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Chapter 1

Introduction

The situations of interest to us here can be summarized as follows: the
data has been obtained through some form of sensing; physical models,
often simplified, describe how the data we have obtained relates to the
information we seek; there usually isn’t enough data and what we have
is corrupted by noise and other distortions. Although applications differ
from one another in their details they often make use of a common core
of mathematical ideas; for example, the Fourier transform and its variants
play an important role in many areas of signal and image processing, as
do the language and theory of matrix analysis, iterative optimization and
approximation techniques and the basics of probability and statistics. This
common core provides the subject matter for this text. Applications of
the core material to tomographic medical imaging, optical imaging and
acoustic signal processing are included.

The term signal processing is used here in a somewhat restrictive sense
to describe the extraction of information from measured data. This text is
designed to provide the necessary mathematical background to understand
and employ signal processing techniques in an applied environment. The
emphasis is on a small number of fundamental problems and essential tools,
as well as on applications. Certain topics that are commonly included in
textbooks are touched on only briefly or in exercises or not mentioned at
all. Other topics not usually considered to be part of signal processing, but
which are becoming increasingly important, such as iterative optimization
methods, are included. The book, then, is a rather personal view of the
subject and reflects the author’s interests.

The term signal is not meant to imply a restriction to functions of a
single variable; indeed most of what we discuss in this text applies equally
to functions of one and several variables and therefore to image processing.
However, there are special problems that arise in image processing, such
as edge detection, and special techniques to deal with such problems; we
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2 CHAPTER 1. INTRODUCTION

shall not consider such techniques in this text. Topics discussed include the
following: Fourier series and transforms in one and several variables; appli-
cations to acoustic and EM propagation models, transmission and emission
tomography and image reconstruction; sampling and the limited data prob-
lem; matrix methods, singular value decomposition and data compression;
optimization techniques in signal and image reconstruction from projec-
tions; autocorrelations and power spectra; high resolution methods; detec-
tion and optimal filtering; eigenvector-based methods for array processing
and statistical filtering.



Chapter 2

Complex Numbers

It is standard practice in signal processing to employ complex numbers
whenever possible. One of the main reasons for doing this is that it en-
ables us to represent the important sine and cosine functions in terms of
complex exponential functions and to replace trigonometric identities with
the somewhat simpler rules for the manipulation of exponents.

The complex numbers are the points in the x, y-plane: the complex
number z = (a, b) is identified with the point in the plane having a = Re(z),
the real part of z, for its x-coordinate and b = Im(z), the imaginary part of
z, for its y-coordinate. We call (a, b) the rectangular form of the complex
number z. The conjugate of the complex number z is z = (a,−b). We
can also represent z in its polar form: let the magnitude of z be |z| =√

a2 + b2 and the phase angle of z, denoted θ(z), be the angle in [0, 2π)
with cos θ(z) = a/|z|. Then the polar form for z is

z = (|z| cos θ(z), |z| sin θ(z)).

Any complex number z = (a, b) for which the imaginary part Im(z) = b
is zero is identified with (treated as the same as) its real part Re(z) = a;
that is, we identify a and z = (a, 0). These real complex numbers lie
along the x-axis in the plane, the so-called real line. If this were the whole
story complex numbers would be unimportant; but they are not. It is the
arithmetic associated with complex numbers that makes them important.

We add two complex numbers using their rectangular representations:

(a, b) + (c, d) = (a + c, b + d).

This is the same formula used to add two-dimensional vectors. We multiply
complex numbers more easily when they are in their polar representations:
the product of z and w has |z||w| for its magnitude and θ(z)+θ(w) modulo
2π for its phase angle. Notice that the complex number z = (0, 1) has
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4 CHAPTER 2. COMPLEX NUMBERS

θ(z) = π/2 and |z| = 1, so z2 = (−1, 0), which we identify with the real
number −1. This tells us that within the realm of complex numbers the
real number −1 has a square root, i = (0, 1); note that −i = (0,−1) is also
a square root of −1.

To multiply z = (a, b) = a + ib by w = (c, d) = c + id in rectangular
form we simply multiply the binomials

(a + ib)(c + id) = ac + ibc + iad + i2bd

and recall that i2 = −1 to get

zw = (ac − bd, bc + ad).

If (a, b) is real, that is, if b = 0, then (a, b)(c, d) = (a, 0)(c, d) = (ac, ad),
which we also write as a(c, d). Therefore, we can rewrite the polar form for
z as

z = |z|(cos θ(z), sin θ(z)) = |z|(cos θ(z) + i sin θ(z)).

We will have yet another way to write the polar form of z when we consider
the complex exponential function.

