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Some Examples lllustrating Richardson’s
Improvement
Steven Schonefeld

Steven Schonefeld receved his Pn.D. in functional analysis
irom Purdue University in 1969. He is currently Associale Profes-
sor of Matnematics at Tri-State University, where he has been on
the faculty since 1978. Wnen not al his computer keyboard, he
may be found shooting a game of pocket biliards, enjoying a
stage play, of snapping 25 mm pholos al tamily gathenngs.

In 250 B.C., the Greek mathematician Archimedes approximated the number = by
calculating the perimeters of several regular polygons inscribing and circumscribing
a circle of unit diameter. In a similar fashion, many of the methods of numerical
analysis involve generating sequences of numbers that converge to the soiution t0 a
given problem. Like Archimedes,.a modern computer can calculate only a finite
number of terms for each sequence. If too many terms are used, however, roundofl
error may prevent the computer from achieving the desired accuracy. Lewis Fry
Richardson [3), [6], [7), and [8] is credited with developing an important numerical
technigue for accelerating the convergence of certain sequences 1o the limit, thus
giving the desired accuracy from fewer terms. This method is called the deferred
approach to the limit, Richardson extrzpolation, Of Richardson’s improvement.
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The following examples help to illustrate some of the pros and cons of Richardson’s
improvement.

Introductory example. Students in my numerical analysis class get introduced to
the concept of Richardson’s improvement via examples of numerical approxima-
tion of the derivative f'(x) by the forward difference quotient

fle+h) - f(x)
h

A(f.x, k) =

and the central difference quotient

f(x+h)—f(x=h)

2h

5(f,x,h)=

In class we start by calculating a few of these approximations with a hand-held
calculator, but eventuaily [ pass around the output from a computer program. Any
differentiable function may be used for these calculations, but [ like to use a
nontrivial function whose derivative at x has a repeating decimal. A good example
is f(x) = In(x) with x = 3. The following table was generated by a simple program
written in Turbo Pascal, where calculations are performed to approximately ten
decimal digits of accuracy—about the same as given by my hand-heid calculator.
Values of A(f, x, ) and 8(f, x, h) are caiculated for A=2"% k=1,2,....

Example 1. Approximation of the derivative of f(x)=In{x)at x=23.

k h A(f x ) 5(f.x. h)

1 0.50000000000 0.30830135966 033647223662

2 0.25000000000 0.32017083070 0.33410816933

3 0.12500000000 0.32657595616 033352643575

4 006250000000 0.32990859525 0.33338157120

5 0.03125000000 033160918514 0.33334539045

6 0.01562500000 0.33246828022 0.3333%634748

7 0.00781250000 0.33290005778 0.33333408693

8 0.00390625000 0.33311650762 0.33333352162

9 0.00195312500 033322487306 0.33333338052
10 0.00097656250 0_3351279091 86 0.33333334513

11 0.00048828125 0.33330620825 0.33333333582
12 0.00024414063 033331977576 0.33333333582
13 0.00012207031 0.33332654834 033333333582 *
14 0.00006103516 0.33332994580 0.33333332837
15 0.00003051758 033333164454 033333334327
16 0.00001525879 0.33333253860 033333337307
17 0.00000762939 033333277702 033333325386 _
18 0.00000381470 033333301544 1 (74 033333325386 4T
19 0.00000190735 0.33333301544 0.33333349228
20 000000095367 033333396912 033333396912
21 0.00000047684 0.33333587646 0.33333396912
2 000000023842 0.33333587646 0.33333206177
3 0.00000011921 0.33332824707 033333587646
24 0.00000005960 0.33334350586 0.33332824707
25 000000002980 0.33331298828 033331298828
26 0.00000001490 0.33337402344 0.33337402344
27 0.00000000745 " 033325195313 033325195313
28 0.00000000373 0.33349609375 - 033325195313
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‘From Example 1.1t 1s gasy for the students 10 se¢ the approximations geting closer
o f (x)= 0.333 for several successive ilerations. This example also illustrates the
typical way that roundoff error may creep into these calculations. As h gets small,
there is a 0SS of accuracy (roundoff error) in the calcuiations of A(f,x.h) and
5(f.x,h) due 10 the subtraction of nearly equal guantities. In fact, had the
jterations continued long enough. the values of h would become s0O small that
x=h and x—h would both round to x, giving computed values of zero for
5(f.x.k)and A(f. x h). '

With some encouragement. an observant student may notice that 8(f. x. /1) does
a berter job of approximating f'(x) than A(f, x, ). The best that A(f.x.h)cando
in this example is 10 give six-digit accuracy in iterations 16 through 19, whereas
5(f, x, ) gives seven digit accuracy in iterations 10 through 15 and is never less
accurate than A(f, x, 7).

