limit cycle lie on a sphere in J-dimensional
space having the least-squares solution at its center. This is not true more
generally, however.

11.5 Regularized ART

If the entries of b are noisy but the system Ax = b remains consistent (which
can easily happen in the under-determined case, with J > I), the ART
begun at x0 = 0 converges to the solution having minimum Euclidean norm,
but this norm can be quite large. The resulting solution is probably useless.
Instead of solving Ax = b, we regularize by minimizing, for example, the
function

Fε(x) = ||Ax− b||22 + ε2||x||22. (11.17)

The solution to this problem is the vector

x̂ε = (A†A+ ε2I)−1A†b. (11.18)

However, we do not want to calculate A†A + ε2I when the matrix A is
large. Fortunately, there are ways to find x̂ε, using only the matrix A and
the ART algorithm.

We discuss two methods for using ART to obtain regularized solutions
of Ax = b. The first one is presented in [44], while the second one is due
to Eggermont, Herman, and Lent [80].

In our first method we use ART to solve the system of equations given
in matrix form by

[A† εI]
[
u
v

]
= 0. (11.19)

We begin with u0 = b and v0 = 0. Then, the lower component of the limit
vector is v∞ = −εx̂ε.

150CHAPTER 11. THE ALGEBRAIC RECONSTRUCTION TECHNIQUE

The method of Eggermont et al. is similar. In their method we use
ART to solve the system of equations given in matrix form by

[A εI]
[
x
v

]
= b. (11.20)

We begin at x0 = 0 and v0 = 0. Then, the limit vector has for its upper
component x∞ = x̂ε, and the lower component v∞ satisfies εv∞ = b−Ax̂ε.
We leave to the reader the proofs that these two algorithms perform as we
claim.

11.6 Avoiding the Limit Cycle

Generally, the greater the minimum value of ||Ax−b||22 the more the vectors
of the LC are distinct from one another. There are several ways to avoid
the LC in ART and to obtain a least-squares solution. One way is the
double ART (DART) [38]:

11.6.1 Double ART (DART)

We know that any b can be written as b = Ax̂ + ŵ, where A†ŵ = 0 and
x̂ is a minimizer of ||Ax − b||22. The vector ŵ is the orthogonal projection
of b onto the null space of the matrix transformation A†. Therefore, in
Step 1 of DART we apply the ART algorithm to the consistent system of
linear equations A†w = 0, beginning with w0 = b. The limit is w∞ = ŵ,
the member of the null space of A† closest to b. In Step 2, apply ART
to the consistent system of linear equations Ax = b − w∞ = Ax̂. The
limit is then the minimizer of ||Ax − b||2 closest to x0. Notice that we
could also obtain the least-squares solution by applying ART to the system
A†y = A†b, starting with y0 = 0, to obtain the minimum-norm solution,
which is y = Ax̂, and then applying ART to the system Ax = y.

11.6.2 Strongly Underrelaxed ART

Another method for avoiding the LC is strong under-relaxation, due to
Censor, Eggermont and Gordon [54]. Let t > 0. Replace the iterative step
in ART with

xk+1
j = xkj + tAij(bi − (Axk)i). (11.21)

In [54] it is shown that, as t→ 0, the vectors of the LC approach the geo-
metric least squares solution closest to x0; a short proof is in [35]. Bertsekas
[13] uses strong under-relaxation to obtain convergence of more general in-
cremental methods.

11.7. EXERCISES 151

11.7 Exercises

11.1 Consider the system of two equations in two unknowns{
mx− y = 0;

y = 0.

Without using a computer or calculator, investigate how the speed of con-
vergence of the ART depends on the value of m.

152CHAPTER 11. THE ALGEBRAIC RECONSTRUCTION TECHNIQUE

Chapter 12

Partial Gradient Methods

The partial gradient method reduces the amount of calculation required at
each step, compared to a gradient descent algorithm, and, in many cases,
accelerates the convergence.

12.1 Decomposing the Objective Function

Since the gradient ∇f(x) is the direction of greatest increase of the func-
tion f(x), it is natural for the iterative step of minimization algorithms to
involve the negative of the gradient at the current xk. The partial gradient
approach applies to problems having as their goal the minimization of a
non-negative function f(x) that has the form

f(x) =
I∑
i=1

fi(x), (12.1)

where each fi(x) is a non-negative function of the variable x. The gradient
of such functions then has the form

∇f(x) =
I∑
i=1

∇fi(x). (12.2)

For any subset B of the set {i = 1, ..., I}, the partial gradient associated
with the set B is

∇Bf(x) =
∑
i∈B

∇fi(x). (12.3)

Partial gradient methods, also called incremental gradient methods [13],
are iterative algorithms in which the gradient of f is replaced by a partial
gradient at each step .

153

154 CHAPTER 12. PARTIAL GRADIENT METHODS

12.2 A Partial Gradient Algorithm

Suppose that the set {i = 1, ..., I} is partitioned into N disjoint subsets,
Bn, n = 1, ..., N ; the Bn are often called blocks. Let In > 0 be the number
of members of Bn. Let

fn(x) =
∑
i∈Bn

fi(x), (12.4)

for n = 1, ..., N . Then

∇fn(x) =
∑
i∈Bn

∇fi(x). (12.5)

Let xk be the current vector in the iteration, and let n = n(k) = k(modN)+
1. Partial gradient methods will employ only ∇nf(xk) to calculate xk+1

from xk. Such methods are also called block-iterative methods. The itera-
tive step of the partial gradient algorithm (PGA) is

xk+1 = xk − γn∇fn(xk). (12.6)

We shall see other partial gradient algorithms later, when we consider
entropy-based methods and positivity constraints. Now, we consider the
convergence of the PGA, in light of the KM Theorem 10.2.

12.3 Convergence of the PGA

Suppose, for the sake of illustration, that each gradient ∇fn(x) is L
N -

Lipschitz, so that∇f(x) is L-Lipschitz. Then γn∇fn(x) is N
γnL

-ism. There-
fore, for 0 < γn <

2N
L , the operator

Tn = I − γn∇fn

is αn-ism, where αn = γnL
2N . The full gradient algorithm we use for com-

parison has the iterative step

xk+1 = xk − γ∇f(xk). (12.7)

Since ∇f(x) is L-Lipschitz, we select γ = 1
L . The operator T = I − γ∇f

is then 1
2 -av.

Suppose, in addition, that the minimum value of f(x) is zero, and that
this minimum is attained at x = z. Then, x = z minimizes each of the
fn(x), as well. From the proof of the KM Theorem 10.2, we have

||z − xk||2 − ||z − xk+1||2 ≥ (
1
αn

− 1)||xk − xk+1||2.

12.4. THE EXAMPLE OF THE ART 155

Let us choose γn = N
L . Then we have

||z − xk||2 − ||z − xk+1||2 ≥ ||xk − xk+1||2.

Speaking loosely, we can say that the size of the difference xk − xk+1 is
on the order of the difference we would have for the full gradient descent
algorithm, with γ = 1

L . Therefore, the squared distance to z, after one
complete pass through all the blocks, given by

||z − x0||2 − ||z − xN ||2,

is roughly N times that after one full gradient step. The calculations are
roughly the same for one step of the full gradient method and one pass,
through all the blocks, of the PGA, but the improvement made in reaching
z can be significantly greater for the PGA. This has been the experience
with the partial gradient versions of the EMML and SMART algorithms.

In order to achieve this acceleration, it is important that consecutive
functions fn(x) and fn+1(x) not be too similar. If they are, then their
gradients are similar and the consecutive iterative steps can be more or
less in the same direction. The desired decrease in the objective function
f(x) may not be as large as it would otherwise be.

We assumed that the minimum value of f(x) is f(z) = 0, which made
z a minimizer of each of the fn(x) individually. If the minimum value of
f(x) is not zero, the point x = z need not be a minimizer of the individual
fn(x) and the operators Tn = I − γn∇fn need not have a common fixed
point. In such cases, we expect to see subsequential convergence to a limit
cycle, as with the ART algorithm.

12.4 The Example of the ART

Finding a least-squares solution of the real system Ax = b means minimiz-
ing the function

f(x) =
1
2
||Ax− b||22 =

1
2

I∑
i=1

(
(Ax)i − bi

)2

, (12.8)

having the form of Equation (12.1), with

fi(x) =
1
2

(
(Ax)i − bi

)2

, (12.9)

for each i = 1, ..., I. We assume that the rows of A have been rescaled to
have length one, in which case Cimmino’s algorithm for solving the system
Ax = b can be shown to have the iterative step

xk+1 = xk − 1
I
∇f(xk). (12.10)

156 CHAPTER 12. PARTIAL GRADIENT METHODS

Let’s consider partial gradient versions of Cimmino’s algorithm.
The iterative step of the partial gradient version of Cimmino’s algorithm

is

xk+1 = xk − 1
In
∇nf(xk). (12.11)

Now consider the case in which each Bn contains a single member.
With N = I and Bn = {n}, for n = 1, ..., I, the partial gradient has the

entries (
∇nf(x)

)
j

=
(
∇fn(x)

)
j

= An,j

(
(Ax)n − bn

)
. (12.12)

The partial gradient algorithm becomes

xk+1
j = xkj +Anj

(
bn − (Axk)n

)
. (12.13)

This is the iterative step of the ART. When the system Ax = b has solu-
tions, the ART can converge much faster than the Cimmino algorithm. It
is important to note, however, that to achieve this accelerated convergence,
it is necessary to avoid an ordering of the equations in which equations n(k)
and n(k+1) are similar [99]. A random ordering of the equations is usually
reasonable. A small amount of relaxation may also improve the speed of
convergence [139].

Chapter 13

Block-Iterative ART

13.1 Introduction and Notation

The ART is a sequential algorithm, using only a single equation from the
system Ax = b at each step of the iteration. In this chapter we consider
iterative procedures for solving Ax = b in which several or all of the equa-
tions are used at each step. Such methods are called block-iterative and
simultaneous algorithms, respectively.

We are concerned here with iterative methods for solving, at least ap-
proximately, the system of I linear equations in J unknowns symbolized
by Ax = b. In the applications of interest to us, such as medical imaging,
both I and J are quite large, making the use of iterative methods the only
feasible approach. It is also typical of such applications that the matrix
A is sparse, that is, has relatively few non-zero entries. Therefore, itera-
tive methods that exploit this sparseness to accelerate convergence are of
special interest to us.

The algebraic reconstruction technique (ART) of Gordon, et al. [94] is
a sequential method; at each step only one equation is used. The current
vector xk−1 is projected orthogonally onto the hyperplane corresponding
to that single equation, to obtain the next iterate xk. The iterative step of
the ART is

xkj = xk−1
j +Aij

(
bi − (Axk−1)i∑J

t=1 |Ait|2

)
, (13.1)

where i = k(mod I). The sequence {xk} converges to the solution closest
to x0 in the consistent case, but only converges subsequentially to a limit
cycle in the inconsistent case.

Cimmino’s method [64] is a simultaneous method, in which all the equa-
tions are used at each step. The current vector xk−1 is projected orthog-

157

158 CHAPTER 13. BLOCK-ITERATIVE ART

onally onto each of the hyperplanes and these projections are averaged to
obtain the next iterate xk. The iterative step of Cimmino’s method is

xkj =
1
I

I∑
i=1

(
xk−1
j +Aij

(
bi − (Axk−1)i∑J

t=1 |Ait|2

))
,

which can also be written as

xkj = xk−1
j +

I∑
i=1

Aij

(
bi − (Axk−1)i
I
∑J
t=1 |Ait|2

)
. (13.2)

Landweber’s iterative scheme [110] with

xk = xk−1 +B†(d−Bxk−1), (13.3)

converges to the least-squares solution of Bx = d closest to x0, provided
that the largest singular value of B does not exceed one. If we let B be the
matrix with entries

Bij = Aij/

√√√√I
J∑
t=1

|Ait|2,

and define

di = bi/

√√√√I
J∑
t=1

|Ait|2,

then, since the trace of the matrix BB† is one, convergence of Cimmino’s
method follows. However, using the trace in this way to estimate the
largest singular value of a matrix usually results in an estimate that is
far too large, particularly when A is large and sparse, and therefore in an
iterative algorithm with unnecessarily small step sizes.

The appearance of the term

I
J∑
t=1

|Ait|2

in the denominator of Cimmino’s method suggested to Censor et al. [58]
that, when A is sparse, this denominator might be replaced with

J∑
t=1

st|Ait|2,

where st denotes the number of non-zero entries in the tth column of A.
The resulting iterative method is the component-averaging (CAV) itera-
tion. Convergence of the CAV method was established by showing that no

13.2. CIMMINO’S ALGORITHM 159

singular value of the matrix B exceeds one, where B has the entries

Bij = Aij/

√√√√ J∑
t=1

st|Ait|2.

In [48] we extended this result, to show that no eigenvalue of A†A exceeds
the maximum of the numbers

pi =
J∑
t=1

st|Ait|2.

Convergence of CAV then follows, as does convergence of several other
methods, including the ART, Landweber’s method, the SART [2], the
block-iterative CAV (BICAV) [59], the CARP1 method of Gordon and
Gordon [95], a block-iterative variant of CARP1 obtained from the DROP
method of Censor et al. [56], and the SIRT method [147].

For a positive integer N with 1 ≤ N ≤ I, we let B1, ..., BN be not
necessarily disjoint subsets of the set {i = 1, ..., I}; the subsets Bn are
called blocks. We then let An be the matrix and bn the vector obtained
from A and b, respectively, by removing all the rows except for those whose
index i is in the set Bn. For each n, we let snt be the number of non-zero
entries in the tth column of the matrix An, sn the maximum of the snt,
s the maximum of the st, and Ln = ρ(A†nAn) be the spectral radius, or
largest eigenvalue, of the matrix A†nAn, with L = ρ(A†A). We denote by
Ai the ith row of the matrix A, and by νi the length of Ai, so that

ν2
i =

J∑
j=1

|Aij |2.

13.2 Cimmino’s Algorithm

The ART seeks a solution of Ax = b by projecting the current vector
xk−1 orthogonally onto the next hyperplane H(ai(k), bi(k)) to get xk; here
i(k) = k(mod)I. In Cimmino’s algorithm, we project the current vector
xk−1 onto each of the hyperplanes and then average the result to get xk.
The algorithm begins at k = 1, with an arbitrary x0; the iterative step is
then

xk =
1
I

I∑
i=1

Pix
k−1, (13.4)

160 CHAPTER 13. BLOCK-ITERATIVE ART

where Pi is the orthogonal projection onto H(ai, bi). The iterative step can
then be written as

xkj = xk−1
j +

1
I

I∑
i=1

(
Aij(bi − (Axk−1)i)

ν2
i

)
. (13.5)

As we saw in our discussion of the ART, when the system Ax = b has
no solutions, the ART does not converge to a single vector, but to a limit
cycle. One advantage of many simultaneous algorithms, such as Cimmino’s,
is that they do converge to the least squares solution in the inconsistent
case.

When νi = 1 for all i, Cimmino’s algorithm has the form xk+1 = Txk,
for the operator T given by

Tx = (I − 1
I
A†A)x+

1
I
A†b.

Experience with Cimmino’s algorithm shows that it is slow to converge.
In the next section we consider how we might accelerate the algorithm.

13.3 The Landweber Algorithms

For simplicity, we assume, in this section, that νi = 1 for all i. The Landwe-
ber algorithm [110, 12], with the iterative step

xk = xk−1 + γA†(b−Axk−1), (13.6)

converges to the least squares solution closest to the starting vector x0,
provided that 0 < γ < 2/λmax, where λmax is the largest eigenvalue of
the nonnegative-definite matrix A†A. Loosely speaking, the larger γ is, the
faster the convergence. However, precisely because A is large, calculating
the matrix A†A, not to mention finding its largest eigenvalue, can be pro-
hibitively expensive. The matrix A is said to be sparse if most of its entries
are zero. Useful upper bounds for λmax are then given by Theorems 13.2
and 13.3.

13.3.1 Finding the Optimum γ

The operator

Tx = x+ γA†(b−Ax) = (I − γA†A)x+ γA†b

is affine linear and is av if and only if its linear part, the Hermitian matrix

B = I − γA†A,

13.3. THE LANDWEBER ALGORITHMS 161

is av. To guarantee this we need 0 ≤ γ < 2/λmax. Should we always try to
take γ near its upper bound, or is there an optimum value of γ? To answer
this question we consider the eigenvalues of B for various values of γ.

Lemma 13.1 If γ < 0, then none of the eigenvalues of B is less than one.

Lemma 13.2 For

0 ≤ γ ≤ 2
λmax + λmin

, (13.7)

we have

ρ(B) = 1− γλmin; (13.8)

the smallest value of ρ(B) occurs when

γ =
2

λmax + λmin
, (13.9)

and equals

λmax − λmin
λmax + λmin

. (13.10)

Similarly, for

γ ≥ 2
λmax + λmin

, (13.11)

we have

ρ(B) = γλmax − 1; (13.12)

the smallest value of ρ(B) occurs when

γ =
2

λmax + λmin
, (13.13)

and equals

λmax − λmin
λmax + λmin

. (13.14)

We see from this lemma that, if 0 ≤ γ < 2/λmax, and λmin > 0, then
‖B‖2 = ρ(B) < 1, so that B is sc. We minimize ‖B‖2 by taking

γ =
2

λmax + λmin
, (13.15)

162 CHAPTER 13. BLOCK-ITERATIVE ART

in which case we have

‖B‖2 =
λmax − λmin
λmax + λmin

=
c− 1
c+ 1

, (13.16)

for c = λmax/λmin, the condition number of the positive-definite matrix
A†A. The closer c is to one, the smaller the norm ‖B‖2, and the faster the
convergence.

On the other hand, if λmin = 0, then ρ(B) = 1 for all γ in the interval
(0, 2/λmax). The matrix B is still av, but it is no longer sc. For example,
consider the orthogonal projection P0 onto the hyperplane H0 = H(a, 0),
where ‖a‖2 = 1. This operator can be written

P0 = I − aa†. (13.17)

The largest eigenvalue of aa† is λmax = 1; the remaining ones are zero.
The relaxed projection operator

B = I − γaa† (13.18)

has ρ(B) = 1 − γ > 1, if γ < 0, and for γ ≥ 0, we have ρ(B) = 1. The
operator B is av, in fact, it is fne, but it is not sc.

13.3.2 The Projected Landweber Algorithm

When we require a nonnegative approximate solution x for the real system
Ax = b we can use a modified version of the Landweber algorithm, called
the projected Landweber algorithm [12], in this case having the iterative
step

xk+1 = (xk + γA†(b−Axk))+, (13.19)

where, for any real vector a, we denote by (a)+ the nonnegative vector
whose entries are those of a, for those that are nonnegative, and are zero
otherwise. The projected Landweber algorithm converges to a vector that
minimizes ‖Ax− b‖2 over all nonnegative vectors x, for the same values of
γ.

The projected Landweber algorithm is actually more general. For any
closed, nonempty convex set C in X, define the iterative sequence

xk+1 = PC(xk + γA†(b−Axk)). (13.20)

This sequence converges to a minimizer of the function ‖Ax− b‖2 over all
x in C, whenever such minimizers exist.

Both the Landweber and projected Landweber algorithms are special
cases of the CQ algorithm [41], which, in turn, is a special case of the
more general iterative fixed point algorithm, the Krasnoselskii/Mann (KM)
method, with convergence governed by the KM Theorem 10.2.

13.4. SOME UPPER BOUNDS FOR L 163

13.4 Some Upper Bounds for L

For the iterative algorithms we shall consider here, having a good upper
bound for the largest eigenvalue of the matrix A†A is important. In the
applications of interest, principally medical image processing, the matrix
A is large; even calculating A†A, not to mention computing eigenvalues,
is prohibitively expensive. In addition, the matrix A is typically sparse,
but A†A will not be, in general. In this section we present upper bounds
for L that are particularly useful when A is sparse and do not require the
calculation of A†A.

13.4.1 Our Basic Eigenvalue Inequality

In [147] van der Sluis and van der Vorst show that certain rescaling of
the matrix A results in none of the eigenvalues of A†A exceeding one. A
modification of their proof leads to upper bounds on the eigenvalues of the
original A†A ([48]). For any a in the interval [0, 2] let

caj = caj(A) =
I∑
i=1

|Aij |a,

rai = rai(A) =
J∑
j=1

|Aij |2−a,

and ca and ra the maxima of the caj and rai, respectively. We prove the
following theorem.

Theorem 13.1 For any a in the interval [0, 2], no eigenvalue of the matrix
A†A exceeds the maximum of

J∑
j=1

caj |Aij |2−a,

over all i, nor the maximum of

I∑
i=1

rai|Aij |a,

over all j. Therefore, no eigenvalue of A†A exceeds cara.

Proof: Let A†Av = λv, and let w = Av. Then we have

‖A†w‖2 = λ‖w‖2.

164 CHAPTER 13. BLOCK-ITERATIVE ART

Applying Cauchy’s Inequality, we obtain∣∣∣ I∑
i=1

Aijwi

∣∣∣2 ≤ (I∑
i=1

|Aij |a/2|Aij |1−a/2|wi|
)2

≤
(I∑
i=1

|Aij |a
)(I∑

i=1

|Aij |2−a|wi|2
)
.

Therefore,

‖A†w‖2 ≤
J∑
j=1

(
caj(

I∑
i=1

|Aij |2−a|wi|2)
)

=
I∑
i=1

(J∑
j=1

caj |Aij |2−a
)
|wi|2

≤ max
i

(J∑
j=1

caj |Aij |2−a
)
‖w‖2.

The remaining two assertions follow in similar fashion.
As a corollary, we obtain the following eigenvalue inequality, which is

central to our discussion.

Theorem 13.2 For each i = 1, 2, ..., I, let

pi =
J∑
j=1

sj |Aij |2,

and let p be the maximum of the pi. Then L ≤ p.

Proof: Take a = 0. Then, using the convention that 00 = 0, we have
c0j = sj .

Corollary 13.1 Selecting a = 1, we have

L = ‖A‖2
2 ≤ ‖A‖1‖A‖∞ = c1r1.

Corollary 13.2 Selecting a = 2, we have

L = ‖A‖2
2 ≤ ‖A‖2

F ,

where ‖A‖F denotes the Frobenius norm of A.

Corollary 13.3 Let G be the matrix with entries

Gij = Aij
√
αi
√
βj ,

where

αi ≤
(J∑
j=1

sjβj |Aij |2
)−1

,

for all i. Then ρ(G†G) ≤ 1.

13.4. SOME UPPER BOUNDS FOR L 165

Proof: We have

J∑
j=1

sj |Gij |2 = αi

J∑
j=1

sjβj |Aij |2 ≤ 1,

for all i. The result follows from Corollary 13.2.

Corollary 13.4 If
∑J
j=1 sj |Aij |2 ≤ 1 for all i, then L ≤ 1.

Corollary 13.5 If 0 < γi ≤ p−1
i for all i, then the matrix B with entries

Bij =
√
γiAij has ρ(B†B) ≤ 1.

Proof: We have

J∑
j=1

sj |Bij |2 = γi

J∑
j=1

sj |Aij |2 = γipi ≤ 1.

Therefore, ρ(B†B) ≤ 1, according to the theorem.

Corollary 13.6 ([41]; [146], Th. 4.2) If
∑J
j=1 |Aij |2 = 1 for each i, then

L ≤ s.

Proof: For all i we have

pi =
J∑
j=1

sj |Aij |2 ≤ s
J∑
j=1

|Aij |2 = s.

Therefore,
L ≤ p ≤ s.

Corollary 13.7 If, for some a in the interval [0, 2], we have

αi ≤ r−1
ai , (13.21)

for each i, and

βj ≤ c−1
aj , (13.22)

for each j, then, for the matrix G with entries

Gij = Aij
√
αi
√
βj ,

no eigenvalue of G†G exceeds one.

166 CHAPTER 13. BLOCK-ITERATIVE ART

Proof: We calculate caj(G) and rai(G) and find that

caj(G) ≤
(

max
i
α
a/2
i

)
β
a/2
j

I∑
i=1

|Aij |a =
(

max
i
α
a/2
i

)
β
a/2
j caj(A),

and
rai(G) ≤

(
max
j
β

1−a/2
j

)
α

1−a/2
i rai(A).

Therefore, applying the inequalities (13.21) and (13.22), we have

caj(G)rai(G) ≤ 1,

for all i and j. Consequently, ρ(G†G) ≤ 1.

13.4.2 Another Upper Bound for L

The next theorem ([41]) provides another upper bound for L that is useful
when A is sparse. As previously, for each i and j, we let eij = 1, if Aij is not

zero, and eij = 0, if Aij = 0. Let 0 < νi =
√∑J

j=1 |Aij |2, σj =
∑I
i=1 eijν

2
i ,

and σ be the maximum of the σj .

Theorem 13.3 ([41]) No eigenvalue of A†A exceeds σ.

Proof: Let A†Av = cv, for some non-zero vector v and scalar c. With
w = Av, we have

w†AA†w = cw†w.

Then∣∣∣ I∑
i=1

Aijwi

∣∣∣2 =
∣∣∣ I∑
i=1

Aijeijνi
wi
νi

∣∣∣2 ≤ (I∑
i=1

|Aij |2
|wi|2

ν2
i

)(I∑
i=1

ν2
i eij

)

=
(I∑
i=1

|Aij |2
|wi|2

ν2
i

)
σj ≤ σ

(I∑
i=1

|Aij |2
|wi|2

ν2
i

)
.

Therefore, we have

cw†w = w†AA†w =
J∑
j=1

∣∣∣ I∑
i=1

Aijwi

∣∣∣2

≤ σ
J∑
j=1

(I∑
i=1

|Aij |2
|wi|2

ν2
i

)
= σ

I∑
i=1

|wi|2 = σw†w.

We conclude that c ≤ σ.

13.5. THE BASIC CONVERGENCE THEOREM 167

Corollary 13.8 Let the rows of A have Euclidean length one. Then no
eigenvalue of A†A exceeds the maximum number of non-zero entries in any
column of A.

Proof: We have ν2
i =

∑J
j=1 |Aij |2 = 1, for each i, so that σj = sj is

the number of non-zero entries in the jth column of A, and σ = s is the
maximum of the σj .

When the rows of A have length one, it is easy to see that L ≤ I, so
the choice of γ = 1

I in the Landweber algorithm, which gives Cimmino’s
algorithm [64], is acceptable, although perhaps much too small.

The proof of Theorem 13.3 is based on results presented by Arnold Lent
in informal discussions with Gabor Herman, Yair Censor, Rob Lewitt and
me at MIPG in Philadelphia in the late 1990’s.

13.5 The Basic Convergence Theorem

The following theorem is a basic convergence result concerning block-iterative
ART algorithms.

Theorem 13.4 Let Ln ≤ 1, for n = 1, 2, ..., N . If the system Ax = b is
consistent, then, for any starting vector x0, and with n = n(k) = k(modN)
and λk ∈ [ε, 2− ε] for all k, the sequence {xk} with iterative step

xk = xk−1 + λkA
†
n(b

n −Anx
k−1) (13.23)

converges to the solution of Ax = b for which ‖x− x0‖ is minimized.

We begin with the following lemma.

Lemma 13.3 Let T be any (not necessarily linear) operator on RJ , and
S = I − T , where I denotes the identity operator. Then, for any x and y,
we have

‖x− y‖2 − ‖Tx− Ty‖2 = 2〈Sx− Sy, x− y〉 − ‖Sx− Sy‖2. (13.24)

The proof is a simple calculation and we omit it here.
Proof of Theorem 13.4: Let Az = b. Applying Equation (13.24) to the
operator

Tx = x+ λkA
†
n(b

n −Anx),

we obtain

‖z − xk−1‖2 − ‖z − xk‖2 = 2λk‖bn −Anx
k−1‖2 − λ2

k‖A†nbn −A†nAnx
k−1‖2.

(13.25)

168 CHAPTER 13. BLOCK-ITERATIVE ART

Since Ln ≤ 1, it follows that

‖A†nbn −A†nAnx
k−1‖2 ≤ ‖bn −Anx

k−1‖2.

Therefore,

‖z − xk−1‖2 − ‖z − xk‖2 ≥ (2λk − λ2
k)‖bn −Anx

k−1‖2,

from which we draw several conclusions:

• the sequence {‖z − xk‖} is decreasing;

• the sequence {‖bn −Anx
k−1‖} converges to zero.

In addition, for fixed n = 1, ..., N and m→∞,

• the sequence {‖bn −Anx
mN+n−1‖} converges to zero;

• the sequence {xmN+n} is bounded.

Let x∗,1 be a cluster point of the sequence {xmN+1}; then there is sub-
sequence {xmrN+1} converging to x∗,1. The sequence {xmrN+2} is also
bounded, and we select a cluster point x∗,2. Continuing in this fashion, we
obtain cluster points x∗,n, for n = 1, ..., N . From the conclusions reached
previously, we can show that x∗,n = x∗,n+1 = x∗, for n = 1, 2, ..., N − 1,
and Ax∗ = b. Replacing the generic solution x̂ with the solution x∗, we
see that the sequence {‖x∗ − xk‖} is decreasing. But, subsequences of this
sequence converge to zero, so the entire sequence converges to zero, and so
xk → x∗.

Now we show that x∗ is the solution of Ax = b that minimizes ‖x−x0‖.
Since xk − xk−1 is in the range of A† for all k, so is x∗ − x0, from which it
follows that x∗ is the solution minimizing ‖x−x0‖. Another way to get this
result is to use Equation (13.25). Since the right side of Equation (13.25)
is independent of the choice of solution, so is the left side. Summing both
sides over the index k reveals that the difference

‖x− x0‖2 − ‖x− x∗‖2

is independent of the choice of solution. Consequently, minimizing ‖x−x0‖
over all solutions x is equivalent to minimizing ‖x− x∗‖ over all solutions
x; the solution to the latter problem is clearly x = x∗.

13.6 Simultaneous Iterative Algorithms

In this section we apply the previous theorems to obtain convergence of
several simultaneous iterative algorithms for linear systems.

13.6. SIMULTANEOUS ITERATIVE ALGORITHMS 169

13.6.1 The General Simultaneous Iterative Scheme

In this section we are concerned with simultaneous iterative algorithms
having the following iterative step:

xkj = xk−1
j + λk

I∑
i=1

γijAij(bi − (Axk−1)i), (13.26)

with λk ∈ [ε, 1] and the choices of the parameters γij that guarantee con-
vergence. Although we cannot prove convergence for this most general
iterative scheme, we are able to prove the following theorems for the sepa-
rable case of γij = αiβj .

Theorem 13.5 If, for some a in the interval [0, 2], we have

αi ≤ r−1
ai , (13.27)

for each i, and

βj ≤ c−1
aj , (13.28)

for each j, then the sequence {xk} given by Equation (13.26) converges to
the minimizer of the proximity function

I∑
i=1

αi|bi − (Ax)i|2

for which
J∑
j=1

β−1
j |xj − x0

j |2

is minimized.

Proof: For each i and j, let

Gij =
√
αi
√
βjAij ,

zj = xj/
√
βj ,

and
di =

√
αibi.

Then Ax = b if and only if Gz = d. From Corollary 13.7 we have that
ρ(G†G) ≤ 1. Convergence then follows from Theorem 13.4.

170 CHAPTER 13. BLOCK-ITERATIVE ART

Corollary 13.9 Let γij = αiβj, for positive αi and βj. If

αi ≤
(J∑
j=1

sjβj |Aij |2
)−1

, (13.29)

for each i, then the sequence {xk} in (13.26) converges to the minimizer of
the proximity function

I∑
i=1

αi|bi − (Ax)i|2

for which
J∑
j=1

β−1
j |xj − x0

j |2

is minimized.

Proof: We know from Corollary 13.3 that ρ(G†G) ≤ 1.

13.6.2 Some Convergence Results

We obtain convergence for several known algorithms as corollaries to the
previous theorems.

The SIRT Algorithm:

Corollary 13.10 ([147]) For some a in the interval [0, 2] let αi = r−1
ai and

βj = c−1
aj . Then the sequence {xk} in (13.26) converges to the minimizer

of the proximity function

I∑
i=1

αi|bi − (Ax)i|2

for which
J∑
j=1

β−1
j |xj − x0

j |2

is minimized.

For the case of a = 1, the iterative step becomes

xkj = xk−1
j +

I∑
i=1

(
Aij(bi − (Axk−1)i)

(
∑J
t=1 |Ait|)(

∑I
m=1 |Amj |)

)
,

which was considered in [97]. The SART algorithm [2] is a special case, in
which it is assumed that Aij ≥ 0, for all i and j.

The CAV Algorithm:

13.6. SIMULTANEOUS ITERATIVE ALGORITHMS 171

Corollary 13.11 If βj = 1 and αi satisfies

0 < αi ≤
(J∑
j=1

sj |Aij |2
)−1

,

for each i, then the algorithm with the iterative step

xk = xk−1 + λk

I∑
i=1

αi(bi − (Axk−1)i)A
†
i (13.30)

converges to the minimizer of

I∑
i=1

αi|bi − (Axk−1)i|2

for which ‖x− x0‖ is minimized.

When

αi =
(J∑
j=1

sj |Aij |2
)−1

,

for each i, this is the relaxed component-averaging (CAV) method of Censor
et al. [58].

The Landweber Algorithm: When βj = 1 and αi = α for all i and j,
we have the relaxed Landweber algorithm. The convergence condition in
Equation (13.21) becomes

α ≤
(J∑
j=1

sj |Aij |2
)−1

= p−1
i

for all i, so α ≤ p−1 suffices for convergence. Actually, the sequence {xk}
converges to the minimizer of ‖Ax− b‖ for which the distance ‖x− x0‖ is
minimized, for any starting vector x0, when 0 < α < 1/L. Easily obtained
estimates of L are usually over-estimates, resulting in overly conservative
choices of α. For example, if A is first normalized so that

∑J
j=1 |Aij |2 = 1

for each i, then the trace of A†A equals I, which tells us that L ≤ I. But
this estimate, which is the one used in Cimmino’s method [64], is far too
large when A is sparse.

The Simultaneous DROP Algorithm:

172 CHAPTER 13. BLOCK-ITERATIVE ART

Corollary 13.12 Let 0 < wi ≤ 1,

αi = wiν
−2
i = wi

(J∑
j=1

|Aij |2
)−1

and βj = s−1
j , for each i and j. Then the simultaneous algorithm with the

iterative step

xkj = xk−1
j + λk

I∑
i=1

(
wiAij(bi − (Axk−1)i)

sjν2
i

)
, (13.31)

converges to the minimizer of the function

I∑
i=1

∣∣∣∣∣wi(bi − (Ax)i)
νi

∣∣∣∣∣
2

for which the function
J∑
j=1

sj |xj − x0
j |2

is minimized.

For wi = 1, this is the CARP1 algorithm of [95] (see also [72, 58, 59]).
The simultaneous DROP algorithm of [56] requires only that the weights
wi be positive, but dividing each wi by their maximum, maxi{wi}, while
multiplying each λk by the same maximum, gives weights in the interval
(0, 1]. For convergence of their algorithm, we need to replace the condition
λk ≤ 2− ε with λk ≤ 2−ε

maxi{wi} .
The denominator in CAV is

J∑
t=1

st|Ait|2,

while that in CARP1 is

sj

J∑
t=1

|Ait|2.

It was reported in [95] that the two methods differed only slightly in the
simulated cases studied.

13.7 Block-iterative Algorithms

The methods discussed in the previous section are simultaneous, that is,
all the equations are employed at each step of the iteration. We turn now
to block-iterative methods, which employ only some of the equations at
each step. When the parameters are appropriately chosen, block-iterative
methods can be significantly faster than simultaneous ones.

13.7. BLOCK-ITERATIVE ALGORITHMS 173

13.7.1 The Block-Iterative Landweber Algorithm

For a given set of blocks, the block-iterative Landweber algorithm has the
following iterative step: with n = k(modN),

xk = xk−1 + γnA
†
n(b

n −Anx
k−1). (13.32)

The sequence {xk} converges to the solution of Ax = b that minimizes
‖x − x0‖, whenever the system Ax = b has solutions, provided that the
parameters γn satisfy the inequalities 0 < γn < 1/Ln. This follows from
Theorem 13.4 by replacing the matrices An with

√
γnAn and the vectors

bn with
√
γnb

n.
If the rows of the matrices An are normalized to have length one, then

we know that Ln ≤ sn. Therefore, we can use parameters γn that satisfy

0 < γn ≤
(
sn

J∑
j=1

|Aij |2
)−1

, (13.33)

for each i ∈ Bn.

13.7.2 The BICAV Algorithm

We can extend the block-iterative Landweber algorithm as follows: let
n = k(modN) and

xk = xk−1 + λk
∑
i∈Bn

γi(bi − (Axk−1)i)A
†
i . (13.34)

It follows from Theorem 13.2 that, in the consistent case, the sequence {xk}
converges to the solution of Ax = b that minimizes ‖x−x0‖, provided that,
for each n and each i ∈ Bn, we have

γi ≤
(J∑
j=1

snj |Aij |2
)−1

.

The BICAV algorithm [59] uses

γi =
(J∑
j=1

snj |Aij |2
)−1

.

The iterative step of BICAV is

xk = xk−1 + λk
∑
i∈Bn

(
bi − (Axk−1)i∑J
t=1 snt|Ait|2

)
A†i . (13.35)

174 CHAPTER 13. BLOCK-ITERATIVE ART

13.7.3 A Block-Iterative CARP1

The obvious way to obtain a block-iterative version of CARP1 would be to
replace the denominator term

sj

J∑
t=1

|Ait|2

with

snj

J∑
t=1

|Ait|2.

However, this is problematic, since we cannot redefine the vector of un-
knowns using zj = xj

√
snj , since this varies with n. In [56], this issue is

resolved by taking τj to be not less than the maximum of the snj , and
using the denominator

τj

J∑
t=1

|Ait|2 = τjν
2
i .

A similar device is used in [103] to obtain a convergent block-iterative
version of SART. The iterative step of DROP is

xkj = xk−1
j + λk

∑
i∈Bn

(
Aij

(bi − (Axk−1)i)
τjν2

i

)
. (13.36)

Convergence of the DROP (diagonally-relaxed orthogonal projection)
iteration follows from their Theorem 11. We obtain convergence as a corol-
lary of our previous results.

The change of variables is zj = xj
√
τj , for each j. Using our eigenvalue

bounds, it is easy to show that the matrices Cn with entries

(Cn)ij =

(
Aij√
τjνi

)
,

for all i ∈ Bn and all j, have ρ(C†nCn) ≤ 1. The resulting iterative scheme,
which is equivalent to Equation (13.36), then converges, whenever Ax = b
is consistent, to the solution minimizing the proximity function

I∑
i=1

∣∣∣∣∣bi − (Ax)i
νi

∣∣∣∣∣
2

for which the function
J∑
j=1

τj |xj − x0
j |2

is minimized.

13.8. ITERATIVE REGULARIZATION 175

13.7.4 Using Sparseness

Suppose, for the sake of illustration, that each column of A has s non-zero
elements, for some s < I, and we let r = s/I. Suppose also that the number
of members of Bn is In = I/N for each n, and that N is not too large.
Then sn is approximately equal to rIn = s/N . On the other hand, unless
An has only zero entries, we know that sn ≥ 1. Therefore, it is no help to
select N for which s/N < 1. For a given degree of sparseness s we need not
select N greater than s. The more sparse the matrix A, the fewer blocks
we need to gain the maximum advantage from the rescaling, and the more
we can benefit from parallelization in the calculations at each step of the
algorithm in Equation (13.23).

13.8 Iterative Regularization

As we noted in our discussion of the ART, it is often the case that the
entries of the vector b in the system Ax = b come from measurements,
so are usually noisy. If the entries of b are noisy but the system Ax =
b remains consistent (which can easily happen in the under-determined
case, with J > I), the ART begun at x0 = 0 converges to the solution
having minimum norm, but this norm can be quite large. The resulting
solution is probably useless. Instead of solving Ax = b, we can regularize
by minimizing, for example, the function Fε(x) given by

Fε(x) = (1− ε)‖Ax− b‖2
2 + ε‖x− p‖2

2, (13.37)

where ε > 0 and vector p is a prior estimate of the desired solution.

Lemma 13.4 . The function Fε always has a unique minimizer x̂ε, given
by

x̂ε = ((1− ε)A†A+ εI)−1((1− ε)A†b+ εp); (13.38)

this is a regularized solution of Ax = b. Note that the inverse above always
exists.

If p = 0, then

x̂ε = (A†A+ γ2I)−1A†b, (13.39)

for γ2 = ε
1−ε . However, we do not want to calculate A†A + γ2I, in order

to solve

(A†A+ γ2I)x = A†b, (13.40)

176 CHAPTER 13. BLOCK-ITERATIVE ART

when the matrix A is large. Fortunately, there are ways to find x̂ε, using
only the matrix A. We saw previously how this might be accomplished
using the ART; now we show how Landweber’s Algorithm can be used to
calculate this regularized solution.

13.8.1 Iterative Regularization with Landweber’s Al-
gorithm

Our goal is to minimize the function in Equation (13.37), with p = 0.
Notice that this is equivalent to minimizing the function

F (x) = ‖Bx− c‖2
2, (13.41)

for

B =
[
A
γI

]
, (13.42)

and

c =
[
b
0

]
, (13.43)

where 0 denotes a column vector with all entries equal to zero and γ2 = ε
1−ε .

The Landweber iteration for the problem Bx = c is

xk = xk−1 + αBT (c−Bxk−1), (13.44)

for 0 < α < 2/ρ(BTB), where ρ(BTB) is the spectral radius of BTB, and
we assume that the rows of B have length one. Equation (13.44) can be
written as

xk+1 = (1− αγ2)xk + αAT (b−Axk). (13.45)

We see from Equation (13.45) that Landweber’s Algorithm for solving the
regularized least-squares problem amounts to a relaxed version of Landwe-
ber’s Algorithm applied to the original least-squares problem.

13.9 Exercises

13.1 Prove Lemma 13.1.

13.2 (Computer Problem) Compare the speed of convergence of the
ART and Cimmino algorithms.

13.3 (Computer Problem) By generating sparse matrices of various
sizes, test the accuracy of the estimates of the largest singular-value given
above.

Chapter 14

The Split Feasibility
Problem

The split feasibility problem (SFP) [55] is to find c ∈ C with Ac ∈ Q,
if such points exist, where A is a real I by J matrix and C and Q are
nonempty, closed convex sets in RJ and RI , respectively. When there is no
exact solution to the SFP the CQ algorithm optimizes a certain proximity
measure. In this chapter we discuss the CQ algorithm for solving the SFP,
as well as recent extensions and applications.