To see why 8(f,x, i) and A(f, x, h) behave this way, we look at 2 general
function f(x) that is analytic at X. A standard argument [1] shows:

ey 3 ) .
A(f,x.f1)=f'(,1-)+fij)h‘+ 4(1)}7:+f (l')lr"“—'rm )
A 3! 4!
and
(&) (5 y (N
5(f,r,12)=f'(x)+%-—_%—)-h:+ %;-—!)-h";.—z—%?-h“-:— (2)

where FO(x), f@(x),... are the 3rd. 4th, ... derivatives at x. SO when f"(x) =0,
fOx) =0, and h is close to Z€ro, A(f.x,h)—f’(x) will behave like a constant
times k and 8(f, x, ) — f(x) will behave like a constant times h*. Thus 8(f.x. 1)

can be expecied to give 2 more accurale approximation to the derivative than

."_\(f, X, f‘!)

The derivation of Richardson's improvement. Suppose we wish 10 approxi-
mate a limit L = lim,, o T(7) by calculating T(h) for several difierent values of /
that are close to zero. That Is, Suppose there exists an algorithm or formula that
will permit us to calculate T(h) for a sequence (h,) with h, >0 and hpwy=hy /2
(students are reminded of Example 1, in which h, =27%). The calculation of each
T(}) may be quite expensive, and we expect significant roundoff error as /i
approaches zero. Even though we might not know the Maclaurin series for T(h),

we assume one exisis of the form: L —

T(h) =L +ah"+ah"+ a,h" + higher powers of h B (3)

with the natural numbers ny <71y <n3< *°° known. For example, when T(h) =
A(f, x, h) we have n, =k, and when T(h)=8(f,x. h) we have n,= 2k for k=
1.2,.... Suppose we have calculated T(2h) and T(h). Adding —T(2h) and

2mT(h), we see that the h™ terms drop out.

—T(2h) = —L =2Ma " =2"ah"
+2mT(h) —amp 4 2mg B+ 2Ma T

amT(h) = T(2h)=Q2" = nL o+ @m- M a,h" A

Dividing this last equation by (2™ — 1), we get the first Richardson improvement,
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T,, defined bi‘/,,ﬂ L \\
/ 2"‘T(h} _T(:h) an o .
Qi(h)z 2"1....}_ =L7m£’!;/\)

With the A” term eliminated, we expect this improved value give a better
approximation to the limit L. This same process may be applied to T\(h) to give a
Richardson improvement T,(h) with the A": term eliminated, then applied to
T.(h) to give a Richardson improvement T,(h) with the 2™ term eliminated, etc.
That is, if we have calculated values for T, (2h) and T.(h), we may define the
@Mm improvement by: T

e - .
20T, (h) — T,(2h)

Tywi(h) = — : k=0,1,,:’:)

where we are using the convention T,(h)= T{(h). The power series for T,(h) will
be of the form

T (h) =L +bg hmei+b o h" 2+ by .;h™ =" + higher powers of /.

With the lower powers of 4 eliminated, we expect T.(h) to give a better approxi-
mation to the limit L than To(h), T\(h), ..., or T_,(h).
It is traditional to display the Richardson improvements in a triangular tabie as

follows:

h T(h)=T(h) T,(h) T,(h) T,(k) Ty(h)
12 T2

e
174 T(/4) - T,(1/4)
N N
1,8 T/ —  T{1/8)— TA1/8)
N Ny N
1/16  T(1/16) =  T(1/16) = T(1/16) = 75(1/16)
N " N N
1/32 T(/32) -  T(1/32) = Ty(1/32) = Ty(1/32) = T,(1/32)

where the arrows pointing to an improvement indicate the numbers that were used
t0 calculate the improvement. For example, T,(1/16) has arrows pointing to it
from T,(1/8) and T(1/16), indicating that these Mowused to
calculate T,(1/16). -

It may happen that we have an algorithm for calculating T(h) and are reason-
ably sure that we know the exponents 711, in the Maclaurin series (3) for T(h), but
we would like another check 1o reassure us that things are going as planned. The
ratios R, (k) defined below provide such a check.