14.1 The CQ Algorithm

In [41] the CQ algorithm for solving the SFP was presented, for the real
case. It has the iterative step

xk+1 = PC(xk − γAT (I − PQ)Axk), (14.1)

where I is the identity operator and γ ∈ (0, 2/ρ(ATA)), for ρ(ATA) the
spectral radius of the matrix ATA, which is also its largest eigenvalue. The
CQ algorithm can be extended to the complex case, in which the matrix A
has complex entries, and the sets C and Q are in CJ and CI , respectively.
The iterative step of the extended CQ algorithm is then

xk+1 = PC(xk − γA†(I − PQ)Axk). (14.2)

The CQ algorithm converges to a solution of the SFP, for any starting
vector x0, whenever the SFP has solutions. When the SFP has no solutions,
the CQ algorithm converges to a minimizer of the function

f(x) =
1
2
||PQAx−Ax||22 (14.3)

177

178 CHAPTER 14. THE SPLIT FEASIBILITY PROBLEM

over the set C, provided such constrained minimizers exist. Therefore the
CQ algorithm is an iterative constrained optimization method. As shown in
[42], convergence of the CQ algorithm is a consequence of the KM Theorem
10.2.

The function f(x) is convex and differentiable on RJ and its derivative
is the operator

∇f(x) = AT (I − PQ)Ax; (14.4)

see [5].

Lemma 14.1 The derivative operator ∇f is λ-Lipschitz continuous for
λ = ρ(ATA), therefore it is ν-ism for ν = 1

λ .

Proof: We have

||∇f(x)−∇f(y)||22 = ||AT (I − PQ)Ax−AT (I − PQ)Ay||22 (14.5)

≤ λ||(I − PQ)Ax− (I − PQ)Ay||22. (14.6)

Also

||(I − PQ)Ax− (I − PQ)Ay||22 = ||Ax−Ay||22 (14.7)

+||PQAx− PQAy||22 − 2〈PQAx− PQAy,Ax−Ay〉 (14.8)

and, since PQ is fne,

〈PQAx− PQAy,Ax−Ay〉 ≥ ||PQAx− PQAy||22. (14.9)

Therefore,

||∇f(x)−∇f(y)||22 ≤ λ(||Ax−Ay||22 − ||PQAx− PQAy||22) (14.10)

≤ λ||Ax−Ay||22 ≤ λ2||x− y||22. (14.11)

This completes the proof.

If γ ∈ (0, 2/λ) then B = PC(I − γAT (I − PQ)A) is av and, by the
KM Theorem 10.2, the orbit sequence {Bkx} converges to a fixed point
of B, whenever such points exist. If z is a fixed point of B, then z =
PC(z − γAT (I − PQ)Az). Therefore, for any c in C we have

〈c− z, z − (z − γAT (I − PQ)Az)〉 ≥ 0. (14.12)

This tells us that

〈c− z,AT (I − PQ)Az〉 ≥ 0, (14.13)

14.2. PARTICULAR CASES OF THE CQ ALGORITHM 179

which means that z minimizes f(x) relative to the set C.
The CQ algorithm employs the relaxation parameter γ in the interval

(0, 2/L), where L is the largest eigenvalue of the matrix ATA. Choosing
the best relaxation parameter in any algorithm is a nontrivial procedure.
Generally speaking, we want to select γ near to 1/L. We saw a simple
estimate for L in our discussion of singular values of sparse matrices: if
A is normalized so that each row has length one, then the spectral radius
of ATA does not exceed the maximum number of nonzero elements in any
column of A. A similar upper bound on ρ(ATA) was obtained for non-
normalized, ε-sparse A.

14.2 Particular Cases of the CQ Algorithm

It is easy to find important examples of the SFP: if C ⊆ RJ and Q = {b}
then solving the SFP amounts to solving the linear system of equations
Ax = b; if C is a proper subset of RJ , such as the nonnegative cone, then
we seek solutions of Ax = b that lie within C, if there are any. Generally,
we cannot solve the SFP in closed form and iterative methods are needed.

A number of well known iterative algorithms, such as the Landweber
[110] and projected Landweber methods (see [12]), are particular cases of
the CQ algorithm.

14.2.1 The Landweber algorithm

With x0 arbitrary and k = 0, 1, ... let

xk+1 = xk + γAT (b−Axk). (14.1)

This is the Landweber algorithm.

14.2.2 The Projected Landweber Algorithm

For a general nonempty closed convex C, x0 arbitrary, and k = 0, 1, ..., the
projected Landweber method for finding a solution of Ax = b in C has the
iterative step

xk+1 = PC(xk + γAT (b−Axk)). (14.2)

14.2.3 Convergence of the Landweber Algorithms

From the convergence theorem for the CQ algorithm it follows that the
Landweber algorithm converges to a solution of Ax = b and the projected
Landweber algorithm converges to a solution of Ax = b in C, whenever

180 CHAPTER 14. THE SPLIT FEASIBILITY PROBLEM

such solutions exist. When there are no solutions of the desired type, the
Landweber algorithm converges to a least squares approximate solution
of Ax = b, while the projected Landweber algorithm will converge to a
minimizer, over the set C, of the function ||b − Ax||2, whenever such a
minimizer exists.

Another example of the CQ algorithm is the simultaneous algebraic
reconstruction technique (SART) of Anderson and Kak for solving Ax = b,
for nonnegative matrix A [2]. We discussed SART in the previous chapter.

14.2.4 Application of the CQ Algorithm in Dynamic
ET

To illustrate how an image reconstruction problem can be formulated as
a SFP, we consider briefly emission computed tomography (ET) image re-
construction. The objective in ET is to reconstruct the internal spatial
distribution of intensity of a radionuclide from counts of photons detected
outside the patient. In static ET the intensity distribution is assumed con-
stant over the scanning time. Our data are photon counts at the detectors,
forming the positive vector b and we have a matrix A of detection proba-
bilities; our model is Ax = b, for x a nonnegative vector. We could then
take Q = {b} and C = RN+ , the nonnegative cone in RN .

In dynamic ET [84] the intensity levels at each voxel may vary with
time. The observation time is subdivided into, say, T intervals and one
static image, call it xt, is associated with the time interval denoted by t,
for t = 1, ..., T . The vector x is the concatenation of these T image vectors
xt. The discrete time interval at which each data value is collected is also
recorded and the problem is to reconstruct this succession of images.

Because the data associated with a single time interval is insufficient, by
itself, to generate a useful image, one often uses prior information concern-
ing the time history at each fixed voxel to devise a model of the behavior
of the intensity levels at each voxel, as functions of time. One may, for
example, assume that the radionuclide intensities at a fixed voxel are in-
creasing with time, or are concave (or convex) with time. The problem
then is to find x ≥ 0 with Ax = b and Dx ≥ 0, where D is a matrix chosen
to describe this additional prior information. For example, we may wish to
require that, for each fixed voxel, the intensity is an increasing function of
(discrete) time; then we want

xt+1
j − xtj ≥ 0, (14.3)

for each t and each voxel index j. Or, we may wish to require that the
intensity at each voxel describes a concave function of time, in which case
nonnegative second differences would be imposed:

(xt+1
j − xtj)− (xt+2

j − xt+1
j) ≥ 0. (14.4)

14.3. EXERCISES 181

In either case, the matrix D can be selected to include the left sides of
these inequalities, while the set Q can include the nonnegative cone as one
factor.

14.2.5 Related Methods and Applications

One of the obvious drawbacks to the use of the CQ algorithm is that we
would need the projections PC and PQ to be easily calculated. Several
authors have offered remedies for that problem, using approximations of the
convex sets by the intersection of hyperplanes and orthogonal projections
onto those hyperplanes [150].

In a recent papers [57, 53] Censor et al. discuss the application of the CQ
algorithm to the problem of intensity-modulated radiation therapy (IMRT)
treatment planning. Mathematically speaking, the problem is the multi-set
split feasibility problem (MSSFP), which is to find x in C, the non-empty
intersection of closed, convex sets Ci, for i = 1, ..., I, such that Ax is in the
non-empty intersection of the closed, convex sets Qj , for j = 1, ..., J . In the
CQ algorithm it is assumed that the orthogonal projections onto C and Q
are easily calculated, while algorithms for solving the MSSFP assume that
the orthogonal projections onto the Ci and Qj are easily calculated.

The split feasibility problem can be formulated as an optimization prob-
lem, namely, to minimize

h(x) = ψC(x) + ψQ(Ax), (14.5)

where ψC(x) is the indicator function of the set C. The CQ algorithm
solves the more general problem of minimizing the function

f(x) = ψC(x) + ||PQAx−Ax||22. (14.6)

The second term in f(x) is differentiable, allowing us to apply the forward-
backward splitting method of Combettes and Wajs [66], to be discussed
in a subsequent chapter. The CQ algorithm is then a special case of their
method.

14.3 Exercises

14.1 Use the CQ algorithm to prove the following. Let C1 and C2 be
nonempty, closed convex sets in RJ , with C1 ∩ C2 = ∅. Assume that there
is a unique ĉ2 in C2 minimizing the function f(x) = ||c2 − P1c2||2, over
all c2 in C2. Let ĉ1 = P1ĉ2. Then P2ĉ1 = ĉ2. Let z0 be arbitrary and, for
n = 0, 1, ..., let

z2n+1 = P1z
2n, (14.7)

182 CHAPTER 14. THE SPLIT FEASIBILITY PROBLEM

and

z2n+2 = P2z
2n+1. (14.8)

Then

{z2n+1} → ĉ1, (14.9)

and

{z2n} → ĉ2. (14.10)

Chapter 15

The Multiplicative ART
(MART)

The multiplicative ART (MART) [94] is an iterative algorithm closely re-
lated to the ART. It applies to systems of linear equations Ax = b for
which the bi are positive and the Aij are nonnegative; the solution x we
seek will have nonnegative entries. When there are multiple nonnegative
solutions, the MART finds the solution that minimizes the cross-entropy
to the starting vector; if the entries of the starting vector are all the same,
the MART finds the solution that maximizes Shannon entropy.

It is not so easy to see the relation between ART and MART if we look
at the most general formulation of MART. For that reason, we begin with
a simpler case, in which the relation is most clearly visible.

15.1 A Special Case of MART

We begin by considering the application of MART to the transmission
tomography problem. For i = 1, ..., I, let Li be the set of pixel indices j
for which the j-th pixel intersects the i-th line segment, and let |Li| be the
cardinality of the set Li. Let Aij = 1 for j in Li, and Aij = 0 otherwise.
With i = k(mod I) + 1, the iterative step of the ART algorithm is

xk+1
j = xkj +

1
|Li|

(bi − (Axk)i), (15.1)

for j in Li, and

xk+1
j = xkj , (15.2)

if j is not in Li. In each step of ART, we take the error, bi − (Axk)i,
associated with the current xk and the i-th equation, and distribute it

183

184 CHAPTER 15. THE MULTIPLICATIVE ART (MART)

equally over each of the pixels that intersects Li.
Suppose, now, that each bi is positive, and we know in advance that the

desired image we wish to reconstruct must be nonnegative. We can begin
with x0 > 0, but as we compute the ART steps, we may lose nonnegativity.
One way to avoid this loss is to correct the current xk multiplicatively,
rather than additively, as in ART. This leads to the multiplicative ART
(MART).

The MART, in this case, has the iterative step

xk+1
j = xkj

(bi
(Axk)i

)
, (15.3)

for those j in Li, and

xk+1
j = xkj , (15.4)

otherwise. Therefore, we can write the iterative step as

xk+1
j = xkj

(bi
(Axk)i

)Aij

. (15.5)

15.2 MART in the General Case

Taking the entries of the matrix A to be either one or zero, depending on
whether or not the j-th pixel is in the set Li, is too crude. The line Li
may just clip a corner of one pixel, but pass through the center of another.
Surely, it makes more sense to let Aij be the length of the intersection of
line Li with the j-th pixel, or, perhaps, this length divided by the length of
the diagonal of the pixel. It may also be more realistic to consider a strip,
instead of a line. Other modifications to Aij may made made, in order to
better describe the physics of the situation. Finally, all we can be sure of
is that Aij will be nonnegative, for each i and j. In such cases, what is the
proper form for the MART?

The MART, which can be applied only to nonnegative systems, is a
sequential, or row-action, method that uses one equation only at each step
of the iteration. We present the general MART algorithm, and then two
versions of the MART.

The general MART algorithm is the following [43].

Algorithm 15.1 (The General MART) Let x0 be any positive vector,
and i = k(mod I) + 1. Having found xk for positive integer k, define xk+1

by

xk+1
j = xkj

(bi
(Axk)i

)γjδiAij

. (15.6)

15.2. MART IN THE GENERAL CASE 185

The parameters γj > 0 and δi > 0 are to be chosen subject to the inequality

γjδiAij ≤ 1,

for all i and j.
The first version of MART that we shall consider, MART I, uses the

parameters γj = 1, and

δi = 1/max {Aij |j = 1, ..., J}.

Algorithm 15.2 (MART I) Let x0 be any positive vector, and i = k(mod I)+
1. Having found xk for positive integer k, define xk+1 by

xk+1
j = xkj

(bi
(Axk)i

)m−1
i
Aij

, (15.7)

where mi = max {Aij |j = 1, 2, ..., J}.
Some treatments of MART leave out the mi, but require only that the en-
tries of A have been rescaled so that Aij ≤ 1 for all i and j; this corresponds
to the choices γj = 1 and

δi = δ = 1/max {Aij |i = 1, ..., I, j = 1, ..., J},

for each i. Using the mi is important, however, in accelerating the conver-
gence of MART.

The second version of MART that we shall consider, MART II, uses the
parameters γj = s−1

j , and

δi = 1/max {Aijs−1
j |j = 1, ..., J}.

Algorithm 15.3 (MART II) Let x0 be any positive vector, and i =
k(mod I) + 1. Having found xk for positive integer k, define xk+1 by

xk+1
j = xkj

(bi
(Axk)i

)n−1
i
s−1

j
Aij

, (15.8)

where ni = δ−1
i = max {Aijs−1

j |j = 1, 2, ..., J}.
Note that the MART II algorithm can be obtained from the MART I
algorithm if we first rescale the entries of the matrix A, replacing Aij with
Aijs

−1
j , and redefine the vector of unknowns, replacing each xj with xjsj .

The MART can be accelerated by relaxation, as well.

Algorithm 15.4 (Relaxed MART I) Let x0 be any positive vector, and
i = k(mod I) + 1. Having found xk for positive integer k, define xk+1 by

xk+1
j = xkj

(bi
(Axk)i

)τim
−1
i
Aij

, (15.9)

where τi is in the interval (0, 1).

As with ART, finding the best relaxation parameters is a bit of an art.

186 CHAPTER 15. THE MULTIPLICATIVE ART (MART)

15.3 ART and MART as Sequential Projec-
tion Methods

We know from our discussion of the ART that the iterative ART step can
be viewed as the orthogonal projection of the current vector, xk, onto Hi,
the hyperplane associated with the i-th equation. Can we view MART in a
similar way? Yes, but we need to consider a different measure of closeness
between nonnegative vectors.

15.3.1 Cross-Entropy or the Kullback-Leibler Distance

For positive numbers u and v, the Kullback-Leibler distance [108] from u
to v is

KL(u, v) = u log
u

v
+ v − u. (15.10)

We also define KL(0, 0) = 0, KL(0, v) = v and KL(u, 0) = +∞. The KL
distance is extended to nonnegative vectors component-wise, so that for
nonnegative vectors x and z we have

KL(x, z) =
J∑
j=1

KL(xj , zj). (15.11)

We turn now to the various uses of the KL distance in the discussion of the
MART.

15.3.2 Convergence of MART

In the consistent case, by which we mean that Ax = b has nonnegative
solutions, we have the following convergence theorem for MART [43]. We
assume that sj =

∑I
i=1Aij is positive, for all j.

Theorem 15.1 In the consistent case, the general MART algorithm con-
verges to the unique non-negative solution of Ax = b for which the weighted
cross-entropy

J∑
j=1

γ−1
j KL(xj , x0

j)

is minimized. The MART I algorithm converges to the unique nonnegative
solution of Ax = b for which the cross-entropy KL(x, x0) is minimized.
The MART II algorithm converges to the unique non-negative solution of
Ax = b for which the weighted cross-entropy

J∑
j=1

sjKL(xj , x0
j)

15.3. ART AND MART AS SEQUENTIAL PROJECTION METHODS187

is minimized.

As with ART, the speed of convergence is greatly affected by the order-
ing of the equations, converging most slowly when consecutive equations
correspond to nearly parallel hyperplanes.

Open Question: When there are no nonnegative solutions, MART does
not converge to a single vector, but, like ART, is always observed to produce
a limit cycle of vectors. Unlike ART, there is no proof of the existence of
a limit cycle for MART.

15.3.3 Projecting with the KL Distance

Given the vector xk, we find the vector z in Hi for which the KL distance
f(z) = KL(xk, z) is minimized; this z will be the KL projection of xk onto
Hi. Using a Lagrange multiplier, we find that

0 =
∂f

∂zj
(z)− λiAij , (15.12)

for some constant λi, so that

0 = −
xkj
zj

+ 1− λiAij , (15.13)

for each j. Multiplying by zj , we get

zj − xkj = zjAijλi. (15.14)

For the special case in which the entries of Aij are zero or one, we can
solve Equation (15.14) for zj . We have

zj − xkj = zjλi, (15.15)

for each j ∈ Li, and zj = xkj , otherwise. Multiply both sides by Aij and
sum on j to get

bi(1− λi) = (Axk)i. (15.16)

Therefore,

zj = xkj
bi

(Axk)i
, (15.17)

which is clearly xk+1
j . So, at least in the special case we have been dis-

cussing, MART consists of projecting, in the KL sense, onto each of the
hyperplanes in succession.

188 CHAPTER 15. THE MULTIPLICATIVE ART (MART)

15.3.4 Weighted KL Projections

For the more general case in which the entries Aij are arbitrary nonnegative
numbers, we cannot directly solve for zj in Equation (15.14). There is an
alternative, though. Instead of minimizing KL(x, z), subject to (Az)i = bi,
we minimize the weighted KL distance

J∑
j=1

AijKL(xj , zj), (15.18)

subject to the same constraint on z. The optimal z is Qeix, which we
shall denote here by Qix, the weighted KL projection of x onto the ith
hyperplane. Again using a Lagrange multiplier approach, we find that

0 = −Aij(
xj
zj

+ 1)−Aijλi, (15.19)

for some constant λi. Multiplying by zj , we have

Aijzj −Aijxj = Aijzjλi. (15.20)

Summing over the index j, we get

bi − (Ax)i = biλi, (15.21)

from which it follows that

1− λi = (Ax)i/bi. (15.22)

Substituting for λi in equation (15.20), we obtain

zj = (Qix)j = xj
bi

(Ax)i
, (15.23)

for all j for which Aij 6= 0.
Note that the MART step does not define xk+1 to be this weighted KL

projection of xk onto the hyperplane Hi; that is,

xk+1
j 6= (Qixk)j , (15.24)

except for those j for which Aij

mi
= 1. What is true is that the MART step

involves relaxation. Writing

xk+1
j = (xkj)

1−m−1
i
Aij

(
xkj

bi
(Axk)i

)m−1
i
Aij

, (15.25)

we see that xk+1
j is a weighted geometric mean of xkj and (Qixk)j .

15.4. PROOF OF CONVERGENCE FOR MART I 189

15.4 Proof of Convergence for MART I

We assume throughout this proof that x̂ is a nonnegative solution ofAx = b.
For i = 1, 2, ..., I, let

Gi(x, z) = KL(x, z) +m−1
i KL((Ax)i, bi)−m−1

i KL((Ax)i, (Az)i).
(15.26)

Lemma 15.1 For all i, we have Gi(x, z) ≥ 0 for all x and z.

Proof: Use Equation (17.35).
Then Gi(x, z), viewed as a function of z, is minimized by z = x, as we

see from the equation

Gi(x, z) = Gi(x, x) +KL(x, z)−m−1
i KL((Ax)i, (Az)i). (15.27)

Viewed as a function of x, Gi(x, z) is minimized by x = z′, where

z′j = zj

(bi
(Az)i

)m−1
i
Aij

, (15.28)

as we see from the equation

Gi(x, z) = Gi(z′, z) +KL(x, z′). (15.29)

We note that xk+1 = (xk)′.
Now we calculate Gi(x̂, xk) in two ways, using, first, the definition, and,

second, Equation (15.29). From the definition, we have

Gi(x̂, xk) = KL(x̂, xk)−m−1
i KL(bi, (Axk)i). (15.30)

From Equation (15.29), we have

Gi(x̂, xk) = Gi(xk+1, xk) +KL(x̂, xk+1). (15.31)

Therefore,

KL(x̂, xk)−KL(x̂, xk+1) = Gi(xk+1, xk) +m−1
i KL(bi, (Axk)i). (15.32)

From Equation (15.32) we can conclude several things:

• 1) the sequence {KL(x̂, xk)} is decreasing;

• 2) the sequence {xk} is bounded, and therefore has a cluster point,
x∗; and

• 3) the sequences {Gi(xk+1, xk)} and {m−1
i KL(bi, (Axk)i)} converge

decreasingly to zero, and so bi = (Ax∗)i for all i.

190 CHAPTER 15. THE MULTIPLICATIVE ART (MART)

Since b = Ax∗, we can use x∗ in place of the arbitrary solution x̂ to
conclude that the sequence {KL(x∗, xk)} is decreasing. But, a subsequence
converges to zero, so the entire sequence must converge to zero, and there-
fore {xk} converges to x∗. Finally, since the right side of Equation (15.32) is
independent of which solution x̂ we have used, so is the left side. Summing
over k on the left side, we find that

KL(x̂, x0)−KL(x̂, x∗) (15.33)

is independent of which x̂ we use. We can conclude then that minimizing
KL(x̂, x0) over all solutions x̂ has the same answer as minimizingKL(x̂, x∗)
over all such x̂; but the solution to the latter problem is obviously x̂ = x∗.
This concludes the proof.

The proof of convergence of MART II is similar, and we omit it. The
interested reader may consult [43].

15.5 Comments on the Rate of Convergence
of MART

We can see from Equation (15.32),

KL(x̂, xk)−KL(x̂, xk+1) = Gi(xk+1, xk) +m−1
i KL(bi, (Axk)i), (15.34)

that the decrease in distance to a solution that occurs with each step of
MART depends on m−1

i and on KL(bi, (Axk)i); the latter measures the
extent to which the current vector xk solves the current equation. We see
then that it is reasonable to select mi as we have done, namely, as the
smallest positive number ci for which Aij/ci ≤ 1 for all j. We also see that
it is helpful if the equations are ordered in such a way that KL(bi, (Axk)i)
is fairly large, for each k. It is not usually necessary to determine an
optimal ordering of the equations; the important thing is to avoid ordering
the equations so that successive hyperplanes have nearly parallel normal
vectors.

15.6 Exercises

15.1 Prove Lemma 15.1. Hint: Use Lemma 17.5.

Chapter 16

Rescaled Block-Iterative
(RBI) Methods

Image reconstruction problems in tomography are often formulated as sta-
tistical likelihood maximization problems in which the pixel values of the
desired image play the role of parameters. Iterative algorithms based on
cross-entropy minimization, such as the expectation maximization maxi-
mum likelihood (EMML) method and the simultaneous multiplicative alge-
braic reconstruction technique (SMART) can be used to solve such prob-
lems. Because the EMML and SMART are slow to converge for large
amounts of data typical in imaging problems acceleration of the algorithms
using blocks of data or ordered subsets has become popular. There are
a number of different ways to formulate these block-iterative versions of
EMML and SMART, involving the choice of certain normalization and
regularization parameters. These methods are not faster merely because
they are block-iterative; the correct choice of the parameters is crucial [43].

16.1 Overview

The algorithms we discuss here have interesting histories, which we sketch
in this section.

16.1.1 The SMART and its variants

Like the ART, the MART has a simultaneous version, called the SMART.
Like MART, SMART applies only to nonnegative systems of equations.
Unlike MART, SMART is a simultaneous algorithm that uses all equations
in each step of the iteration. The SMART was discovered in 1972, indepen-
dently, by Darroch and Ratcliff, working in statistics, [68] and by Schmidlin

191

192CHAPTER 16. RESCALED BLOCK-ITERATIVE (RBI) METHODS

[135] in medical imaging; neither work makes reference to MART. Darroch
and Ratcliff do consider block-iterative versions of their algorithm, in which
only some of the equations are used at each step, but their convergence
proof involves unnecessary restrictions on the system matrix. Censor and
Segman [62] seem to be the first to present the SMART and its block-
iterative variants explicitly as generalizations of MART.

16.1.2 The EMML and its variants

The expectation maximization maximum likelihood (EMML) method turns
out to be closely related to the SMART, although it has quite a different
history. The EMML algorithm we discuss here is actually a special case
of a more general approach to likelihood maximization, usually called the
EM algorithm [69]; the book by McLachnan and Krishnan [120] is a good
source for the history of this more general algorithm.

It was noticed by Rockmore and Macovski [134] that certain image re-
construction problems posed by medical tomography could be formulated
as statistical parameter estimation problems. Following up on this idea,
Shepp and Vardi [136] suggested the use of the EM algorithm for solv-
ing the reconstruction problem in emission tomography. In [111], Lange
and Carson presented an EM-type iterative method for transmission to-
mographic image reconstruction, and pointed out a gap in the convergence
proof given in [136] for the emission case. In [148], Vardi, Shepp and Kauf-
man repaired the earlier proof, relying on techniques due to Csiszár and
Tusnády [67]. In [112] Lange, Bahn and Little improved the transmission
and emission algorithms, by including regularization to reduce the effects
of noise. The question of uniqueness of the solution in the inconsistent case
was resolved in [31].

The MART and SMART were initially designed to apply to consistent
systems of equations. Darroch and Ratcliff did not consider what happens
in the inconsistent case, in which the system of equations has no non-
negative solutions; this issue was resolved in [31], where it was shown that
the SMART converges to a non-negative minimizer of the Kullback-Leibler
distance KL(Ax, b). The EMML, as a statistical parameter estimation
technique, was not originally thought to be connected to any system of lin-
ear equations. In [31], it was shown that the EMML leads to a non-negative
minimizer of the Kullback-Leibler distance KL(b, Ax), thereby exhibiting
a close connection between the SMART and the EMML methods. Conse-
quently, when the non-negative system of linear equations Ax = b has a
non-negative solution, the EMML converges to such a solution.

16.2. THE SMART AND THE EMML METHOD 193

16.1.3 Block-iterative versions of SMART and EMML

As we have seen, Darroch and Ratcliff included what are now called block-
iterative versions of SMART in their original paper [68]. Censor and Seg-
man [62] viewed SMART and its block-iterative versions as natural exten-
sion of the MART. Consequently, block-iterative variants of SMART have
been around for some time. The story with the EMML is quite different.

The paper of Holte, Schmidlin, et al. [100] compares the performance of
Schmidlin’s method of [135] with the EMML algorithm. Almost as an aside,
they notice the accelerating effect of what they call projection interleaving,
that is, the use of blocks. This paper contains no explicit formulas, however,
and presents no theory, so one can only make educated guesses as to the
precise iterative methods employed. Somewhat later, Hudson, Hutton and
Larkin [101, 102] observed that the EMML can be significantly accelerated
if, at each step, one employs only some of the data. They referred to this
approach as the ordered subset EM method (OSEM). They gave a proof
of convergence of the OSEM, for the consistent case. The proof relied on
a fairly restrictive relationship between the matrix A and the choice of
blocks, called subset balance. In [34] a revised version of the OSEM, called
the rescaled block-iterative EMML (RBI-EMML), was shown to converge,
in the consistent case, regardless of the choice of blocks.

16.1.4 Basic Assumptions

Methods based on cross-entropy, such as the MART, SMART, EMML and
all block-iterative versions of these algorithms apply to nonnegative sys-
tems that we denote by Ax = b, where b is a vector of positive entries, A is
a matrix with entries Aij ≥ 0 such that for each j the sum sj =

∑I
i=1Aij

is positive and we seek a solution x with nonnegative entries. If no non-
negative x satisfies b = Ax we say the system is inconsistent.

Simultaneous iterative algorithms employ all of the equations at each
step of the iteration; block-iterative methods do not. For the latter methods
we assume that the index set {i = 1, ..., I} is the (not necessarily disjoint)
union of the N sets or blocks Bn, n = 1, ..., N . We shall require that
snj =

∑
i∈Bn

Aij > 0 for each n and each j. Block-iterative methods like
ART and MART for which each block consists of precisely one element are
called row-action or sequential methods. We begin our discussion with the
SMART and the EMML method.

16.2 The SMART and the EMML method

Both the SMART and the EMML method provide a solution of b = Ax
when such exist and (distinct) approximate solutions in the inconsistent
case.

194CHAPTER 16. RESCALED BLOCK-ITERATIVE (RBI) METHODS

16.2.1 The SMART Algorithm

The SMART algorithm is the following:

Algorithm 16.1 (SMART) Let x0 be an arbitrary positive vector. For
k = 0, 1, ... let

xk+1
j = xkj exp

(
s−1
j

I∑
i=1

Aij log
bi

(Axk)i

)
. (16.1)

The exponential and logarithm in the SMART iterative step are computa-
tionally expensive. The main results concerning the SMART are given by
the following theorem.

Theorem 16.1 In the consistent case the SMART converges to the unique
nonnegative solution of b = Ax for which the distance

∑J
j=1 sjKL(xj , x0

j)
is minimized. In the inconsistent case it converges to the unique nonnega-
tive minimizer of the distance KL(Ax, y) for which

∑J
j=1 sjKL(xj , x0

j) is
minimized; if A and every matrix derived from A by deleting columns has
full rank then there is a unique nonnegative minimizer of KL(Ax, y) and
at most I − 1 of its entries are nonzero.

16.2.2 The EMML Algorithm

The EMML method is similar to the SMART, but somewhat less costly to
compute.

Algorithm 16.2 (EMML) Let x0 be an arbitrary positive vector. For
k = 0, 1, ... let

xk+1
j = xkj s

−1
j

I∑
i=1

Aij
bi

(Axk)i
. (16.2)

For the EMML method the main results are the following.

Theorem 16.2 In the consistent case the EMML algorithm converges to
nonnegative solution of b = Ax. In the inconsistent case it converges to a
nonnegative minimizer of the distance KL(y,Ax); if A and every matrix
derived from A by deleting columns has full rank then there is a unique
nonnegative minimizer of KL(y,Ax) and at most I − 1 of its entries are
nonzero.

In the consistent case there may be multiple nonnegative solutions and the
one obtained by the EMML algorithm will depend on the starting vector
x0; how it depends on x0 is an open question.

These theorems are special cases of more general results on block-
iterative methods that we shall consider later in this chapter.

16.2. THE SMART AND THE EMML METHOD 195

16.2.3 Likelihood Maximization

Both the EMML and SMART are related to likelihood maximization. Min-
imizing the function KL(y,Ax) is equivalent to maximizing the likelihood
when the bi are taken to be measurements of independent Poisson random
variables having means (Ax)i. The entries of x are the parameters to be
determined. This situation arises in emission tomography. So the EMML
is a likelihood maximizer, as its name suggests.

The connection between SMART and likelihood maximization is a bit
more convoluted. Suppose that sj = 1 for each j. The solution of b = Ax
for which KL(x, x0) is minimized necessarily has the form

xj = x0
j exp

(I∑
i=1

Aijλi

)
(16.3)

for some vector λ with entries λi. This log linear form also arises in trans-
mission tomography, where it is natural to assume that sj = 1 for each j
and λi ≤ 0 for each i. We have the following lemma that helps to connect
the SMART algorithm with the transmission tomography problem:

Lemma 16.1 Minimizing KL(d, x) over x as in Equation (16.3) is equiv-
alent to minimizing KL(x, x0), subject to Ax = Ad.

The solution to the latter problem can be obtained using the SMART.
With x+ =

∑J
j=1 xj the vector A with entries pj = xj/x+ is a probabil-

ity vector. Let d = (d1, ..., dJ)T be a vector whose entries are nonnegative
integers, with K =

∑J
j=1 dj . Suppose that, for each j, pj is the probability

of index j and dj is the number of times index j was chosen in K trials.
The likelihood function of the parameters λi is

L(λ) =
J∏
j=1

p
dj

j (16.4)

so that the log-likelihood function is

LL(λ) =
J∑
j=1

dj log pj . (16.5)

Since A is a probability vector, maximizing L(λ) is equivalent to minimizing
KL(d, p) with respect to λ, which, according to the lemma above, can
be solved using SMART. In fact, since all of the block-iterative versions
of SMART have the same limit whenever they have the same starting
vector, any of these methods can be used to solve this maximum likelihood
problem. In the case of transmission tomography the λi must be non-
positive, so if SMART is to be used, some modification is needed to obtain
such a solution.

196CHAPTER 16. RESCALED BLOCK-ITERATIVE (RBI) METHODS

Those who have used the SMART or the EMML on sizable problems
have certainly noticed that they are both slow to converge. An important
issue, therefore, is how to accelerate convergence. The partial gradient
approach has been helpful in this regard.

16.3 A Partial Gradient Approach

Convergence of the EMML and SMART algorithms, for the consistent case,
can be accelerated using the partial gradient approach. The EMML and
SMART algorithms both have as their goal the minimization of a function
f(x) that has the form

f(x) =
I∑
i=1

fi(x), (16.6)

where each fi(x) is a non-negative function of the variable x.

16.3.1 The EMML Algorithm

The EMML algorithm minimizes the function f(x) = KL(b, Ax) over non-
negative vectors x. The gradient of f(x) at x = xk has the entries

∂f

∂xj
(xk) =

I∑
i=1

Aij

(
1− bi

(Axk)i

)
= sj −

I∑
i=1

Aij
bi

(Axk)i
, (16.7)

with

sj =
I∑
i=1

Aij > 0.

We can therefore rewrite the iterative step of the EMML algorithm as

xk+1
j = xkj − s−1

j xkj∇f(xk)j . (16.8)

We see that the iterative step depends not only on the negative of the
gradient at xk, but on the values xkj themselves. The closer xkj is to zero,
the smaller the step, in order to keep the iterates positive.

For f(x) = KL(b, Ax), the functions fi(x) are

fi(x) = KL(bi, (Ax)i).

Therefore, a block-iterative version of the EMML iteration, called the BI-
EMML algorithm [34], has the iterative step

xk+1
j = xkj − s−1

j xkj∇nf(xk)j , (16.9)

16.3. A PARTIAL GRADIENT APPROACH 197

which can be written as

xk+1
j = (1− s−1

j snj)xkj + xkj s
−1
j

∑
i∈Bn

Aij
bi

(Axk)i
, (16.10)

using
snj =

∑
i∈Bn

Aij .

In the consistent case, in which there are non-negative x with Ax = b,
the BI-EMML algorithm converges to such an x, for any positive starting
vector, and any choice of blocks. It is not known to which non-negative
solution it converges, however, nor how the limit depends on x0 and the
choice of blocks. Moreover, the BI-EMML algorithm does not necessarily
converge faster than the original EMML algorithm.

Note that the iterative step given in Equation (16.10) involves relax-
ation, in which xk+1 includes some fraction of the current xk. It was
pointed out in [34] that this fraction can be unnecessarily large, and that
the BI-EMML algorithm can be accelerated by rescaling, that is, by using
the iterative step

xk+1
j = (1−m−1

n s−1
j snj)xkj + xkjm

−1
n s−1

j

∑
i∈Bn

Aij
bi

(Axk)i
, (16.11)

with
mn = max

j
{s−1
j snj}.

This iterative algorithm is the rescaled block-iterative EMML (RBI-EMML).
Simulation studies have shown that this rescaling can accelerate conver-
gence by roughly a factor of N , the number of blocks used.

When N = I and the blocks Bn contain only a single member, denoted
n, the RBI-EMML has the iterative step

xk+1
j = (1−m−1

n s−1
j Anj)xkj + xkjm

−1
n s−1

j Anj
bn

(Axk)n
. (16.12)

This is the EM-MART algorithm [34], analogous to the MART, but simpler
to implement.

16.3.2 The SMART Algorithm

The SMART algorithm minimizes the function f(x) = KL(Ax, b) over
non-negative vectors x. We can therefore describe the iterative step of the
SMART algorithm this way:

log xk+1
j = log xkj − s−1

j ∇f(xk)j , (16.13)

198CHAPTER 16. RESCALED BLOCK-ITERATIVE (RBI) METHODS

so that

xk+1
j = xkj exp

(
− s−1

j ∇f(xk)j
)
. (16.14)

For f(x) = KL(Ax, b), the functions fi(x) are

fi(x) = KL((Ax)i, bi).

Therefore, a block-iterative version of the SMART iteration, called the
BI-SMART algorithm [68, 62, 34], has the iterative step

xk+1
j = xkj exp

(
− s−1

j ∇nf(xk)j
)
, (16.15)

which can be written as

xk+1
j = xkj exp

(
s−1
j

∑
i∈Bn

Aij log
bi

(Axk)i

)
. (16.16)

In the consistent case, in which there are non-negative x with Ax = b,
the BI-SMART algorithm converges to such an x, for any positive start-
ing vector, and any choice of blocks. Furthermore, the solution to which
it converges is the one for which the cross-entropy

∑J
j=1 sjKL(xj , x0

j) is
minimized, for all choice of blocks. As with the BI-EMML, however, the
BI-SMART does not necessarily converge faster than the original SMART
algorithm.

The iterative step given in Equation (16.16) can be written as

log xk+1
j = log xkj +

(
s−1
j

∑
i∈Bn

Aij log
bi

(Axk)i

)
, (16.17)

so that

log xk+1
j = (1− s−1

j snj) log xkj +
(
s−1
j

∑
i∈Bn

Aij log
[
xkj

bi
(Axk)i

])
. (16.18)

From Equation (16.18) we see that the BI-SMART involves relaxation, in
which log xk+1

j includes some fraction of the current log xkj . As with the
BI-EMML, this fraction can be unnecessarily large, and the BI-SMART
algorithm can be accelerated by rescaling, that is, by using the iterative
step

log xk+1
j = (1−m−1

n s−1
j snj) log xkj +

(
m−1
n s−1

j

∑
i∈Bn

Aij log
[
xkj

bi
(Axk)i

])
.

(16.19)

16.4. EXERCISES 199

This iterative algorithm is the rescaled block-iterative SMART (RBI-SMART).
Simulation studies have shown that, in this case also, this rescaling can ac-
celerate convergence by roughly a factor of N .

When N = I and each block Bn contains only a single member, denoted
n, the RBI-SMART has the iterative step

xk+1
j = xkj exp

(
m−1
n s−1

j Anj log
bn

(Axk)n

)
, (16.20)

so that

xk+1
j = xkj

(bn
(Axk)n

)m−1
n s−1

j
Anj

. (16.21)

This is the (rescaled) MART algorithm.

16.4 Exercises

16.1 Apply the gradient form of the Karush-Kuhn-Tucker Theorem to the
two convex programming problems solved by the SMART and EMML algo-
rithms, respectively.

16.2 Use the previous exercise to show that, in both cases, if there does not
exist a non-negative solution of Ax = b, and A and every matrix obtained
from A by deleting columns has full rank, then the solution vector x∗ has
at most I − 1 non-zero entries.

200CHAPTER 16. RESCALED BLOCK-ITERATIVE (RBI) METHODS

Chapter 17

Sequential Unconstrained
Minimization Algorithms

In this chapter we consider an approach to optimization in which the orig-
inal problem is replaced by a series of simpler problems. This approach
can be particularly effective for constrained optimization. Suppose, for ex-
ample, that we want to minimize f(x), subject to the constraint that x
lie within a set C. At the kth step of the iteration we minimize the func-
tion Gk(x) = f(x) + gk(x), with no additional restrictions on x, to get the
vector xk, where the functions gk(x) are related to the set C in some way.
In practice, minimizing Gk(x) may require iteration, but we will not deal
with that issue here. In the best case, the sequence {xk} will converge to
the solution to the original problem.

17.1 Introduction

In many inverse problems, we have measured data pertaining to the object
x, which may be, for example, a vectorized image, as well as prior infor-
mation about x, such as that its entries are nonnegative. Tomographic
imaging is a good example. We want to find an estimate of x that is (more
or less) consistent with the data, as well as conforming to the prior con-
straints. The measured data and prior information are usually not sufficient
to determine a unique x and some form of optimization is performed. For
example, we may seek the image x for which the entropy is maximized, or
a minimum-norm least-squares solution.

There are many well-known methods for minimizing a function f :
RJ → R; we can use the Newton-Raphson algorithm or any of its sev-
eral approximations, or nonlinear conjugate-gradient algorithms, such as
the Fletcher-Reeves, Polak-Ribiere, or Hestenes-Stiefel methods. When

201

202CHAPTER 17. SEQUENTIAL UNCONSTRAINED MINIMIZATION ALGORITHMS

the problem is to minimize the function f(x), subject to constraints on the
variable x, the problem becomes much more difficult. For such constrained
minimization, we can employ sequential unconstrained minimization algo-
rithms [85].

We assume that f : RJ → (−∞,+∞] is a continuous function. Our ob-
jective is to minimize f(x) over x in some given closed nonempty set C. At
the kth step of a sequential unconstrained minimization algorithm we min-
imize a function Gk(x) to get the vector xk. We shall assume throughout
that a global minimizer xk exists for each k. The existence of these min-
imizers can be established, once additional conditions, such as convexity,
are placed on the functions Gk(x); see, for example, Fiacco and McCormick
[85], p.95. We shall consider briefly the issue of computing the xk.

In the best case, the sequence {xk} converges to a constrained minimizer
of the original objective function f(x). Obviously, the functionsGk(x) must
involve both the function f(x) and the set C. Those methods for which
each xk is feasible, that is, each xk is in C, are called interior-point meth-
ods, while those for which only the limit of the sequence is in C are called
exterior-point methods. Barrier-function algorithms are typically interior-
point methods, while penalty-function algorithms are exterior-point meth-
ods. The purpose of this chapter is to present a fairly broad class of sequen-
tial unconstrained minimization algorithms, which we call SUMMA [46].
The SUMMA include both barrier- and penalty-function algorithms, as well
as proximity-function methods of Teboulle and Censor and Zenios, and the
simultaneous multiplicative algebraic reconstruction technique (SMART).

The sequential unconstrained minimization algorithms (SUMMA) we
present here use functions of the form

Gk(x) = f(x) + gk(x), (17.1)

with the auxiliary functions gk(x) chosen so that

0 ≤ gk+1(x) ≤ Gk(x)−Gk(xk), (17.2)

for k = 1, 2, We assume throughout that there exists x̂ minimizing the
function f(x) over x in C. Our main results are that the sequence {f(xk)}
is monotonically decreasing to f(x̂), and, subject to certain conditions on
the function f(x), the sequence {xk} converges to a feasible x∗ with f(x∗) =
f(x̂).