Suppose we have calculated values for T,_(h), T,_(2h), and T,_\(h/2) as
above. Again using the notation Ty(h) = T(h), we define the ratios R,(h) by:

R

/.R B = Tk_l(ZE)-Tk_](hjr k=12 4
) = T = T (/) ST )
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Next, we replace the values of T,_, in (4) by the foliowing approximations:
T,_((h)=L~ a h™,

T,_(2h)=L=Imah™. and

To_(h/2) =L=(1/2)"a.k",

where we assume @ 1S nOnzero. Upon simplifving. we conclude that

R (h)y=2".

So for T(h)= A(f, x, h) we expect R () =2*, and for T(h) = 6(f,x. h) we expect

R (h)=2% =4~

There are more general ways of treating Richardson’s improvement [21. [4).

However, this is about as general as most numerical analysis students would like to
get. In fact, they may need (o see several examples before the significance of this
method sinks in. I have students calculate Richardson improvements and ratios
using a hand-held calculator for values of 8(f.x.h) or A(f, x, h) selected from
Example 1; Jater I show them the output from a computer program that calculates
the first three Richardson improvements on A(f,x.,h) and the corresponding

ratos.

The program that generated the numbers in the
following examples was written in Turbo Pascal. Pseudocode for the calculation of
Richardson improvements for an arbitrary T(/1) is included at the end of this

article. In the present examples, AlS, x.h) was calculated for h=2"% k=
2 3..... but the values of h were not output due 10 space considerations. The

caleulation of A(f,x,h) was terminated when 20 iterations were completed or
when the last two calculated Richardson improvements in a row of the table
agreed to eight digits.

Examples involving A(f, X, h).

Example 2. f(x) =In(x), with x = 3.

Tolh) = A(f,x,h) Ry T,(h) Ry(h) T.(h) Ry(h) T,(h)
0.3083012597
03201708307 185 0.3320403017
0.3265759562 107 03320810816  3.62 03332946749
0.3299085952 o6 05332412343 380 03333279519 7.3
0.3316091851 log 03333097750 .89 03333326219 753
0.3324682801 oo 03335273751 395 03333332417 776
0.3329000575 Log 033316350 397 0333|6776 03333333330
0.3331165076 (3333320577 03333333319 0.3333333334

Example 2 is typical of what one expects for Richardson improvements on
A(f,x, h):
(a) As one traces d

numbers (usually) get closer to f'(x)-
(b) As one traces across a row of the table, the values of T,(h) (usually) get

own the column of a particular Richardson improvement, the

significantly closer t0 f(x). _
(c) The ratios R, (h) are approximately 2K, :
(d) The last calculated value of T3(h)isa better approximation to f'(x) than any

of the values calculated from A(f, x, k) in Example 1.
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3x .
5 +x7sin(l/x) forx=0

flx)= with x = 0.
0 forx=10
T (k)= Af.x k)RR T\(h) Ru(h) Ta(h) Ryk) Ty(h)
1.01020<2690
0.3663549317 —2.06 —0.2774942055
0.6792253364 =221 0.9920957+10 ~2.13  1.4152921566
0.3375613983 -4.02 0.395897860t —281 0.1971652332 =253 0.0231470584
0.5727S76393 —-12.33 0.6080136804 —5.18 0.6787189538 —3.84 0.7475113425
0.5699309624 0.33 0.5670742855 280  0.5534278205 2139  0.5355290871
0.5611886627 0.92 0.55234363629 1.42 05475703888 0.66 0.5467336128
03316523992 -2.35 05421161357 —0.59 05386727266 —033 05374016320
0.5337108651 —-13.09 0.5597693311 —3.77 05636537795 —2.23 0.5695081585
(.3334007378 - 158.40) 0.5330906105 —14.90 5335310370 05517992237
0.3332026957 0.5354046536

In Example 3 we see the classic example of a function having a first derivative at
=0 but no higher derivatives at x =0. We should not expect the Richardson
improvements to behave well for this function. The following things happen:

(a) The forward difference approximations continue to get closer to f(x)=5/9
for the entire 20 iterations.