We begin with a brief review of several types of sequential unconstrained
minimization methods, including those mentioned previously. Then we
state and prove the convergence results for the SUMMA. Finally, we show
that each of these methods reviewed previously is a particular case of the
SUMMA.

17.2. BARRIER-FUNCTION METHODS (I) 203

17.2 Barrier-Function Methods (I)

Let b(x) : RJ → (−∞,+∞] be continuous, with effective domain the set

D = {x| b(x) < +∞}.

The goal is to minimize the objective function f(x), over x in the closed
set C = D, the closure of D. In the barrier-function method, we minimize

f(x) +
1
k
b(x) (17.3)

over x in D to get xk. Each xk lies within D, so the method is an interior-
point algorithm. If the sequence {xk} converges, the limit vector x∗ will
be in C and f(x∗) = f(x̂).

Barrier functions typically have the property that b(x) → +∞ as x
approaches the boundary of D, so not only is xk prevented from leaving
D, it is discouraged from approaching the boundary.

17.2.1 Examples of Barrier Functions

Consider the convex programming (CP) problem of minimizing the convex
function f : RJ → R, subject to gi(x) ≤ 0, where each gi : RJ → R is
convex, for i = 1, ..., I. Let D = {x|gi(x) < 0, i = 1, ..., I}; then D is open.
We consider two barrier functions appropriate for this problem.

The Logarithmic Barrier Function

A suitable barrier function is the logarithmic barrier function

b(x) = ε
(
−

I∑
i=1

log(−gi(x))
)
, (17.4)

for some ε > 0. The function − log(−gi(x)) is defined only for those x in
D, and is positive for gi(x) > −1. If gi(x) is near zero, then so is −gi(x)
and b(x) will be large.

The Inverse Barrier Function

Another suitable barrier function is the inverse barrier function

b(x) = ε
I∑
i=1

−1
gi(x)

, (17.5)

defined for those x in D.

204CHAPTER 17. SEQUENTIAL UNCONSTRAINED MINIMIZATION ALGORITHMS

In both examples, if ε is too large, the minimization pays too much
attention to b(x), and not enough to f(x), forcing the gi(x) to be large
negative numbers. For that reason, we take ε small. By letting ε → 0,
we obtain an iterative method for solving the constrained minimization
problem.

An Illustration

We minimize the function f(u, v) = u2 + v2, subject to the constraint that
u+ v ≥ 1. The constraint is then written g(u, v) = 1− (u+ v) ≤ 0. We use
the logarithmic barrier. The vector xk = (uk, vk) minimizing the function

Gk(x) = u2 + v2 − 1
k

log(u+ v − 1)

has entries

uk = vk =
1
4

+
1
4

√
1 +

4
k
.

Notice that uk + vk > 1, so each xk satisfies the constraint. As k → +∞,
xk converges to (1

2 ,
1
2), which is the solution to the original problem.

17.3 Penalty-Function Methods (I)

Instead of minimizing a function f(x) over x in RJ , we sometimes want
to minimize a penalized version, f(x) + p(x). As with barrier-function
methods, the new function f(x)+ p(x) may be the function we really want
to minimize, and we still need to find a method for doing this. In other
cases, it is f(x) that we wish to minimize, and the inclusion of the term
p(x) occurs only in the iterative steps of the algorithm. As we shall see,
under conditions to be specified later, the penalty-function method can
be used to minimize a continuous function f(x) over the nonempty set of
minimizers of another continuous function p(x).

17.3.1 Imposing Constraints

When we add a barrier function to f(x) we restrict the domain. When
the barrier function is used in a sequential unconstrained minimization
algorithm, the vector xk that minimizes the function f(x) + 1

k b(x) lies in
the effective domain D of b(x), and we prove that, under certain conditions,
the sequence {xk} converges to a minimizer of the function f(x) over the
closure of D. The constraint of lying within the set D is satisfied at every
step of the algorithm; for that reason such algorithms are called interior-
point methods. Constraints may also be imposed using a penalty function.
In this case, violations of the constraints are discouraged, but not forbidden.

17.3. PENALTY-FUNCTION METHODS (I) 205

When a penalty function is used in a sequential unconstrained minimization
algorithm, the xk need not satisfy the constraints; only the limit vector need
be feasible.

17.3.2 Examples of Penalty Functions

Consider the CP problem. We wish to minimize the convex function f(x)
over all x for which the convex functions gi(x) ≤ 0, for i = 1, ..., I.

The Absolute-Value Penalty Function

We let g+
i (x) = max{gi(x), 0}, and

p(x) =
I∑
i=1

g+
i (x). (17.6)

This is the Absolute-Value penalty function; it penalizes violations of the
constraints gi(x) ≤ 0, but does not forbid such violations. Then, for k =
1, 2, ..., we minimize

f(x) + kp(x), (17.7)

to get xk. As k → +∞, the penalty function becomes more heavily
weighted, so that, in the limit, the constraints gi(x) ≤ 0 should hold. Be-
cause only the limit vector satisfies the constraints, and the xk are allowed
to violate them, such a method is called an exterior-point method.

The Courant-Beltrami Penalty Function

The Courant-Beltrami penalty-function method is similar, but uses

p(x) =
I∑
i=1

[g+
i (x)]2. (17.8)

The Quadratic-Loss Penalty Function

Penalty methods can also be used with equality constraints. Consider the
problem of minimizing the convex function f(x), subject to the constraints
gi(x) = 0, i = 1, ..., I. The quadratic-loss penalty function is

p(x) =
1
2

I∑
i=1

(gi(x))2. (17.9)

The inclusion of a penalty term can serve purposes other than to impose
constraints on the location of the limit vector. In image processing, it is

206CHAPTER 17. SEQUENTIAL UNCONSTRAINED MINIMIZATION ALGORITHMS

often desirable to obtain a reconstructed image that is locally smooth, but
with well defined edges. Penalty functions that favor such images can then
be used in the iterative reconstruction [89]. We survey several instances in
which we would want to use a penalized objective function.

Regularized Least-Squares

Suppose we want to solve the system of equations Ax = b. The prob-
lem may have no exact solution, precisely one solution, or there may be
infinitely many solutions. If we minimize the function

f(x) =
1
2
‖Ax− b‖2

2,

we get a least-squares solution, generally, and an exact solution, whenever
exact solutions exist. When the matrix A is ill-conditioned, small changes
in the vector b can lead to large changes in the solution. When the vector
b comes from measured data, the entries of b may include measurement
errors, so that an exact solution of Ax = b may be undesirable, even
when such exact solutions exist; exact solutions may correspond to x with
unacceptably large norm, for example. In such cases, we may, instead, wish
to minimize a function such as

1
2
‖Ax− b‖2

2 +
ε

2
‖x− z‖2

2, (17.10)

for some vector z. If z = 0, the minimizing vector xε is then a norm-
constrained least-squares solution. We then say that the least-squares prob-
lem has been regularized. In the limit, as ε→ 0, these regularized solutions
xε converge to the least-squares solution closest to z.

Suppose the system Ax = b has infinitely many exact solutions. Our
problem is to select one. Let us select z that incorporates features of the
desired solution, to the extent that we know them a priori. Then, as ε→ 0,
the vectors xε converge to the exact solution closest to z. For example,
taking z = 0 leads to the minimum-norm solution.

Minimizing Cross-Entropy

In image processing, it is common to encounter systems Px = y in which all
the terms are non-negative. In such cases, it may be desirable to solve the
system Px = y, approximately, perhaps, by minimizing the cross-entropy
or Kullback-Leibler distance

KL(y, Px) =
I∑
i=1

(
yi log

yi
(Px)i

+ (Px)i − yi

)
, (17.11)

over vectors x ≥ 0. When the vector y is noisy, the resulting solution,
viewed as an image, can be unacceptable. It is wise, therefore, to add a

17.3. PENALTY-FUNCTION METHODS (I) 207

penalty term, such as p(x) = εKL(z, x), where z > 0 is a prior estimate of
the desired x [111, 148, 112, 31].

A similar problem involves minimizing the function KL(Px, y). Once
again, noisy results can be avoided by including a penalty term, such as
p(x) = εKL(x, z) [31].

The Lagrangian in Convex Programming

When there is a sensitivity vector λ for the CP problem, minimizing f(x)
is equivalent to minimizing the Lagrangian,

f(x) +
I∑
i=1

λigi(x) = f(x) + p(x); (17.12)

in this case, the addition of the second term, p(x), serves to incorporate
the constraints gi(x) ≤ 0 in the function to be minimized, turning a con-
strained minimization problem into an unconstrained one. The problem of
minimizing the Lagrangian still remains, though. We may have to solve
that problem using an iterative algorithm.

Moreau’s Proximity-Function Method

The Moreau envelope of the function f is the function

mf (z) = inf
x

{
f(x) +

1
2
‖x− z‖2

2

}
, (17.13)

which is also the infimal convolution of the functions f(x) and 1
2‖x‖

2
2. It

can be shown that the infimum is uniquely attained at the point denoted
x = proxfz (see [133]). In similar fashion, we can define mf∗z and proxf∗z,
where f∗(z) denotes the function conjugate to f .

Proposition 17.1 The infimum of mf (z), over all z, is the same as the
infimum of f(x), over all x.

Proof: We have

inf
z
mf (z) = inf

z
inf
x
{f(x) +

1
2
‖x− z|22}

= inf
x

inf
z
{f(x) +

1
2
‖x− z|22} = inf

x
{f(x) +

1
2

inf
z
‖x− z‖2

2} = inf
x
f(x).

The minimizers of mf (z) and f(x) are the same, as well. Therefore,
one way to use Moreau’s method is to replace the original problem of
minimizing the possibly non-smooth function f(x) with the problem of

208CHAPTER 17. SEQUENTIAL UNCONSTRAINED MINIMIZATION ALGORITHMS

minimizing the smooth functionmf (z). Another way is to convert Moreau’s
method into a sequential minimization algorithm, replacing z with xk−1

and minimizing with respect to x to get xk. As we shall see, this leads to
the proximal minimization algorithm to be discussed below.

17.3.3 The Roles Penalty Functions Play

From the examples just surveyed, we can distinguish several distinct roles
that penalty functions can play.

Impose Constraints

The first role is to penalize violations of constraints, as part of sequential
minimization, or even to turn a constrained minimization into an equiva-
lent unconstrained one: the Absolute-Value and Courant-Beltrami penalty
functions penalize violations of the constraints gi(x) ≤ 0, while Quadratic-
Loss penalty function penalizes violations of the constraints gi(x) = 0. The
augmented objective functions f(x) + kp(x) now become part of a sequen-
tial unconstrained minimization method. It is sometimes possible for f(x)
and f(x) + p(x) to have the same minimizers, or for constrained minimiz-
ers of f(x) to be the same as unconstrained minimizers of f(x) + p(x), as
happens with the Lagrangian in the CP problem.

Regularization

The second role is regularization: in the least-squares problem, the main
purpose for adding the norm-squared penalty function in Equation (17.10)
is to reduce sensitivity to noise in the entries of the vector b. Also, regular-
ization will usually turn a problem with multiple solutions into one with a
unique solution.

Incorporate Prior Information

The third role is to incorporate prior information: when Ax = b is under-
determined, using the penalty function ε‖x−z‖2

2 and letting ε→ 0 encour-
ages the solution to be close to the prior estimate z.

Simplify Calculations

A fourth role that penalty functions can play is to simplify calculation:
in the case of cross-entropy minimization, adding the penalty functions
KL(z, x) andKL(x, z) to the objective functionsKL(y, Px) andKL(Px, y),
respectively, regularizes the minimization problem. But, as we shall see
later, the SMART algorithm minimizes KL(Px, y) by using a sequential
approach, in which each minimizer xk can be calculated in closed form.

17.4. PROXIMITY-FUNCTION MINIMIZATION (I) 209

Sequential Unconstrained Minimization

More generally, a fifth role for penalty functions is as part of sequential
minimization. Here the goal is to replace one computationally difficult
minimization with a sequence of simpler ones. Clearly, one reason for
the difficulty can be that the original problem is constrained, and the se-
quential approach uses a series of unconstrained minimizations, penalizing
violations of the constraints through the penalty function. However, there
are other instances in which the sequential approach serves to simplify the
calculations, not to remove constraints, but, perhaps, to replace a non-
differentiable objective function with a differentiable one, or a sequence of
differentiable ones, as in Moreau’s method.

17.4 Proximity-Function Minimization (I)

Let f : RJ → (−∞,+∞] be closed, proper, convex and differentiable.
Let h be a closed proper convex function, with effective domain D, that
is differentiable on the nonempty open convex set int D. Assume that
f(x) is finite on C = D and attains its minimum value on C at x̂. The
corresponding Bregman distance Dh(x, z) is defined for x in D and z in int
D by

Dh(x, z) = h(x)− h(z)− 〈∇h(z), x− z〉. (17.14)

Note that Dh(x, z) ≥ 0 always. If h is essentially strictly convex, then
Dh(x, z) = 0 implies that x = z. Our objective is to minimize f(x) over x
in C = D.

17.4.1 Proximal Minimization Algorithm

At the kth step of the proximal minimization algorithm (PMA) [39], we
minimize the function

Gk(x) = f(x) +Dh(x, xk−1), (17.15)

to get xk. The function

gk(x) = Dh(x, xk−1) (17.16)

is nonnegative and gk(xk−1) = 0. We assume that each xk lies in int D.

17.4.2 The Method of Auslander and Teboulle

In [6] Auslander and Teboulle consider an iterative method similar to the
PMA, in which, at the kth step, one minimizes the function

Fk(x) = f(x) + d(x, xk−1) (17.17)

210CHAPTER 17. SEQUENTIAL UNCONSTRAINED MINIMIZATION ALGORITHMS

to get xk. Their distance d(x, y) is not assumed to be a Bregman distance.
Instead, they assume that the distance d has an associated induced proximal
distance H(a, b) ≥ 0, finite for a and b in D, with H(a, a) = 0 and

〈∇1d(b, a), c− b〉 ≤ H(c, a)−H(c, b), (17.18)

for all c in D. The notation ∇1d(x, y) denotes the gradient with respect to
the vector variable x.

If d = Dh, that is, if d is a Bregman distance, then from the equation

〈∇1d(b, a), c− b〉 = Dh(c, a)−Dh(c, b)−Dh(b, a) (17.19)

we see that Dh has H = Dh for its associated induced proximal distance,
so Dh is self-proximal, in the terminology of [6].

17.5 The Simultaneous MART (SMART) (I)

Our next example is the simultaneous multiplicative algebraic reconstruc-
tion technique (SMART). For a > 0 and b > 0, the Kullback-Leibler dis-
tance, KL(a, b), is defined as

KL(a, b) = a log
a

b
+ b− a. (17.20)

In addition, KL(0, 0) = 0, KL(a, 0 = +∞ and KL(0, b) = b. The KL
distance is then extended to nonnegative vectors coordinate-wise.

17.5.1 The SMART Iteration

The SMART minimizes the function f(x) = KL(Px, y), over nonnegative
vectors x. Here y is a vector with positive entries, and P is a matrix
with nonnegative entries, such that sj =

∑I
i=1 Pij > 0. For notational

convenience, we shall assume that the system y = Px has been normalized
so that sj = 1, for each j. Denote by X the set of all nonnegative x for
which the vector Px has only positive entries.

Having found the vector xk−1, the next vector in the SMART sequence
is xk, with entries given by

xkj = xk−1
j exp

(I∑
i=1

Pij log(yi/(Pxk−1)i)
)
. (17.21)

17.5.2 SMART as Alternating Minimization

In [31] the SMART was derived using the following alternating minimiza-
tion approach.

17.6. CONVERGENCE THEOREMS FOR SUMMA 211

For each x ∈ X , let r(x) and q(x) be the I by J arrays with entries

r(x)ij = xjPijyi/(Px)i, (17.22)

and

q(x)ij = xjPij . (17.23)

The iterative step of the SMART is to minimize the functionKL(q(x), r(xk−1))
to get x = xk. Note that f(x) = KL(q(x), r(x)).

Now we establish the basic results for the SUMMA.

17.6 Convergence Theorems for SUMMA

At the kth step of the SUMMA we minimize the function Gk(x) to get
xk. In practice, of course, this minimization may need to be performed
iteratively; we shall not address this issue here, and shall assume that xk

can be computed. We make the following additional assumptions.

Assumption 1: The functions gk(x) are finite-valued and continuous on
a set D in RJ , with C = D.

Assumption 2: There is x̂ in C with f(x̂) ≤ f(x), for all x in C.

Assumption 3: The functions gk(x) satisfy the inequality in (17.2); that
is,

0 ≤ gk(x) ≤ Gk−1(x)−Gk−1(xk−1),

for k = 2, 3, Consequently,

gk(xk−1) = 0.

Assumption 4: There is a real number α with

α ≤ f(x),

for all x in RJ .

Assumption 5: Each xk is in D.

Using these assumptions, we can conclude several things about the sequence
{xk}.

Proposition 17.2 The sequence {f(xk)} is decreasing, and the sequence
{gk(xk)} converges to zero.

212CHAPTER 17. SEQUENTIAL UNCONSTRAINED MINIMIZATION ALGORITHMS

Proof: We have

f(xk+1)+gk+1(xk+1) = Gk+1(xk+1) ≤ Gk+1(xk) = f(xk)+gk+1(xk) = f(xk).

Therefore,
f(xk)− f(xk+1) ≥ gk+1(xk+1) ≥ 0.

Since the sequence {f(xk)} is decreasing and bounded below by α, the dif-
ference sequence must converge to zero. Therefore, the sequence {gk(xk)}
converges to zero.

Theorem 17.1 The sequence {f(xk)} converges to f(x̂).

Proof: Suppose that there is δ > 0 with

f(xk) ≥ f(x̂) + δ,

for all k. Since x̂ is in C, there is z in D with

f(xk) ≥ f(z) +
δ

2
,

for all k. From
gk+1(z) ≤ Gk(z)−Gk(xk),

we have

gk(z)− gk+1(z) ≥ f(xk) + gk(xk)− f(z) ≥ f(xk)− f(z) ≥ δ

2
> 0.

This says that the nonnegative sequence {gk(z)} is decreasing, but that suc-
cessive differences remain bounded away from zero, which cannot happen.

Theorem 17.2 Let the restriction of f(x) to x in C have bounded level
sets. Then the sequence {xk} is bounded, and f(x∗) = f(x̂), for any cluster
point x∗. If x̂ is unique, x∗ = x̂ and {xk} → x̂.

Proof: From the previous theorem we have f(x∗) = f(x̂), for all cluster
points x∗. But, by uniqueness, x∗ = x̂, and so {xk} → x̂.

Corollary 17.1 Let f(x) be closed, proper and convex. If x̂ is unique, the
sequence {xk} converges to x̂.

Proof: Let ιC(x) be the indicator function of the set C, that is, ιC(x) = 0,
for all x in C, and ιC(x) = +∞, otherwise. Then the function g(x) =
f(x) + ιC(x) is closed, proper and convex. If x̂ is unique, then we have

{x|f(x) + ιC(x) ≤ f(x̂)} = {x̂}.

17.7. BARRIER-FUNCTION METHODS (II) 213

Therefore, one of the level sets of g(x) is bounded and nonempty. It follows
from Corollary 8.7.1 of [133] that every level set of g(x) is bounded, so that
the sequence {xk} is bounded.

If x̂ is not unique, we may still be able to prove convergence of the
sequence {xk}, for particular cases of SUMMA, as we shall see shortly.

17.7 Barrier-Function Methods (II)

We return now to the barrier-function methods, to show that they are
particular cases of the SUMMA. The iterative step of the barrier-function
method can be formulated as follows: minimize

f(x) + [(k − 1)f(x) + b(x)] (17.24)

to get xk. Since, for k = 2, 3, ..., the function

(k − 1)f(x) + b(x) (17.25)

is minimized by xk−1, the function

gk(x) = (k − 1)f(x) + b(x)− (k − 1)f(xk−1)− b(xk−1) (17.26)

is nonnegative, and xk minimizes the function

Gk(x) = f(x) + gk(x). (17.27)

From

Gk(x) = f(x) + (k − 1)f(x) + b(x)− f(xk−1)− (k − 1)f(xk−1)− b(xk−1),

it follows that

Gk(x)−Gk(xk) = kf(x) + b(x)− kf(xk)− b(xk) = gk+1(x),

so that gk+1(x) satisfies the condition in (17.2). This shows that the barrier-
function method is a particular case of SUMMA.

The goal is to minimize the objective function f(x), over x in the closed
set C = D, the closure of D. In the barrier-function method, we minimize

f(x) +
1
k
b(x) (17.28)

over x in D to get xk. Each xk lies within D, so the method is an interior-
point algorithm. If the sequence {xk} converges, the limit vector x∗ will
be in C and f(x∗) = f(x̂).

214CHAPTER 17. SEQUENTIAL UNCONSTRAINED MINIMIZATION ALGORITHMS

From the results for SUMMA, we conclude that {f(xk)} is decreasing
to f(x̂), and that {gk(xk)} converges to zero. From the nonnegativity of
gk(xk) we have that

(k − 1)(f(xk)− f(xk−1)) ≥ b(xk−1)− b(xk).

Since the sequence {f(xk)} is decreasing, the sequence {b(xk)} must be
increasing, but might not be bounded above.

If x̂ is unique, and f(x) has bounded level sets, then it follows, from our
discussion of SUMMA, that {xk} → x̂. Suppose now that x̂ is not known
to be unique, but can be chosen in D, so that Gk(x̂) is finite for each k.
From

f(x̂) +
1
k
b(x̂) ≥ f(xk) +

1
k
b(xk)

we have
1
k

(
b(x̂)− b(xk)

)
≥ f(xk)− f(x̂) ≥ 0,

so that
b(x̂)− b(xk) ≥ 0,

for all k. If either f or b has bounded level sets, then the sequence {xk} is
bounded and has a cluster point, x∗ in C. It follows that b(x∗) ≤ b(x̂) <
+∞, so that x∗ is in D. If we assume that f(x) is convex and b(x) is
strictly convex on D, then we can show that x∗ is unique in D, so that
x∗ = x̂ and {xk} → x̂.

To see this, assume, to the contrary, that there are two distinct cluster
points x∗ and x∗∗ in D, with

{xkn} → x∗,

and
{xjn} → x∗∗.

Without loss of generality, we assume that

0 < kn < jn < kn+1,

for all n, so that
b(xkn) ≤ b(xjn) ≤ b(xkn+1).

Therefore,
b(x∗) = b(x∗∗) ≤ b(x̂).

From the strict convexity of b(x) on the set D, and the convexity of f(x),
we conclude that, for 0 < λ < 1 and y = (1 − λ)x∗ + λx∗∗, we have
b(y) < b(x∗) and f(y) ≤ f(x∗). But, we must then have f(y) = f(x∗).
There must then be some kn such that

Gkn(y) = f(y) +
1
kn
b(y) < f(xkn) +

1
kn
b(xkn) = Gkn(xkn).

17.8. PENALTY-FUNCTION METHODS (II) 215

But, this is a contradiction.
The following theorem summarizes what we have shown with regard to

the barrier-function method.

Theorem 17.3 Let f : RJ → (−∞,+∞] be a continuous function. Let
b(x) : RJ → (0,+∞] be a continuous function, with effective domain the
nonempty set D. Let x̂ minimize f(x) over all x in C = D. For each
positive integer k, let xk minimize the function f(x) + 1

k b(x). Then the
sequence {f(xk)} is monotonically decreasing to the limit f(x̂), and the
sequence {b(xk)} is increasing. If x̂ is unique, and f(x) has bounded level
sets, then the sequence {xk} converges to x̂. In particular, if x̂ can be chosen
in D, if either f(x) or b(x) has bounded level sets, if f(x) is convex and if
b(x) is strictly convex on D, then x̂ is unique in D and {xk} converges to
x̂.

Each step of the barrier method requires the minimization of the func-
tion f(x) + 1

k b(x). In practice, this must also be performed iteratively,
with, say, the Newton-Raphson algorithm. It is important, therefore, that
barrier functions be selected so that relatively few Newton-Raphson steps
are needed to produce acceptable solutions to the main problem. For more
on these issues see Renegar [132] and Nesterov and Nemirovski [124].

17.8 Penalty-Function Methods (II)

Let M be the non-empty closed set of all x for which the continuous func-
tion p(x) attains its minimum value; this value need not be zero. Now we
consider the problem of minimizing a continuous function f(x) : RJ →
(−∞,+∞] over the closed set M . We assume that the constrained min-
imum of f(x) is attained at some vector x̂ in M . We also assume that
the function p(x) has bounded level sets, that is, for all γ ≥ 0, the set
{x|p(x) ≤ γ} is bounded.

For k = 1, 2, ..., let xk be a minimizer of the function f(x) + kp(x).
As we shall see, we can formulate this penalty-function algorithm as a
barrier-function iteration.

17.8.1 Penalty-Function Methods as Barrier-Function
Methods

In order to relate penalty-function methods to barrier-function methods, we
note that minimizing f(x)+kp(x) is equivalent to minimizing p(x)+ 1

kf(x).
This is the form of the barrier-function iteration, with p(x) now in the role
previously played by f(x), and f(x) now in the role previously played by
b(x). We are not concerned here with the effective domain of f(x).

216CHAPTER 17. SEQUENTIAL UNCONSTRAINED MINIMIZATION ALGORITHMS

Now our Assumption 2 simply says that there is a vector x̂ at which
p(x) attains its minimum; so M is not empty. From our discussion of
barrier-function methods, we know that the sequence {p(xk)} is decreasing
to a limit p̂ ≥ p(x̂) and the sequence {f(xk)} is increasing. Since p(x) has
bounded level sets, the sequence {xk} is bounded; let x∗ be an arbitrary
cluster point. We then have p(x∗) = p̂. It may seem odd that we are
trying to minimize f(x) over the set M using a sequence {xk} with {f(xk)}
increasing, but remember that these xk are not in M .

We now show that f(x∗) = f(x̂). This does not follow from our previous
discussion of barrier-function methods.

Let s(x) = p(x)− p(x̂), so that s(x) ≥ 0 and s(x̂) = 0. For each k, let

Tk(x) = f(x) + ks(x) = f(x) + kp(x)− kp(x̂).

Then xk minimizes Tk(x).

Lemma 17.1 The sequence {Tk(xk)} is increasing to some limit γ ≤ f(x̂).

Proof: Because the penalty function s(x) is nonnegative, we have

Tk(xk) ≤ Tk(xk+1) ≤ Tk(xk+1) + s(xk+1) = Tk+1(xk+1).

We also have

f(x̂) = f(x̂) + ks(x̂) = Tk(x̂) ≥ Tk(xk),

for all k.

Lemma 17.2 For all cluster points x∗ of {xk} we have s(x∗) = 0, so that
p(x∗) = p(x̂) and x∗ is in M .

Proof: For each k we have

α+ ks(xk) ≤ f(xk) + ks(xk) = Tk(xk) ≤ f(x̂),

so that
0 ≤ ks(xk) ≤ f(x̂)− α,

for all k. It follows that {s(xk)} converges to zero. By the continuity of
s(x), we conclude that s(x∗) = 0, so x∗ is in M .

Lemma 17.3 For all cluster points x∗ of the sequence {xk} we have f(x∗) =
f(x̂), so x∗ minimizes f(x) over x in M .

Proof: Let {xkn} → x∗. We have

f(x∗) = f(x∗) + s(x∗) = lim
n→+∞

(
f(xkn) + s(xkn)

)

17.9. THE PROXIMAL MINIMIZATION ALGORITHM (II) 217

≤ lim
n→+∞

(
f(xkn) + kns(xkn)

)
≤ f(x̂).

Since x∗ is in M , it follows that f(x∗) = f(x̂).

To assert that the sequence {xk} itself converges, we would need to
make additional assumptions. For example, if the minimizer of f(x) over
x in M is unique, then the sequence {xk} has x̂ for its only cluster point,
so must converge to x̂.

The following theorem summarizes what we have shown with regard to
penalty-function methods.

Theorem 17.4 Let f : RJ → (−∞,+∞] be a continuous function. Let
p(x) : RJ → R be a continuous function, with bounded level sets, and M the
set of all x̃ such that p(x̃) ≤ p(x) for all x in RJ . Let x̂ in M minimize f(x̃)
over all x̃ in M . For each positive integer k, let xk minimize the function
f(x) + kp(x). Then the sequence {f(xk)} is monotonically increasing to
the limit f(x̂), and the sequence {p(xk)} is decreasing to p(x̂). If x̂ is
unique, which happens, for example, if f(x) is strictly convex on M , then
the sequence {xk} converges to x̂.

17.9 The Proximal Minimization Algorithm
(II)

We show now that Assumption 3 holds, so that the PMA is a particular
case of the SUMMA. We remind the reader that f(x) is now assumed to be
convex and differentiable, so that the Bregman distance Df (x, z) is defined
and nonnegative, for all x in D and z in intD.

Lemma 17.4 For each k we have

Gk(x) = Gk(xk) +Df (x, xk) +Dh(x, xk). (17.29)

Proof: Since xk minimizes Gk(x) within the set D, we have

0 = ∇f(xk) +∇h(xk)−∇h(xk−1). (17.30)

Then

Gk(x)−Gk(xk) = f(x)− f(xk) + h(x)− h(xk)− 〈∇h(xk−1), x− xk〉.

Now substitute, using Equation (17.30), and use the definition of Bregman
distances.

It follows from Lemma 17.4 that

Gk(x)−Gk(xk) = gk+1(x) +Df (x, xk),

218CHAPTER 17. SEQUENTIAL UNCONSTRAINED MINIMIZATION ALGORITHMS

so Assumption 3 holds.
From the discussion of the SUMMA we know that {f(xk)} is monoton-

ically decreasing to f(x̂). As we noted previously, if the sequence {xk} is
bounded, and x̂ is unique, we can conclude that {xk} → x̂.

Suppose that x̂ is not known to be unique, but can be chosen in D; this
will be the case, of course, whenever D is closed. Then Gk(x̂) is finite for
each k. From the definition of Gk(x) we have

Gk(x̂) = f(x̂) +Dh(x̂, xk−1). (17.31)

From Equation (17.29) we have

Gk(x̂) = Gk(xk) +Df (x̂, xk) +Dh(x̂, xk), (17.32)

so that

Gk(x̂) = f(xk) +Dh(xk, xk−1) +Df (x̂, xk) +Dh(x̂, xk). (17.33)

Therefore,

Dh(x̂, xk−1)−Dh(x̂, xk) =
f(xk)− f(x̂) +Dh(xk, xk−1) +Df (x̂, xk). (17.34)

It follows that the sequence {Dh(x̂, xk)} is decreasing and that the sequence
{Df (x̂, xk)} converges to 0. If either the function f(x) or the function
Dh(x̂, ·) has bounded level sets, then the sequence {xk} is bounded, has
cluster points x∗ in C, and f(x∗) = f(x̂), for every x∗. We now show that
x̂ in D implies that x∗ is also in D, whenever h is a Bregman -Legendre
function.

Let x∗ be an arbitrary cluster point, with {xkn} → x∗. If x̂ is not in int
D, then, by Property B2 of Bregman-Legendre functions, we know that

Dh(x∗, xkn) → 0,

so x∗ is in D. Then the sequence {Dh(x∗, xk)} is decreasing. Since a
subsequence converges to zero, we have {Dh(x∗, xk)} → 0. From Property
R5, we conclude that {xk} → x∗.

If x̂ is in int D, but x∗ is not, then {Dh(x̂, xk)} → +∞, by Property R2.
But, this is a contradiction; therefore x∗ is in D. Once again, we conclude
that {xk} → x∗.

Now we summarize our results for the PMA. Let f : RJ → (−∞,+∞]
be closed, proper, convex and differentiable. Let h be a closed proper
convex function, with effective domain D, that is differentiable on the
nonempty open convex set int D. Assume that f(x) is finite on C = D
and attains its minimum value on C at x̂. For each positive integer k, let
xk minimize the function f(x) + Dh(x, xk−1). Assume that each xk is in
the interior of D.

17.9. THE PROXIMAL MINIMIZATION ALGORITHM (II) 219

Theorem 17.5 If the restriction of f(x) to x in C has bounded level sets
and x̂ is unique, and then the sequence {xk} converges to x̂.

Theorem 17.6 If h(x) is a Bregman-Legendre function and x̂ can be cho-
sen in D, then {xk} → x∗, x∗ in D, with f(x∗) = f(x̂).

17.9.1 The Method of Auslander and Teboulle

The method of Auslander and Teboulle described in a previous section
seems not to be a particular case of SUMMA. However, we can adapt the
proof of Theorem 17.1 to prove the analogous result for their method. Once
again, we assume that f(x̂) ≤ f(x), for all x in C.

Theorem 17.7 For k = 2, 3, ..., let xk minimize the function

Fk(x) = f(x) + d(x, xk−1).

If the distance d has an induced proximal distance H, then {f(xk)} → f(x̂).

Proof: First, we show that the sequence {f(xk)} is decreasing. We have

f(xk−1) = Fk(xk−1) ≥ Fk(xk) = f(xk) + d(xk, xk−1),

from which we conclude that the sequence {f(xk)} is decreasing and the
sequence {d(xk, xk−1)} converges to zero.

Now suppose that
f(xk) ≥ f(x̂) + δ,

for some δ > 0 and all k. Since x̂ is in C, there is z in D with

f(xk) ≥ f(z) +
δ

2
,

for all k. Since xk minimizes Fk(x), it follows that

0 = ∇f(xk) +∇1d(xk, xk−1).

Using the convexity of the function f(x) and the fact that H is an induced
proximal distance, we have

0 <
δ

2
≤ f(xk)− f(z) ≤ 〈−∇f(xk), z − xk〉 =

〈∇1d(xk, xk−1), z − xk〉 ≤ H(z, xk−1)−H(z, xk).

Therefore, the nonnegative sequence {H(z, xk)} is decreasing, but its suc-
cessive differences remain bounded below by δ

2 , which is a contradiction.

220CHAPTER 17. SEQUENTIAL UNCONSTRAINED MINIMIZATION ALGORITHMS

It is interesting to note that the Auslander-Teboulle approach places a
restriction on the function d(x, y), the existence of the induced proximal
distance H, that is unrelated to the objective function f(x), but this con-
dition is helpful only for convex f(x). In contrast, the SUMMA approach
requires that

0 ≤ gk+1(x) ≤ Gk(x)−Gk(xk),

which involves the f(x) being minimized, but does not require that this
f(x) be convex.

17.10 The Simultaneous MART (II)

It follows from the identities established in [31] that the SMART can also
be formulated as a particular case of the SUMMA.

17.10.1 The SMART as a Case of SUMMA

We show now that the SMART is a particular case of the SUMMA. The
following lemma is helpful in that regard.

Lemma 17.5 For any non-negative vectors x and z, with z+ =
∑J
j=1 zj >

0, we have

KL(x, z) = KL(x+, z+) +KL(x,
x+

z+
z). (17.35)

From the identities established for the SMART in [31], we know that the
iterative step of SMART can be expressed as follows: minimize the function

Gk(x) = KL(Px, y) +KL(x, xk−1)−KL(Px, Pxk−1) (17.36)

to get xk. According to Lemma 17.5, the quantity

gk(x) = KL(x, xk−1)−KL(Px, Pxk−1)

is nonnegative, since sj = 1. The gk(x) are defined for all nonnegative x;
that is, the set D is the closed nonnegative orthant in RJ . Each xk is a
positive vector.

It was shown in [31] that

Gk(x) = Gk(xk) +KL(x, xk), (17.37)

from which it follows immediately that Assumption 3 holds for the SMART.
Because the SMART is a particular case of the SUMMA, we know that

the sequence {f(xk)} is monotonically decreasing to f(x̂). It was shown
in [31] that if y = Px has no nonnegative solution and the matrix P and

17.10. THE SIMULTANEOUS MART (II) 221

every submatrix obtained from P by removing columns has full rank, then
x̂ is unique; in that case, the sequence {xk} converges to x̂. As we shall
see, the SMART sequence always converges to a nonnegative minimizer of
f(x). To establish this, we reformulate the SMART as a particular case of
the PMA.

17.10.2 The SMART as a Case of the PMA

We take F (x) to be the function

F (x) =
J∑
j=1

xj log xj . (17.38)

Then

DF (x, z) = KL(x, z). (17.39)

For nonnegative x and z in X , we have

Df (x, z) = KL(Px, Pz). (17.40)

Lemma 17.6 DF (x, z) ≥ Df (x, z).

Proof: We have

DF (x, z) ≥
J∑
j=1

KL(xj , zj) ≥
J∑
j=1

I∑
i=1

KL(Pijxj , Pijzj)

≥
I∑
i=1

KL((Px)i, (Pz)i) = KL(Px, Pz). (17.41)

Then we let h(x) = F (x) − f(x); then Dh(x, z) ≥ 0 for nonnegative x
and z in X . The iterative step of the SMART is to minimize the function

f(x) +Dh(x, xk−1). (17.42)

So the SMART is a particular case of the PMA.
The function h(x) = F (x)−f(x) is finite on D the nonnegative orthant

of RJ , and differentiable on the interior, so C = D is closed in this example.
Consequently, x̂ is necessarily in D. From our earlier discussion of the
PMA, we can conclude that the sequence {Dh(x̂, xk)} is decreasing and
the sequence {Df (x̂, xk)} → 0. Since the function KL(x̂, ·) has bounded
level sets, the sequence {xk} is bounded, and f(x∗) = f(x̂), for every
cluster point. Therefore, the sequence {Dh(x∗, xk)} is decreasing. Since a

222CHAPTER 17. SEQUENTIAL UNCONSTRAINED MINIMIZATION ALGORITHMS

subsequence converges to zero, the entire sequence converges to zero. The
convergence of {xk} to x∗ follows from basic properties of the KL distance.

From the fact that {Df (x̂, xk)} → 0, we conclude that Px̂ = Px∗.
Equation (17.34) now tells us that the difference Dh(x̂, xk−1) −Dh(x̂, xk)
depends on only on Px̂, and not directly on x̂. Therefore, the difference
Dh(x̂, x0) − Dh(x̂, x∗) also depends only on Px̂ and not directly on x̂.
Minimizing Dh(x̂, x0) over nonnegative minimizers x̂ of f(x) is therefore
equivalent to minimizing Dh(x̂, x∗) over the same vectors. But the solution
to the latter problem is obviously x̂ = x∗. Thus we have shown that the
limit of the SMART is the nonnegative minimizer of KL(Px, y) for which
the distance KL(x, x0) is minimized.

The following theorem summarizes the situation with regard to the
SMART.

Theorem 17.8 In the consistent case the SMART converges to the unique
nonnegative solution of y = Px for which the distance

∑J
j=1 sjKL(xj , x0

j)
is minimized. In the inconsistent case it converges to the unique nonnega-
tive minimizer of the distance KL(Px, y) for which

∑J
j=1 sjKL(xj , x0

j) is
minimized; if P and every matrix derived from P by deleting columns has
full rank then there is a unique nonnegative minimizer of KL(Px, y) and
at most I − 1 of its entries are nonzero.

17.10.3 The EMML Algorithm

The expectation maximization maximum likelihood (EMML) algorithm min-
imizes the function f(x) = KL(y, Px) over x in X . In [44] the EMML
algorithm and the SMART are developed in tandem to reveal how closely
related these two methods are. There, the EMML algorithm is derived us-
ing alternating minimization, in which the vector xk is the one for which the
function KL(r(xk−1), q(x)) is minimized. When we try to put the EMML
into the framework of SUMMA, we find that xk minimizes the function

Gk(x) = f(x) +KL(r(xk−1), r(x)), (17.43)

over all positive vectors x. However, the functions

gk(x) = KL(r(xk−1), r(x)) (17.44)

appear not to satisfy the condition in (17.2). It does not appear to be true
that the EMML is a particular case of SUMMA, even though it is true that
{f(xk)} does converge monotonically to f(x̂) and {xk} does converge to a
nonnegative minimizer of f(x). The obvious conjecture is that the EMML
is an example of a wider class of sequential unconstrained minimization
algorithms for which a nice theory of convergence still holds.

In the next section we present a variant of the SMART, designed to
incorporate bounds on the entries of the vector x.

17.11. MINIMIZINGKL(PX, Y) WITH UPPER AND LOWER BOUNDS ON THE VECTORX223

17.11 Minimizing KL(Px, y) with upper and
lower bounds on the vector x

Let aj < bj , for each j. Let Xab be the set of all vectors x such that
aj ≤ xj ≤ bj , for each j. Now, we seek to minimize f(x) = KL(Px, y),
over all vectors x in X ∩ Xab. We let

F (x) =
J∑
j=1

(
(xj − aj) log(xj − aj) + (bj − xj) log(bj − xj)

)
. (17.45)

Then we have

DF (x, z) =
J∑
j=1

(
KL(xj − aj , zj − aj) +KL(bj − xj , bj − zj)

)
, (17.46)

and, as before,

Df (x, z) = KL(Px, Pz). (17.47)

Lemma 17.7 For any c > 0, with a ≥ c and b ≥ c, we have KL(a− c, b−
c) ≥ KL(a, b).

Proof: Let g(c) = KL(a − c, b − c) and differentiate with respect to c, to
obtain

g′(c) =
a− c

b− c
− 1− log(

a− c

b− c
) ≥ 0. (17.48)

We see then that the function g(c) is increasing with c.
As a corollary of Lemma 17.7, we have

Lemma 17.8 Let a = (a1, ..., aJ)T , and x and z in X with (Px)i ≥ (Pa)i,
(Pz)i ≥ (Pa)i, for each i. Then KL(Px, Pz) ≤ KL(Px− Pa, Pz − Pa).

Lemma 17.9 DF (x, z) ≥ Df (x, z).

Proof: We can easily show that

DF (x, z) ≥ KL(Px− Pa, Pz − Pa) +KL(Pb− Px, Pb− Pz),

along the lines used previously. Then, from Lemma 17.8, we have

KL(Px− Pa, Pz − Pa) ≥ KL(Px, Pz) = Df (x, z).

224CHAPTER 17. SEQUENTIAL UNCONSTRAINED MINIMIZATION ALGORITHMS

Once again, we let h(x) = F (x) − f(x), which is finite on the closed
convex set X ∩ Xab. At the kth step of this algorithm we minimize the
function

f(x) +Dh(x, xk−1) (17.49)

to get xk.
Solving for xkj , we obtain

xk+1
j = αkj aj + (1− αkj)bj , (17.50)

where

(αkj)
−1 = 1 +

(xk−1
j − aj

bj − xk−1
j

)
exp

(I∑
i=1

Pij log(yi/(Pxk−1)i)
)
. (17.51)

Since the restriction of f(x) to X ∩Xab has bounded level sets, the sequence
{xk} is bounded and has cluster points. If x̂ is unique, then {xk} → x̂.

This algorithm is closely related to those presented in [37].

17.12 Computation

As we noted previously, we do not address computational issues in any de-
tail in this chapter. Nevertheless, it cannot be ignored that both Equation
(17.21) for the SMART and Equations (17.50) and (17.51) for the general-
ized SMART provide easily calculated iterates, in contrast to other exam-
ples of SUMMA. At the same time, showing that these two algorithms are
particular cases of SUMMA requires the introduction of functions Gk(x)
that appear to be quite ad hoc. The purpose of this section is to motivate
these choices ofGk(x) and to indicate how other analogous computationally
tractable SUMMA iterative schemes may be derived.

17.12.1 Landweber’s Algorithm

Suppose that A is a real I by J matrix and we wish to obtain a least-squares
solution x̂ of Ax = b by minimizing the function

f(x) =
1
2
‖Ax− b‖2.

We know that

(ATA)x̂ = AT b, (17.52)

so, in a sense, the problem is solved. However, in many applications, the
dimensions I and J are quite large, perhaps in the tens of thousands, as in

17.12. COMPUTATION 225

some image reconstruction problems. Solving Equation (17.52), and even
calculating ATA, can be prohibitively expensive. In such cases, we turn to
iterative methods, not necessarily to incorporate constraints on x, but to
facilitate calculation. Landweber’s algorithm is one such iterative method
for calculating a least-squares solution.

The iterative step of Landweber’s algorithm is

xk = xk−1 − γAT (Axk−1 − b). (17.53)

The sequence {xk} converges to the least-squares solution closest to x0,
for any choice of γ in the interval (0, 2/ρ(ATA)), where ρ(ATA), the spec-
tral radius of ATA, is its largest eigenvalue; this is a consequence of the
Krasnoselskii-Mann Theorem (see, for example, [42]).

It is easy to verify that the xk given by Equation (17.53) is the minimizer
of the function

Gk(x) =
1
2
‖Ax− b‖2 +

1
2γ
‖x− xk−1‖2 − 1

2
‖Ax−Axk−1‖2, (17.54)

that, for γ in the interval (0, 1/ρ(ATA)), the iteration in Equation (17.53)
is a particular case of SUMMA, and

Gk(x)−Gk(xk) =
1
2γ
‖x− xk‖2.

The similarity between the Gk(x) in Equation (17.54) and that in Equation
(17.36) is not accidental and both are particular cases of a more general
iterative scheme involving proximal minimization.

17.12.2 Extending the PMA

The proximal minimization algorithm (PMA) requires us to minimize the
function Gk(x) given by Equation (17.15) to get xk. How xk may be
calculated was not addressed previously. Suppose, instead of minimizing
Gk(x) in Equation (17.15), we minimize

Gk(x) = f(x) +Dh(x, xk−1)−Df (x, xk−1), (17.55)

with the understanding that f(x) is convex and

Dh(x, z)−Df (x, z) ≥ 0,

for all appropriate x and z. The next iterate xk satisfies the equation

0 = ∇h(xk)−∇h(xk−1) +∇f(xk−1), (17.56)

so that

∇h(xk) = ∇h(xk−1)−∇f(xk−1). (17.57)

226CHAPTER 17. SEQUENTIAL UNCONSTRAINED MINIMIZATION ALGORITHMS

This iterative scheme is the interior-point algorithm (IPA) presented in [39].
If the function h(x) is chosen carefully, then we can solve for xk easily. The
Landweber algorithm, the SMART, and the generalized SMART are all
particular cases of this IPA.

Using Lemma 17.4, we can show that

Gk(x)−Gk(xk) =
1
2γ
Dh(x, xk), (17.58)

for all appropriate x, so that the IPA is a particular case of SUMMA. We
consider now several other examples.

If we let h(x) = 1
2γ ‖x‖

2 in Equation (17.55), the iteration becomes

xk = xk−1 − γ∇f(xk−1). (17.59)

If, for example, the operator ∇f is L-Lipschitz continuous, that is,

‖∇f(x)−∇f(z)‖ ≤ L‖x− z‖,

then, for any γ in the interval (0, 1/2L), we have

1
2γ
‖x− z‖2 ≥ L‖x− z‖2 ≥ 〈∇f(x)−∇f(z), x− z〉

= Df (x, z) +Df (z, x) ≥ Df (x, z).

Therefore, this iteration is a particular case of SUMMA. It should be noted
that, in this case, the Krasnoselskii-Mann Theorem gives convergence for
any γ in the interval (0, 2/L).

Finally, we consider what happens if we replace the Euclidean norm with
that induced by the local geometry derived from f itself. More specifically,
let us take

h(x) =
1
2
xT∇2f(xk−1)x,

so that
Dh(x, xk−1) =

1
2
(x− xk−1)T∇2f(xk−1)(x− xk−1).

Then the IPA iterate xk becomes

xk = xk−1 −∇2f(xk−1)−1∇f(xk−1), (17.60)

which is the Newton-Raphson iteration. Using the SUMMA framework to
study the Newton-Raphson method is work in progress.

Algorithms such as Landweber’s and SMART can be slow to converge.
It is known that convergence can often be accelerated using incremental
gradient (partial gradient, block-iterative, ordered-subset) methods. Using
the SUMMA framework to study such incremental gradient methods as
the algebraic reconstruction technique (ART), its multiplicative version
(MART), and other block-iterative methods is also the subject of on-going
work.

17.13. CONNECTIONS WITH KARMARKAR’S METHOD 227

17.13 Connections with Karmarkar’s Method

As related by Margaret Wright in [149], a revolution in mathematical pro-
gramming took place around 1984. In that year Narenda Karmarkar dis-
covered the first efficient polynomial-time algorithm for the linear program-
ming problem [105]. Khachian’s earlier polynomial-time algorithm for LP
was too slow and conventional wisdom prior to 1984 was that the simplex
method was “the only game in town” . It was known that, for certain pecu-
liar LP problems, the complexity of the simplex method grew exponentially
with the size of the problem, and obtaining a polynomial-time method for
LP had been a goal for quite a while. However, for most problems, the
popular simplex method was more than adequate. Soon after Karmarkar’s
result was made known, others discovered that there was a close connection
between this method and earlier barrier-function approaches in nonlinear
programming [90]. This discovery not only revived barrier-function meth-
ods, but established a link between linear and nonlinear programming, two
areas that had historically been treated separately.

The primary LP problem in standard form is to minimize cTx, subject
to the conditions Ax = b and x ≥ 0. The barrier-function approach is
to use a logarithmic barrier to enforce the condition x ≥ 0, and then to
use the primal-dual approach of Equation (9.39) to maintain the condition
Ax = b. The function to be minimized, subject to Ax = b, is then

cTx− µ
J∑
j=1

log xj ,

where µ > 0 is the barrier parameter. When this minimization is performed
using the primal-dual method described by Equation (9.39), and the NR
iteration is begun at a feasible x0, each subsequent xk satisfies Axk = b.
The limit of the NR iteration is xµ. Under reasonable conditions, xµ will
converge to the solution of the LP problem, as µ→ 0. This interior-point
approach to solving the LP problem is essentially equivalent to Karmarkar’s
approach.

17.14 Exercises

17.1 Prove Lemma 17.5.

17.2 ([122], Ex. 16.1) Use the logarithmic barrier method to minimize
the function

f(x, y) = x− 2y,

subject to the constraints
1 + x− y2 ≥ 0,

228CHAPTER 17. SEQUENTIAL UNCONSTRAINED MINIMIZATION ALGORITHMS

and
y ≥ 0.

17.3 ([122], Ex. 16.5) Use the quadratic-loss penalty method to mini-
mize the function

f(x, y) = −xy,

subject to the equality constraint

x+ 2y − 4 = 0.

Chapter 18

Calculus of Variations

Up to now, we have been concerned with maximizing or minimizing real-
valued functions of one or several variables, possibly subject to constraints.
In this chapter, we consider another type of optimization problem, max-
imizing or minimizing a function of functions. The functions themselves
we shall denote by simply y = y(x), instead of the more common notation
y = f(x), and the function of functions will be denoted J(y); in the cal-
culus of variations, such functions of functions are called functionals. We
then want to optimize J(y) over a class of admissible functions y(x). We
shall focus on the case in which x is a single real variable, although there
are situations in which the functions y are functions of several variables.

When we attempt to minimize a function g(x1, ..., xN), we consider
what happens to g when we perturb the values xn to xn + ∆xn. In order
for x = (x1, ..., xN) to minimize g, it is necessary that

g(x1 + ∆x1, ..., xN + ∆xN) ≥ g(x1, ..., xN),

for all perturbations ∆x1, ...,∆xN . For differentiable g, this means that
the gradient of g at x must be zero. In the calculus of variations, when
we attempt to minimize J(y), we need to consider what happens when we
perturb the function y to a nearby admissible function, denoted y+∆y. In
order for y to minimize J(y), we need

J(y + ∆y) ≥ J(y),

for all ∆y that make y + ∆y admissible. We end up with something anal-
ogous to a first derivative of J , which is then set to zero. The result is a
differential equation, called the Euler-Lagrange Equation, which must be
satisfied by the minimizing y.

229

230 CHAPTER 18. CALCULUS OF VARIATIONS

18.1 Some Examples

In this section we present some of the more famous examples of problems
from the calculus of variations.

18.1.1 The Shortest Distance

Among all the functions y = y(x), defined for x in the interval [0, 1], with
y(0) = 0 and y(1) = 1, the straight-line function y(x) = x has the shortest
length. Assuming the functions are differentiable, the formula for the length
of such curves is

J(y) =
∫ 1

0

√
1 +

(dy
dx

)2

dx. (18.1)

Therefore, we can say that the function y(x) = x minimizes J(y), over all
such functions.

In this example, the functional J(y) involves only the first derivative of
y = y(x) and has the form

J(y) =
∫
f(x, y(x), y′(x))dx, (18.2)

where f = f(u, v, w) is the function of three variables

f(u, v, w) =
√

1 + w2. (18.3)

In general, the functional J(y) can come from almost any function f(u, v, w).
In fact, if higher derivatives of y(x) are involved, the function f can be a
function of more than three variables. In this chapter we shall confine our
discussion to problems involving only the first derivative of y(x).

18.1.2 The Brachistochrone Problem

Consider a frictionless wire connecting the two points A = (0, 0) and B =
(1, 1); for convenience, the positive y-axis is downward. A metal ball rolls
from point A to point B under the influence of gravity. What shape should
the wire take in order to make the travel time of the ball the smallest? This
famous problem, known as the Brachistochrone Problem, was posed in 1696
by Johann Bernoulli. This event is viewed as marking the beginning of the
calculus of variations.

The velocity of the ball along the curve is v = ds
dt , where s denotes the

arc-length. Therefore,

dt =
ds

v
=

1
v

√
1 +

(dy
dx

)2

dx.

18.1. SOME EXAMPLES 231

Because the ball is falling under the influence of gravity only, the velocity
it attains after falling from (0, 0) to (x, y) is the same as it would have
attained had it fallen y units vertically; only the travel times are different.
This is because the loss of potential energy is the same either way. The
velocity attained after a vertical free fall of y units is

√
2gy. Therefore, we

have

dt =

√
1 +

(
dy
dx

)2

dx
√

2gy
.

The travel time from A to B is therefore

J(y) =
1√
2g

∫ 1

0

√
1 +

(dy
dx

)2 1
√
y
dx. (18.4)

For this example, the function f(u, v, w) is

f(u, v, w) =
√

1 + w2

√
v

. (18.5)

18.1.3 Minimal Surface Area

Given a function y = y(x) with y(0) = 1 and y(1) = 0, we imagine revolving
this curve around the x-axis, to generate a surface of revolution. The
functional J(y) that we wish to minimize now is the surface area. Therefore,
we have

J(y) =
∫ 1

0

y
√

1 + y′(x)2dx. (18.6)

Now the function f(u, v, w) is

f(u, v, w) = v
√

1 + w2. (18.7)

18.1.4 The Maximum Area

Among all curves of length L connecting the points (0, 0) and (1, 0), find
the one for which the area A of the region bounded by the curve and the
x-axis is maximized. The length of the curve is given by

L =
∫ 1

0

√
1 + y′(x)2dx, (18.8)

and the area, assuming that y(x) ≥ 0 for all x, is

A =
∫ 1

0

y(x)dx. (18.9)

This problem is different from the previous ones, in that we seek to optimize
a functional, subject to a second functional being held fixed. Such problems
are called problems with constraints.

232 CHAPTER 18. CALCULUS OF VARIATIONS

18.1.5 Maximizing Burg Entropy

The Burg entropy of a positive-valued function y(x) on [−π, π] is

BE(y) =
∫ π

−π
log
(
y(x)

)
dx. (18.10)

An important problem in signal processing is to maximize BE(y), subject
to

rn =
∫ π

−π
y(x)e−inxdx, (18.11)

for |n| ≤ N . The rn are values of the Fourier transform of the function
y(x).

18.2 Comments on Notation

The functionals J(y) that we shall consider in this chapter have the form

J(y) =
∫
f(x, y(x), y′(x))dx, (18.12)

where f = f(u, v, w) is some function of three real variables. It is common
practice, in the calculus of variations literature, to speak of f = f(x, y, y′),
rather than f(u, v, w). Unfortunately, this leads to potentially confusing
notation, such as when ∂f

∂u is written as ∂f
∂x , which is not the same thing as

the total derivative of f(x, y(x), y′(x)),

d

dx
f(x, y(x), y′(x)) =

∂f

∂x
+
∂f

∂y
y′(x) +

∂f

∂y′
y′′(x). (18.13)

Using the notation of this chapter, Equation (18.13) becomes

d

dx
f(x, y(x), y′(x)) =

∂f

∂u
(x, y(x), y′(x))+

∂f

∂v
(x, y(x), y′(x))y′(x) +

∂f

∂w
(x, y(x), y′(x))y′′(x). (18.14)

The common notation forces us to view f(x, y, y′) both as a function of
three unrelated variables, x, y, and y′, and as f(x, y(x), y′(x)), a function
of the single variable x.

For example, suppose that

f(u, v, w) = u2 + v3 + sinw,

18.3. THE EULER-LAGRANGE EQUATION 233

and
y(x) = 7x2.

Then

f(x, y(x), y′(x)) = x2 + (7x2)3 + sin(14x), (18.15)

∂f

∂x
(x, y(x), y′(x)) = 2x, (18.16)

and
d

dx
f(x, y(x), y′(x)) =

d

dx

(
x2 + (7x2)3 + sin(14x)

)
= 2x+ 3(7x2)2(14x) + 14 cos(14x). (18.17)

18.3 The Euler-Lagrange Equation

In the problems we shall consider in this chapter, admissible functions are
differentiable, with y(x1) = y1 and y(x2) = y2; that is, the graphs of the
admissible functions pass through the end points (x1, y1) and (x2, y2). If
y = y(x) is one such function and η(x) is a differentiable function with
η(x1) = 0 and η(x2) = 0, then y(x) + εη(x) is admissible, for all values of
ε. For fixed admissible function y = y(x), we define

J(ε) = J(y(x) + εη(x)), (18.18)

and force J ′(ε) = 0 at ε = 0. The tricky part is calculating J ′(ε).
Since J(y(x) + εη(x)) has the form

J(y(x) + εη(x)) =
∫ x2

x1

f(x, y(x) + εη(x), y′(x) + εη′(x))dx, (18.19)

we obtain J ′(ε) by differentiating under the integral sign.
Omitting the arguments, we have

J ′(ε) =
∫ x2

x1

∂f

∂v
η +

∂f

∂w
η′dx. (18.20)

Using integration by parts and η(x1) = η(x2) = 0, we have∫ x2

x1

∂f

∂w
η′dx = −

∫ x2

x1

d

dx
(
∂f

∂w
)ηdx. (18.21)

Therefore, we have

J ′(ε) =
∫ x2

x1

(∂f
∂v

− d

dx
(
∂f

∂w
)
)
ηdx. (18.22)

234 CHAPTER 18. CALCULUS OF VARIATIONS

In order for y = y(x) to be the optimal function, this integral must be zero
for every appropriate choice of η(x), when ε = 0. It can be shown without
too much trouble that this forces

∂f

∂v
− d

dx
(
∂f

∂w
) = 0. (18.23)

Equation (18.23) is the Euler-Lagrange Equation.
For clarity, let us rewrite that Euler-Lagrange Equation using the ar-

guments of the functions involved. Equation (18.23) is then

∂f

∂v
(x, y(x), y′(x))− d

dx

(∂f
∂w

(x, y(x), y′(x))
)

= 0. (18.24)

18.4 Special Cases of the Euler-Lagrange Equa-
tion

The Euler-Lagrange Equation simplifies in certain special cases.

18.4.1 If f is independent of v

If the function f(u, v, w) is independent of the variable v then the Euler-
Lagrange Equation (18.24) becomes

∂f

∂w
(x, y(x), y′(x)) = c, (18.25)

for some constant c. If, in addition, the function f(u, v, w) is a function of
w alone, then so is ∂f

∂w , from which we conclude from the Euler-Lagrange
Equation that y′(x) is constant.

18.4.2 If f is independent of u

Note that we can write

d

dx
f(x, y(x), y′(x)) =

∂f

∂u
(x, y(x), y′(x))

+
∂f

∂v
(x, y(x), y′(x))y′(x) +

∂f

∂w
(x, y(x), y′(x))y′′(x).

(18.26)

We also have
d

dx

(
y′(x)

∂f

∂w
(x, y(x), y′(x))

)
=

y′(x)
d

dx

(∂f
∂w

(x, y(x), y′(x))
)

+ y′′(x)
∂f

∂w
(x, y(x), y′(x)).

18.5. USING THE EULER-LAGRANGE EQUATION 235

(18.27)

Subtracting Equation (18.27) from Equation (18.26), we get

d

dx

(
f(x, y(x), y′(x))− y′(x)

∂f

∂w
(x, y(x), y′(x))

)
=

∂f

∂u
(x, y(x), y′(x)) + y′(x)

(∂f
∂v

− d

dx

∂f

∂w

)
(x, y(x), y′(x)).

(18.28)

Now, using the Euler-Lagrange Equation, we see that Equation (18.28)
reduces to

d

dx

(
f(x, y(x), y′(x))− y′(x)

∂f

∂w
(x, y(x), y′(x))

)
=
∂f

∂u
(x, y(x), y′(x)).

(18.29)

If it is the case that ∂f
∂u = 0, then equation (18.29) leads to

f(x, y(x), y′(x))− y′(x)
∂f

∂w
(x, y(x), y′(x)) = c, (18.30)

for some constant c.

18.5 Using the Euler-Lagrange Equation

We derive and solve the Euler-Lagrange Equation for each of the examples
presented previously.

18.5.1 The Shortest Distance

In this case, we have

f(u, v, w) =
√

1 + w2, (18.31)

so that
∂f

∂v
= 0,

and
∂f

∂u
= 0.

We conclude that y′(x) is constant, so y(x) is a straight line.

236 CHAPTER 18. CALCULUS OF VARIATIONS

18.5.2 The Brachistochrone Problem

Equation (18.5) tells us that

f(u, v, w) =
√

1 + w2

√
v

. (18.32)

Then, since
∂f

∂u
= 0,

and
∂f

∂w
=

w√
1 + w2

√
v
,

Equation (18.30) tells us that√
1 + y′(x)2√
y(x)

− y′(x)
y′(x)√

1 + y′(x)2
√
y(x)

= c. (18.33)

Equivalently, we have√
y(x)

√
1 + y′(x)2 =

√
a. (18.34)

Solving for y′(x), we get

y′(x) =

√
a− y(x)
y(x)

. (18.35)

Separating variables and integrating, using the substitution

y = a sin2 θ =
a

2
(1− cos 2θ),

we obtain

x = 2a
∫

sin2 θdθ =
a

2
(2θ − sin 2θ) + k. (18.36)

From this, we learn that the minimizing curve is a cycloid, that is, the path
a point on a circle traces as the circle rolls.

There is an interesting connection, discussed by Simmons in [141] , be-
tween the brachistochrone problem and the refraction of light rays. Imagine
a ray of light passing from the point A = (0, a), with a > 0, to the point
B = (c, b), with c > 0 and b < 0. Suppose that the speed of light is v1
above the x-axis, and v2 < v1 below the x-axis. The path consists of two
straight lines, meeting at the point (0, x). The total time for the journey
is then

T (x) =
√
a2 + x2

v1
+

√
b2 + (c− x)2

v2
.

18.5. USING THE EULER-LAGRANGE EQUATION 237

Fermat’s Principle of Least Time says that the (apparent) path taken by
the light ray will be the one for which x minimizes T (x). From calculus, it
follows that

x

v1
√
a2 + x2

=
c− x

v2
√
b2 + (c− x)2

,

and from geometry, we get Snell’s Law:

sinα1

v1
=

sinα2

v2
,

where α1 and α2 denote the angles between the upper and lower parts of
the path and the vertical, respectively.

Imagine now a stratified medium consisting of many horizontal layers,
each with its own speed of light. The path taken by the light would be
such that sinα

v remains constant as the ray passes from one layer to the
next. In the limit of infinitely many infinitely thin layers, the path taken
by the light would satisfy the equation sinα

v = constant, with

sinα =
1√

1 + y′(x)2
.

As we have already seen, the velocity attained by the rolling ball is v =√
2gy, so the equation to be satisfied by the path y(x) is√

2gy(x)
√

1 + y′(x)2 = constant,

which is what we obtained from the Euler-Lagrange Equation.

18.5.3 Minimizing the Surface Area

For the problem of minimizing the surface area of a surface of revolution,
the function f(u, v, w) is

f(u, v, w) = v
√

1 + w2. (18.37)

Once again, ∂f∂u = 0, so we have

y(x)y′(x)2√
1 + y′(x)2

− y(x)
√

1 + y′(x)2 = c. (18.38)

It follows that

y(x) = b cosh
x− a

b
, (18.39)

for appropriate a and b.

238 CHAPTER 18. CALCULUS OF VARIATIONS

It is important to note that being a solution of the Euler-Lagrange Equa-
tion is a necessary condition for a differentiable function to be a solution
to the original optimization problem, but it is not a sufficient condition.
The optimal solution may not be a differentiable one, or there may be no
optimal solution. In the case of minimum surface area, there may not be
any function of the form in Equation (18.39) passing through the two given
end points; see Chapter IV of Bliss [14] for details.

18.6 Problems with Constraints

We turn now to the problem of optimizing one functional, subject to a
second functional being held constant. The basic technique is similar to
ordinary optimization subject to constraints: we use Lagrange multipliers.
We begin with a classic example.

18.6.1 The Isoperimetric Problem

A classic problem in the calculus of variations is the Isoperimetric Prob-
lem: find the curve of a fixed length that encloses the largest area. For
concreteness, suppose the curve connects the two points (0, 0) and (1, 0)
and is the graph of a function y(x). The problem then is to maximize the
area integral ∫ 1

0

y(x)dx, (18.40)

subject to the perimeter being held fixed, that is,∫ 1

0

√
1 + y′(x)2dx = P. (18.41)

With
f(x, y(x), y′(x)) = y(x) + λ

√
1 + y′(x)2,

the Euler-Lagrange Equation becomes

d

dx

(λy′(x)√
1 + y′(x)2

)
− 1 = 0, (18.42)

or

y′(x)√
1 + y′(x)2

=
x− a

λ
. (18.43)

Using the substitution t = x−a
λ and integrating, we find that

(x− a)2 + (y − b)2 = λ2, (18.44)

18.7. THE MULTIVARIATE CASE 239

which is the equation of a circle. So the optimal function y(x) is a portion
of a circle.

What happens if the assigned perimeter P is greater than π
2 , the length

of the semicircle connecting (0, 0) and (1, 0)? In this case, the desired curve
is not the graph of a function of x, but a parameterized curve of the form
(x(t), y(t)), for, say, t in the interval [0, 1]. Now we have one independent
variable, t, but two dependent ones, x and y. We need a generalization of
the Euler-Lagrange Equation to the multivariate case.

18.6.2 Burg Entropy

According to the Euler-Lagrange Equation for this case, we have

1
y(x)

+
N∑

n=−N
λne

−ixn, (18.45)

or

y(x) = 1/
N∑

n=−N
ane

inx. (18.46)

The spectral factorization theorem [128] tells us that if the denominator is
positive for all x, then it can be written as

N∑
n=−N

ane
inx = |

N∑
m=0

bme
imx|2. (18.47)

With a bit more work (see [44]), it can be shown that the desired coefficients
bm are the solution to the system of equations

N∑
m=0

rm−kbm = 0, (18.48)

for k = 1, 2, ..., N and

N∑
m=0

rmbm = 1. (18.49)

18.7 The Multivariate Case

Suppose that the integral to be optimized is

J(x, y) =
∫ b

a

f(t, x(t), x′(t), y(t), y′(t))dt, (18.50)

240 CHAPTER 18. CALCULUS OF VARIATIONS

where f(u, v, w, s, r) is a real-valued function of five variables. In such
cases, the Euler-Lagrange Equation is replaced by the two equations

d

dt

(∂f
∂w

)
− ∂f

∂v
= 0,

d

dx

(∂f
∂r

)
− ∂f

∂s
= 0. (18.51)

We apply this now to the problem of maximum area for a fixed perimeter.
We know from Green’s Theorem in two dimensions that the area A

enclosed by a curve C is given by the integral

A =
1
2

∮
C

(xdy − ydx) =
1
2

∫ 1

0

(x(t)y′(t)− y(t)x′(t))dt. (18.52)

The perimeter P of the curve is

P =
∫ 1

0

√
x′(t)2 + y′(t)2dt. (18.53)

So the problem is to maximize the integral in Equation (18.52), subject to
the integral in Equation (18.53) being held constant.

The problem is solved by using a Lagrange multiplier. We write

J(x, y) =
∫ 1

0

(
x(t)y′(t)− y(t)x′(t) + λ

√
x′(t)2 + y′(t)2

)
dt. (18.54)

The generalized Euler-Lagrange Equations are

d

dt

(1
2
x(t) +

λy′(t)√
x′(t)2 + y′(t)2

)
+

1
2
x′(t) = 0, (18.55)

and

d

dt

(
− 1

2
y(t) +

λx′(t)√
x′(t)2 + y′(t)2

)
− 1

2
y′(t) = 0. (18.56)

It follows that

y(t) +
λx′(t)√

x′(t)2 + y′(t)2
= c, (18.57)

and

x(t) +
λy′(t)√

x′(t)2 + y′(t)2
= d. (18.58)

Therefore,

(x− d)2 + (y − c)2 = λ2. (18.59)

The optimal curve is then a portion of a circle.

18.8. FINITE CONSTRAINTS 241

18.8 Finite Constraints

Suppose that we want to minimize the functional

J(y) =
∫ b

a

f(x, y(x), y′(x))dx,

subject to the constraint
g(x, y(x)) = 0.

Such a problem is said to be one of finite constraints. In this section we
illustrate this type of problem by considering the geodesic problem.

18.8.1 The Geodesic Problem

The space curve (x(t), y(t), z(t)), defined for a ≤ t ≤ b, lies on the surface
described by G(x, y, z) = 0 if G(x(t), y(t), z(t)) = 0 for all t in [a, b]. The
geodesic problem is to find the curve of shortest length lying on the surface
and connecting points A = (a1, a2, a3) and B = (b1, b2, b3). The functional
to be minimized is the arc length

J =
∫ b

a

√
ẋ2 + ẏ2 + ż2dt, (18.60)

where ẋ = dx
dt .

We assume that the equation G(x, y, z) = 0 can be rewritten as

z = g(x, y),

that is, we assume that we can solve for the variable z, and that the function
g has continuous second partial derivatives. We may not be able to do this
for the entire surface, as the equation of a sphere G(x, y, z) = x2 + y2 +
z2 − r2 = 0 illustrates, but we can usually solve for z, or one of the other
variables, on part of the surface, as, for example, on the upper or lower
hemisphere.

We then have

ż = gxẋ+ gy ẏ = gx(x(t), y(t))ẋ(t) + gy(x(t), y(t))ẏ(t), (18.61)

where gx = ∂g
∂x .

Lemma 18.1 We have
∂ż

∂x
=

d

dt
(gx).

242 CHAPTER 18. CALCULUS OF VARIATIONS

Proof: From Equation (18.61) we have

∂ż

∂x
=

∂

∂x
(gxẋ+ gy ẏ) = gxxẋ+ gyxẏ.

We also have

d

dt
(gx) =

d

dt
(gx(x(t), y(t)) = gxxẋ+ gxy ẏ.

Since gxy = gyx, the assertion of the lemma follows.
From the Lemma we have both

∂ż

∂x
=

d

dt
(gx), (18.62)

and

∂ż

∂y
=

d

dt
(gy). (18.63)

Substituting for z in Equation (18.60), we see that the problem is now to
minimize the functional

J =
∫ b

a

√
ẋ2 + ẏ2 + (gxẋ+ gy ẏ)2dt, (18.64)

which we write as

J =
∫ b

a

F (x, ẋ, y, ẏ)dt. (18.65)

The Euler-Lagrange Equations are then

∂F

∂x
− d

dt
(
∂F

∂ẋ
) = 0, (18.66)

and

∂F

∂y
− d

dt
(
∂F

∂ẏ
) = 0. (18.67)

Using
∂F

∂x
=
∂f

∂ż

∂(gxẋ+ gy ẏ)
∂x

=
∂f

∂ż

∂

∂x
(
dg

dt
) =

∂f

∂ż

∂ż

∂x

and
∂F

∂y
=
∂f

∂ż

∂ż

∂y
,

18.8. FINITE CONSTRAINTS 243

we can rewrite the Euler-Lagrange Equations as

d

dt
(
∂f

∂ẋ
) + gx

d

dt
(
∂f

∂ż
) = 0, (18.68)

and

d

dt
(
∂f

∂ẏ
) + gy

d

dt
(
∂f

∂ż
) = 0. (18.69)

Let the function λ(t) be defined by

d

dt
(
∂f

∂ż
) = λ(t)Gz,

and note that

gx = −Gx
Gz

,

and

gy = −Gy
Gz

.

Then the Euler-Lagrange Equations become

d

dt
(
∂f

∂ẋ
) = λ(t)Gx, (18.70)

and

d

dt
(
∂f

∂ẏ
) = λ(t)Gy. (18.71)

Eliminating λ(t) and extending the result to include z as well, we have

d
dt (

∂f
∂ẋ)

Gx
=

d
dt (

∂f
∂ẏ)

Gy
=

d
dt (

∂f
∂ż)

Gz
. (18.72)

Notice that we could obtain the same result by calculating the Euler-
Lagrange Equation for the functional∫ b

a

f(ẋ, ẏ, ż) + λ(t)G(x(t), y(t), z(t))dt. (18.73)

18.8.2 An Example

Let the surface be a sphere, with equation

0 = G(x, y, z) = x2 + y2 + z2 − r2.

244 CHAPTER 18. CALCULUS OF VARIATIONS

Then Equation (18.72) becomes

fẍ− ẋḟ

2xf2
=
fÿ − ẏḟ

2yf2
=
fz̈ − żḟ

2zf2
.

We can rewrite these equations as

ẍy − xÿ

ẋy − xẏ
=
yz̈ − zÿ

yż − zẏ
=
ḟ

f
.

The numerators are the derivatives, with respect to t, of the denominators,
which leads to

log |xẏ − yẋ| = log |yż − zẏ|+ c1.

Therefore,
xẏ − yẋ = c1(yż − zẏ).

Rewriting, we obtain
ẋ+ c1ż

x+ c1z
=
ẏ

y
,

or
x+ c1z = c2y,

which is a plane through the origin. The geodesics on the sphere are great
circles, that is, the intersection of the sphere with a plane through the
origin.

18.9 Exercises

18.1 Suppose that the cycloid in the brachistochrone problem connects the
starting point (0, 0) with the point (πa,−2a), where a > 0. Show that the
time required for the ball to reach the point (πa,−2a) is π

√
a
g .

18.2 Show that, for the situation in the previous exercise, the time required
for the ball to reach (πa,−2a) is again π

√
a
g , if the ball begins rolling at

any intermediate point along the cycloid. This is the tautochrone property
of the cycloid.

Chapter 19

Appendix: Metric Spaces
and Norms

The inner product on RJ or CJ can be used to define the Euclidean norm
‖x‖2 of a vector x, which, in turn, provides a metric, or a measure of
distance between two vectors, d(x, y) = ‖x − y‖2. The notions of metric
and norm are actually more general notions, with no necessary connection
to the inner product. Throughout this chapter the superscript † denotes
the conjugate transpose of a matrix or vector.

19.1 Metric Spaces

We begin with the basic definitions.

Definition 19.1 Let S be a non-empty set. We say that the function
d : S × S → [0,+∞) is a metric if the following hold:

d(s, t) ≥ 0, (19.1)

for all s and t in S;

d(s, t) = 0 (19.2)

if and only if s = t;

d(s, t) = d(t, s), (19.3)

for all s and t in S; and, for all s, t, and u in S,

d(s, t) ≤ d(s, u) + d(u, t). (19.4)

The pair {S, d} is a metric space.

The last inequality is the Triangle Inequality for this metric.

245

246 CHAPTER 19. APPENDIX: METRIC SPACES AND NORMS

19.2 Analysis in Metric Space

Analysis is concerned with issues of convergence and limits.

Definition 19.2 A sequence {sk} in the metric space (S, d) is said to have
limit s∗ if

lim
k→+∞

d(sk, s∗) = 0. (19.5)

Any sequence with a limit is said to be convergent.

A sequence can have at most one limit.

Definition 19.3 The sequence {sk} is said to be a Cauchy sequence if,
for any ε > 0, there is positive integer m, such that, for any nonnegative
integer n,

d(sm, sm+n) ≤ ε. (19.6)

Every convergent sequence is a Cauchy sequence.

Definition 19.4 The metric space (S, d) is said to be complete if every
Cauchy sequence is a convergent sequence.

The finite-dimensional spaces RJand CJ are complete metric spaces, with
respect to the usual Euclidean distance.

Definition 19.5 An infinite sequence {sk} in S is said to be bounded if
there is an element a and a positive constant b > 0 such that d(a, sk) ≤ b,
for all k.

Definition 19.6 A subset K of the metric space is said to be closed if, for
every convergent sequence {sk} of elements in K, the limit point is again
in K. The closure of a set K is the smallest closed set containing K.

For example, in RJ = R, the set K = (0, 1] is not closed, because it does
not contain the point s = 0, which is the limit of the sequence {sk = 1

k};
the set K = [0, 1] is closed and is the closure of the set (0, 1], that is, it is
the smallest closed set containing (0, 1].

Definition 19.7 For any bounded sequence {xk} in RJ , there is at least
one subsequence, often denoted {xkn}, that is convergent; the notation im-
plies that the positive integers kn are ordered, so that k1 < k2 < The
limit of such a subsequence is then said to be a cluster point of the original
sequence.

When we investigate iterative algorithms, we will want to know if the
sequence {xk} generated by the algorithm converges. As a first step, we
will usually ask if the sequence is bounded? If it is bounded, then it will
have at least one cluster point. We then try to discover if that cluster point
is really the limit of the sequence. We turn now to metrics that come from
norms.

19.3. NORMS 247

19.3 Norms

The metric spaces that interest us most are those for which the metric
comes from a norm, which is a measure of the length of a vector.

Definition 19.8 We say that ‖ · ‖ is a norm on CJ if

‖x‖ ≥ 0, (19.7)

for all x,

‖x‖ = 0 (19.8)

if and only if x = 0,

‖γx‖ = |γ| ‖x‖, (19.9)

for all x and scalars γ, and

‖x+ y‖ ≤ ‖x‖+ ‖y‖, (19.10)

for all vectors x and y.

Lemma 19.1 The function d(x, y) = ‖x− y‖ defines a metric on CJ .

It can be shown that RJ and CJ are complete for any metric arising from
a norm.

19.3.1 Some Common Norms on CJ

We consider now the most common norms on the space CJ . These notions
apply equally to RJ .

The 1-norm

The 1-norm on CJ is defined by

‖x‖1 =
J∑
j=1

|xj |. (19.11)

The ∞-norm

The ∞-norm on CJ is defined by

‖x‖∞ = max{|xj | |j = 1, ..., J}. (19.12)

248 CHAPTER 19. APPENDIX: METRIC SPACES AND NORMS

The 2-norm

The 2-norm, also called the Euclidean norm, is the most commonly used
norm on CJ . It is the one that comes from the inner product:

‖x‖2 =
√
〈x, x〉 =

√
x†x. (19.13)

Weighted 2-norms

Let A be an invertible matrix and Q = A†A. Define

‖x‖Q = ‖Ax‖2 =
√
x†Qx, (19.14)

for all vectors x. If Q is the diagonal matrix with diagonal entries Qjj > 0,
then

‖x‖Q =

√√√√ J∑
j=1

Qjj |xj |2; (19.15)

for that reason we speak of ‖x‖Q as the Q-weighted 2-norm of x.

19.4 Eigenvalues and Eigenvectors

Let S be a complex, square matrix. We say that λ is an eigenvalue of S if λ
is a root of the complex polynomial det (λI −S). Therefore, each S has as
many (possibly complex) eigenvalues as it has rows or columns, although
some of the eigenvalues may be repeated.

An equivalent definition is that λ is an eigenvalue of S if there is a
non-zero vector x with Sx = λx, in which case the vector x is called an
eigenvector of S. From this definition, we see that the matrix S is invertible
if and only if zero is not one of its eigenvalues. The spectral radius of S,
denoted ρ(S), is the maximum of |λ|, over all eigenvalues λ of S.

If S is an I by I Hermitian matrix with (necessarily real) eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λI , (19.16)

and associated (column) eigenvectors {ui |i = 1, ..., I} (which we may as-
sume are mutually orthogonal), then S can be written as

S = λ1u1u
†
1 + · · ·+ λIuIu

†
I . (19.17)

This is the eigenvalue/eigenvector decomposition of S. The Hermitian ma-
trix S is invertible if and only if all of its eigenvalues are non-zero, in which
case we can write the inverse of S as

S−1 = λ−1
1 u1u

†
1 + · · ·+ λ−1

I uIu
†
I . (19.18)

19.4. EIGENVALUES AND EIGENVECTORS 249

Definition 19.9 A Hermitian matrix S is positive-definite if each of its
eigenvalues is positive.

It follows from the eigenvector decomposition of S that S = QQ† for the
Hermitian, positive-definite matrix

Q =
√
λ1u1u

†
1 + · · ·+

√
λIuIu

†
I ; (19.19)

Q is called the Hermitian square root of S.

19.4.1 The Singular-Value Decomposition

The eigenvector/eigenvalue decomposition applies only to square matrices.
The singular-value decomposition is similar, but applies to any matrix.

Definition 19.10 Let A be an I by J complex matrix. The rank of A is
the number of linearly independent rows, which always equals the number
of linearly independent columns. The matrix A is said to have full rank if
its rank is the smaller of I and J .

Let I ≤ J . Let B = AA† and C = A†A. Let λi ≥ 0, for i = 1, ..., I,
be the eigenvalues of B, and let {u1, ..., uI} be associated orthonormal
eigenvectors of B. Assume that λi > 0 for i = 1, ..., N ≤ I, and, if
N < I, λi = 0, for i = N + 1, ..., I; if N = I, then the matrix A has
full rank. For i = 1, ..., N , let vi = λ

−1/2
i A†ui. It is easily shown that

the collection {v1, ..., vN} is orthonormal. Let {vN+1, ..., vJ} be selected so
that {v1, ..., vJ} is orthonormal. Then the sets {u1, ..., uN}, {uN+1, ..., uI},
{v1, ..., vN}, and {vN+1, ..., vJ} are orthonormal bases for the subspaces
CS(A), NS(A†), CS(A†), and NS(A), respectively, where CS(A) is the
subspace spanned by the columns of A, and NS(A) is the set of all vectors
orthogonal to the columns of A.

Definition 19.11 We have

A =
N∑
i=1

√
λiu

i(vi)†, (19.20)

which is the singular-value decomposition (SVD) of the matrix A.

Let U and V be the square matrices whose columns are the vectors ui

and vj , respectively, and L the I by J matrix with entries Lii = λi, and
the remaining ones equal to zero. Then the SVD of A can be expressed as
follows:

A = U
√
LV †.

The SVD of the matrix A† is then

A† =
N∑
i=1

√
λiv

i(ui)†. (19.21)

250 CHAPTER 19. APPENDIX: METRIC SPACES AND NORMS

Definition 19.12 The pseudo-inverse of the matrix A is the J by I matrix

A] =
N∑
i=1

λ
−1/2
i vi(ui)†. (19.22)

Lemma 19.2 For any matrix A, we have

(A†)] = (A])†. (19.23)

For A that has full rank, if N = I ≤ J , then

A] = A†B−1, (19.24)

and

(A†)] = B−1A. (19.25)

19.5 Matrix Norms

Any matrix can be turned into a vector by vectorization. Therefore, we
can define a norm for any matrix by simply vectorizing and taking a norm
of the resulting vector. Such norms for matrices may not be compatible
with the role of a matrix as representing a linear transformation.

19.5.1 Induced Matrix Norms

One way to obtain a compatible norm for matrices is through the use of
an induced matrix norm.

Definition 19.13 Let ‖x‖ be any norm on CJ , not necessarily the Eu-
clidean norm, ‖b‖ any norm on CI , and A a rectangular I by J matrix.
The induced matrix norm of A, simply denoted ‖A‖, derived from these
two vectors norms, is the smallest positive constant c such that

‖Ax‖ ≤ c‖x‖, (19.26)

for all x in CJ . This induced norm can be written as

‖A‖ = max
x6=0

{‖Ax‖/‖x‖}. (19.27)

We study induced matrix norms in order to measure the distance ‖Ax−
Az‖, relative to the distance ‖x− z‖:

‖Ax−Az‖ ≤ ‖A‖ ‖x− z‖, (19.28)

for all vectors x and z and ‖A‖ is the smallest number for which this
statement can be made.