{(b) Even though the Richardson improvements do not get any closer to f'(x)
than T,, they are not worse.

<3 (c) The ratios R, continue their erratic behavior for the entire 20 iterations,

reinforcing our suspicion that no improvement is possible.

Examples involving 8(f, x,h). The program that generated the values for the
following example is nearly identical to the program used for Examples 2 and 3.

Example 4. f(x}=In(x), with x=3.

T =8(f.x.h) R T\(i) Ra(h) T,(h) R4(h) T5(h)
0.3364722366
0.3341081693 4.06 0.3333201469
0.3335264358 1.02 0.3333325246 16.32 0.3333333497
0.3333815712 4.00 (0.3333332830 16.08 0.3333333336 64.02 0.3333333333
0.3333453904 0.3333333302 0.3333333333 03333333333

Example 4 is a2 companion to Example 2. It illustrates the typical behavior of
Richardson improvements on 8(f,x, h):

(2) The ratios R.(h) are approximately 4*.

(b) Fewer caiculations are required to get a good approximation to f'(x) than
with improvements on Alf, x, h).

(c) The Richardson improvements on 8(f, x, k) are significantly better approxi-
mations to f'(x) than the corresponding improvements on ACf, x, h)

The reader is encouraged to conduct similar experiments in calculating Richard-
son’s improvements on A(f,x,A) and 8(f,x,h). For exampie, one may try per-
forming the calculations using single precision (usually 7-8 decimal digits accu-
racy) and double precision (usually 15-16 decimal digits accuracy) and compare
the results. Here are some other functions to use in the caloulation of Richardson’s
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improvements on A(f.x.h)or & f.x.h).
with x=3. f(x) =0.111111...

flx)=-1/%

Svx N _ R
f(f)=—“9”—, with x=4. [(x) =(Q.2I22722
- 3 . X: x - h ,._O J"( ')—U’””H
f(A}——9~v—_l~,——4_ with x=0. f(x)=0.

Tx . L
f(x)=?+xb~‘i, with x=0. f(x)=07T7777..-
8)' . -
f(x)= 3 + 10x}sin(100x), with x=0, f/(x) = 0.888888...

Some things to look for are the following:
(a) For polynomials having degree 4 or less, the third Richardson improvement

on A(f,x.h) equals f'(x) and the first Richardson improvement on S(f,x.h)
equals f'(x). (Why?)

(b) Looking at the r
improvement does not improve the accuracy
off error or other factors.

{c) In some of these examp
approximate f'(x) better than
plain this phenomenon.)

atios R,(h) can help us recognize when the Richardson
of our approximations due 10 round-

les, A(f,x,h) and its Richardson improvements
§(f,x.h) and 1ts Richardson improvements. (Ex-

Returning to Archimedes’ approximation of

Archimedes’ approximation of =
]) for the perimeter of the reguiar 27-gon

— we note one formula (compare (3

TR}

inscribed in a circle of diameter one: - fragl
. /
p, =271 2%x, =25 (3)

where x, is defined recursively by x,=0and x,., = J2+x . Wemayleth= 27"
and regard p, as T(h). By connecting vertices of this regular 27-gon with the
center of the circle, we get 27 central angles of size 2= /2" Simple trigonometry

gives the formula
= 27sinl —
p,=2 sm{ﬁm}.

In terms of h = 27" this becomes ____* ) ~
el 1
T(h) =+ sm(r:h),)
—'—‘—'_m_"‘—._“.w

sin(x) =x—-§T+-§T ETRY

Using the fact that

we conclude that

1 —py? (=h) (=R) =h)’
(k) =~k - +( )p( )+( )
h 3! 51 7! 9!

7‘_3 _‘75 7‘.‘! 9
e g4 hft e —hS e+ Th
3! 51 7 9!

which is in the form of (3) with n, = 2k.
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Incorporating formula (3) for calculating T(2) = p, in 2 computer program using
n, =2k yields the following table.