19.5. MATRIX NORMS 251

19.5.2 Condition Number of a Square Matrix

Let S be a square, invertible matrix and z the solution to Sz = h. We
are concerned with the extent to which the solution changes as the right
side, h, changes. Denote by δh a small perturbation of h, and by δz the
solution of Sδz = δh. Then S(z+ δz) = h+ δh. Applying the compatibility
condition ‖Ax‖ ≤ ‖A‖‖x‖, we get

‖δz‖ ≤ ‖S−1‖‖δh‖, (19.29)

and

‖z‖ ≥ ‖h‖/‖S‖. (19.30)

Therefore

‖δz‖
‖z‖

≤ ‖S‖ ‖S−1‖‖δh‖
‖h‖

. (19.31)

Definition 19.14 The quantity c = ‖S‖‖S−1‖ is the condition number of
S, with respect to the given matrix norm.

Note that c ≥ 1: for any non-zero z, we have

‖S−1‖ ≥ ‖S−1z‖/‖z‖ = ‖S−1z‖/‖SS−1z‖ ≥ 1/‖S‖. (19.32)

When S is Hermitian and positive-definite, the condition number of S, with
respect to the matrix norm induced by the Euclidean vector norm, is

c = λmax(S)/λmin(S), (19.33)

the ratio of the largest to the smallest eigenvalues of S.

19.5.3 Some Examples of Induced Matrix Norms

If we choose the two vector norms carefully, then we can get an explicit
description of ‖A‖, but, in general, we cannot.

For example, let ‖x‖ = ‖x‖1 and ‖Ax‖ = ‖Ax‖1 be the 1-norms of the
vectors x and Ax, where

‖x‖1 =
J∑
j=1

|xj |. (19.34)

Lemma 19.3 The 1-norm of A, induced by the 1-norms of vectors in CJ

and CI , is

‖A‖1 = max {
I∑
i=1

|Aij | , j = 1, 2, ..., J}. (19.35)

252 CHAPTER 19. APPENDIX: METRIC SPACES AND NORMS

Proof: Use basic properties of the absolute value to show that

‖Ax‖1 ≤
J∑
j=1

(
I∑
i=1

|Aij |)|xj |. (19.36)

Then let j = m be the index for which the maximum column sum is reached
and select xj = 0, for j 6= m, and xm = 1.

The infinity norm of the vector x is

‖x‖∞ = max {|xj | , j = 1, 2, ..., J}. (19.37)

Lemma 19.4 The infinity norm of the matrix A, induced by the infinity
norms of vectors in RJ and CI , is

‖A‖∞ = max {
J∑
j=1

|Aij | , i = 1, 2, ..., I}. (19.38)

The proof is similar to that of the previous lemma.

Lemma 19.5 Let M be an invertible matrix and ‖x‖ any vector norm.
Define

‖x‖M = ‖Mx‖. (19.39)

Then, for any square matrix S, the matrix norm

‖S‖M = max
x6=0

{‖Sx‖M/‖x‖M} (19.40)

is

‖S‖M = ‖MSM−1‖. (19.41)

In [7] this result is used to prove the following lemma:

Lemma 19.6 Let S be any square matrix and let ε > 0 be given. Then
there is an invertible matrix M such that

‖S‖M ≤ ρ(S) + ε. (19.42)

19.5. MATRIX NORMS 253

19.5.4 The Euclidean Norm of a Square Matrix

We shall be particularly interested in the Euclidean norm (or 2-norm) of
the square matrix A, denoted by ‖A‖2, which is the induced matrix norm
derived from the Euclidean vector norms.

From the definition of the Euclidean norm of A, we know that

‖A‖2 = max{‖Ax‖2/‖x‖2}, (19.43)

with the maximum over all nonzero vectors x. Since

‖Ax‖2
2 = x†A†Ax, (19.44)

we have

‖A‖2 =

√
max {x

†A†Ax

x†x
}, (19.45)

over all nonzero vectors x.

Proposition 19.1 The Euclidean norm of a square matrix is

‖A‖2 =
√
ρ(A†A); (19.46)

that is, the term inside the square-root in Equation (19.45) is the largest
eigenvalue of the matrix A†A.

Proof: Let

λ1 ≥ λ2 ≥ ... ≥ λJ ≥ 0 (19.47)

and let {uj , j = 1, ..., J} be mutually orthogonal eigenvectors of A†A with
‖uj‖2 = 1. Then, for any x, we have

x =
J∑
j=1

[(uj)†x]uj , (19.48)

while

A†Ax =
J∑
j=1

[(uj)†x]A†Auj =
J∑
j=1

λj [(uj)†x]uj . (19.49)

It follows that

‖x‖2
2 = x†x =

J∑
j=1

|(uj)†x|2, (19.50)

254 CHAPTER 19. APPENDIX: METRIC SPACES AND NORMS

and

‖Ax‖2
2 = x†A†Ax =

J∑
j=1

λj |(uj)†x|2. (19.51)

Maximizing ‖Ax‖2
2/‖x‖2

2 over x 6= 0 is equivalent to maximizing ‖Ax‖2
2,

subject to ‖x‖2
2 = 1. The right side of Equation (19.51) is then a con-

vex combination of the λj , which will have its maximum when only the
coefficient of λ1 is non-zero.

According to Corollary 13.1, we have the inequality

‖A‖2
2 ≤ ‖A‖1‖A‖∞ = c1r1.

If S is not Hermitian, then the Euclidean norm of S cannot be calculated
directly from the eigenvalues of S. Take, for example, the square, non-
Hermitian matrix

S =
[
i 2
0 i

]
, (19.52)

having eigenvalues λ = i and λ = i. The eigenvalues of the Hermitian
matrix

S†S =
[

1 −2i
2i 5

]
(19.53)

are λ = 3 + 2
√

2 and λ = 3− 2
√

2. Therefore, the Euclidean norm of S is

‖S‖2 =
√

3 + 2
√

2. (19.54)

19.5.5 Diagonalizable Matrices

Definition 19.15 A square matrix S is diagonalizable if CJ has a basis
of eigenvectors of S.

In the case in which S is diagonalizable, with V be a square matrix whose
columns are linearly independent eigenvectors of S and L the diagonal
matrix having the eigenvalues of S along its main diagonal, we have SV =
V L, or V −1SV = L. Let T = V −1 and define ‖x‖T = ‖Tx‖2, the Euclidean
norm of Tx. Then the induced matrix norm of S is ‖S‖T = ρ(S). We
see from this that, for any diagonalizable matrix S, in particular, for any
Hermitian matrix, there is a vector norm such that the induced matrix
norm of S is ρ(S). In the Hermitian case we know that, if the eigenvector
columns of V are scaled to have length one, then V −1 = V † and ‖Tx‖2 =
‖V †x‖2 = ‖x‖2, so that the required vector norm is just the Euclidean
norm, and ‖S‖T is just ‖S‖2, which we know to be ρ(S).

19.6. EXERCISES 255

19.5.6 Gerschgorin’s Theorem

Gerschgorin’s theorem gives us a way to estimate the eigenvalues of an
arbitrary square matrix A.

Theorem 19.1 Let A be J by J . For j = 1, ..., J , let Cj be the circle
in the complex plane with center Ajj and radius rj =

∑
m6=j |Ajm|. Then

every eigenvalue of A lies within one of the Cj.

Proof: Let λ be an eigenvalue of A, with associated eigenvector u. Let
uj be the entry of the vector u having the largest absolute value. From
Au = λu, we have

(λ−Ajj)uj =
∑
m6=j

Ajmum, (19.55)

so that

|λ−Ajj | ≤
∑
m6=j

|Ajm||um|/|uj | ≤ rj . (19.56)

This completes the proof.

19.5.7 Strictly Diagonally Dominant Matrices

Definition 19.16 A square I by I matrix S is said to be strictly diagonally
dominant if, for each i = 1, ..., I,

|Sii| > ri =
∑
m6=i

|Sim|. (19.57)

When the matrix S is strictly diagonally dominant, all the eigenvalues of S
lie within the union of the spheres with centers Sii and radii Sii. With D
the diagonal component of S, the matrix D−1S then has all its eigenvalues
within the circle of radius one, centered at (1, 0). Then ρ(I −D−1S) < 1.
This result is used discussing the Jacobi splitting method [45].

19.6 Exercises

19.1 Show that every convergent sequence is a Cauchy sequence.

19.2 Let S be the set of rational numbers, with d(s, t) = |s− t|. Show that
(S, d) is a metric space, but not a complete metric space.

19.3 Show that any convergent sequence in a metric space is bounded.
Find a bounded sequence of real numbers that is not convergent.

256 CHAPTER 19. APPENDIX: METRIC SPACES AND NORMS

19.4 Show that, if {sk} is bounded, then, for any element c in the metric
space, there is a constant r > 0, with d(c, sk) ≤ r, for all k.

19.5 Show that your bounded, but not convergent, sequence found in Ex-
ercise 19.3 has a cluster point.

19.6 Show that, if x is a cluster point of the sequence {xk}, and if d(x, xk) ≥
d(x, xk+1), for all k, then x is the limit of the sequence.

19.7 Show that the 1-norm is a norm.

19.8 Show that the ∞-norm is a norm.

19.9 Show that the 2-norm is a norm. Hint: for the triangle inequality,
use the Cauchy Inequality.

19.10 Show that the Q-weighted 2-norm is a norm.

19.11 Show that ρ(S2) = ρ(S)2.

19.12 Show that, if S is Hermitian, then every eigenvalue of S is real.
Hint: suppose that Sx = λx. Then consider x†Sx.

19.13 Use the SVD of A to obtain the eigenvalue/eigenvector decomposi-
tions of B and C:

B =
N∑
i=1

λiu
i(ui)†, (19.58)

and

C =
N∑
i=1

λiv
i(vi)†. (19.59)

19.14 Show that, for any square matrix S and any induced matrix norm
‖S‖, we have ‖S‖ ≥ ρ(S). Consequently, for any induced matrix norm
‖S‖,

‖S‖ ≥ |λ|, (19.60)

for every eigenvalue λ of S. So we know that

ρ(S) ≤ ‖S‖, (19.61)

for every induced matrix norm, but, according to Lemma 19.6, we also have

‖S‖M ≤ ρ(S) + ε. (19.62)

19.15 Show that, if ρ(S) < 1, then there is a vector norm on CJ for which
the induced matrix norm of S is less than one.

19.16 Show that, if S is Hermitian, then ‖S‖2 = ρ(S). Hint: use Exercise
(19.11).

Chapter 20

Appendix: Differentiation

The definition of the derivative of a function g : D ⊆ R → R is a familiar
one. In this chapter we examine various ways in which this definition can
be extended to functions f : D ⊆ RJ → R of several variables. Here D is
the domain of the function f and we assume that int(D) is not empty.

20.1 Directional Derivative

We begin with one- and two-sided directional derivatives.

20.1.1 Definitions

The function g(x) = |x| does not have a derivative at x = 0, but it has
one-sided directional derivatives there. The one-sided directional derivative
of g(x) at x = 0, in the direction of x = 1, is

g′+(0; 1) = lim
t↓0

1
t
[g(0 + t)− g(0)] = 1, (20.1)

and in the direction of x = −1, it is

g′+(0;−1) = lim
t↓0

1
t
[g(0− t)− g(0)] = 1. (20.2)

However, the two-sided derivative of g(x) = |x| does not exist at x = 0.
We can extend the concept of one-sided directional derivatives to func-

tions of several variables.

Definition 20.1 Let f : D ⊆ RJ → R be a real-valued function of several
variables, let a be in int(D), and let d be a unit vector in RJ . The one-sided
directional derivative of f(x), at x = a, in the direction of d, is

f ′+(a; d) = lim
t↓0

1
t
[f(a+ td)− f(a)]. (20.3)

257

258 CHAPTER 20. APPENDIX: DIFFERENTIATION

Definition 20.2 The two-sided directional derivative of f(x) at x = a, in
the direction of d, is

f ′(a; d) = lim
t→0

1
t
[f(a+ td)− f(a)]. (20.4)

If the two-sided directional derivative exists then we have

f ′(a; d) = f ′+(a; d) = −f ′+(a;−d).

Given x = a and d, we define the function φ(t) = f(a+ td), for t such that
a+ td is in D. The derivative of φ(t) at t = 0 is then

φ′(0) = lim
t→0

1
t
[φ(t)− φ(0)] = f ′(a; d). (20.5)

20.2 Partial Derivatives

For j = 1, ..., J , denote by ej the vector whose entries are all zero, except
for a one in the jth position.

Definition 20.3 If f ′(a; ej) exists, then it is ∂f
∂xj

(a), the partial derivative
of f(x), at x = a, with respect to xj, the jth entry of the variable vector x.

Definition 20.4 If the partial derivative, at x = a, with respect to xj,
exists for each j, then the gradient of f(x), at x = a, is the vector ∇f(a)
whose entries are ∂f

∂xj
(a).

20.3 Some Examples

We consider some examples of directional derivatives.

20.3.1 Example 1.

For (x, y) 6= (0, 0), let

f(x, y) =
2xy

x2 + y2
,

and define f(0, 0) = 1. Let d = (cos θ, sin θ). Then it is easy to show that
φ(t) = sin 2θ, for t 6= 0, and φ(0) = 1. If θ is such that sin 2θ = 1, then φ(t)
is constant, and φ′(0) = 0. But, if sin 2θ 6= 1, then φ(t) is discontinuous
at t = 0, so φ(t) is not differentiable at t = 0. Therefore, f(x, y) has a
two-sided directional derivative at (x, y) = (0, 0) only in certain directions.

20.4. GÂTEAUX DERIVATIVE 259

20.3.2 Example 2.

For (x, y) 6= (0, 0), let

f(x, y) =
2xy2

x2 + y4
,

and f(0, 0) = 0. Again, let d = (cos θ, sin θ). Then we have

φ′(0) =
2 sin2 θ

cos2 θ
,

for cos θ 6= 0. If cos θ = 0, then f(x) is the constant zero in that direction,
so φ′(0) = 0. Therefore, the function f(x, y) has a two-sided directional
derivative at (x, y) = (0, 0), for every vector d. Note that the two partial
derivatives are both zero at (x, y) = (0, 0), so ∇f(0, 0) = 0.

20.4 Gâteaux Derivative

Just having a two-sided directional derivative for every d is not sufficient,
in most cases; we need something stronger.

Definition 20.5 If f(x) has a two-sided directional derivative at x = a,
for every vector d, and, in addition,

f ′(a; d) = 〈∇f(a), d〉,

for each d, then f(x) is Gâteaux-differentiable at x = a, and ∇f(a) is the
Gâteaux derivative of f(x) at x = a, also denoted f ′(a).

Example 2 above showed that it is possible for f(x) to have a two-sided
directional derivative at x = a, for every d, and yet fail to be Gâteaux-
differentiable.

From Cauchy’s Inequality, we know that

|f ′(a; d)| = |〈∇f(a), d〉| ≤ ||∇f(a)||2 ||d||2,

and that f ′(a; d) attains its most positive value when the direction d is
a positive multiple of ∇f(a). This is the motivation for steepest descent
optimization.

For ordinary functions g : D ⊆ R → R, we know that differentiability
implies continuity. It is possible for f(x) to be Gâteaux-differentiable at
x = a and yet not be continuous at x = a; see Ortega and Rheinboldt
[127]. This means that the notion of Gâteaux-differentiability is too weak.
In order to have a nice theory of multivariate differentiation, the notion of
derivative must be strengthened. The stronger notion we seek is Fréchet
differentiability.

260 CHAPTER 20. APPENDIX: DIFFERENTIATION

20.5 Fréchet Derivative

The notion of Fréchet differentiability is the one appropriate for our pur-
poses.

20.5.1 The Definition

Definition 20.6 We say that f(x) is Fréchet-differentiable at x = a and
∇f(a) is its Fréchet derivative if

lim
||h||→0

1
||h||

|f(a+ h)− f(a)− 〈∇f(a), h〉| = 0.

Notice that the limit in the definition of the Fréchet derivative involves the
norm of the incremental vector h, which is where the power of the Fréchet
derivative arises. Also, since the norm and the associated inner product can
be changed, so can the Fréchet derivative; see Exercise 20.1 for an example.
The corresponding limit in the definition of the Gâteaux derivative involves
only the scalar t, and therefore requires no norm and makes sense in any
vector space.

20.5.2 Properties of the Fréchet Derivative

It can be shown that if f(x) is Fréchet-differentiable at x = a, then f(x) is
continuous at x = a. If f(x) is Gâteaux-differentiable at each point in an
open set containing x = a, and ∇f(x) is continuous at x = a, then ∇f(a) is
also the Fréchet derivative of f(x) at x = a. Since the continuity of ∇f(x)
is equivalent to the continuity of each of the partial derivatives, we learn
that f(x) is Fréchet-differentiable at x = a if it is Gâteaux-differentiable
in a neighborhood of x = a and the partial derivatives are continuous at
x = a.

20.6 The Chain Rule

For fixed a and d in RJ , the function φ(t) = f(a + td), defined for the
real variable t, is a composition of the function f : RJ → R itself and the
function g : R → RJ defined by g(t) = a + td; that is, φ(t) = f(g(t)).
Writing

f(a+ td) = f(a1 + td1, a2 + td2, ..., aJ + tdJ),

and applying the Chain Rule, we find that

f ′(a; d) = φ′(0) =
∂f

∂x1
(a)d1 + ...+

∂f

∂xJ
(a)dJ ;

20.7. EXERCISES 261

that is,
f ′(a; d) = φ′(0) = 〈∇f(a), d〉.

But we know that f ′(a; d) is not always equal to 〈∇f(a), d〉. This means
that the Chain Rule is not universally true and must involve conditions on
the function f . Clearly, unless the function f is Gâteaux-differentiable, the
chain rule cannot hold. For an in-depth treatment of this matter, consult
Ortega and Rheinboldt [127].

20.7 Exercises

20.1 Let Q be a real, positive-definite symmetric matrix. Define the Q-
inner product on RJ to be

〈x, y〉Q = xTQy = 〈x,Qy〉,

and the Q-norm to be

||x||Q =
√
〈x, x〉Q.

Show that, if ∇f(a) is the Fréchet derivative of f(x) at x = a, for the
usual Euclidean norm, then Q−1∇f(a) is the Fréchet derivative of f(x) at
x = a, for the Q-norm. Hint: use the inequality√

λJ ||h||2 ≤ ||h||Q ≤
√
λ1||h||2,

where λ1 and λJ denote the greatest and smallest eigenvalues of Q, respec-
tively.

20.2 ([15], Ex. 10, p. 134) For (x, y) not equal to (0, 0), let

f(x, y) =
xayb

xp + yq
,

with f(0, 0) = 0. In each of the five cases below, determine if the function
is continuous, Gâteaux, Fréchet or continuously differentiable at (0, 0).

• 1) a = 2, b = 3, p = 2, and q = 4;

• 2) a = 1, b = 3, p = 2, and q = 4;

• 3) a = 2, b = 4, p = 4, and q = 8;

• 4) a = 1, b = 2, p = 2, and q = 2;

• 5) a = 1, b = 2, p = 2, and q = 4.

262 CHAPTER 20. APPENDIX: DIFFERENTIATION

Chapter 21

Appendix: Inner Product
Spaces

An inner product is a generalization of the dot product between two vec-
tors. An inner product space or pre-Hilbert space is a vector space on
which we have defined an inner product. Such spaces arise in many areas
of mathematics and provide a convenient setting for performing optimal
approximation.

21.1 Background

We begin by recalling the solution of the vibrating string problem and
Sturm-Liouville problems.

21.1.1 The Vibrating String

When we solve the problem of the vibrating string using the technique of
separation of variables, the differential equation involving the space variable
x, and assuming constant mass density, is

y′′(x) +
ω2

c2
y(x) = 0, (21.1)

which we can write as an eigenvalue problem

y′′(x) + λy(x) = 0. (21.2)

The solutions to Equation (21.1) are

y(x) = α sin
(ω
c
x
)
.

263

264 CHAPTER 21. APPENDIX: INNER PRODUCT SPACES

In the vibrating string problem, the string is fixed at both ends, x = 0 and
x = L, so that

φ(0, t) = φ(L, t) = 0,

for all t. Therefore, we must have y(0) = y(L) = 0, so that the eigenfunc-

tion solution that corresponds to the eigenvalue λm =
(
πm
L

)2

must have
the form

y(x) = Am sin
(ωm
c
x
)

= Am sin
(πm
L
x
)
,

where ωm = πcm
L , for any positive integer m. Therefore, the boundary

conditions limit the choices for the separation constant ω.
We then discover that the eigenfunction solutions corresponding to dif-

ferent λ are orthogonal, in the sense that∫ L

0

sin
(πm
L
x
)

sin
(πn
L
x
)
dx = 0,

for m 6= n.

21.1.2 The Sturm-Liouville Problem

The general form for the Sturm-Liouville Problem is

d

dx

(
p(x)y′(x)

)
+ λw(x)y(x) = 0. (21.3)

As with the one-dimensional wave equation, boundary conditions, such as
y(a) = y(b) = 0, where a = −∞ and b = +∞ are allowed, restrict the
possible eigenvalues λ to an increasing sequence of positive numbers λm.
The corresponding eigenfunctions ym(x) will be w(x)-orthogonal, meaning
that

0 =
∫ b

a

ym(x)yn(x)w(x)dx,

for m 6= n. For various choices of w(x) and p(x) and various choices of a
and b, we obtain several famous sets of “orthogonal” functions.

Well known examples of Sturm-Liouville problems include

• Legendre:
d

dx

(
(1− x2)

dy

dx

)
+ λy = 0;

• Chebyshev:

d

dx

(√
1− x2

dy

dx

)
+ λ(1− x2)−1/2y = 0;

21.2. THE COMPLEX VECTOR DOT PRODUCT 265

• Hermite:
d

dx

(
e−x

2 dy

dx

)
+ λe−x

2
y = 0;

and

• Laguerre:
d

dx

(
xe−x

dy

dx

)
+ λe−xy = 0.

Each of these examples involves an inner product space and an orthog-
onal basis for that space.

21.2 The Complex Vector Dot Product

An inner product is a generalization of the notion of the dot product be-
tween two complex vectors.

21.2.1 The Two-Dimensional Case

Let u = (a, b) and v = (c, d) be two vectors in two-dimensional space. Let
u make the angle α > 0 with the positive x-axis and v the angle β > 0. Let
||u|| =

√
a2 + b2 denote the length of the vector u. Then a = ||u|| cosα,

b = ||u|| sinα, c = ||v|| cosβ and d = ||v|| sinβ. So u · v = ac + bd =
||u||||v||(cosα cosβ + sinα sinβ = ||u|| ||v|| cos(α− β). Therefore, we have

u · v = ||u|| ||v|| cos θ, (21.1)

where θ = α− β is the angle between u and v. Cauchy’s inequality is

|u · v| ≤ ||u|| ||v||,

with equality if and only if u and v are parallel. From Equation (21.1) we
know that the dot product u · v is zero if and only if the angle between
these two vectors is a right angle; we say then that u and v are mutually
orthogonal.

Cauchy’s inequality extends to complex vectors u and v:

u · v =
N∑
n=1

unvn, (21.2)

and Cauchy’s Inequality still holds.

Proof of Cauchy’s Inequality: To prove Cauchy’s inequality for the
complex vector dot product, we write u · v = |u · v|eiθ. Let t be a real
variable and consider

0 ≤ ||e−iθu− tv||2 = (e−iθu− tv) · (e−iθu− tv)

266 CHAPTER 21. APPENDIX: INNER PRODUCT SPACES

= ||u||2 − t[(e−iθu) · v + v · (e−iθu)] + t2||v||2

= ||u||2 − t[(e−iθu) · v + (e−iθu) · v] + t2||v||2

= ||u||2 − 2Re(te−iθ(u · v)) + t2||v||2

= ||u||2 − 2Re(t|u · v|) + t2||v||2 = ||u||2 − 2t|u · v|+ t2||v||2.
This is a nonnegative quadratic polynomial in the variable t, so it can-
not have two distinct real roots. Therefore, the discriminant 4|u · v|2 −
4||v||2||u||2 must be non-positive; that is, |u · v|2 ≤ ||u||2||v||2. This is
Cauchy’s inequality.

A careful examination of the proof just presented shows that we did not
explicitly use the definition of the complex vector dot product, but only
some of its properties. This suggested to mathematicians the possibility of
abstracting these properties and using them to define a more general con-
cept, an inner product, between objects more general than complex vectors,
such as infinite sequences, random variables, and matrices. Such an inner
product can then be used to define the norm of these objects and thereby a
distance between such objects. Once we have an inner product defined, we
also have available the notions of orthogonality and best approximation.

21.2.2 Orthogonality

Consider the problem of writing the two-dimensional real vector (3,−2) as
a linear combination of the vectors (1, 1) and (1,−1); that is, we want to
find constants a and b so that (3,−2) = a(1, 1) + b(1,−1). One way to do
this, of course, is to compare the components: 3 = a + b and −2 = a − b;
we can then solve this simple system for the a and b. In higher dimensions
this way of doing it becomes harder, however. A second way is to make
use of the dot product and orthogonality.

The dot product of two vectors (x, y) and (w, z) in R2 is (x, y) · (w, z) =
xw+yz. If the dot product is zero then the vectors are said to be orthogonal;
the two vectors (1, 1) and (1,−1) are orthogonal. We take the dot product
of both sides of (3,−2) = a(1, 1) + b(1,−1) with (1, 1) to get

1 = (3,−2) ·(1, 1) = a(1, 1) ·(1, 1)+b(1,−1) ·(1, 1) = a(1, 1) ·(1, 1)+0 = 2a,

so we see that a = 1
2 . Similarly, taking the dot product of both sides with

(1,−1) gives

5 = (3,−2) · (1,−1) = a(1, 1) · (1,−1) + b(1,−1) · (1,−1) = 2b,

so b = 5
2 . Therefore, (3,−2) = 1

2 (1, 1) + 5
2 (1,−1). The beauty of this

approach is that it does not get much harder as we go to higher dimensions.
Since the cosine of the angle θ between vectors u and v is

cos θ = u · v/||u|| ||v||,

21.3. GENERALIZING THE DOT PRODUCT: INNER PRODUCTS267

where ||u||2 = u · u, the projection of vector v on to the line through the
origin parallel to u is

Proju(v) =
u · v
u · u

u.

Therefore, the vector v can be written as

v = Proju(v) + (v − Proju(v)),

where the first term on the right is parallel to u and the second one is
orthogonal to u.

How do we find vectors that are mutually orthogonal? Suppose we
begin with (1, 1). Take a second vector, say (1, 2), that is not parallel to
(1, 1) and write it as we did v earlier, that is, as a sum of two vectors,
one parallel to (1, 1) and the second orthogonal to (1, 1). The projection
of (1, 2) onto the line parallel to (1, 1) passing through the origin is

(1, 1) · (1, 2)
(1, 1) · (1, 1)

(1, 1) =
3
2
(1, 1) = (

3
2
,
3
2
)

so
(1, 2) = (

3
2
,
3
2
) + ((1, 2)− (

3
2
,
3
2
)) = (

3
2
,
3
2
) + (−1

2
,
1
2
).

The vectors (− 1
2 ,

1
2) = − 1

2 (1,−1) and, therefore, (1,−1) are then orthogo-
nal to (1, 1). This approach is the basis for the Gram-Schmidt method for
constructing a set of mutually orthogonal vectors.

21.3 Generalizing the Dot Product: Inner
Products

The proof of Cauchy’s Inequality rests not on the actual definition of the
complex vector dot product, but rather on four of its most basic properties.
We use these properties to extend the concept of the complex vector dot
product to that of inner product. Later in this chapter we shall give several
examples of inner products, applied to a variety of mathematical objects,
including infinite sequences, functions, random variables, and matrices.
For now, let us denote our mathematical objects by u and v and the inner
product between them as 〈u,v〉 . The objects will then be said to be
members of an inner-product space. We are interested in inner products
because they provide a notion of orthogonality, which is fundamental to
best approximation and optimal estimation.

21.3.1 Defining an Inner Product and Norm

The four basic properties that will serve to define an inner product are:

268 CHAPTER 21. APPENDIX: INNER PRODUCT SPACES

• 1: 〈u,u〉 ≥ 0, with equality if and only if u = 0;

• 2: 〈v,u〉 = 〈u,v〉 ;

• 3: 〈u,v + w〉 = 〈u,v〉+ 〈u,w〉;

• 4: 〈cu,v〉 = c〈u,v〉 for any complex number c.

The inner product is the basic ingredient in Hilbert space theory. Using
the inner product, we define the norm of u to be

||u|| =
√
〈u,u〉

and the distance between u and v to be ||u− v||.

The Cauchy-Schwarz Inequality: Because these four properties were
all we needed to prove the Cauchy inequality for the complex vector dot
product, we obtain the same inequality whenever we have an inner product.
This more general inequality is the Cauchy-Schwarz Inequality:

|〈u,v〉| ≤
√
〈u,u〉

√
〈v,v〉

or
|〈u,v〉| ≤ ||u|| ||v||,

with equality if and only if there is a scalar c such that v = cu. We say
that the vectors u and v are orthogonal if 〈u,v〉 = 0. We turn now to
some examples.

21.3.2 Some Examples of Inner Products

Here are several examples of inner products.

• Inner product of infinite sequences: Let u = {un} and v = {vn}
be infinite sequences of complex numbers. The inner product is then

〈u,v〉 =
∑

unvn,

and
||u|| =

√∑
|un|2.

The sums are assumed to be finite; the index of summation n is singly
or doubly infinite, depending on the context. The Cauchy-Schwarz
inequality says that

|
∑

unvn| ≤
√∑

|un|2
√∑

|vn|2.

21.3. GENERALIZING THE DOT PRODUCT: INNER PRODUCTS269

• Inner product of functions: Now suppose that u = f(x) and
v = g(x). Then,

〈u,v〉 =
∫
f(x)g(x)dx

and

||u|| =

√∫
|f(x)|2dx.

The integrals are assumed to be finite; the limits of integration de-
pend on the support of the functions involved. The Cauchy-Schwarz
inequality now says that

|
∫
f(x)g(x)dx| ≤

√∫
|f(x)|2dx

√∫
|g(x)|2dx.

• Inner product of random variables: Now suppose that u = X
and v = Y are random variables. Then,

〈u,v〉 = E(XY)

and
||u|| =

√
E(|X|2),

which is the standard deviation of X if the mean of X is zero. The
expected values are assumed to be finite. The Cauchy-Schwarz in-
equality now says that

|E(XY)| ≤
√
E(|X|2)

√
E(|Y |2).

If E(X) = 0 and E(Y) = 0, the random variables X and Y are
orthogonal if and only if they are uncorrelated.

• Inner product of complex matrices: Now suppose that u = A
and v = B are complex matrices. Then,

〈u,v〉 = trace(B†A)

and
||u|| =

√
trace(A†A),

where the trace of a square matrix is the sum of the entries on the
main diagonal. As we shall see later, this inner product is simply the
complex vector dot product of the vectorized versions of the matrices
involved. The Cauchy-Schwarz inequality now says that

|trace(B†A)| ≤
√

trace(A†A)
√

trace(B†B).

270 CHAPTER 21. APPENDIX: INNER PRODUCT SPACES

• Weighted inner product of complex vectors: Let u and v be
complex vectors and let Q be a Hermitian positive-definite matrix;
that is, Q† = Q and u†Qu > 0 for all nonzero vectors u. The inner
product is then

〈u,v〉 = v†Qu

and
||u|| =

√
u†Qu.

We know from the eigenvector decomposition of Q that Q = C†C for
some matrix C. Therefore, the inner product is simply the complex
vector dot product of the vectors Cu and Cv. The Cauchy-Schwarz
inequality says that

|v†Qu| ≤
√

u†Qu
√

v†Qv.

• Weighted inner product of functions: Now suppose that u =
f(x) and v = g(x) and w(x) > 0. Then define

〈u,v〉 =
∫
f(x)g(x)w(x)dx

and

||u|| =

√∫
|f(x)|2w(x)dx.

The integrals are assumed to be finite; the limits of integration depend
on the support of the functions involved. This inner product is simply
the inner product of the functions f(x)

√
w(x) and g(x)

√
w(x). The

Cauchy-Schwarz inequality now says that

|
∫
f(x)g(x)w(x)dx| ≤

√∫
|f(x)|2w(x)dx

√∫
|g(x)|2w(x)dx.

Once we have an inner product defined, we can speak about orthogonality
and best approximation. Important in that regard is the orthogonality
principle.

21.4 Best Approximation and the Orthogo-
nality Principle

Imagine that you are standing and looking down at the floor. The point
B on the floor that is closest to N , the tip of your nose, is the unique

21.4. BEST APPROXIMATION AND THE ORTHOGONALITY PRINCIPLE271

point on the floor such that the vector from B to any other point A on the
floor is perpendicular to the vector from N to B; that is, 〈BN,BA〉 = 0.
This is a simple illustration of the orthogonality principle. Whenever we
have an inner product defined we can speak of orthogonality and apply
the orthogonality principle to find best approximations. For notational
simplicity, we shall consider only real inner product spaces.

21.4.1 Best Approximation

Let u and v1, ...,vN be members of a real inner-product space. For all
choices of scalars a1, ..., aN , we can compute the distance from u to the
member a1v1 + ...aNvN . Then, we minimize this distance over all choices
of the scalars; let b1, ..., bN be this best choice.

The distance squared from u to a1v1 + ...aNvN is

||u− (a1v1 + ...aNvN)||2 = 〈u− (a1v1 + ...aNvN),u− (a1v1 + ...aNvN)〉,

= ||u||2 − 2〈u,
N∑
n=1

anvn〉+
N∑
n=1

N∑
m=1

anam〈vnvm〉.

Setting the partial derivative with respect to an equal to zero, we have

〈u,vn〉 =
N∑
m=1

am〈vmvn〉.

With a = (a1, ..., aN)T ,

d = (〈u,v1〉, ..., 〈u,vN 〉)T

and V the matrix with entries

Vmn = 〈vm,vn〉,

we find that we must solve the system of equations V a = d. When the
vectors vn are mutually orthogonal and each has norm equal to one, then
V = I, the identity matrix, and the desired vector a is simply d.

21.4.2 The Orthogonality Principle

The orthogonality principle provides another way to view the calculation
of the best approximation: let the best approximation of u be the vector

v̂ = b1v1 + ...bNvN .

Then
〈u− v̂,vn〉 = 〈u− (b1v1 + ...bNvN),vn〉 = 0,

272 CHAPTER 21. APPENDIX: INNER PRODUCT SPACES

for n = 1, 2, ..., N . This leads directly to the system of equations

d = V b,

which, as we just saw, provides the optimal coefficients.
To see why the orthogonality principle is valid, fix a value of n and

consider the problem of minimizing the distance

||u− (b1v1 + ...bNvN + αvn)||

as a function of α. Writing the norm squared in terms of the inner product,
expanding the terms, and differentiating with respect to α, we find that
the minimum occurs when

α = 〈u− b1v1 + ...bNvN ,vn〉.

But we already know that the minimum occurs when α = 0. This completes
the proof of the orthogonality principle.

21.5 Gram-Schmidt Orthogonalization

We have seen that the best approximation is easily calculated if the vectors
vn are mutually orthogonal. But how do we get such a mutually orthogonal
set, in general? The Gram-Schmidt Orthogonalization Method is one way
to proceed.

Let {v1, ...,vN} be a linearly independent set of vectors in the space
RM , where N ≤ M . The Gram-Schmidt method uses the vn to create
an orthogonal basis {u1, ...,uN} for the span of the vn. Begin by taking
u1 = v1. For j = 2, ..., N , let

uj = vj − u1 · vj

u1 · u1
u1 − ...− uj−1 · vj

uj−1 · uj−1
uj−1. (21.1)

One obvious problem with this approach is that the calculations become
increasingly complicated and lengthy as the j increases. In many of the
important examples of orthogonal functions that we study in connection
with Sturm-Liouville problems, there is a two-term recursive formula that
enables us to generate the next orthogonal function from the two previous
ones.

Chapter 22

Appendix:
Conjugate-Direction
Algorithms

Finding the least-squares solution of a possibly inconsistent system of linear
equations Ax = b is equivalent to minimizing the quadratic function f(x) =
1
2 ||Ax − b||22 and so can be viewed within the framework of optimization.
Iterative optimization methods can then be used to provide, or at least
suggest, algorithms for obtaining the least-squares solution. The conjugate
gradient method is one such method.

22.1 Iterative Minimization

Iterative methods for minimizing a real-valued function f(x) over the vector
variable x usually take the following form: having obtained xk−1, a new
direction vector dk is selected, an appropriate scalar αk > 0 is determined
and the next member of the iterative sequence is given by

xk = xk−1 + αkd
k. (22.1)

Ideally, one would choose the αk to be the value of α for which the function
f(xk−1+αdk) is minimized. It is assumed that the direction dk is a descent
direction; that is, for small positive α the function f(xk−1 +αdk) is strictly
decreasing. Finding the optimal value of α at each step of the iteration is
difficult, if not impossible, in most cases, and approximate methods, using
line searches, are commonly used.

273

274CHAPTER 22. APPENDIX: CONJUGATE-DIRECTION ALGORITHMS

Lemma 22.1 For each k we have

∇f(xk) · dk = 0. (22.2)

Proof: Differentiate the function f(xk−1+αdk) with respect to the variable
α.

Since the gradient ∇f(xk) is orthogonal to the previous direction vector
dk and also because −∇f(x) is the direction of greatest decrease of f(x),
the choice of dk+1 = −∇f(xk) as the next direction vector is a reasonable
one. With this choice we obtain Cauchy’s steepest descent algorithm [115]:

Algorithm 22.1 (Steepest Descent) Let x0 be arbitrary. Then let

xk+1 = xk − αk+1∇f(xk). (22.3)

The steepest descent method need not converge in general and even when
it does, it can do so slowly, suggesting that there may be better choices
for the direction vectors. For example, the Newton-Raphson method [122]
employs the following iteration:

xk+1 = xk −∇2f(xk)−1∇f(xk), (22.4)

where ∇2f(x) is the Hessian matrix for f(x) at x. To investigate further
the issues associated with the selection of the direction vectors, we consider
the more tractable special case of quadratic optimization.

22.2 Quadratic Optimization

Let A be an arbitrary real I by J matrix. The linear system of equations
Ax = b need not have any solutions, and we may wish to find a least-squares
solution x = x̂ that minimizes

f(x) =
1
2
||b−Ax||22. (22.5)

The vector b can be written

b = Ax̂+ ŵ, (22.6)

where AT ŵ = 0 and a least squares solution is an exact solution of the
linear system Qx = c, with Q = ATA and c = AT b. We shall assume
that Q is invertible and there is a unique least squares solution; this is the
typical case.

We consider now the iterative scheme described by Equation (22.1) for
f(x) as in Equation (22.5). For this f(x) the gradient becomes

∇f(x) = Qx− c. (22.7)

The optimal αk for the iteration can be obtained in closed form.

22.2. QUADRATIC OPTIMIZATION 275

Lemma 22.2 The optimal αk is

αk =
rk · dk

dk ·Qdk
, (22.8)

where rk = c−Qxk−1.

Lemma 22.3 Let ||x||2Q = x · Qx denote the square of the Q-norm of x.
Then

||x̂− xk−1||2Q − ||x̂− xk||2Q = (rk · dk)2/dk ·Qdk ≥ 0 (22.9)

for any direction vectors dk.

If the sequence of direction vectors {dk} is completely general, the iter-
ative sequence need not converge. However, if the set of direction vectors
is finite and spans RJ and we employ them cyclically, convergence follows.

Theorem 22.1 Let {d1, ..., dJ} be any finite set whose span is all of RJ .
Let αk be chosen according to Equation (22.8). Then, for k = 0, 1, ...,
j = k(modJ) + 1, and any x0, the sequence defined by

xk = xk−1 + αkd
j (22.10)

converges to the least squares solution.

Proof: The sequence {||x̂−xk||2Q} is decreasing and, therefore, the sequence
{(rk · dk)2/dk · Qdk must converge to zero. Therefore, the vectors xk are
bounded, and for each j = 1, ..., J , the subsequences {xmJ+j , m = 0, 1, ...}
have cluster points, say x∗,j with

x∗,j = x∗,j−1 +
(c−Qx∗,j−1) · dj

dj ·Qdj
dj . (22.11)

Since

rmJ+j · dj → 0, (22.12)

it follows that, for each j = 1, ..., J ,

(c−Qx∗,j) · dj = 0. (22.13)

Therefore,

x∗,1 = ... = x∗,J = x∗ (22.14)

276CHAPTER 22. APPENDIX: CONJUGATE-DIRECTION ALGORITHMS

with Qx∗ = c. Consequently, x∗ is the least squares solution and the
sequence {||x∗−xk||Q} is decreasing. But a subsequence converges to zero;
therefore, {||x∗ − xk||Q} → 0. This completes the proof.

There is an interesting corollary to this theorem that pertains to a mod-
ified version of the ART algorithm. For k = 0, 1, ... and i = k(modM) + 1
and with the rows of A normalized to have length one, the ART iterative
step is

xk+1 = xk + (bi − (Axk)i)ai, (22.15)

where ai is the ith column of AT . When Ax = b has no solutions, the
ART algorithm does not converge to the least-squares solution; rather,
it exhibits subsequential convergence to a limit cycle. However, using the
previous theorem, we can show that the following modification of the ART,
which we shall call the least squares ART (LS-ART), converges to the least-
squares solution for every x0:

xk+1 = xk +
rk+1 · ai

ai ·Qai
ai. (22.16)

In the quadratic case the steepest descent iteration has the form

xk = xk−1 +
rk · rk

rk ·Qrk
rk. (22.17)

We have the following result.

Theorem 22.2 The steepest descent method converges to the least-squares
solution.

Proof: As in the proof of the previous theorem, we have

||x̂− xk−1||2Q − ||x̂− xk||2Q = (rk · dk)2/dk ·Qdk ≥ 0, (22.18)

where now the direction vectors are dk = rk. So, the sequence {||x̂−xk||2Q}
is decreasing, and therefore the sequence {(rk ·rk)2/rk ·Qrk} must converge
to zero. The sequence {xk} is bounded; let x∗ be a cluster point. It follows
that c − Qx∗ = 0, so that x∗ is the least-squares solution x̂. The rest of
the proof follows as in the proof of the previous theorem.

22.3. CONJUGATE BASES FOR RJ 277

22.3 Conjugate Bases for RJ

If the set {v1, ..., vJ} is a basis for RJ , then any vector x in RJ can be
expressed as a linear combination of the basis vectors; that is, there are
real numbers a1, ..., aJ for which

x = a1v
1 + a2v

2 + ...+ aJv
J . (22.19)

For each x the coefficients aj are unique. To determine the aj we write

x · vm = a1v
1 · vm + a2v

2 · vm + ...+ aJv
J · vm, (22.20)

for m = 1, ...,M . Having calculated the quantities x · vm and vj · vm, we
solve the resulting system of linear equations for the aj .

If the set {u1, ..., uM} is an orthogonal basis, that is, then uj · um = 0,
unless j = m, then the system of linear equations is now trivial to solve.
The solution is aj = x · uj/uj · uj , for each j. Of course, we still need to
compute the quantities x · uj .

The least-squares solution of the linear system of equations Ax = b is

x̂ = (ATA)−1AT b = Q−1c. (22.21)

To express x̂ as a linear combination of the members of an orthogonal basis
{u1, ..., uJ} we need the quantities x̂ ·uj , which usually means that we need
to know x̂ first. For a special kind of basis, a Q-conjugate basis, knowing x̂
ahead of time is not necessary; we need only know Q and c. Therefore, we
can use such a basis to find x̂. This is the essence of the conjugate gradient
method (CGM), in which we calculate a conjugate basis and, in the process,
determine x̂.

22.3.1 Conjugate Directions

From Equation (22.2) we have

(c−Qxk+1) · dk = 0, (22.22)

which can be expressed as

(x̂− xk+1) ·Qdk = (x̂− xk+1)TQdk = 0. (22.23)

Definition 22.1 Two vectors x and y are said to be Q-orthogonal (or Q-
conjugate, or just conjugate), if x ·Qy = 0.

So, the least-squares solution that we seek lies in a direction from xk+1 that
is Q-orthogonal to dk. This suggests that we can do better than steepest
descent if we take the next direction to be Q-orthogonal to the previous one,
rather than just orthogonal. This leads us to conjugate direction methods.

278CHAPTER 22. APPENDIX: CONJUGATE-DIRECTION ALGORITHMS

Lemma 22.4 Say that the set {p1, ..., pn} is a conjugate set for RJ if
pi · Qpj = 0 for i 6= j. Any conjugate set that does not contain zero is
linearly independent. If pn 6= 0 for n = 1, ..., J , then the least-squares
vector x̂ can be written as

x̂ = a1p
1 + ...+ aJp

J , (22.24)

with aj = c · pj/pj ·Qpj for each j.

Proof: Use the Q-inner product 〈x, y〉Q = x ·Qy.

Therefore, once we have a conjugate basis, computing the least squares
solution is trivial. Generating a conjugate basis can obviously be done
using the standard Gram-Schmidt approach.

22.3.2 The Gram-Schmidt Method

Let {v1, ..., vJ} be a linearly independent set of vectors in the space RM ,
where J ≤ M . The Gram-Schmidt method uses the vj to create an or-
thogonal basis {u1, ..., uJ} for the span of the vj . Begin by taking u1 = v1.
For j = 2, ..., J , let

uj = vj − u1 · vj

u1 · u1
u1 − ...− uj−1 · vj

uj−1 · uj−1
uj−1. (22.25)

To apply this approach to obtain a conjugate basis, we would simply replace
the dot products uk · vj and uk · uk with the Q-inner products, that is,

pj = vj − p1 ·Qvj

p1 ·Qp1
p1 − ...− pj−1 ·Qvj

pj−1 ·Qpj−1
pj−1. (22.26)

Even though the Q-inner products can always be written as x·Qy = Ax·Ay,
so that we need not compute the matrix Q, calculating a conjugate basis
using Gram-Schmidt is not practical for large J . There is a way out,
fortunately.

If we take p1 = v1 and vj = Qpj−1, we have a much more efficient
mechanism for generating a conjugate basis, namely a three-term recursion
formula [115]. The set {p1, Qp1, ..., QpJ−1} need not be a linearly indepen-
dent set, in general, but, if our goal is to find x̂, and not really to calculate
a full conjugate basis, this does not matter, as we shall see.

Theorem 22.3 Let p1 6= 0 be arbitrary. Let p2 be given by

p2 = Qp1 − Qp1 ·Qp1

p1 ·Qp1
p1, (22.27)

22.4. THE CONJUGATE GRADIENT METHOD 279

so that p2 ·Qp1 = 0. Then, for n ≥ 2, let pn+1 be given by

pn+1 = Qpn − Qpn ·Qpn

pn ·Qpn
pn − Qpn−1 ·Qpn

pn−1 ·Qpn−1
pn−1. (22.28)

Then, the set {p1, ..., pJ} is a conjugate set for RJ . If pn 6= 0 for each n,
then the set is a conjugate basis for RJ .

Proof: We consider the induction step of the proof. Assume that {p1, ..., pn}
is a Q-orthogonal set of vectors; we then show that {p1, ..., pn+1} is also,
provided that n ≤ J − 1. It is clear from Equation (22.28) that

pn+1 ·Qpn = pn+1 ·Qpn−1 = 0. (22.29)

For j ≤ n− 2, we have

pn+1 ·Qpj = pj ·Qpn+1 = pj ·Q2pn − apj ·Qpn − bpj ·Qpn−1, (22.30)

for constants a and b. The second and third terms on the right side are
then zero because of the induction hypothesis. The first term is also zero
since

pj ·Q2pn = (Qpj) ·Qpn = 0 (22.31)

because Qpj is in the span of {p1, ..., pj+1}, and so is Q-orthogonal to pn.

The calculations in the three-term recursion formula Equation (22.28)
also occur in the Gram-Schmidt approach in Equation (22.26); the point is
that Equation (22.28) uses only the first three terms, in every case.

22.4 The Conjugate Gradient Method

The main idea in the conjugate gradient method (CGM) is to build the
conjugate set as we calculate the least squares solution using the iterative
algorithm

xn = xn−1 + αnp
n. (22.32)

The αn is chosen so as to minimize the function of α defined by f(xn−1 +
αpn), and so we have

αn =
rn · pn

pn ·Qpn
, (22.33)

where rn = c − Qxn−1. Since the function f(x) = 1
2 ||Ax − b||22 has for

its gradient ∇f(x) = AT (Ax − b) = Qx − c, the residual vector rn =

280CHAPTER 22. APPENDIX: CONJUGATE-DIRECTION ALGORITHMS

c − Qxn−1 is the direction of steepest descent from the point x = xn−1.
The CGM combines the use of the negative gradient directions from the
steepest descent method with the use of a conjugate basis of directions, by
using the rn+1 to construct the next direction pn+1 in such a way as to
form a conjugate set {p1, ..., p

J}.
As before, there is an efficient recursive formula that provides the next

direction: let p1 = r1 = (c−Qx0) and

pn+1 = rn+1 − rn+1 ·Qpn

pn ·Qpn
pn. (22.34)

Since the αn is the optimal choice and

rn+1 = −∇f(xn), (22.35)

we have, according to Equation (22.2),

rn+1 · pn = 0. (22.36)

Lemma 22.5 For all n, rn+1 = 0 whenever pn+1 = 0, in which case we
have c = Qxn, so that xn is the least-squares solution.

In theory, the CGM converges to the least squares solution in finitely
many steps, since we either reach pn+1 = 0 or n+ 1 = J . In practice, the
CGM can be employed as a fully iterative method by cycling back through
the previously used directions.

An induction proof similar to the one used to prove Theorem 22.3 es-
tablishes that the set {p1, ..., pJ} is a conjugate set [115, 122]. In fact, we
can say more.

Theorem 22.4 For n = 1, 2, ..., J and j = 1, ..., n− 1 we have

• a) rn · rj = 0;

• b) rn · pj = 0; and

• c) pn ·Qpj = 0.

The proof presented here through a series of lemmas is based on that given
in [122].

The proof uses induction on the number n. Throughout the following
lemmas assume that the statements in the theorem hold for some n < J .
We prove that they hold also for n+ 1.

Lemma 22.6 The vector Qpj is in the span of the vectors rj and rj+1.

Proof: Use the fact that

rj+1 = rj − αjQp
j . (22.37)

22.4. THE CONJUGATE GRADIENT METHOD 281

Lemma 22.7 For each n, rn+1 · rn = 0.

Proof: Establish that

αn =
rn · rn

pn ·Qpn
. (22.38)

Lemma 22.8 For j = 1, ..., n− 1, rn+1 · rj = 0.

Proof: Use the induction hypothesis.

Lemma 22.9 For j = 1, ..., n, rn+1 · pj = 0.

Proof: First, establish that

pj = rj − βj−1p
j−1, (22.39)

where

βj−1 =
rj ·Qpj−1

pj−1 ·Qpj−1
, (22.40)

and

rn+1 = rn − αnQp
n. (22.41)

Lemma 22.10 For j = 1, ..., n− 1, pn+1 ·Qpj = 0.

Proof: Use

Qpj = α−1
j (rj − rj+1). (22.42)

The final step in the proof is contained in the following lemma.

Lemma 22.11 For each n, we have pn+1 ·Qpn = 0.

Proof: Establish that

βn = −r
n+1 · rn+1

rn · rn
. (22.43)

282CHAPTER 22. APPENDIX: CONJUGATE-DIRECTION ALGORITHMS

The convergence rate of the CGM depends on the condition number of
the matrix Q, which is the ratio of its largest to its smallest eigenvalues.
When the condition number is much greater than one convergence can be
accelerated by preconditioning the matrix Q; this means replacing Q with
P−1/2QP−1/2, for some positive-definite approximation P of Q (see [7]).

There are versions of the CGM for the minimization of nonquadratic
functions. In the quadratic case the next conjugate direction pn+1 is built
from the residual rn+1 and pn. Since, in that case, rn+1 = −∇f(xn), this
suggests that in the nonquadratic case we build pn+1 from −∇f(xn) and
pn. This leads to the Fletcher-Reeves method. Other similar algorithms,
such as the Polak-Ribiere and the Hestenes-Stiefel methods, perform better
on certain problems [122].

Chapter 23

Appendix: Quadratic
Programming

The quadratic-programming problem (QP) is to minimize a quadratic func-
tion, subject to inequality constraints and nonnegativity of the variables.
Using the Karush-Kuhn-Tucker Theorem 8.6 for mixed constraints and
introducing slack variables, this problem can be reformulated as a linear
programming problem and solved by Wolfe’s Algorithm [129], a variant of
the simplex method. In the case of general constrained optimization, the
Newton-Raphson method for finding a stationary point of the Lagrangian
can be viewed as solving a sequence of quadratic programming problems.
This leads to sequential quadratic programming [122].

23.1 The Quadratic-Programming Problem

The primal QP problem is to minimize the quadratic function

f(x) = a+ cTx+
1
2
xTQx, (23.1)

subject to the constraints

Ax ≤ b, (23.2)

and xj ≥ 0, for j = 1, ..., J . Here a, b, and c are given, Q is a J by J
positive-definite matrix with entries qij , and A is an I by J matrix with
rank I and entries aij . To allow for some equality constraints, we say that

(Ax)i ≤ bi, (23.3)

for i = 1, ...,K, and

(Ax)i = bi, (23.4)

283

284 CHAPTER 23. APPENDIX: QUADRATIC PROGRAMMING

for i = K + 1, ..., I.
We incorporate the nonnegativity constraints xj ≥ 0 by requiring

−xj ≤ 0, (23.5)

for j = 1, ..., J . Applying the KKT Theorem 8.6 to this problem, we find
that if a regular point x∗ is a solution, then there are vectors µ∗ and ν∗

such that

• 1) µ∗i ≥ 0, for i = 1, ...,K;

• 2) ν∗j ≥ 0, for j = 1, ..., J ;

• 3) c+Qx∗ +ATµ∗ − v∗ ≥ 0;

• 4) µ∗i ((Ax
∗)i − bi) = 0, for i = 1, ..., I;

• 5) x∗jν
∗
j = 0, for j = 1, ..., J .

One way to solve this problem is to reformulate it as a linear-programming
problem. To that end, we introduce slack variables xJ+i, i = 1, ...,K, and
write the problem as

J∑
j=1

aijxj + xJ+i = bi, (23.6)

for i = 1, ...,K,

J∑
j=1

aijxj = bi, (23.7)

for i = K + 1, ..., I,

J∑
j=1

qmjxj +
I∑
i=1

aimµi − νm = −cm, (23.8)

for m = 1, ..., J ,

µixJ+i = 0, (23.9)

for i = 1, ...,K, and

xjνj = 0, (23.10)

for j = 1, ..., J . The objective now is to formulate the problem as a primal
linear-programming problem in standard form.

23.2. SEQUENTIAL QUADRATIC PROGRAMMING 285

The variables xj , j = 1, ..., J , xJ+i, i = 1, ...,K, and νj , j = 1, ..., J
must be nonnegative; the variables µi are unrestricted, for i = K + 1, ..., I,
so we write

µi = µ+
i − µ−i , (23.11)

and require that both µ+
i and µ−i be nonnegative. Finally, we need a linear

function to minimize.
We rewrite Equation (23.6) as

J∑
j=1

aijxj + xJ+i + yi = bi, (23.12)

for i = 1, ...,K, Equation (23.7) as

J∑
j=1

aijxj + yi = bi, (23.13)

for i = K + 1, ..., I, and Equation (23.8) as

J∑
j=1

qmjxj +
I∑
i=1

aimµi − νm + yI−K+m = −cm, (23.14)

for m = 1, ..., J . Then the problem is to minimize the linear function

y1 + ...+ yI−K+J , (23.15)

over nonnegative yi, subject to the equality constraints in the equations
(23.12), (23.13), and (23.14). Any solution to the original problem must
be a basic feasible solution to this primal linear-programming problem.
Wolfe’s Algorithm [129] is a modification of the simplex method that guar-
antees that we never have µi and xJ+i positive basic variables at the same
time, nor xj and νj .

23.2 Sequential Quadratic Programming

Consider once again the CP problem of minimizing the convex function
f(x), subject to gi(x) ≤ 0, for i = 1, ..., I. The Lagrangian is

L(x, λ) = f(x) +
I∑
i=1

λigi(x), (23.16)

and stationary values of the Lagrangian must satisfy the equation

∇L(x, λ) = 0. (23.17)

286 CHAPTER 23. APPENDIX: QUADRATIC PROGRAMMING

One step of the Newton-Raphson algorithm has the form(
xk+1

λk+1

)
=
(
xk

λk

)
+
(
pk

vk

)
, (23.18)

where [
∇2
xxL(xk, λk) ∇g(xk)
∇g(xk)T 0

](
pk

vk

)
=
(
−∇xL(xk, λk)

−g(xk)

)
. (23.19)

The incremental vector
(
pk

vk

)
obtained by solving this system is also the

solution to the quadratic-programming problem of minimizing the function

1
2
pT∇2

xxL(xk, λk)p+ pT∇xL(xk, λk), (23.20)

subject to the constraint

∇g(xk)T p+ g(xk) = 0. (23.21)

Therefore, the Newton-Raphson algorithm for the original minimization
problem can be implemented as a sequence of quadratic programs, each
solved by the methods discussed previously. In practice, variants of this ap-
proach that employ approximations for the first and second partial deriva-
tives are often used.

Chapter 24

Appendix: Properties of
Averaged Operators

We present the fundamental properties of averaged operators, leading to
the proof that the class of averaged operators is closed to finite products.
Throughout this chapter the term ‘non-expansive’ will always refer to the
Euclidean norm.

24.1 General Properties of Averaged Opera-
tors

Note that we can establish that a given operator is av by showing that
there is an α in the interval (0, 1) such that the operator

1
α

(A− (1− α)I) (24.1)

is ne. Using this approach, we can easily show that if T is sc, then T is av.

Lemma 24.1 Let T = (1−α)A+αN for some α ∈ (0, 1). If A is averaged
and N is non-expansive then T is averaged.

Proof: Let A = (1 − β)I + βM for some β ∈ (0, 1) and ne operator M .
Let 1− γ = (1− α)(1− β). Then we have

T = (1− γ)I + γ[(1− α)βγ−1M + αγ−1N]. (24.2)

Since the operator K = (1− α)βγ−1M + αγ−1N is easily shown to be ne
and the convex combination of two ne operators is again ne, T is averaged.

287

288CHAPTER 24. APPENDIX: PROPERTIES OF AVERAGED OPERATORS

Corollary 24.1 If A and B are av and α is in the interval [0, 1], then the
operator T = (1 − α)A + αB formed by taking the convex combination of
A and B is av.

Corollary 24.2 Let T = (1− α)F + αN for some α ∈ (0, 1). If F is fne
and N is ne then T is averaged.

The orthogonal projection operators PH onto hyperplanes H = H(a, γ)
are sometimes used with relaxation, which means that PH is replaced by
the operator

T = (1− ω)I + ωPH , (24.3)

for some ω in the interval (0, 2). Clearly, if ω is in the interval (0, 1), then T
is av, by definition, since PH is ne. We want to show that, even for ω in the
interval [1, 2), T is av. To do this, we consider the operator RH = 2PH−I,
which is reflection through H; that is,

PHx =
1
2
(x+RHx), (24.4)

for each x.

Lemma 24.2 The operator RH = 2PH − I is an isometry; that is,

||RHx−RHy||2 = ||x− y||2, (24.5)

for all x and y, so that RH is ne.

The proof is left as an exercise.

Lemma 24.3 For ω = 1 + γ in the interval [1, 2), we have

(1− ω)I + ωPH = αI + (1− α)RH , (24.6)

for α = 1−γ
2 ; therefore, T = (1− ω)I + ωPH is av.

Once again, the proof is left as an exercise.

24.2 The Main Result

The product of finitely many ne operators is again ne, while the product of
finitely many fne operators, even orthogonal projections, need not be fne.
It is a helpful fact that the product of finitely many av operators is again
av.

If A = (1− α)I + αN is averaged and B is averaged then T = AB has
the form T = (1 − α)B + αNB. Since B is av and NB is ne, it follows
from Lemma 10.8 that T is averaged. Summarizing, we have

24.3. AVERAGED LINEAR OPERATORS 289

Proposition 24.1 If A and B are averaged, then T = AB is averaged.

It is possible for Fix(AB) to be nonempty while Fix(A)∩Fix(B) is
empty; however, if the latter is nonempty, it must coincide with Fix(AB)
[10]:

Proposition 24.2 Let A and B be averaged operators and suppose that
Fix(A)∩Fix(B) is nonempty. Then Fix(A)∩Fix(B) =Fix(AB)=Fix(BA).

Proof: Let I −A be νA-ism and I −B be νB-ism, where both νA and νB
are taken greater than 1

2 . Let z be in Fix(A)∩Fix(B) and x in Fix(BA).
Then

||z − x||22 ≥ ||z −Ax||22 + (2νA − 1)||Ax− x||22

≥ ||z −BAx||22 + (2νB − 1)||BAx−Ax||22 + (2νA − 1)||Ax− x||22

= ||z − x||22 + (2νB − 1)||BAx−Ax||22 + (2νA − 1)||Ax− x||22. (24.7)

Therefore ||Ax− x||2 = 0 and ||BAx−Ax||2 = ||Bx− x||2 = 0.

24.3 Averaged Linear Operators

Affine linear operators have the form Tx = Bx + d, where B is a matrix.
The operator T is av if and only if B is av. It is useful, then, to consider
conditions under which B is av.

When B is averaged, there is a positive α in (0, 1) and a Euclidean ne
operator N , with

B = (1− α)I + αN. (24.8)

Therefore

N =
1
α
B + (1− 1

α
)I (24.9)

is non-expansive. Clearly, N is a linear operator; that is, N is multiplication
by a matrix, which we also denote N . When is such a linear operator N
ne?

Lemma 24.4 A linear operator N is ne, in the Euclidean norm, if and
only if ||N ||2 =

√
ρ(N†N), the matrix norm induced by the Euclidean

vector norm, does not exceed one.

The proof is left as an exercise.

290CHAPTER 24. APPENDIX: PROPERTIES OF AVERAGED OPERATORS

We know that B is av if and only if its complement, I −B, is ν-ism for
some ν > 1

2 . Therefore,

Re(〈(I −B)x, x〉) ≥ ν||(I −B)x||22, (24.10)

for all x. This implies that x†(I −B)x ≥ 0, for all x. Since this quadratic
form can be written as

x†(I −B)x = x†(I −Q)x, (24.11)

for Q = 1
2 (B + B†), it follows that I − Q must be non-negative definite.

Moreover, if B is av, then B is ne, so that ||B||2 ≤ 1. Since ||B||2 = ||B†||2,
and ||Q||2 ≤ 1

2 (||B||2 + ||B†||2), it follows that Q must be Euclidean ne. In
fact, since N is Euclidean ne if and only if N† is, B is av if and only if B†

is av. Consequently, if the linear operator B is av, then so is the Hermitian
operator Q, and so the eigenvalues of Q must lie in the interval (−1, 1]. We
also know from Exercise 10.9 that, if B is av, then |λ| < 1, unless λ = 1,
for every eigenvalue λ of B.

24.3.1 Hermitian Linear Operators

We are particularly interested in linear operators B that are Hermitian, in
which case N will also be Hermitian. Therefore, we shall assume, through-
out this subsection, that B is Hermitian, so that all of its eigenvalues are
real. It follows from our discussion relating matrix norms to spectral radii
that a Hermitian N is ne if and only if ρ(N) ≤ 1. We now derive condi-
tions on the eigenvalues of B that are equivalent to B being an av linear
operator.

For any (necessarily real) eigenvalue λ of B, the corresponding eigen-
value of N is

ν =
1
α
λ+ (1− 1

α
). (24.12)

It follows that |ν| ≤ 1 if and only if

1− 2α ≤ λ ≤ 1. (24.13)

Therefore, the Hermitian linear operator B is av if and only if there is
α in (0, 1) such that

−1 < 1− 2α ≤ λ ≤ 1, (24.14)

for all eigenvalues λ of B. This is equivalent to saying that

−1 < λ ≤ 1, (24.15)

24.4. EXERCISES 291

for all eigenvalues λ of B. The choice

α0 =
1− λmin

2
(24.16)

is the smallest α for which

N =
1
α
B + (1− 1

α
)I (24.17)

will be non-expansive; here λmin denotes the smallest eigenvalue of B. So,
α0 is the smallest α for which B is α-av.

The linear operator B will be fne if and only if it is 1
2 -av. Therefore, B

will be fne if and only if 0 ≤ λ ≤ 1, for all eigenvalues λ of B. Since B is
Hermitian, we can say that B is fne if and only if B and I − B are non-
negative definite. We summarize the situation for Hermitian B as follows.
Let λ be any eigenvalue of B. Then

• B is non-expansive if and only if −1 ≤ λ ≤ 1, for all λ;

• B is averaged if and only if −1 < λ ≤ 1, for all λ;

• B is a strict contraction if and only if −1 < λ < 1, for all λ;

• B is firmly non-expansive if and only if 0 ≤ λ ≤ 1, for all λ.

24.4 Exercises

24.1 Prove Lemma 24.2.

24.2 Prove Lemma 24.3.

24.3 Prove Lemma 24.4.

292CHAPTER 24. APPENDIX: PROPERTIES OF AVERAGED OPERATORS

Chapter 25

Appendix: Fenchel
Duality

The duality between convex functions on RJ and their tangent hyperplanes
is made explicit through the Legendre-Fenchel transformation. In this ap-
pendix we discuss this transformation, state and prove Fenchel’s Duality
Theorem, and investigate some of its applications.

25.1 The Legendre-Fenchel Transformation

Throughout this section f : C ⊆ RJ → R is a closed, proper, convex
function defined on a non-empty, closed convex set C.

25.1.1 The Fenchel Conjugate

For each fixed vector a in RJ , the affine function h(x) = 〈a, x〉 − γ is
beneath the function f(x) if f(x)− h(x) ≥ 0, for all x; that is,

f(x)− 〈a, x〉+ γ ≥ 0,

or

γ ≥ 〈a, x〉 − f(x). (25.1)

This leads us to the following definition, involving the maximum of the
right side of the inequality in (25.1), for each fixed a.

Definition 25.1 The conjugate function associated with f is the function

f∗(a) = supx(〈a, x〉 − f(x)). (25.2)

293

294 CHAPTER 25. APPENDIX: FENCHEL DUALITY

For each fixed a, the value f∗(a) is the smallest value of γ for which the
affine function h(x) = 〈a, x〉−γ is beneath f(x). The passage from f to f∗

is the Legendre-Fenchel Transformation. Now we repeat this process with
f∗(a) in the role of f(x).

25.1.2 The Conjugate of the Conjugate

For each fixed vector x, the affine function c(a) = 〈a, x〉 − γ is beneath the
function f∗(a) if f∗(a)− c(a) ≥ 0, for all a; that is,

f∗(a)− 〈a, x〉+ γ ≥ 0,

or

γ ≥ 〈a, x〉 − f∗(a). (25.3)

This leads us to the following definition, involving the maximum of the
right side of the inequality in (25.3), for each fixed x.

Definition 25.2 The conjugate function associated with f∗ is the function

f∗∗(x) = supa(〈a, x〉 − f∗(a)). (25.4)

For each fixed x, the value f∗∗(x) is the smallest value of γ for which the
affine function c(a) = 〈a, x〉 − γ is beneath f∗(a).

Applying the Separation Theorem to the epigraph of the closed, proper,
convex function f(x), it can be shown ([133], Theorem 12.1) that f(x) is
the point-wise supremum of all the affine functions beneath f(x); that is,

f(x) = sup
a,γ

{h(x)|f(x) ≥ h(x)}.

Therefore,
f(x) = sup

a

(
〈a, x〉 − f∗(a)

)
.

This says that

f∗∗(x) = f(x). (25.5)

25.1.3 Some Examples of Conjugate Functions

• The exponential function f(x) = exp(x) = ex has conjugate

exp∗(a) =

{
a log a− a, if a > 0;

0, if a = 0;
+∞, if a < 0.

(25.6)

25.1. THE LEGENDRE-FENCHEL TRANSFORMATION 295

• The function f(x) = − log x, for x > 0, has the conjugate function
f∗(a) = −1− log(−a), for a < 0.

• The function f(x) = |x|p
p has conjugate f∗(a) = |a|q

q , where p > 0,
q > 0, and 1

p + 1
q = 1.

• Let ψC(x) be the indicator function of the closed convex set C, that
is,

ψC(x) =

{
0, if x ∈ C;

+∞, if x /∈ C.

Then
ψ∗C(a) = sup

x∈C
〈a, x〉,

which is the support function of the set C, usually denoted σC(a).

• Let C = {x| ||x||2 ≤ 1}, so that

φ(a) = ||a||2 = sup
x∈C

〈a, x〉.

Then
φ(a) = σC(a) = ψ∗C(a).

Therefore,

φ∗(x) = σ∗C(x) = ψ∗∗C (x) = ψC(x) =

{
0, if x ∈ C;

+∞, if x /∈ C.

25.1.4 Conjugates and Sub-gradients

We know from the definition of f∗(a) that

f∗(a) ≥ 〈a, z〉 − f(z),

for all z, and, moreover, f∗(a) is the supremum of these values, taken over
all z. If a is a member of the sub-differential ∂f(x), then, for all z, we have

f(z) ≥ f(x) + 〈a, z − x〉,

so that
〈a, x〉 − f(x) ≥ 〈a, z〉 − f(z).

It follows that
f∗(a) = 〈a, x〉 − f(x),

so that
f(x) + f∗(a) = 〈a, x〉.

296 CHAPTER 25. APPENDIX: FENCHEL DUALITY

If f(x) is a differentiable convex function, then a is in the sub-differential
∂f(x) if and only if a = ∇f(x). Then we can say

f(x) + f∗(∇f(x)) = 〈∇f(x), x〉. (25.7)

The conjugate of a differentiable function f : C ⊆ RJ → R can then be
defined as follows [133]. Let D be the image of the set C under the mapping
∇f . Then, for all a ∈ D define

f∗(a) = 〈a, (∇f)−1(a)〉 − f((∇f)−1(a)).

25.1.5 The Conjugate of a Concave Function

A function g : C ⊆ RJ → R is concave if f(x) = −g(x) is convex. One
might think that the conjugate of a concave function g is simply the nega-
tive of the conjugate of −g, but not quite.

The affine function h(x) = 〈a, x〉−γ is above the concave function g(x)
if h(x)− g(x) ≥ 0, for all x; that is,

〈a, x〉 − γ − g(x) ≥ 0,

or

γ ≤ 〈a, x〉 − g(x). (25.8)

The conjugate function associated with g is the function

g∗(a) = infx(〈a, x〉 − g(x)). (25.9)

For each fixed a, the value g∗(a) is the largest value of γ for which the
affine function h(x) = 〈a, x〉 − γ is above g(x).

It follows, using f(x) = −g(x), that

g∗(a) = infx(〈a, x〉+ f(x)) = −supx(〈−a, x〉 − f(x)) = −f∗(−a).

25.2 Fenchel’s Duality Theorem

Let f(x) be a proper convex function on C ⊆ RJ and g(x) a proper concave
function on D ⊆ RJ , where C and D are closed convex sets with non-
empty intersection. Fenchel’s Duality Theorem deals with the problem of
minimizing the difference f(x)− g(x) over x ∈ C ∩D.

We know from our discussion of conjugate functions and differentiability
that

−f∗(a) ≤ f(x)− 〈a, x〉,

and
g∗(a) ≤ 〈a, x〉 − g(x).

25.2. FENCHEL’S DUALITY THEOREM 297

Therefore,
f(x)− g(x) ≥ g∗(a)− f∗(a),

for all x and a, and so

inf
x

(
f(x)− g(x)

)
≥ sup

a

(
g∗(a)− f∗(a)

)
.

We let C∗ be the set of all a such that f∗(a) is finite, with D∗ similarly
defined.

The Fenchel Duality Theorem, in its general form, as found in [115] and
[133], is as follows.

Theorem 25.1 Assume that C ∩ D has points in the relative interior of
both C and D, and that either the epigraph of f or that of g has non-empty
interior. Suppose that

µ = inf
x∈C∩D

(
f(x)− g(x)

)
is finite. Then

µ = inf
x∈C∩D

(
f(x)− g(x)

)
= max
a∈C∗∩D∗

(
g∗(a)− f∗(a)

)
,

where the maximum on the right is achieved at some a0 ∈ C∗ ∩D∗.
If the infimum on the left is achieved at some x0 ∈ C ∩D, then

max
x∈C

(
〈x, a0〉 − f(x)

)
= 〈x0, a0〉 − f(x0),

and
min
x∈D

(
〈x, a0〉 − g(x)

)
= 〈x0, a0〉 − g(x0).

The conditions on the interiors are needed to make use of sub-differentials.
For simplicity, we shall limit our discussion to the case of differentiable f(x)
and g(x).

25.2.1 Fenchel’s Duality Theorem: Differentiable Case

We suppose now that there is x0 ∈ C ∩D such that

inf
x∈C∩D

(f(x)− g(x)) = f(x0)− g(x0),

and that
∇(f − g)(x0) = 0,

or

∇f(x0) = ∇g(x0). (25.10)

298 CHAPTER 25. APPENDIX: FENCHEL DUALITY

Let ∇f(x0) = a0. From the equation

f(x) + f∗(∇f(x)) = 〈∇f(x), x〉

and Equation (25.10),we have

f(x0)− g(x0) = g∗(a0)− f∗(a0),

from which it follows that

inf
x∈C∩D

(f(x)− g(x)) = sup
a∈C∗∩D∗

(g∗(a)− f∗(a)).

This is Fenchel’s Duality Theorem.

25.2.2 Optimization over Convex Subsets

Suppose now that f(x) is convex and differentiable on RJ , but we are only
interested in its values on the non-empty closed convex set C. Then we
redefine f(x) = +∞ for x not in C. The affine function h(x) = 〈a, x〉 − γ
is beneath f(x) for all x if and only if it is beneath f(x) for x ∈ C. This
motivates our defining the conjugate function now as

f∗(a) = sup
x∈C

〈a, x〉 − f(x).

Similarly, let g(x) be concave on D and g(x) = −∞ for x not in D. Then
we define

g∗(a) = inf
x∈D

〈a, x〉 − g(x).

Let
C∗ = {a| f∗(a) < +∞},

and defineD∗ similarly. We can use Fenchel’s Duality Theorem to minimize
the difference f(x)− g(x) over the intersection C ∩D.

To illustrate the use of Fenchel’s Duality Theorem, consider the problem
of minimizing the convex function f(x) over the convex set D. Let C = RJ

and g(x) = 0, for all x. Then

f∗(a) = sup
x∈C

〈a, x〉 − f(x) = sup
x
〈a, x〉 − f(x),

and
g∗(a) = inf

x∈D
〈a, x〉 − g(x) = inf

x∈D
〈a, x〉.

The supremum is unconstrained and the infimum is with respect to a linear
functional. Then, by Fenchel’s Duality Theorem, we have

max
a

(g∗(a)− f∗(a)) = inf
x∈D

f(x).

25.3. AN APPLICATION TO GAME THEORY 299

25.3 An Application to Game Theory

In this section we complement our earlier discussion of matrix games by
illustrating the application of the Fenchel Duality Theorem to prove the
Min-Max Theorem for two-person games.

25.3.1 Pure and Randomized Strategies

In a two-person game, the first player selects a row of the matrix A, say i,
and the second player selects a column of A, say j. The second player pays
the first player Aij . If some Aij < 0, then this means that the first player
pays the second. As we discussed previously, there need not be optimal
pure strategies for the two players and it may be sensible for them, over the
long run, to select their strategies according to some random mechanism.
The issues then are which vectors of probabilities will prove optimal and
do such optimal probability vectors always exist. The Min-Max Theorem,
also known as the Fundamental Theorem of Game Theory, asserts that
such optimal probability vectors always exist.

25.3.2 The Min-Max Theorem

In [115], Luenberger uses the Fenchel Duality Theorem to prove the Min-
Max Theorem for two-person games. His formulation is in Banach spaces,
while we shall limit our discussion to finite-dimensional spaces.

Let A be an I by J pay-off matrix, whose entries represent the payoffs
from the second player to the first. Let

P = {p = (p1, ..., pI) | pi ≥ 0,
I∑
i=1

pi = 1},

Q = {q = (q1, ..., qJ) | qj ≥ 0,
J∑
j=1

qj = 1},

and
R = A(Q) = {Aq |q ∈ Q}.

The first player selects a vector p in P and the second selects a vector q in
Q. The expected pay-off to the first player is

E = 〈p,Aq〉.

Let
m0 = max

r∈R
min
p∈P

〈p, r〉,

and
m0 = min

p∈P
max
r∈R

〈p, r〉.

300 CHAPTER 25. APPENDIX: FENCHEL DUALITY

Clearly, we have
min
p∈P

〈p, r〉 ≤ 〈p, r〉 ≤ max
r∈R

〈p, r〉,

for all p ∈ P and r ∈ R. It follows that m0 ≤ m0. We show that m0 = m0.
Define

f(x) = max
r∈R

〈x, r〉;

then f is convex and continuous on RI . We want minp∈P f(p).
We apply Fenchel’s Duality Theorem, with f = f , g = 0, D = P , and

C = RI . Now we have

min
x∈C∩D

(f(x)− g(x)) = min
p∈P

f(p).

We claim that the following are true:

• 1) D∗ = RI ;

• 2) g∗(a) = minp∈P 〈p, a〉;

• 3) C∗ = R;

• 4) f∗(a) = 0, for all a in RI .

The first two claims are immediate. To prove the third one, we take a
vector a ∈ RI that is not in R. Then, by the separation theorem, we can
find x ∈ RI and α > 0 such that

〈x, a〉 > α+ 〈x, r〉,

for all r ∈ R. Then

〈x, a〉 −max
r∈R

〈x, r〉 ≥ α > 0.

Now take k > 0 large and y = kx. Since

〈y, r〉 = k〈x, r〉,

we know that
〈y, a〉 −max

r∈R
〈y, r〉 = 〈y, a〉 − f(y) > 0

and can be made arbitrarily large by taking k > 0 large. It follows that
f∗(a) is not finite if a is not in R, so that C∗ = R.

As for the fourth claim, if a ∈ R, then

〈y, a〉 −max
r∈R

〈y, r〉

achieves its maximum value of zero at y = 0, so f∗(a) = 0.

25.3. AN APPLICATION TO GAME THEORY 301

Finally, we have

min
p∈P

f(p) = max
r∈R

g∗(r) = max
r∈R

min
p∈P

〈p, r〉.

Therefore,
min
p∈P

max
r∈R

〈p, r〉 = max
r∈R

min
p∈P

〈p, r〉.

302 CHAPTER 25. APPENDIX: FENCHEL DUALITY

Chapter 26

Appendix: Proximal
Minimization

In our discussion of barrier-function methods we considered the PMA al-
gorithm that has, for its iterative step, the minimization of the function

f(x) +Dh(x, xk), (26.1)

where Dh(x, z) denotes a Bregman distance from x to z. In this chapter
we survey related results concerning proximal minimization.

26.1 Moreau’s Proximity Operators

Let f : RJ → (−∞,+∞] be a closed, proper, convex function. When
f is differentiable, we can find minimizers of f using techniques such as
gradient descent. When f is not necessarily differentiable, the minimization
problem is more difficult. One approach is to augment the function f and
to convert the problem into one of minimizing a differentiable function.
Moreau’s approach is one example of this.

26.1.1 The Moreau Envelope

The Moreau envelope of the function f is the function

mf (z) = inf
x

{
f(x) +

1
2
||x− z||22

}
, (26.2)

which is also the infimal convolution of the functions f(x) and 1
2 ||x||

2
2. It

can be shown that the infimum is uniquely attained at the point denoted
x = proxfz (see [133]). In similar fashion, we can define mf∗z and proxf∗z.

303

304 CHAPTER 26. APPENDIX: PROXIMAL MINIMIZATION

Proposition 26.1 The infimum of mf (z), over all z, is the same as the
infimum of f(x), over all x.

Proof: We have

inf
z
mf (z) = inf

z
inf
x
{f(x) +

1
2
||x− z|22}

= inf
x

inf
z
{f(x) +

1
2
||x− z|22} = inf

x
{f(x) +

1
2

inf
z
||x− z||22} = inf

x
f(x).

Later, we shall show that the minimizers of mf (z) and f(x) are the
same, as well.

Both mf and mf∗ are convex and differentiable. The point x = proxfz
is characterized by the property z−x ∈ ∂f(x). Consequently, x is a global
minimizer of f if and only if x = proxfx.

For example, consider the indicator function of the convex set C, f(x) =
ψC(x) that is zero if x is in the closed convex set C and +∞ otherwise.
Then mfz is the minimum of 1

2 ||x−z||
2
2 over all x in C, and proxfz = PCz,

the orthogonal projection of z onto the set C.
If f : R→ R is f(t) = ω|t|, then

proxf (t) = t− t

|t|
ω, (26.3)

for |t| ≤ ω, and equals zero, otherwise.
The operators proxf : z → proxfz are proximal operators. These oper-

ators generalize the projections onto convex sets, and, like those operators,
are firmly non-expansive [66].

The support function of the convex set C is σC(x) = supu∈C〈x, u〉. It
is easy to see that σC = ψ∗C . For f∗(z) = σC(z), we can find mf∗z using
Moreau’s Theorem ([133], p.338).

26.1.2 Moreau’s Theorem and Applications

Moreau’s Theorem generalizes the decomposition of members of RJ with
respect to a subspace. For a proof, see the book by Rockafellar [133].

Theorem 26.1 (Moreau’s Theorem) Let f be a closed, proper, convex
function. Then

mfz +mf∗z =
1
2
||z||2; (26.4)

and

proxfz + proxf∗z = z. (26.5)

26.1. MOREAU’S PROXIMITY OPERATORS 305

In addition, we have

proxf∗z ∈ ∂f(proxfz),

proxf∗z = ∇mf (z), and

proxfz = ∇mf∗(z). (26.6)

Since σC = ψ∗C , we have

proxσC
z = z − proxψC

z = z − PCz. (26.7)

The following proposition illustrates the usefulness of these concepts.

Proposition 26.2 The minimizers of mf and the minimizers of f are the
same.

Proof: From Moreau’s Theorem we know that

∇mf (z) = proxf∗z = z − proxfz, (26.8)

so ∇mfz = 0 is equivalent to z = proxfz.

26.1.3 Iterative Minimization of mfz

Because the minimizers of mf are also minimizers of f , we can find global
minimizers of f using standard iterative methods, such as gradient descent,
on mf . The gradient descent iterative step has the form

xk+1 = xk − γk∇mf (xk). (26.9)

We know from Moreau’s Theorem that

∇mfz = proxf∗z = z − proxfz, (26.10)

so that Equation (26.9) can be written as

xk+1 = xk − γk(xk − proxfx
k)

= (1− γk)xk + γkproxfx
k. (26.11)

Because

xk − proxfx
k ∈ ∂f(proxfx

k), (26.12)

the iteration in Equation (26.11) has the increment

xk+1 − xk ∈ −γk∂f(xk+1), (26.13)

in contrast to what we would have with the usual gradient descent method
for differentiable f :

xk+1 − xk = −γk∇f(xk). (26.14)

It follows from the definition of ∂f(xk+1) that f(xk) ≥ f(xk+1) for the
iteration in Equation (26.11).

306 CHAPTER 26. APPENDIX: PROXIMAL MINIMIZATION

26.1.4 Forward-Backward Splitting

In [66] the authors consider the problem of minimizing the function f =
f1+f2, where f2 is differentiable and its gradient is λ-Lipschitz continuous.
The function f is minimized at the point x if and only if

0 ∈ ∂f(x) = ∂f1(x) +∇f2(x), (26.15)

so we have

−γ∇f2(x) ∈ γ∂f1(x), (26.16)

for any γ > 0. Therefore

x− γ∇f2(x)− x ∈ γ∂f1(x). (26.17)

From Equation (26.17) we conclude that

x = proxγf1(x− γ∇f2(x)). (26.18)

This suggests an algorithm with the iterative step

xk+1 = proxγf1(x
k − γ∇f2(xk)). (26.19)

In order to guarantee convergence, γ is chosen to lie in the interval (0, 2/λ).
It is also possible to allow γ to vary with the k. This is called the forward-
backward splitting approach. As noted in [66], the forward-backward split-
ting approach has, as a particular case, the CQ algorithm of [41, 42].

26.1.5 Generalizing the Moreau Envelope

The Moreau envelope involves the infimum of the function

f(x) +
1
2
||x− z||22. (26.20)

Consequently, the Moreau envelope can be generalized in various ways,
either by changing the 1

2 to a variable parameter, or replacing the Euclidean
distance by a more general distance measure.

For real λ > 0, the Moreau-Yosida approximation of index λ ([3]) is the
function

Fλ(z) = inf
x

{
f(x) +

1
2λ
||x− z||22

}
. (26.21)

For fixed λ, the theory is much the same as for the Moreau envelope [3, 4].
For fixed λ, Fλ(z) can be viewed as an approximate minimization of f(x),
involving regularization based on an additive penalty term. If z = 0, then
Fλ(0) is a norm-constrained minimization of f(x).