Exampie 5. Richardson improvements approximating .
Toliy=p, R{(Jt) T,(h) R.(h) T,(h) R, (h) T4(h)
2.828<271247
3.0614674589 3.89 3.1391475703
31214451522 3.97 3.1414377167 15.77 3.1413903931
31363484905 3.99 3.1415829365 15.94 31415926179 63.83 3.1415926532
3.1403311367 3.1415920455 3.1415926527 3.14159263533

Formula (5), however, has a fatal flaw: the numbers x, approach 2 (prove it),
and thus the subtraction 2 —x, _, inside the radical will cause roundoif error duc
to the subtraction of nearly equal numbers. The interested reader may wish to
develop a formula for p, (involving only the operations +, —, =, /, and V) that
does not have this flaw and see how it affects the Richardson improvements. It s
also interesting to develop a formula for the perimeters of the regular 2"-gons
circumscribing a circle of unit diameter and generate the Richardson improve-

ments on them.

Final remarks. This is just an introduction to Richardson improvement and
extrapolation techniques. The extremely comprehensive survey articie by Joyce (2]
is required reading for anyone interesied in learning more about this subject.

For my numerical analysis students, the above examples serve as an introduction
to Romberg integration, where T(A) is the trapezoidal rule approximation to an
integral using equal subintervals of size £ and the Richardson improvements are
performed with n, = 2k. Specific examples of Romberg integration tables similar
to the ones given above (without the ratios) are included in most numerical
analysis textbooks. An interesting fact that is glossed over by some numerical
analysis texts is that Simpson’s rule is a Richardson improvement on the trape-

’

_zoidal rule. This should be clear from the following hint: use n, =2 and h =

(b —a)/2 so that the trapezoidal rule approximations to [FPf(x) dx will be

2 )

when computing 7,(h).

We touch on Richardson’s improvement again when we discuss numerical
approximations to solutions of differential equations.

In all the examples, the number of Richardson improvements, m, has been at
most three. One reason for this restriction on m is to fit the output nicely on a
page or display that is 80 characters wide. Another reason for restricting m is
mathematical in nature. The termination test will stop the calculation of new rows
in the Richardson improvement table when T, _(h) = T, (k) is small in absolute

value. Using

anTm-ﬂ ](h) - Tm-l(?'h)
2m =1

Ta(h) =
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-

and simplifving. we get

, T2 =T
T, (h)-T(h)=—"=_7 (6)

Thus. when there are no restrictions on 7. T, _(h)— 7.(h) will nearly alwavs

become small in absolute value simply because the denominator in (6) becomes

large. This may terminate the calculations before the desired accuracy is achieved.

pseudocode for calculation of Richardson improvements on T(h).

MaxRows — 20

MaxColumns — 3 (The reader may experiment with other values here. ]

{With this tolerance we hope for § digit accuracy. }

Toi— 107"
h=—1/2 {Any convement starling value for A may be used. }
Dyo=— Tt
i—=0 {Use i to siore the current row number. }
REPEAT (Calculate the Richardson improvements. )
h—h/2
f—i+1
D, y— T {Stare TCh) in column U of array D.)

m — MIN(i. MaxColumns)
DOFOR k=1TOm
D, - [2m=D, o1 D:‘—l.A-l]/[:"‘ -1]

'— UNTIL (i = MaxRows) OR (D, -1~ D, ) < Tol= 1D, .1
{Output foliowed by carnage return and line feed.)

{Stare T, (1) in D, .)

OUTPUT(Dy . CrL)
— DOFOR j=1TO -1 (The botiem calculated TOW of array D is .}
OUTPUTI D, g} {Output without CrLL.)

~—DO FOR k=1TO m

—IF Kk <j) THEN {Calculate the Ratio = R, (2777 )

A=D1 D s (Possible numeralor for Ratio. }
B—=D, -1~ D, i1 {Possible denominator for Ratio. }
IF (B = 0) THEN Ratio —A/B ELSE Ratio — 9999
OUTPUT(Ratio, D; )
L END DO

QUTPUT(CrLD
OUTPUT(D, ;) END DO
EDOF‘OR k=1TOm

QUTPUT(D; ;)

{Output the batiom row of D separately. )
{We still have m = MINU, MaxColumns). )
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