26.2. PROXIMITY OPERATORS USING BREGMAN DISTANCES307

26.2 Proximity Operators using Bregman Dis-
tances

Several authors have extended Moreau’s results by replacing the Euclidean
squared distance with a Bregman distance. Let h be a closed proper convex
function that is differentiable on the nonempty set intD. The corresponding
Bregman distance Dh(x, z) is defined for x ∈ RJ and z ∈ intD by

Dh(x, z) = h(x)− h(z)− 〈∇h(z), x− z〉. (26.22)

Note that Dh(x, z) ≥ 0 always and that Dh(x, z) = +∞ is possible. If h is
essentially strictly convex then Dh(x, z) = 0 implies that x = z.

26.2.1 Teboulle’s Entropic Proximal Mappings

Teboulle [144] considers the function

R(x, z) = f(x) + εDh(x, z), (26.23)

and shows that, with certain restrictions on f and h, the function R(·, z)
attains its minimum value, Rε(z), at a unique x = Eh(f, z). He then gen-
eralizes Moreau’s Theorem, proving that the operator Eh(f, ·) has proper-
ties analogous to the proximity operators proxf (·). He then demonstrates
that several nonlinear programming problems can be formulated using such
functions R(x, z). He is primarily concerned with the behavior of Rε(z), as
z varies, and not as ε varies.

Teboulle’s method relies on Fenchel’s Duality Theorem [133], and there-
fore requires the conjugate of the function g(x) = Dh(x, z). As he shows,

g∗(y) = h∗(y +∇h(z))− h∗(∇h(z)). (26.24)

His main result requires the joint convexity of the function Dh(x, z).

26.2.2 Proximal Minimization of Censor and Zenios

Censor and Zenios [63] also consider R(x, z). They are less interested in
the properties of the operator Eh(f, ·) and more interested in the behavior
of their PMD iterative algorithm defined by

xk+1 = argmin
(
f(x) +Dh(x, xk)

)
. (26.25)

In their work, the function h is a Bregman function with zone S. They
show that, subject to certain assumptions, if the function f has a mini-
mizer within the closure of S, then the PMD iterates converge to such a
minimizer. It is true that their method and results are somewhat more

308 CHAPTER 26. APPENDIX: PROXIMAL MINIMIZATION

general, in that they consider also the minimizers of R(x, z) over another
closed convex set X; however, this set X is unrelated to the function h.

The PMA algorithm presented in a previous chapter has the same it-
erative step as the PMD method of Censor and Zenios. However, the
assumptions about f and h are different, and our theorem asserts conver-
gence of the iterates to a constrained minimizer of f over D. In other
words, we solve a constrained minimization problem, whereas Censor and
Zenios solve the unconstrained minimization problem, under a restrictive
assumption on the location of minimizers of f .

26.3 Exercises

26.1 Since f∗(a) ≥ 〈a, x〉 − f(x) for all a and x, the function of two
vector variables given by

Wf (x, a) = f(x)− 〈a, x〉 + f∗(a)

is nonnegative, for all x and a, and so it defines a distance. Show that

Wf (x,∇f(y)) = Df (x, y),

for all suitable x and y.

Chapter 27

Appendix:
Bregman-Legendre
Functions

In [11] Bauschke and Borwein show convincingly that the Bregman-Legendre
functions provide the proper context for the discussion of Bregman pro-
jections onto closed convex sets. The summary here follows closely the
discussion given in [11].

27.1 Essential Smoothness and Essential Strict
Convexity

Following [133] we say that a closed proper convex function f is essentially
smooth if intD is not empty, f is differentiable on intD and xn ∈ intD, with
xn → x ∈ bdD, implies that ||∇f(xn)|| → +∞. Here intD and bdD denote
the interior and boundary of the set D. A closed proper convex function f
is essentially strictly convex if f is strictly convex on every convex subset
of dom ∂f .

The closed proper convex function f is essentially smooth if and only if
the subdifferential ∂f(x) is empty for x ∈ bdD and is {∇f(x)} for x ∈ intD
(so f is differentiable on intD) if and only if the function f∗ is essentially
strictly convex.

Definition 27.1 A closed proper convex function f is said to be a Legendre
function if it is both essentially smooth and essentialy strictly convex.

So f is Legendre if and only if its conjugate function is Legendre, in which
case the gradient operator ∇f is a topological isomorphism with ∇f∗ as its

309

310CHAPTER 27. APPENDIX: BREGMAN-LEGENDRE FUNCTIONS

inverse. The gradient operator ∇f maps int dom f onto int dom f∗. If int
dom f∗ = RJ then the range of ∇f is RJ and the equation ∇f(x) = y can
be solved for every y ∈ RJ . In order for int dom f∗ = RJ it is necessary
and sufficient that the Legendre function f be super-coercive, that is,

lim
||x||→+∞

f(x)
||x||

= +∞. (27.1)

If the effective domain of f is bounded, then f is super-coercive and its
gradient operator is a mapping onto the space RJ .

27.2 Bregman Projections onto Closed Con-
vex Sets

Let f be a closed proper convex function that is differentiable on the
nonempty set intD. The corresponding Bregman distance Df (x, z) is de-
fined for x ∈ RJ and z ∈ intD by

Df (x, z) = f(x)− f(z)− 〈∇f(z), x− z〉. (27.2)

Note that Df (x, z) ≥ 0 always and that Df (x, z) = +∞ is possible. If f is
essentially strictly convex then Df (x, z) = 0 implies that x = z.

Let K be a nonempty closed convex set with K ∩ intD 6= ∅. Pick z ∈
intD. The Bregman projection of z onto K, with respect to f , is

P fK(z) = argminx∈K∩DDf (x, z). (27.3)

If f is essentially strictly convex, then P fK(z) exists. If f is strictly convex
on D then P fK(z) is unique. If f is Legendre, then P fK(z) is uniquely defined
and is in intD; this last condition is sometimes called zone consistency.

Example: Let J = 2 and f(x) be the function that is equal to one-half the
norm squared on D, the nonnegative quadrant, +∞ elsewhere. Let K be
the set K = {(x1, x2)|x1 + x2 = 1}. The Bregman projection of (2, 1) onto
K is (1, 0), which is not in intD. The function f is not essentially smooth,
although it is essentially strictly convex. Its conjugate is the function f∗

that is equal to one-half the norm squared onD and equal to zero elsewhere;
it is essentially smooth, but not essentially strictly convex.

If f is Legendre, then P fK(z) is the unique member ofK∩intD satisfying
the inequality

〈∇f(P fK(z))−∇f(z), P fK(z)− c〉 ≥ 0, (27.4)

for all c ∈ K. From this we obtain the Bregman Inequality:

Df (c, z) ≥ Df (c, P
f
K(z)) +Df (P

f
K(z), z), (27.5)

for all c ∈ K.

27.3. BREGMAN-LEGENDRE FUNCTIONS 311

27.3 Bregman-Legendre Functions

Following Bauschke and Borwein [11], we say that a Legendre function f
is a Bregman-Legendre function if the following properties hold:

B1: for x in D and any a > 0 the set {z|Df (x, z) ≤ a} is bounded.
B2: if x is in D but not in intD, for each positive integer n, yn is in intD
with yn → y ∈ bdD and if {Df (x, yn)} remains bounded, thenDf (y, yn) →
0, so that y ∈ D.
B3: if xn and yn are in intD, with xn → x and yn → y, where x and y
are in D but not in intD, and if Df (xn, yn) → 0 then x = y.

Bauschke and Borwein then prove that Bregman’s SGP method converges
to a member ofK provided that one of the following holds: 1) f is Bregman-
Legendre; 2) K ∩ intD 6= ∅ and dom f∗ is open; or 3) dom f and dom f∗

are both open.
The Bregman functions form a class closely related to the Bregman-

Legendre functions. For details see [23].

27.4 Useful Results about Bregman-Legendre
Functions

The following results are proved in somewhat more generality in [11].
R1: If yn ∈ int dom f and yn → y ∈ int dom f , then Df (y, yn) → 0.
R2: If x and yn ∈ int dom f and yn → y ∈ bd dom f , then Df (x, yn) →
+∞.
R3: If xn ∈ D, xn → x ∈ D, yn ∈ int D, yn → y ∈ D, {x, y}∩ int D 6= ∅
and Df (xn, yn) → 0, then x = y and y ∈ int D.
R4: If x and y are in D, but are not in int D, yn ∈ int D, yn → y and
Df (x, yn) → 0, then x = y.
As a consequence of these results we have the following.
R5: If {Df (x, yn)} → 0, for yn ∈ int D and x ∈ RJ , then {yn} → x.

Proof of R5: Since {Df (x, yn)} is eventually finite, we have x ∈ D. By
Property B1 above it follows that the sequence {yn} is bounded; without
loss of generality, we assume that {yn} → y, for some y ∈ D. If x is in int
D, then, by result R2 above, we know that y is also in int D. Applying
result R3, with xn = x, for all n, we conclude that x = y. If, on the other
hand, x is in D, but not in int D, then y is in D, by result R2. There are
two cases to consider: 1) y is in int D; 2) y is not in int D. In case 1) we
have Df (x, yn) → Df (x, y) = 0, from which it follows that x = y. In case
2) we apply result R4 to conclude that x = y.

312CHAPTER 27. APPENDIX: BREGMAN-LEGENDRE FUNCTIONS

Chapter 28

Appendix: Likelihood
Maximization

A fundamental problem in statistics is the estimation of underlying pop-
ulation parameters from measured data. For example, political pollsters
want to estimate the percentage of voters who favor a particular candidate.
They can’t ask everyone, so they sample the population and estimate the
percentage from the answers they receive from a relative few. Bottlers of
soft drinks want to know if their process of sealing the bottles is effective.
Obviously, they can’t open every bottle to check the process. They open a
few bottles, selected randomly according to some testing scheme, and make
their assessment of the effectiveness of the overall process after opening a
few bottles. As we shall see, optimization plays an important role in the
estimation of parameters from data.

28.1 Maximizing the Likelihood Function

Suppose that Y is a random vector whose probability density function (pdf)
f(y;x) is a function of the vector variable y and is a member of a family
of pdf parametrized by the vector variable x. Our data is one instance of
Y; that is, one particular value of the variable y, which we also denote
by y. We want to estimate the correct value of the variable x, which we
shall also denote by x. This notation is standard and the dual use of the
symbols y and x should not cause confusion. Given the particular y we
can estimate the correct x by viewing f(y;x) as a function of the second
variable, with the first variable held fixed. This function of the parameters
only is called the likelihood function. A maximum likelihood (ML) estimate
of the parameter vector x is any value of the second variable for which the
function is maximized. We consider several examples.

313

314 CHAPTER 28. APPENDIX: LIKELIHOOD MAXIMIZATION

28.1.1 Example 1: Estimating a Gaussian Mean

Let Y1, ..., YI be I independent Gaussian (or normal) random variables
with known variance σ2 = 1 and unknown common mean µ. Let Y =
(Y1, ..., YI)T . The parameter x we wish to estimate is the mean x = µ.
Then, the random vector Y has the pdf

f(y;x) = (2π)−I/2 exp(−1
2

I∑
i=1

(yi − x)2).

Holding y fixed and maximizing over x is equivalent to minimizing

I∑
i=1

(yi − x)2

as a function of x. The ML estimate is the arithmetic mean of the data,

xML =
1
I

I∑
i=1

yi.

Notice that E(Y), the expected value of Y, is the vector x all of whose
entries are x = µ. The ML estimate is the least squares solution of the
overdetermined system of equations y = E(Y); that is,

yi = x

for i = 1, ..., I.
The least-squares solution of a system of equations Ax = b is the

vector that minimizes the Euclidean distance between Ax and b; that is,
it minimizes the Euclidean norm of their difference, ||Ax− b||, where, for
any two vectors a and b we define

||a− b||2 =
I∑
i=1

(ai − bi)2.

As we shall see in the next example, another important measure of distance
is the Kullback-Leibler (KL) distance between two nonnegative vectors c
and d, given by

KL(c,d) =
I∑
i=1

ci log(ci/di) + di − ci.

28.1. MAXIMIZING THE LIKELIHOOD FUNCTION 315

28.1.2 Example 2: Estimating a Poisson Mean

Let Y1, ..., YI be I independent Poisson random variables with unknown
common mean λ, which is the parameter x we wish to estimate. Let Y =
(Y1, ..., YI)T . Then, the probability function of Y is

f(y;x) =
I∏
i=1

exp(−x)xyi/(yi)!.

Holding y fixed and maximizing this likelihood function over positive values
of x is equivalent to minimizing the Kullback-Leibler distance between the
nonnegative vector y and the vector x whose entries are all equal to x,
given by

KL(y,x) =
I∑
i=1

yi log(yi/x) + x− yi.

The ML estimator is easily seen to be the arithmetic mean of the data,

xML =
1
I

I∑
i=1

yi.

The vector x is again E(Y), so the ML estimate is once again obtained by
finding an approximate solution of the overdetermined system of equations
y = E(Y). In the previous example the approximation was in the least
squares sense, whereas here it is in the minimum KL sense; the ML estimate
is the arithmetic mean in both cases because the parameter to be estimated
is one-dimensional.

28.1.3 Example 3: Estimating a Uniform Mean

Suppose now that Y1, ..., YI are independent random variables uniformly
distributed over the interval [0, 2x]. The parameter to be determined is
their common mean, x. The random vector Y = (Y1, ..., YI)T has the pdf

f(y;x) = x−I , for 2x ≥ m,

f(y;x) = 0 , otherwise ,

where m is the maximum of the yi. For fixed vector y the ML estimate
of x is m/2. The expected value of Y is E(Y) = x whose entries are all
equal to x. In this case the ML estimator is not obtained by finding an
approximate solution to the overdetermined system y = E(Y).

Since we can always write

y = E(Y) + (y − E(Y)),

316 CHAPTER 28. APPENDIX: LIKELIHOOD MAXIMIZATION

we can model y as the sum of E(Y) and mean-zero error or noise. Since
f(y;x) depends on x, so does E(Y). Therefore, it makes some sense to
consider estimating our parameter vector x using an approximate solution
for the system of equations

y = E(Y).

As the first two examples (as well as many others) illustrate, this is what
the ML approach often amounts to, while the third example shows that
this is not always the case, however. Still to be determined, though, is the
metric with respect to which the approximation is to be performed. As
the Gaussian and Poisson examples showed, the ML formalism can provide
that metric. In those overly simple cases it did not seem to matter which
metric we used, but it does matter.

28.1.4 Example 4: Image Restoration

A standard model for image restoration is the following:

y = Ax + z,

where y is the blurred image, A is an I by J matrix describing the linear
imaging system, x is the desired vectorized restored image, and z is (pos-
sibly correlated) mean-zero additive Gaussian noise. The noise covariance
matrix is Q = E(zzT). Then E(Y) = Ax, and the pdf is

f(y;x) = c exp(−(y −Ax)TQ−1(y −Ax)),

where c is a constant that does not involve x. Holding y fixed and maxi-
mizing f(y;x) with respect to x is equivalent to minimizing

(y −Ax)TQ−1(y −Ax).

Therefore, the ML solution is obtained by finding a weighted least squares
approximate solution of the over-determined linear system y = E(Y), with
the weights coming from the matrix Q−1. When the noise terms are un-
correlated and have the same variance, this reduces to the least squares
solution.

28.1.5 Example 5: Poisson Sums

The model of sums of independent Poisson random variables is commonly
used in emission tomography and elsewhere. Let P be an I by J matrix
with nonnegative entries, and let x = (x1, ..., xJ)T be a vector of nonneg-
ative parameters. Let Y1, ..., YI be independent Poisson random variables

28.1. MAXIMIZING THE LIKELIHOOD FUNCTION 317

with positive means

E(Yi) =
J∑
j=1

Pijxj = (Px)i.

The probability function for the random vector Y is then

f(y;x) = c
I∏
i=1

exp(−(Px)i)((Px)i)yi ,

where c is a constant not involving x. Maximizing this function of x for
fixed y is equivalent to minimizing the KL distance KL(y, Px) over non-
negative x. The expected value of the random vector Y is E(Y) = Px
and once again we see that the ML estimate is a nonnegative approximate
solution of the system of (linear) equations y = E(Y), with the approxi-
mation in the KL sense. The system y = Px may not be over-determined;
there may even be exact solutions. But we require in addition that x ≥ 0
and there need not be a nonnegative solution to y = Px. We see from this
example that constrained optimization plays a role in solving our problems.

28.1.6 Discrete Mixtures

We say that a discrete random variable Z taking values in the set {i =
1, ..., I} is a mixture if there are probability vectors fj and numbers xj > 0,
for j = 1, ..., J , such that the probability vector for Z is

f(i) = Prob(Z = i) =
J∑
j=1

xjfj(i).

We require, of course, that
∑J
j=1 xj = 1.

The data are N realizations of the random variable Z, denoted zn, for
n = 1, ..., N . The column vector x = (x1, ..., xJ)T is the parameter vector
of mixture probabilities to be estimated. The likelihood function is

L(x) =
N∏
n=1

(
x1f1(zn) + ...+ xJfJ(zn)

)
,

which can be written as

L(x) =
I∏
i=1

(
x1f1(i) + ...+ xJfJ(i)

)ni

,

where ni is the cardinality of the set {n| in = i}. Then the log likelihood
function is

LL(x) =
I∑
i=1

ni log
(
x1f1(i) + ...+ xJfJ(i)

)
.

318 CHAPTER 28. APPENDIX: LIKELIHOOD MAXIMIZATION

With y the column vector with entries yi = ni/N , and P the matrix with
entries Pij = fj(i), we see that

I∑
i=1

(Px)i =
I∑
i=1

(J∑
j=1

Pijxj

)
=

J∑
j=1

(I∑
i=1

Pij

)
=

J∑
j=1

xj = 1,

so maximizing LL(x) over non-negative vectors x with
∑J
j=1 xj = 1 is

equivalent to minimizing the KL distance KL(y, Px) over the same vectors.
The restriction that the entries of x sum to one turns out to be redundant,
as we show now.

Applying Theorem 8.5, the gradient form of the Karush-Kuhn-Tucker
Theorem, we know that, for any x̂ that is a non-negative minimizer of
KL(y, Px), we have

I∑
i=1

Pij

(
1− yi

(Px̂)i

)
≥ 0,

and
I∑
i=1

Pij

(
1− yi

(Px̂)i

)
= 0,

for all j such that x̂j > 0. Consequently, we can say that

sj x̂j = x̂j

I∑
i=1

Pij

(yi
(Px̂)i

)
,

for all j. Since, in the mixture problem, we have sj =
∑I
i=1 Pij = 1 for

each j, it follows that

J∑
j=1

x̂j =
I∑
i=1

(J∑
j=1

x̂jPij

) yi
(Px̂)i

=
I∑
i=1

yi = 1.

So we know now that, for this problem, any non-negative minimizer of
KL(y, Px) will be a probability vector that maximizes LL(x). Since the
EMML algorithm minimizesKL(y, Px) it can be used to find the maximum-
likelihood estimate of the mixture probabilities. It is helpful to remember
that there was no mention of Poisson distributions in this example, and
that the EMML algorithm can be used to find likelihood maximizers in sit-
uations other than that of sums of independent Poisson random variables.

28.2 Alternative Approaches

The ML approach is not always the best approach. As we have seen, the
ML estimate is often found by solving, at least approximately, the system of

28.2. ALTERNATIVE APPROACHES 319

equations y = E(Y). Since noise is always present, this system of equations
is rarely a correct statement of the situation. It is possible to overfit the
mean to the noisy data, in which case the resulting x can be useless. In such
cases Bayesian methods and maximum a posteriori estimation, as well as
other forms of regularization techniques and penalty function techniques,
can help. Other approaches involve stopping iterative algorithms prior to
convergence.

In most applications the data is limited and it is helpful to include prior
information about the parameter vector x to be estimated. In the Poisson
mixture problem the vector x must have nonnegative entries. In certain ap-
plications, such as transmission tomography, we might have upper bounds
on suitable values of the entries of x.

From a mathematical standpoint we are interested in the convergence of
iterative algorithms, while in many applications we want usable estimates
in a reasonable amount of time, often obtained by running an iterative
algorithm for only a few iterations. Algorithms designed to minimize the
same cost function can behave quite differently during the early iterations.
Iterative algorithms, such as block-iterative or incremental methods, that
can provide decent answers quickly will be important.

320 CHAPTER 28. APPENDIX: LIKELIHOOD MAXIMIZATION

Chapter 29

Appendix:
Reconstruction from
Limited Data

The problem is to reconstruct a (possibly complex-valued) function f :
RD → C from finitely many measurements gn, n = 1, ..., N , pertaining
to f . The function f(r) represents the physical object of interest, such
as the spatial distribution of acoustic energy in sonar, the distribution of
x-ray-attenuating material in transmission tomography, the distribution of
radionuclide in emission tomography, the sources of reflected radio waves
in radar, and so on. Often the reconstruction, or estimate, of the function
f takes the form of an image in two or three dimensions; for that reason,
we also speak of the problem as one of image reconstruction. The data
are obtained through measurements. Because there are only finitely many
measurements, the problem is highly under-determined and even noise-free
data are insufficient to specify a unique solution.

29.1 The Optimization Approach

One way to solve such under-determined problems is to replace f(r) with a
vector in CN and to use the data to determine the N entries of this vector.
An alternative method is to model f(r) as a member of a family of linear
combinations of N preselected basis functions of the multivariable r. Then
the data is used to determine the coefficients. This approach offers the
user the opportunity to incorporate prior information about f(r) in the
choice of the basis functions. Such finite-parameter models for f(r) can
be obtained through the use of the minimum-norm estimation procedure,

321

322CHAPTER 29. APPENDIX: RECONSTRUCTION FROM LIMITED DATA

as we shall see. More generally, we can associate a cost with each data-
consistent function of r, and then minimize the cost over all the potential
solutions to the problem. Using a norm as a cost function is one way to
proceed, but there are others. These optimization problems can often be
solved only through the use of discretization and iterative algorithms.

29.2 Introduction to Hilbert Space

In many applications the data are related linearly to f . To model the op-
erator that transforms f into the data vector, we need to select an ambient
space containing f . Typically, we choose a Hilbert space. The selection of
the inner product provides an opportunity to incorporate prior knowledge
about f into the reconstruction. The inner product induces a norm and
our reconstruction is that function, consistent with the data, for which this
norm is minimized. We shall illustrate the method using Fourier-transform
data and prior knowledge about the support of f and about its overall
shape.

Our problem, then, is to estimate a (possibly complex-valued) function
f(r) of D real variables r = (r1, ..., rD) from finitely many measurements,
gn, n = 1, ..., N . We shall assume, in this chapter, that these measurements
take the form

gn =
∫
S

f(r)hn(r)dr, (29.1)

where S denotes the support of the function f(r), which, in most cases, is
a bounded set. For the purpose of estimating, or reconstructing, f(r), it is
convenient to view Equation (29.1) in the context of a Hilbert space, and
to write

gn = 〈f, hn〉, (29.2)

where the usual Hilbert space inner product is defined by

〈f, h〉2 =
∫
S

f(r)h(r)dr, (29.3)

for functions f(r) and h(r) supported on the set S. Of course, for these
integrals to be defined, the functions must satisfy certain additional prop-
erties, but a more complete discussion of these issues is outside the scope
of this chapter. The Hilbert space so defined, denoted L2(S), consists
(essentially) of all functions f(r) for which the norm

||f ||2 =

√∫
S

|f(r)|2dr (29.4)

is finite.

29.2. INTRODUCTION TO HILBERT SPACE 323

29.2.1 Minimum-Norm Solutions

Our estimation problem is highly under-determined; there are infinitely
many functions in L2(S) that are consistent with the data and might be the
right answer. Such under-determined problems are often solved by acting
conservatively, and selecting as the estimate that function consistent with
the data that has the smallest norm. At the same time, however, we often
have some prior information about f that we would like to incorporate in
the estimate. One way to achieve both of these goals is to select the norm
to incorporate prior information about f , and then to take as the estimate
of f the function consistent with the data, for which the chosen norm is
minimized.

The data vector g = (g1, ..., gN)T is in CN and the linear operator H
from L2(S) to CN takes f to g; so we write g = Hf . Associated with the
mapping H is its adjoint operator, H†, going from CN to L2(S) and given,
for each vector a = (a1, ..., aN)T , by

H†a(r) = a1h1(r) + ...+ aNhN (r). (29.5)

The operator from CN to CN defined by HH† corresponds to an N by
N matrix, which we shall also denote by HH†. If the functions hn(r)
are linearly independent, then this matrix is positive-definite, therefore
invertible.

Given the data vector g, we can solve the system of linear equations

g = HH†a (29.6)

for the vector a. Then the function

f̂(r) = H†a(r) (29.7)

is consistent with the measured data and is the function in L2(S) with the
smallest norm for which this is true. The function w(r) = f(r)− f̂(r) has
the property Hw = 0. It is easy to see that

||f ||22 = ||f̂ ||22 + ||w||22 (29.8)

The estimate f̂(r) is the minimum-norm solution, with respect to the
norm defined in Equation (29.4). If we change the norm on L2(S), or, equiv-
alently, the inner product, then the minimum-norm solution will change.

For any continuous linear operator T on L2(S), the adjoint operator,
denoted T †, is defined by

〈T f, h〉2 = 〈f, T †h〉2. (29.9)

The adjoint operator will change when we change the inner product.

324CHAPTER 29. APPENDIX: RECONSTRUCTION FROM LIMITED DATA

29.3 A Class of Inner Products

Let T be a continuous, linear, and invertible operator on L2(S). Define
the T inner product to be

〈f, h〉T = 〈T −1f, T −1h〉2. (29.10)

We can then use this inner product to define the problem to be solved. We
now say that

gn = 〈f, tn〉T , (29.11)

for known functions tn(r). Using the definition of the T inner product, we
find that

gn = 〈f, hn〉2 = 〈T f, T hn〉T . (29.12)

The adjoint operator for T , with respect to the T -norm, is denoted T ∗,
and is defined by

〈T f, h〉T = 〈f, T ∗h〉T . (29.13)

Therefore,

gn = 〈f, T ∗T hn〉T . (29.14)

Lemma 29.1 . We have T ∗T = T T †.

Consequently, we have

gn = 〈f, T T †hn〉T . (29.15)

29.4 Minimum-T -Norm Solutions

The function f̃ consistent with the data and having the smallest T -norm
has the algebraic form

f̂ =
N∑
m=1

amT T †hm. (29.16)

Applying the T -inner product to both sides of Equation (29.16), we get

gn = 〈f̂ , T T †hn〉T (29.17)

=
N∑
m=1

am〈T T †hm, T T †hn〉T . (29.18)

29.5. THE CASE OF FOURIER-TRANSFORM DATA 325

Therefore,

gn =
N∑
m=1

am〈T †hm, T †hn〉2. (29.19)

We solve this system for the am and insert them into Equation (29.16)
to get our reconstruction. The Gram matrix that appears in Equation
(29.19) is positive-definite, but is often ill-conditioned; increasing the main
diagonal by a percent or so usually is sufficient regularization.

29.5 The Case of Fourier-Transform Data

To illustrate these minimum-T -norm solutions, we consider the case in
which the data are values of the Fourier transform of f . Specifically, sup-
pose that

gn =
∫
S

f(x)e−iωnxdx, (29.20)

for arbitrary values ωn.

29.5.1 The L2(−π, π) Case

Assume that f(x) = 0, for |x| > π. The minimum-2-norm solution has the
form

f̂(x) =
N∑
m=1

ame
iωmx, (29.21)

with

gn =
N∑
m=1

am

∫ π

−π
ei(ωm−ωn)xdx. (29.22)

For the equi-spaced values ωn = n we find that am = gm and the minimum-
norm solution is

f̂(x) =
N∑
n=1

gne
inx. (29.23)

29.5.2 The Over-Sampled Case

Suppose that f(x) = 0 for |x| > A, where 0 < A < π. Then we use
L2(−A,A) as the Hilbert space. For equi-spaced data at ωn = n, we have

gn =
∫ π

−π
f(x)χA(x)e−inxdx, (29.24)

326CHAPTER 29. APPENDIX: RECONSTRUCTION FROM LIMITED DATA

so that the minimum-norm solution has the form

f̂(x) = χA(x)
N∑
m=1

ame
imx, (29.25)

with

gn = 2
N∑
m=1

am
sinA(m− n)

m− n
. (29.26)

The minimum-norm solution is support-limited to [−A,A] and consistent
with the Fourier-transform data.

29.5.3 Using a Prior Estimate of f

Suppose that f(x) = 0 for |x| > π again, and that p(x) satisfies

0 < ε ≤ p(x) ≤ E < +∞, (29.27)

for all x in [−π, π]. Define the operator T by (T f)(x) =
√
p(x)f(x). The

T -norm is then

〈f, h〉T =
∫ π

−π
f(x)h(x)p(x)−1dx. (29.28)

It follows that

gn =
∫ π

−π
f(x)p(x)e−iωnxp(x)−1dx, (29.29)

so that the minimum T -norm solution is

f̂(x) =
N∑
m=1

amp(x)eiωmx = p(x)
N∑
m=1

ame
iωmx, (29.30)

where

gn =
N∑
m=1

am

∫ π

−π
p(x)ei(ωm−ωn)xdx. (29.31)

If we have prior knowledge about the support of f , or some idea of its shape,
we can incorporate that prior knowledge into the reconstruction through
the choice of p(x).

The reconstruction in Equation (29.30) was presented in [25], where it
was called the PDFT method. The PDFT was based on a non-iterative
version of the Gerchberg-Papoulis bandlimited extrapolation procedure,

29.5. THE CASE OF FOURIER-TRANSFORM DATA 327

discussed earlier in [24]. The PDFT was then applied to image reconstruc-
tion problems in [26]. An application of the PDFT was presented in [28].
In [27] we extended the PDFT to a nonlinear version, the indirect PDFT
(IPDFT), that generalizes Burg’s maximum entropy spectrum estimation
method. The PDFT was applied to the phase problem in [29] and in [30]
both the PDFT and IPDFT were examined in the context of Wiener filter
approximation. More recent work on these topics is discussed in the book
[44].

When N , the number of data values, is not large, the PDFT can be
implemented in a straight-forward manner, by first calculating the matrix
P that appears in Equation (29.31), with entries

Pn,m =
∫ π

−π
p(x)ei(ωm−ωn)xdx,

solving Equation (29.31) for the coefficients am, and finally, inserting these
coefficients in Equation (29.30). When N is large, calculating the entries
of the matrix P can be an expensive step. Since, in such cases, solving
the system in Equation (29.31) will probably be done iteratively, it makes
sense to consider an iterative alternative to the PDFT that avoids the use
of the matrix P . This is the discrete PDFT (DPDFT).

The Discrete PDFT (DPDFT)

The PDFT uses the estimate f̂(x) of f(x), consistent with the data, that
has the minimum weighted norm∫ π

−π
|f̂(x)|2p(x)−1dx.

The discrete PDFT (DPDFT) replaces the functions f(x) and p(x) with
finite vectors f = (f1, ..., fJ)T and p = (p1, ..., pJ)T , for some J > N ; for
example, we could have fj = f(xj) for some sample points xj in (−π, π).
The vector p must have positive entries. The integrals that appear in
Equation (29.20) are replaced by sums

gn =
J∑
j=1

fjEn,j ; (29.32)

for example, we could use En,j = exp(−iωnxj). Now our estimate is the
solution of the system g = Ef for which the weighted norm

J∑
j=1

|fj |2p−1
j

328CHAPTER 29. APPENDIX: RECONSTRUCTION FROM LIMITED DATA

is minimized. To obtain this minimum-weighted-norm solution, we can use
the ART algorithm.

The ART will give the minimum-norm solution of Au = v if we begin
the iteration at u0 = 0. To obtain the solution with minimum weighted
norm

J∑
j=1

|uj |2p−1
j ,

we replace uj with ujp
−1/2
j , and An,j with An,jp

1/2
j , and then apply the

ART.

Chapter 30

Appendix: Compressed
Sensing

One area that has attracted much attention lately is compressed sensing or
compressed sampling (CS) [73]. For applications such as medical imaging,
CS may provide a means of reducing radiation dosage to the patient without
sacrificing image quality. An important aspect of CS is finding sparse
solutions of under-determined systems of linear equations, which can often
be accomplished by one-norm minimization. Perhaps the best reference to
date on CS is [21].

30.1 Compressed Sensing

The objective in CS is exploit sparseness to reconstruct a vector f in RJ

from relatively few linear functional measurements [73].
Let U = {u1, u2, ..., uJ} and V = {v1, v2, ..., vJ} be two orthonormal

bases for RJ , with all members of RJ represented as column vectors. For
i = 1, 2, ..., J , let

µi = max
1≤j≤J

{|〈ui, vj〉|}

and
µ(U, V) = max{µi |i = 1, ..., I}.

We know from Cauchy’s Inequality that

|〈ui, vj〉| ≤ 1,

and from Parseval’s Equation

J∑
j=1

|〈ui, vj〉|2 = ||ui||2 = 1.

329

330 CHAPTER 30. APPENDIX: COMPRESSED SENSING

Therefore, we have
1√
J
≤ µ(U, V) ≤ 1.

The quantity µ(U, V) is the coherence measure of the two bases; the closer
µ(U, V) is to the lower bound of 1√

J
, the more incoherent the two bases

are.
Let f be a fixed member of RJ ; we expand f in the V basis as

f = x1v
1 + x2v

2 + ...+ xJv
J .

We say that the coefficient vector x = (x1, ..., xJ) is s-sparse if s is the
number of non-zero xj .

If s is small, most of the xj are zero, but since we do not know which
ones these are, we would have to compute all the linear functional values

xj = 〈f, vj〉

to recover f exactly. In fact, the smaller s is, the harder it would be to learn
anything from randomly selected xj , since most would be zero. The idea in
CS is to obtain measurements of f with members of a different orthonormal
basis, which we call the U basis. If the members of U are very much like
the members of V , then nothing is gained. But, if the members of U are
quite unlike the members of V , then each inner product measurement

yi = 〈f, ui〉 = fTui

should tell us something about f . If the two bases are sufficiently inco-
herent, then relatively few yi values should tell us quite a bit about f .
Specifically, we have the following result due to Candès and Romberg [51]:
suppose the coefficient vector x for representing f in the V basis is s-sparse.
Select uniformly randomly M ≤ J members of the U basis and compute
the measurements yi = 〈f, ui〉 . Then, if M is sufficiently large, it is highly
probable that z = x also solves the problem of minimizing the one-norm

||z||1 = |z1|+ |z2|+ ...+ |zJ |,

subject to the conditions

yi = 〈g, ai〉 = gTui,

for those M randomly selected ui, where

g = z1v
1 + z2v

2 + ...+ zJv
J .

The smaller µ(U, V) is, the smaller the M is permitted to be without
reducing the probability of perfect reconstruction.

30.2. SPARSE SOLUTIONS 331

30.2 Sparse Solutions

Suppose that A is a real M by N matrix, with M < N , and that the linear
system Ax = b has infinitely many solutions. For any vector x, we define
the support of x to be the subset S of {1, 2, ..., N} consisting of those n for
which the entries xn 6= 0. For any under-determined system Ax = b, there
will, of course, be at least one solution of minimum support, that is, for
which s = |S|, the size of the support set S, is minimum. However, finding
such a maximally sparse solution requires combinatorial optimization, and
is known to be computationally difficult. It is important, therefore, to have
a computationally tractable method for finding maximally sparse solutions.

30.2.1 Maximally Sparse Solutions

Consider the problem P0: among all solutions x of the consistent system
b = Ax, find one, call it x̂, that is maximally sparse, that is, has the
minimum number of non-zero entries. Obviously, there will be at least
one such solution having minimal support, but finding one, however, is a
combinatorial optimization problem and is generally NP-hard.

30.2.2 Minimum One-Norm Solutions

Instead, we can seek a minimum one-norm solution, that is, solve the
problem P1: minimize

||x||1 =
N∑
n=1

|xn|,

subject to Ax = b. Problem P1 can be formulated as a linear programming
problem, so is more easily solved. The big questions are: when does P1

have a unique solution, and when is it x̂? The problem P1 will have a
unique solution if and only if A is such that the one-norm satisfies

||x̂||1 < ||x̂+ v||1,

for all non-zero v in the null space of A.

30.2.3 Why the One-Norm?

When a system of linear equations Ax = b is under-determined, we can
find the minimum-two-norm solution that minimizes the square of the two-
norm,

||x||22 =
N∑
n=1

x2
n,

332 CHAPTER 30. APPENDIX: COMPRESSED SENSING

subject to Ax = b. One drawback to this approach is that the two-norm
penalizes relatively large values of xn much more than the smaller ones,
so tends to provide non-sparse solutions. Alternatively, we may seek the
solution for which the one-norm,

||x||1 =
N∑
n=1

|xn|,

is minimized. The one-norm still penalizes relatively large entries xn more
than the smaller ones, but much less than the two-norm does. As a result,
it often happens that the minimum one-norm solution actually solves P0

as well.

30.2.4 Comparison with the PDFT

The PDFT approach to solving the under-determined system Ax = b is to
select weights wn > 0 and then to find the solution x̃ that minimizes the
weighted two-norm given by

N∑
n=1

|xn|2wn.

Our intention is to select weights wn so that w−1
n is reasonably close to

|x̂n|; consider, therefore, what happens when w−1
n = |x̂n|. We claim that x̃

is also a minimum-one-norm solution.
To see why this is true, note that, for any x, we have

N∑
n=1

|xn| =
N∑
n=1

|xn|√
|x̂n|

√
|x̂n|

≤

√√√√ N∑
n=1

|xn|2
|x̂n|

√√√√ N∑
n=1

|x̂n|.

Therefore,
N∑
n=1

|x̃n| ≤

√√√√ N∑
n=1

|x̃n|2
|x̂n|

√√√√ N∑
n=1

|x̂n|

≤

√√√√ N∑
n=1

|x̂n|2
|x̂n|

√√√√ N∑
n=1

|x̂n| =
N∑
n=1

|x̂n|.

Therefore, x̃ also minimizes the one-norm.

30.3. WHY SPARSENESS? 333

30.2.5 Iterative Reweighting

We want each weight wn to be a good prior estimate of the reciprocal of
|x̂n|. Because we do not yet know x̂, we may take a sequential-optimization
approach, beginning with weights w0

n > 0, finding the PDFT solution using
these weights, then using this PDFT solution to get a (we hope!) a better
choice for the weights, and so on. This sequential approach was successfully
implemented in the early 1980’s by Michael Fiddy and his students [86].

In [52], the same approach is taken, but with respect to the one-norm.
Since the one-norm still penalizes larger values disproportionately, balance
can be achieved by minimizing a weighted-one-norm, with weights close to
the reciprocals of the |x̂n|. Again, not yet knowing x̂, they employ a sequen-
tial approach, using the previous minimum-weighted-one-norm solution to
obtain the new set of weights for the next minimization. At each step of
the sequential procedure, the previous reconstruction is used to estimate
the true support of the desired solution.

It is interesting to note that an on-going debate among users of the
PDFT has been the nature of the prior weighting. Does wn approximate
|xn| or |xn|2? This is close to the issue treated in [52], the use of a weight
in the minimum-one-norm approach.

It should be noted again that finding a sparse solution is not usually
the goal in the use of the PDFT, but the use of the weights has much the
same effect as using the one-norm to find sparse solutions: to the extent
that the weights approximate the entries of x̂, their use reduces the penalty
associated with the larger entries of an estimated solution.

30.3 Why Sparseness?

One obvious reason for wanting sparse solutions of Ax = b is that we have
prior knowledge that the desired solution is sparse. Such a problem arises
in signal analysis from Fourier-transform data. In other cases, such as in
the reconstruction of locally constant signals, it is not the signal itself, but
its discrete derivative, that is sparse.

30.3.1 Signal Analysis

Suppose that our signal f(t) is known to consist of a small number of
complex exponentials, so that f(t) has the form

f(t) =
J∑
j=1

aje
iωjt,

for some small number of frequencies ωj in the interval [0, 2π). For n =
0, 1, ..., N − 1, let fn = f(n), and let f be the N -vector with entries fn;

334 CHAPTER 30. APPENDIX: COMPRESSED SENSING

we assume that J is much smaller than N . The discrete (vector) Fourier
transform of f is the vector f̂ having the entries

f̂k =
1√
N

N−1∑
n=0

fne
2πikn/N ,

for k = 0, 1, ..., N−1; we write f̂ = Ef , where E is the N by N matrix with
entries Ekn = 1√

N
e2πikn/N . If N is large enough, we may safely assume

that each of the ωj is equal to one of the frequencies 2πik and that the
vector f̂ is J-sparse. The question now is: How many values of f(n) do we
need to calculate in order to be sure that we can recapture f(t) exactly?
We have the following theorem [50]:

Theorem 30.1 Let N be prime. Let S be any subset of {0, 1, ..., N − 1}
with |S| ≥ 2J . Then the vector f̂ can be uniquely determined from the
measurements fn for n in S.

We know that
f = E†f̂ ,

where E† is the conjugate transpose of the matrix E. The point here is
that, for any matrix R obtained from the identity matrix I by deleting
N − |S| rows, we can recover the vector f̂ from the measurements Rf .

If N is not prime, then the assertion of the theorem may not hold, since
we can have n = 0 modN , without n = 0. However, the assertion remains
valid for most sets of J frequencies and most subsets S of indices; therefore,
with high probability, we can recover the vector f̂ from Rf .

Note that the matrix E is unitary, that is, E†E = I, and, equivalently,
the columns of E form an orthonormal basis for CN . The data vector is

b = Rf = RE†f̂ .

In this example, the vector f is not sparse, but can be represented sparsely
in a particular orthonormal basis, namely as f = E†f̂ , using a sparse vector
f̂ of coefficients. The representing basis then consists of the columns of the
matrix E†. The measurements pertaining to the vector f are the values
fn, for n in S. Since fn can be viewed as the inner product of f with δn,
the nth column of the identity matrix I, that is,

fn = 〈δn, f〉,

the columns of I provide the so-called sampling basis. With A = RE† and
x = f̂ , we then have

Ax = b,

with the vector x sparse. It is important for what follows to note that the
matrix A is random, in the sense that we choose which rows of I to use to
form R.

30.3. WHY SPARSENESS? 335

30.3.2 Locally Constant Signals

Suppose now that the function f(t) is locally constant, consisting of some
number of horizontal lines. We discretize the function f(t) to get the
vector f = (f(0), f(1), ..., f(N))T . The discrete derivative vector is g =
(g1, g2, ..., gN)T , with

gn = f(n)− f(n− 1).

Since f(t) is locally constant, the vector g is sparse. The data we will have
will not typically be values f(n). The goal will be to recover f from M
linear functional values pertaining to f , where M is much smaller than N .
We shall assume, from now on, that we have measured, or can estimate,
the value f(0).

Our M by 1 data vector d consists of measurements pertaining to the
vector f :

dm =
N∑
n=0

Hmnfn,

for m = 1, ...,M , where the Hmn are known. We can then write

dm = f(0)
(N∑
n=0

Hmn

)
+

N∑
k=1

(N∑
j=k

Hmj

)
gk.

Since f(0) is known, we can write

bm = dm − f(0)
(N∑
n=0

Hmn

)
=

N∑
k=1

Amkgk,

where

Amk =
N∑
j=k

Hmj .

The problem is then to find a sparse solution of Ax = g. As in the previous
example, we often have the freedom to select the linear functions, that is,
the values Hmn, so the matrix A can be viewed as random.

30.3.3 Tomographic Imaging

The reconstruction of tomographic images is an important aspect of med-
ical diagnosis, and one that combines aspects of both of the previous ex-
amples. The data one obtains from the scanning process can often be
interpreted as values of the Fourier transform of the desired image; this is
precisely the case in magnetic-resonance imaging, and approximately true
for x-ray transmission tomography, positron-emission tomography (PET)

336 CHAPTER 30. APPENDIX: COMPRESSED SENSING

and single-photon emission tomography (SPECT). The images one encoun-
ters in medical diagnosis are often approximately locally constant, so the
associated array of discrete partial derivatives will be sparse. If this sparse
derivative array can be recovered from relatively few Fourier-transform val-
ues, then the scanning time can be reduced.

We turn now to the more general problem of compressed sampling.

30.4 Compressed Sampling

Our goal is to recover the vector f = (f1, ..., fN)T from M linear functional
values of f , where M is much less than N . In general, this is not possible
without prior information about the vector f . In compressed sampling,
the prior information concerns the sparseness of either f itself, or another
vector linearly related to f .

Let U and V be unitary N by N matrices, so that the column vectors
of both U and V form orthonormal bases for CN . We shall refer to the
bases associated with U and V as the sampling basis and the representing
basis, respectively. The first objective is to find a unitary matrix V so that
f = V x, where x is sparse. Then we want to find a second unitary matrix
U such that, when an M by N matrix R is obtained from U by deleting
rows, the sparse vector x can be determined from the data b = RV x = Ax.
Theorems in compressed sensing describe properties of the matrices U and
V such that, when R is obtained from U by a random selection of the rows
of U , the vector x will be uniquely determined, with high probability, as
the unique solution that minimizes the one-norm.

Chapter 31

Appendix: Urn Models

There seems to be a tradition in physics of using simple models or examples
involving urns and marbles to illustrate important principles. In keeping
with that tradition, we have here two examples, to illustrate various aspects
of remote sensing.

31.1 The Urn Model for Remote Sensing

Suppose that we have J urns numbered j = 1, ..., J , each containing mar-
bles of various colors. Suppose that there are I colors, numbered i = 1, ..., I.
Suppose also that there is a box containing N small pieces of paper, and
on each piece is written the number of one of the J urns. Assume that N
is much larger than J . Assume that I know the precise contents of each
urn. My objective is to determine the precise contents of the box, that
is, to estimate the number of pieces of paper corresponding to each of the
numbers j = 1, ..., J .

Out of my view, my assistant removes one piece of paper from the box,
takes one marble from the indicated urn, announces to me the color of the
marble, and then replaces both the piece of paper and the marble. This
action is repeated many times, at the end of which I have a long list of
colors. This list is my data, from which I must determine the contents of
the box.

This is a form of remote sensing; what we have access to is related to,
but not equal to, what we are interested in. Sometimes such data is called
“incomplete data” , in contrast to the “complete data” , which would be
the list of the actual urn numbers drawn from the box.

If all the marbles of one color are in a single urn, the problem is trivial;
when I hear a color, I know immediately which urn contained that marble.
My list of colors is then a list of urn numbers; I have the complete data

337

338 CHAPTER 31. APPENDIX: URN MODELS

now. My estimate of the number of pieces of paper containing the urn
number j is then simply N times the proportion of draws that resulted in
urn j being selected.

At the other extreme, suppose two urns had identical contents. Then
I could not distinguish one urn from the other and would be unable to
estimate more than the total number of pieces of paper containing either
of the two urn numbers.

Generally, the more the contents of the urns differ, the easier the task
of estimating the contents of the box. In remote sensing applications, these
issues affect our ability to resolve individual components contributing to
the data.

To introduce some mathematics, let us denote by xj the proportion of
the pieces of paper that have the number j written on them. Let Pij be
the proportion of the marbles in urn j that have the color i. Let yi be the
proportion of times the color i occurs on the list of colors. The expected
proportion of times i occurs on the list is E(yi) =

∑J
j=1 Pijxj = (Px)i,

where P is the I by J matrix with entries Pij and x is the J by 1 column
vector with entries xj . A reasonable way to estimate x is to replace E(yi)
with the actual yi and solve the system of linear equations yi =

∑J
j=1 Pijxj ,

i = 1, ..., I. Of course, we require that the xj be nonnegative and sum to
one, so special algorithms may be needed to find such solutions. In a num-
ber of applications that fit this model, such as medical tomography, the
values xj are taken to be parameters, the data yi are statistics, and the xj
are estimated by adopting a probabilistic model and maximizing the likeli-
hood function. iterative algorithms, such as the expectation maximization
(EM) algorithm are often used for such problems.

31.2 Hidden Markov Models

Hidden Markov models (HMM) are increasingly important in speech pro-
cessing, optical character recognition and DNA sequence analysis. In this
section we illustrate HMM using a modification of the urn model.

Suppose, once again, that we have J urns, indexed by j = 1, ..., J and
I colors of marbles, indexed by i = 1, ..., I. Associated with each of the
J urns is a box, containing a large number of pieces of paper, with the
number of one urn written on each piece. My assistant selects one box,
say the j0th box, to start the experiment. He draws a piece of paper from
that box, reads the number written on it, call it j1, goes to the urn with
the number j1 and draws out a marble. He then announces the color. He
then draws a piece of paper from box number j1, reads the next number,
say j2, proceeds to urn number j2, etc. After N marbles have been drawn,
the only data I have is a list of colors, c = {c1, c2, ..., cN}.

According to the hidden Markov model, the probability that my as-

31.2. HIDDEN MARKOV MODELS 339

sistant will proceed from the urn numbered k to the urn numbered j is
bjk, with

∑J
j=1 bjk = 1 for all k, and the probability that the color ci will

be drawn from the urn numbered j is aij , with
∑I
i=1 aij = 1. for all j.

The colors announced are the visible states, while the unannounced urn
numbers are the hidden states.

There are several distinct objectives one can have, when using HMM.
We assume throughout this subsection that the data is the list of colors, c.

• Evaluation: For given probabilities aij and bjk, what is the proba-
bility that the list c was generated according to the HMM? Here, the
objective is to see if the model is a good description of the data.

• Decoding: Given the model, the probabilities and the list c, what
list j = {j1, j2, ..., jN} of potential visited urns is the most likely?
Now, we want to infer the hidden states from the visible ones.

• Learning: We are told that there are J urns and I colors, but are not
told the probabilities aij and bjk. We are given several data vectors
c generated by the HMM; these are the training sets. The objective
is to learn the probabilities.

Once again, the EM algorithm can play a role in solving these problems
[77].

340 CHAPTER 31. APPENDIX: URN MODELS

Bibliography

[1] Albright, B. (2007) “An Introduction to simulated annealing. ” The
College Mathematics Journal, 38(1), pp. 37–42.

[2] Anderson, A. and Kak, A. (1984) “Simultaneous algebraic reconstruc-
tion technique (SART): a superior implementation of the ART algo-
rithm.” Ultrasonic Imaging, 6 pp. 81–94.

[3] Attouch, H. (1984) Variational Convergence for Functions and Oper-
ators, Boston: Pitman Advanced Publishing Program.

[4] Attouch, H., and Wets, R. (1989) “Epigraphical Analysis.” Ann. Inst.
Poincare: Anal. Nonlineaire, 6.

[5] Aubin, J.-P., (1993) Optima and Equilibria: An Introduction to Non-
linear Analysis, Springer-Verlag.

[6] Auslander, A., and Teboulle, M. (2006) “Interior gradient and prox-
imal methods for convex and conic optimization.” SIAM Journal on
Optimization, 16(3), pp. 697–725.

[7] Axelsson, O. (1994) Iterative Solution Methods. Cambridge, UK:
Cambridge University Press.

[8] Baillon, J.-B., Bruck, R.E., and Reich, S. (1978) “On the asymp-
totic behavior of nonexpansive mappings and semigroups in Banach
spaces.” Houston Journal of Mathematics, 4, pp. 1–9.

[9] Bauschke, H. (1996) “The approximation of fixed points of composi-
tions of nonexpansive mappings in Hilbert space.”Journal of Mathe-
matical Analysis and Applications, 202, pp. 150–159.

[10] Bauschke, H., and Borwein, J. (1996) “On projection algorithms for
solving convex feasibility problems.” SIAM Review, 38 (3), pp. 367–
426.

341

342 BIBLIOGRAPHY

[11] Bauschke, H., and Borwein, J. (1997) “Legendre functions and the
method of random Bregman projections.” Journal of Convex Analysis,
4, pp. 27–67.

[12] Bertero, M., and Boccacci, P. (1998) Introduction to Inverse Problems
in Imaging Bristol, UK: Institute of Physics Publishing.

[13] Bertsekas, D.P. (1997) “A new class of incremental gradient methods
for least squares problems.” SIAM J. Optim., 7, pp. 913-926.

[14] Bliss, G.A. (1925) Calculus of Variations Carus Mathematical Mono-
graphs, American Mathematical Society.

[15] Borwein, J. and Lewis, A. (2000) Convex Analysis and Nonlinear Op-
timization. Canadian Mathematical Society Books in Mathematics,
New York: Springer-Verlag.

[16] Boyd, S., and Vandenberghe, L. (2004) Convex Optimization. Cam-
bridge, England: Cambridge University Press.

[17] Bregman, L.M. (1967) “The relaxation method of finding the common
point of convex sets and its application to the solution of problems in
convex programming.”USSR Computational Mathematics and Math-
ematical Physics 7: pp. 200–217.

[18] Bregman, L., Censor, Y., and Reich, S. (1999) “Dykstra’s algorithm as
the nonlinear extension of Bregman’s optimization method.” Journal
of Convex Analysis, 6 (2), pp. 319–333.

[19] Browne, J. and A. DePierro, A. (1996) “A row-action alternative to
the EM algorithm for maximizing likelihoods in emission tomogra-
phy.”IEEE Trans. Med. Imag. 15, pp. 687–699.

[20] Bruck, R.E., and Reich, S. (1977) “Nonexpansive projections and re-
solvents of accretive operators in Banach spaces.” Houston Journal of
Mathematics, 3, pp. 459–470.

[21] Bruckstein, A., Donoho, D., and Elad, M. (2009) “From sparse solu-
tions of systems of equations to sparse modeling of signals and images.”
SIAM Review, 51(1), pp. 34–81.

[22] Burden, R.L., and Faires, J.D. (1993) Numerical Analysis, Boston:
PWS-Kent.

[23] Butnariu, D., Byrne, C., and Censor, Y. (2003) “Redundant axioms
in the definition of Bregman functions.” Journal of Convex Analysis,
10, pp. 245–254.

BIBLIOGRAPHY 343

[24] Byrne, C. and Fitzgerald, R. (1979) “A Unifying Model for Spectrum
Estimation.” In Proceedings of the RADC Workshop on Spectrum
Estimation, Griffiss AFB, Rome, NY, October.

[25] Byrne, C. and Fitzgerald, R. (1982) “Reconstruction from Partial In-
formation, with Applications to Tomography.”SIAM J. Applied Math.
42(4), pp. 933–940.

[26] Byrne, C., Fitzgerald, R., Fiddy, M., Hall, T., and Darling, A. (1983)
“Image Restoration and Resolution Enhancement.”J. Opt. Soc. Amer.
73, pp. 1481–1487.

[27] Byrne, C. and Fitzgerald, R. (1984) “Spectral estimators that extend
the maximum entropy and maximum likelihood methods.”SIAM J.
Applied Math. 44(2), pp. 425–442.

[28] Byrne, C., Levine, B.M., and Dainty, J.C. (1984) “Stable estimation
of the probability density function of intensity from photon frequency
counts.”JOSA Communications 1(11), pp. 1132–1135.

[29] Byrne, C. and Fiddy, M. (1987) “Estimation of continuous object
distributions from Fourier magnitude measurements.”JOSA A 4, pp.
412–417.

[30] Byrne, C. and Fiddy, M. (1988) “Images as power spectra; reconstruc-
tion as Wiener filter approximation.”Inverse Problems 4, pp. 399–409.

[31] Byrne, C. (1993) “Iterative image reconstruction algorithms based on
cross-entropy minimization.”IEEE Transactions on Image Processing
IP-2, pp. 96–103.

[32] Byrne, C. (1995) “Erratum and addendum to ‘Iterative image re-
construction algorithms based on cross-entropy minimization’.”IEEE
Transactions on Image Processing IP-4, pp. 225–226.

[33] Byrne, C. (1996) “Iterative reconstruction algorithms based on cross-
entropy minimization.”in Image Models (and their Speech Model
Cousins), S.E. Levinson and L. Shepp, editors, IMA Volumes in
Mathematics and its Applications, Volume 80, pp. 1–11. New York:
Springer-Verlag.

[34] Byrne, C. (1996) “Block-iterative methods for image reconstruction
from projections.”IEEE Transactions on Image Processing IP-5, pp.
792–794.

[35] Byrne, C. (1997) “Convergent block-iterative algorithms for image
reconstruction from inconsistent data.”IEEE Transactions on Image
Processing IP-6, pp. 1296–1304.

344 BIBLIOGRAPHY

[36] Byrne, C. (1998) “Accelerating the EMML algorithm and related it-
erative algorithms by rescaled block-iterative (RBI) methods.”IEEE
Transactions on Image Processing IP-7, pp. 100–109.

[37] Byrne, C. (1998) “Iterative algorithms for deblurring and deconvolu-
tion with constraints.” Inverse Problems, 14, pp. 1455–1467.

[38] Byrne, C. (2000) “Block-iterative interior point optimization methods
for image reconstruction from limited data.”Inverse Problems 16, pp.
1405–1419.

[39] Byrne, C. (2001) “Bregman-Legendre Multidistance Projection Algo-
rithms for Convex Feasibility and Optimization.” In Inherently Paral-
lel Algorithms in Feasibility and Optimization and their Applications,
edited by D. Butnariu, Y. Censor and S. Reich, pp. 87-100, Studies in
Computational Mathematics 8. Amsterdam: Elsevier Publ., 2001.

[40] Byrne, C., and Censor, Y. (2001) “Proximity function minimization
using multiple Bregman projections, with applications to split feasi-
bility and Kullback-Leibler distance minimization.” Annals of Oper-
ations Research, 105, pp. 77–98.

[41] Byrne, C. (2002) “Iterative oblique projection onto convex sets and
the split feasibility problem.”Inverse Problems 18, pp. 441–453.

[42] Byrne, C. (2004) “A unified treatment of some iterative algorithms in
signal processing and image reconstruction.”Inverse Problems 20, pp.
103–120.

[43] Byrne, C. (2005) “Choosing parameters in block-iterative or ordered-
subset reconstruction algorithms.” IEEE Transactions on Image Pro-
cessing, 14 (3), pp. 321–327.

[44] Byrne, C. (2005) Signal Processing: A Mathematical Approach, AK
Peters, Publ., Wellesley, MA.

[45] Byrne, C. (2007) Applied Iterative Methods, AK Peters, Publ., Welles-
ley, MA.

[46] Byrne, C. (2008) “Sequential unconstrained minimization algorithms
for constrained optimization.” Inverse Problems, 24.

[47] Byrne, C. (2009) “Block-iterative algorithms.” International Transac-
tions in Operations Research, to appear.

[48] Byrne, C. (2009) “Bounds on the largest singular value of a matrix
and the convergence of simultaneous and block-iterative algorithms
for sparse linear systems.” International Transactions in Operations
Research, to appear.

BIBLIOGRAPHY 345

[49] Byrne, C., and Ward, S. (2005) “Estimating the largest singular value
of a sparse matrix.” unpublished notes.

[50] Candès, E., Romberg, J., and Tao, T. (2006) “Robust uncer-
tainty principles: Exact signal reconstruction from highly incom-
plete frequency information”IEEE Transactions on Information The-
ory, 52(2), pp. 489–509.

[51] Candès, E., and Romberg, J. (2007) “Sparsity and incoherence in com-
pressive sampling”Inverse Problems, 23(3), pp. 969–985.

[52] Candès, E., Wakin, M., and Boyd, S. (2007) “Enhancing
sparsity by reweighted l1 minimization” preprint available at
http://www.acm.caltech.edu/ emmanuel/publications.html .

[53] Censor, Y., Bortfeld, T., Martin, B., and Trofimov, A. “A Unified
Approach for Inversion Problems in Intensity-modulated Radiation
Therapy.” Physics in Medicine and Biology 51 (2006), 2353-2365.

[54] Censor, Y., Eggermont, P.P.B., and Gordon, D. (1983) “Strong
underrelaxation in Kaczmarz’s method for inconsistent sys-
tems.”Numerische Mathematik 41, pp. 83–92.

[55] Censor, Y. and Elfving, T. (1994) “A multi-projection algorithm using
Bregman projections in a product space.” Numerical Algorithms, 8
221–239.

[56] Censor, Y., Elfving, T., Herman, G.T., and Nikazad, T. (2008) “On
diagonally-relaxed orthogonal projection methods.” SIAM Journal on
Scientific Computation, 30(1), pp. 473–504.

[57] Censor, Y., Elfving, T., Kopf, N., and Bortfeld, T. “The Multiple-sets
Split Feasibility Problem and its Application for Inverse Problems.”
Inverse Problems 21 (2005), 2071-2084.

[58] Censor, Y., Gordon, D., and Gordon, R. (2001) “Component aver-
aging: an efficient iterative parallel algorithm for large and sparse
unstructured problems.” Parallel Computing, 27, pp. 777–808.

[59] Censor, Y., Gordon, D., and Gordon, R. (2001) “BICAV: A block-
iterative, parallel algorithm for sparse systems with pixel-related
weighting.” IEEE Transactions on Medical Imaging, 20, pp. 1050–
1060.

[60] Censor, Y., and Reich, S. (1998) “The Dykstra algorithm for Bregman
projections.” Communications in Applied Analysis, 2, pp. 323–339.

346 BIBLIOGRAPHY

[61] Censor, Y., and Reich, S. (1996) “Iterations of paracontractions and
firmly nonexpansive operators with applications to feasibility and op-
timization.” Optimization, 37, pp. 323–339.

[62] Censor, Y. and Segman, J. (1987) “On block-iterative maximization.”
J. of Information and Optimization Sciences 8, pp. 275–291.

[63] Censor, Y., and Zenios, S.A. (1992) “Proximal minimization algorithm
with D-functions.” Journal of Optimization Theory and Applications,
73(3), pp. 451–464.

[64] Cimmino, G. (1938) “Calcolo approssimato per soluzioni dei sistemi
di equazioni lineari.”La Ricerca Scientifica XVI, Series II, Anno IX 1,
pp. 326–333.

[65] Combettes, P. (2000) “Fejér monotonicity in convex optimization.”in
Encyclopedia of Optimization, C.A. Floudas and P. M. Pardalos, edi-
tors, Boston: Kluwer Publ.

[66] Combettes, P., and Wajs, V. (2005) “Signal recovery by proximal
forward-backward splitting.” Multiscale Modeling and Simulation,
4(4), pp. 1168–1200.

[67] Csiszár, I. and Tusnády, G. (1984) “Information geometry and alter-
nating minimization procedures.”Statistics and Decisions Supp. 1,
pp. 205–237.

[68] Darroch, J. and Ratcliff, D. (1972) “Generalized iterative scaling for
log-linear models.”Annals of Mathematical Statistics 43, pp. 1470–
1480.

[69] Dempster, A.P., Laird, N.M. and Rubin, D.B. (1977) “Maximum like-
lihood from incomplete data via the EM algorithm.”Journal of the
Royal Statistical Society, Series B 37, pp. 1–38.

[70] De Pierro, A. and Iusem, A. (1990) “On the asymptotic behavior of
some alternate smoothing series expansion iterative methods.”Linear
Algebra and its Applications 130, pp. 3–24.

[71] Deutsch, F., and Yamada, I. (1998) “Minimizing certain convex func-
tions over the intersection of the fixed point sets of non-expansive
mappings.” Numerical Functional Analysis and Optimization, 19, pp.
33–56.

[72] Dines, K., and Lyttle, R. (1979) “Computerized geophysical tomogra-
phy.” Proc. IEEE, 67, pp. 1065–1073.

BIBLIOGRAPHY 347

[73] Donoho, D. (2006) “Compressed sampling” IEEE Transactions on
Information Theory, 52 (4). (download preprints at http://www.stat.
stanford.edu/ donoho/Reports).

[74] Dorfman, R., Samuelson, P., and Solow, R. (1958) Linear Program-
ming and Economic Analysis. New York: McGraw- Hill.

[75] Driscoll, P., and Fox, W. (1996) “Presenting the Kuhn-Tucker condi-
tions using a geometric method.” The College Mathematics Journal,
38 (1), pp. 101–108.

[76] Duffin, R., Peterson, E., and Zener, C. (1967) Geometric Program-
ming: Theory and Applications. New York: Wiley.

[77] Duda, R., Hart, P., and Stork, D. (2001) Pattern Classification, Wiley.

[78] Dugundji, J. (1970) Topology Boston: Allyn and Bacon, Inc.

[79] Dykstra, R. (1983) “An algorithm for restricted least squares regres-
sion.” J. Amer. Statist. Assoc., 78 (384), pp. 837–842.

[80] Eggermont, P.P.B., Herman, G.T., and Lent, A. (1981) “Iterative algo-
rithms for large partitioned linear systems, with applications to image
reconstruction. ”Linear Algebra and its Applications 40, pp. 37–67.

[81] Elsner, L., Koltracht, L., and Neumann, M. (1992) “Convergence of
sequential and asynchronous nonlinear paracontractions.” Numerische
Mathematik, 62, pp. 305–319.

[82] Fang, S-C.,and Puthenpura, S. (1993) Linear Optimization and Ex-
tensions: Theory and Algorithms. New Jersey: Prentice-Hall.

[83] Farkas, J. (1902) “Über die Theorie der einfachen Ungleichungen.” J.
Reine Angew. Math., 124, pp. 1–24.

[84] Farncombe, T. (2000) “Functional dynamic SPECT imaging using a
single slow camera rotation.” Ph.D. thesis, Dept. of Physics, Univer-
sity of British Columbia.

[85] Fiacco, A., and McCormick, G. (1990) Nonlinear Programming: Se-
quential Unconstrained Minimization Techniques. Philadelphia, PA:
SIAM Classics in Mathematics (reissue).

[86] Fiddy, M. (2008) private communication.

[87] Fleming, W. (1965) Functions of Several Variables. Reading, MA:
Addison-Wesley.

[88] Gale, D. (1960) The Theory of Linear Economic Models. New York:
McGraw-Hill.

348 BIBLIOGRAPHY

[89] Geman, S., and Geman, D. (1984) “Stochastic relaxation, Gibbs dis-
tributions and the Bayesian restoration of images.”IEEE Transactions
on Pattern Analysis and Machine Intelligence PAMI-6, pp. 721–741.

[90] Gill, P., Murray, W., Saunders, M., Tomlin, J., and Wright, M. (1986)
“On projected Newton barrier methods for linear programming and an
equivalence to Karmarkar’s projective method.” Mathematical Pro-
gramming, 36, pp. 183–209.

[91] Goebel, K., and Reich, S. (1984) Uniform Convexity, Hyperbolic Ge-
ometry, and Nonexpansive Mappings, New York: Dekker.

[92] Golshtein, E., and Tretyakov, N. (1996) Modified Lagrangians and
Monotone Maps in Optimization. New York: John Wiley and Sons,
Inc.

[93] Gordan, P. (1873) “Über die Auflösungen linearer Gleichungen mit
reelen Coefficienten.” Math. Ann., 6, pp. 23–28.

[94] Gordon, R., Bender, R., and Herman, G.T. (1970) “Algebraic recon-
struction techniques (ART) for three-dimensional electron microscopy
and x-ray photography.”J. Theoret. Biol. 29, pp. 471–481.

[95] Gordon, D., and Gordon, R.(2005) “Component-averaged row pro-
jections: A robust block-parallel scheme for sparse linear systems.”
SIAM Journal on Scientific Computing, 27, pp. 1092–1117.

[96] Gubin, L.G., Polyak, B.T. and Raik, E.V. (1967) “The method of pro-
jections for finding the common point of convex sets.” USSR Compu-
tational Mathematics and Mathematical Physics, 7: 1–24.

[97] Hager, B., Clayton, R., Richards, M., Comer, R., and Dziewonsky,
A. (1985) “Lower mantle heterogeneity, dynamic typography and the
geoid.” Nature, 313, pp. 541–545.

[98] Herman, G. T. (1999) private communication.

[99] Herman, G. T. and Meyer, L. (1993) “Algebraic reconstruction tech-
niques can be made computationally efficient.”IEEE Transactions on
Medical Imaging 12, pp. 600–609.

[100] Holte, S., Schmidlin, P., Linden, A., Rosenqvist, G. and Eriksson,
L. (1990) “Iterative image reconstruction for positron emission to-
mography: a study of convergence and quantitation problems.”IEEE
Transactions on Nuclear Science 37, pp. 629–635.

[101] Hudson, M., Hutton, B., and Larkin, R. (1992) “Accelerated EM
reconstruction using ordered subsets.” Journal of Nuclear Medicine,
33, p.960.

BIBLIOGRAPHY 349

[102] Hudson, H.M. and Larkin, R.S. (1994) “Accelerated image recon-
struction using ordered subsets of projection data.”IEEE Transactions
on Medical Imaging 13, pp. 601–609.

[103] Jiang, M., and Wang, G. (2003) “Convergence studies on iterative
algorithms for image reconstruction.” IEEE Transactions on Medical
Imaging, 22(5), pp. 569–579.

[104] Kaczmarz, S. (1937) “Angenäherte Auflösung von Systemen linearer
Gleichungen.”Bulletin de l’Academie Polonaise des Sciences et Lettres
A35, pp. 355–357.

[105] Karmarkar, N. (1984) “A new polynomial-time algorithm for linear
programming.” Combinatorica, 4, pp. 373–395.

[106] Körner, T. (1996) The Pleasures of Counting. Cambridge, UK: Cam-
bridge University Press.

[107] Kuhn, H., and Tucker, A. (eds.) (1956) Linear Inequalities and Re-
lated Systems. Annals of Mathematical Studies, No. 38. New Jersey:
Princeton University Press.

[108] Kullback, S. and Leibler, R. (1951) “On information and suffi-
ciency.”Annals of Mathematical Statistics 22, pp. 79–86.

[109] Lagarias, J., Reeds, J., Wright, M., and Wright, P. (1998) “Conver-
gence properties of the Nelder-Mead simplex method in low dimen-
sions.” SIAM Journal of Optimization, 9(1), pp. 112–147.

[110] Landweber, L. (1951) “An iterative formula for Fredholm integral
equations of the first kind.”Amer. J. of Math. 73, pp. 615–624.

[111] Lange, K. and Carson, R. (1984) “EM reconstruction algorithms for
emission and transmission tomography.”Journal of Computer Assisted
Tomography 8, pp. 306–316.

[112] Lange, K., Bahn, M. and Little, R. (1987) “A theoretical study of
some maximum likelihood algorithms for emission and transmission
tomography.”IEEE Trans. Med. Imag. MI-6(2), pp. 106–114.

[113] Leahy, R. and Byrne, C. (2000) “Guest editorial: Recent development
in iterative image reconstruction for PET and SPECT.”IEEE Trans.
Med. Imag. 19, pp. 257–260.

[114] Lent, A., and Censor, Y. (1980) “Extensions of Hildreth’s row-action
method for quadratic programming.” SIAM Journal on Control and
Optimization, 18, pp. 444–454.

350 BIBLIOGRAPHY

[115] Luenberger, D. (1969) Optimization by Vector Space Methods. New
York: John Wiley and Sons, Inc.

[116] Mann, W. (1953) “Mean value methods in iteration.”Proc. Amer.
Math. Soc. 4, pp. 506–510.

[117] Marlow, W. (1978) Mathematics for Operations Research. New York:
John Wiley and Sons. Reissued 1993 by Dover.

[118] Marzetta, T. (2003) “Reflection coefficient (Schur parameter) repre-
sentation for convex compact sets in the plane,.” IEEE Transactions
on Signal Processing, 51 (5), pp. 1196–1210.

[119] McKinnon, K. (1998) “Convergence of the Nelder-Mead simplex
method to a non-stationary point.” SIAM Journal on Optimization,
9(1), pp. 148–158.

[120] McLachlan, G.J. and Krishnan, T. (1997) The EM Algorithm and
Extensions. New York: John Wiley and Sons, Inc.

[121] Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., and
Teller, E. (1953) “Equation of state calculations by fast computing
machines” J. Chem. Phys. 21, pp. 1087–1091.

[122] Nash, S. and Sofer, A. (1996) Linear and Nonlinear Programming.
New York: McGraw-Hill.

[123] Nelder, J., and Mead, R. (1965) “A simplex method for function
minimization” Computing Journal, 7, pp. 308–313.

[124] Nesterov, Y., and Nemirovski, A. (1994) Interior-Point Polynomial
Algorithms in Convex Programming. Philadelphia, PA: SIAM Studies
in Applied Mathematics.

[125] von Neumann, J., and Morgenstern, O. (1944) Theory of Games and
Economic Behavior. New Jersey: Princeton University Press.

[126] Niven, I. (1981) Maxima and Minima Without Calculus. Mathemat-
ical Association of America.

[127] J. Ortega and W. Rheinboldt. (2000) Iterative Solution of Nonlinear
Equations in Several Variables, Classics in Applied Mathematics, 30.
Philadelphia, PA: SIAM, 2000

[128] Papoulis, A. (1977) Signal Analysis. New York: McGraw-Hill.

[129] Peressini, A., Sullivan, F., and Uhl, J. (1988) The Mathematics of
Nonlinear Programming. New York: Springer-Verlag.

BIBLIOGRAPHY 351

[130] Reich, S. (1979) “Weak convergence theorems for nonexpansive map-
pings in Banach spaces.” Journal of Mathematical Analysis and Ap-
plications, 67, pp. 274–276.

[131] Reich, S. (1980) “Strong convergence theorems for resolvents of accre-
tive operators in Banach spaces.” Journal of Mathematical Analysis
and Applications, pp. 287–292.

[132] Renegar, J. (2001) A Mathematical View of Interior-Point Methods
in Convex Optimization. Philadelphia, PA: SIAM (MPS-SIAM Series
on Optimization).

[133] Rockafellar, R. (1970) Convex Analysis. Princeton, NJ: Princeton
University Press.

[134] Rockmore, A., and Macovski, A. (1976) “A maximum likelihood
approach to emission image reconstruction from projections.” IEEE
Transactions on Nuclear Science, NS-23, pp. 1428–1432.

[135] Schmidlin, P. (1972) “Iterative separation of sections in tomographic
scintigrams.” Nucl. Med. 15(1).

[136] Shepp, L., and Vardi, Y. (1982) “Maximum likelihood reconstruction
for emission tomography.” IEEE Transactions on Medical Imaging,
MI-1, pp. 113–122.

[137] Shermer, M. (2008) “The Doping Dilemma” Scientific American,
April 2008, pp. 82–89.

[138] Shieh, M., Byrne, C., and Fiddy, M. (2006) “Image reconstruction:
a unifying model for resolution enhancement and data extrapolation:
Tutorial.” Journal of the Optical Society of America, A, 23(2), pp.
258–266.

[139] Shieh, M., Byrne, C., Testorf, M., and Fiddy, M. (2006) “Iterative
image reconstruction using prior knowledge.” Journal of the Optical
Society of America, A, 23(6), pp. 1292–1300.

[140] Shieh, M., and Byrne, C. (2006) “Image reconstruction from limited
Fourier data.” Journal of the Optical Society of America, A, 23(11),
pp. 2732–2736.

[141] Simmons, G. (1972) Differential Equations, with Applications and
Historical Notes. New York: McGraw-Hill.

[142] Stiemke, E. (1915) “Über positive Lösungen homogener linearer Gle-
ichungen.” Math. Ann, 76, pp. 340–342.

352 BIBLIOGRAPHY

[143] Tanabe, K. (1971) “Projection method for solving a singular system
of linear equations and its applications.”Numer. Math. 17, pp. 203–
214.

[144] Teboulle, M. (1992) “Entropic proximal mappings with applications
to nonlinear programming.” Mathematics of Operations Research,
17(3), pp. 670–690.

[145] Tucker, A. (1956) “Dual systems of homogeneous linear relations.”
in [107], pp. 3–18.

[146] van der Sluis, A. (1969) “Condition numbers and equilibration of
matrices.” Numer. Math., 14, pp. 14–23.

[147] van der Sluis, A., and van der Vorst, H.A. (1990) “SIRT- and CG-
type methods for the iterative solution of sparse linear least-squares
problems.” Linear Algebra and its Applications, 130, pp. 257–302.

[148] Vardi, Y., Shepp, L.A. and Kaufman, L. (1985) “A statistical model
for positron emission tomography.”Journal of the American Statistical
Association 80, pp. 8–20.

[149] Wright, M. (2005) “The interior-point revolution in optimization:
history, recent developments, and lasting consequences.” Bulletin
(New Series) of the American Mathematical Society, 42(1), pp. 39–56.

[150] Yang, Q. (2004) “The relaxed CQ algorithm solving the split feasi-
bility problem.” Inverse Problems, 20, pp. 1261–1266.

Index

AT , 54
A†, 54
Q-conjugate, 277
Q-orthogonality, 277
S⊥, 35
λmax, 160
λmax(S), 251
ν-ism, 135
‖ A ‖1, 251
‖ A ‖2, 253
‖ A ‖F , 18
‖ A ‖∞, 252
ψC(x), 95, 295
ρ(S), 248
σC(a), 295

Accessability Lemma, 42
aff(C), 35
affine hull of a set, 35
Arithmetic Mean-Geometric Mean In-

equality, 9
ART, 144
av, 136
averaged operator, 117, 136

Banach-Picard Theorem, 132
basic feasible solution, 55, 58
basic variable, 53, 58
basis, 52
BFGS method, 121
bi-section method, 6
block-iterative methods, 154
boundary of a set, 33
boundary point, 33
Brachistochrone Problem, 230

Bregman distance, 209
Bregman Inequality, 310
Broyden class, 122
Burg entropy, 232

canonical form, 56
Cauchy’s Inequality, 32
Cauchy-Schwarz Inequality, 32, 268
Cimmino’s algorithm, 159
clipping operator, 8
closed convex function, 91
closed set, 33
closure of a set, 33
cluster point of a sequence, 34
co-coercive operator, 135
column space of a matrix, 70
complementary slackness condition,

57, 105
complete metric space, 246
complex dot product, 20
compressed sampling, 111, 329
compressed sensing, 329
concave function, 296
condition number, 162, 251
conjugate function, 293
conjugate gradient method, 273, 279
conjugate set, 278
constant-sum game, 73
constrained ART, 146
convergent sequence, 246
convex combination, 34
convex function, 41, 86
convex function of several variables,

91
convex hull, 34

353

354 INDEX

convex programming, 97
convex set, 8, 34
Courant-Beltrami penalty, 205
covariance matrix, 17
CP, 97
CQ algorithm, 177
cross-entropy, 206
cycloid, 236

DART, 150
Decomposition Theorem, 38
descent algorithm, 116
DFP method, 122
diagonalizable matrix, 254
differentiable function of several vari-

ables, 89
direct-search methods, 122
direction of unboundedness, 36
directional derivative, 258
discrete PDFT, 327
distance from a point to a set, 33
dom(f), 41
dot product, 266
double ART, 150
DPDFT, 327
dual feasibility, 105
dual geometric programming prob-

lem, 23
dual problem, 56
dual problem in CP, 108
duality gap, 57
dynamic ET, 180

effective domain, 41, 91
eigenvalue, 17, 54
eigenvector, 17, 54, 270
eigenvector/eigenvalue decomposition,

17, 248, 256
EKN Theorem, 140
Elsner-Koltracht-Neumann Theorem,

140
EM algorithm, 192
emission tomography, 180
EMML, 192

epi(f), 41
epi-graph of a function, 41
essentially smooth, 309
essentially strictly convex, 309
ET, 180
Euclidean distance, 31
Euclidean length, 31
Euclidean norm, 31
Euler-Lagrange Equation, 234
expectation maximization maximum

likelihood method, 192
Ext(C), 36
Extended Mean Value Theorem, 84
exterior-point method, 205
extreme point, 36

Farkas’ Lemma, 44
feasible set, 55
feasible-point methods, 125
Fenchel’s Duality Theorem, 298
filter gain, 17
firmly non-expansive, 135
fixed point, 117, 131
fne, 135
forward-backward splitting, 306
Fréchet derivative, 260
Frobenius norm, 18
full-cycle ART, 145
full-rank matrix, 249
full-rank property, 146
functional, 5, 229
Fundamental Theorem of Game The-

ory, 299

Gâteaux derivative, 259
Gale’s Strong Duality Theorem, 61
generalized AGM Inequality, 10
Geometric Hahn-Banach Theorem, 41
geometric least-squares solution, 148
geometric programming problem, 22
Gerschgorin’s theorem, 255
gradient descent method, 7
Gram-Schmidt method, 272, 278

Hölder’s Inequality, 12

INDEX 355

Helly’s Theorem, 47
Hermitian, 270
Hermitian matrix, 54
Hermitian square root, 249
Hessian matrix, 89
Hilbert space, 31, 263, 322
hyperplane, 35

IMRT, 181
incoherent bases, 330
incremental gradient methods, 153
indicator function, 95, 295
induced matrix norm, 250
infimal convolution, 207, 303
inner product, 14, 32, 263, 266, 267
inner product space, 263
inner-product space, 267
integer programming, 63
intensity-modulated radiation ther-

apy, 181
interior of a set, 33
interior point, 33
interior-point methods, 7, 125
Intermediate Value Theorem, 83
inverse barrier function, 203
inverse strongly monotone, 135
ism operator, 135
Isoperimetric Problem, 238

Karush-Kuhn-Tucker Theorem, 101
KKT Theorem, 101
KL distance, 25
KM Theorem, 137
Krasnoselskii-Mann Theorem, 137
Kullback-Leibler distance, 25, 206,

314

Lagrange multiplier, 98
Lagrangian, 98
Landweber algorithm, 160, 179
least squares ART, 276
least squares solution, 274
least-squares, 206
Legendre function, 309

Legendre-Fenchel Transformation, 294
likelihood function, 313
limit of a sequence, 34
linear convergence, 124
linear independence, 51
linear manifold, 35
linear programming, 51
Lipschitz continuity, 132
Lipschitz function, 85
Lipschitz function of several variables,

90
logarithmic barrier function, 203
LS-ART, 276

MART, 25
matrix game, 73
maximum likelihood, 313
Mean Value Theorem, 83
Metropolis algorithm, 128
Min-Max Theorem, 299
minimum one-norm solution, 111
minimum two-norm solution, 111
minimum-norm solution, 206, 323
Minkowski’s Inequality, 13
monotone operators, 137
More envelope, 303
Moreau envelope, 207
MSSFP, 181
multi-directional search algorithms,

123
multi-set split feasibility problem, 181
multiplicative algebraic reconstruc-

tion technique, 25

ne, 134
Nelder-Mead algorithm, 123
Newton-Raphson algorithm, 119, 274
non-expansive, 134
norm, 247, 266, 268
norm of a vector, 14
norm-constrained least-squares, 206
normal cone, 36
normal vector, 36

open set, 33

356 INDEX

operator, 116
order of convergence, 124
ordered subset EM method, 193
orthogonal, 265, 266, 268
orthogonal complement, 35
orthogonal matrix, 17
orthogonal projection, 134
orthogonality principle, 271
orthonormal, 52
OSEM, 193

Pólya-Szegö Inequality, 14
paracontractive, 138
Parallelogram Law, 32
partial derivative, 258
partial gradient algorithm, 154
pc, 138
PDFT, 326
penalty function, 204
PGA, 154
positive-definite, 270
positive-definite matrix, 249
posynomials, 22
preconditioned conjugate gradient, 282
primal feasibility, 105
primal problem in CP, 97
projected Landweber algorithm, 179
proper convex function, 41, 91
proximal operator, 304
pseudo-inverse of a matrix, 250

quadratic convergence, 124
quadratic programming, 114, 283
quadratic-loss penalty, 205
quasi-Newton methods, 121

rank of a matrix, 53, 70, 249
rate of convergence, 124
RBI-EMML, 193, 197
RBI-SMART, 199
reduced cost vector, 64
reduced gradient, 126
reduced Hessian matrix, 126
reduced Newton-Raphson method, 126

reduced steepest descent method, 126
regularization, 149, 175, 206
relative interior, 36
relaxed ART, 145
rescaled block-iterative EMML, 197
rescaled block-iterative methods, 193
rescaled block-iterative SMART, 199
ri(C), 36
row space of a matrix, 70
row-action method, 144

saddle point, 99
SART, 180
sc, 132
self-concordant function, 120
semi-continuous convex function, 91
sensitivity vector, 98
Separation Theorem, 41
Sherman-Morrison-Woodbury Iden-

tity, 65
simplex multipliers, 64
simulated annealing algorithm, 128
simultaneous algebraic reconstruction

technique, 180
simultaneous MART, 191
singular-value decomposition, 249
Slater point, 97
SMART algorithm, 191, 194
span, 51
spanning set, 51
spectral radius, 248
standard form, 56
steepest descent algorithm, 118, 274
strict contraction, 132
strictly diagonally dominant, 255
Strong Duality Theorem, 58
strong under-relaxation, 150
subdifferential, 92
subgradient, 92
subsequential limit point, 34
subspace, 35
super-coercive, 310
super-consistent, 97
support function, 49, 295

INDEX 357

Support Theorem, 42
SVD, 249
symmetric game, 77
symmetric matrix, 54

Theorems of the Alternative, 43
trace, 20
trace of a matrix, 18
transpose of a matrix, 31
Triangle Inequality, 32, 245

uncorrelated, 269

value of a game, 76

Weak Duality Theorem, 57
weighted KL projection, 188

zero-sum games, 73