Exercise 1: Derive the formula for dividing one complex number in rect-
angular form by another (non-zero) one.

Exercise 2: Show that for any two complex numbers z and w we have

|zw| ≥ 1

2
(zw + zw). (2.1)

Hint: Write |zw| as |zw|.

Exercise 3: Show that, for any constant a with |a| 6= 1, the function

G(z) =
z − a

1 − az

has |G(z)| = 1 whenever |z| = 1.



Chapter 3

Complex Exponentials

The most important function in signal processing is the complex-valued
function of the real variable x defined by

h(x) = cos(x) + i sin(x). (3.1)

For reasons that will become clear shortly, this function is called the com-
plex exponential function. Notice that the magnitude of the complex num-
ber h(x) is always equal to one, since cos2(x) + sin2(x) = 1 for all real x.
Since the functions cos(x) and sin(x) are 2π-periodic, that is, cos(x+2π) =
cos(x) and sin(x+2π) = sin(x) for all x, the complex exponential function
h(x) is also 2π-periodic.

In calculus we encounter functions of the form g(x) = ax, where a > 0
is an arbitrary constant. These functions are the exponential functions, the
most well known of which is the function g(x) = ex. Exponential functions
are those with the property g(u+v) = g(u)g(v) for every u and v. We show
now that the function h(x) in equation (3.1) has this property, so must be
an exponential function; that is, h(x) = cx for some constant c. Since h(x)
has complex values, the constant c cannot be a real number, however.

Calculating h(u)h(v) we find

h(u)h(v) = (cos(u) cos(v) − sin(u) sin(v)) + i(cos(u) sin(v) + sin(u) cos(v))

= cos(u + v) + i sin(u + v) = h(u + v).

So h(x) is an exponential function; h(x) = cx for some complex constant
c. Inserting x = 1 we find that c is

c = cos(1) + i sin(1).

Let’s try to find another way to express c.
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6 CHAPTER 3. COMPLEX EXPONENTIALS

Recall from calculus that for exponential functions g(x) = ax with a > 0
the derivative g′(x) is

g′(x) = ax ln(a) = g(x) ln(a).

Since

h′(x) = − sin(x) + i cos(x) = i(cos(x) + i sin(x)) = ih(x)

we conjecture that ln(c) = i; but what does this mean?
For a > 0 we know that b = ln(a) means that a = eb. Therefore, we

say that ln(c) = i means c = ei; but what does it mean to take e to a
complex power? To define ei we turn to the Taylor series representation
for the exponential function g(x) = ex, defined for real x:

ex = 1 + x + x2/2! + x3/3! + ....

Inserting i in place of x and using the fact that i2 = −1, we find that

ei = (1 − 1/2! + 1/4! − ...) + i(1 − 1/3! + 1/5! − ...);

note that the two series are the Taylor series for cos(1) and sin(1), respec-
tively, so ei = cos(1) + i sin(1). Then the complex exponential function in
equation (3.1) is

h(x) = (ei)x = eix.

Inserting x = π we get

h(π) = eiπ = cos(π) + i sin(π) = −1

or
eiπ + 1 = 0,

which is the remarkable relation discovered by Euler that combines the
five most important constants in mathematics, e, π, i, 1 and 0, in a single
equation.

Note that e2πi = e0i = e0 = 1, so

e(2π+x)i = e2πieix = eix

for all x.
We know from calculus what ex means for real x and now we also know

what eix means. Using these we can define ez for any complex number
z = a + ib by ez = ea+ib = eaeib.

We know from calculus how to define ln(x) for x > 0 and we have just
defined ln(c) = i to mean c = ei. But we could also say that ln(c) = i(1 +
2πk) for any integer k; that is, the periodicity of the complex exponential
function forces the function ln(x) to be multivalued.
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For any nonzero complex number z = |z|eiθ(z) we have

ln(z) = ln(|z|) + ln(eiθ(z)) = ln(|z|) + i(θ(z) + 2πk),

for any integer k. If z = a > 0 then θ(z) = 0 and ln(z) = ln(a) + i(kπ)
for any even integer k; in calculus class we just take the value associated
with k = 0. If z = a < 0 then θ(z) = π and ln(z) = ln(−a) + i(kπ) for
any odd integer k. So we can define the logarithm of a negative number; it
just turns out not to be a real number. If z = ib with b > 0, then θ(z) = π

2
and ln(z) = ln(b) + i(π

2 + 2πk), for any integer k; if z = ib with b < 0 then
θ(z) = 3π

2 and ln(z) = ln(−b) + i( 3π
2 + 2πk) for any integer k.

Adding e−ix = cos(x) − i sin(x) to eix given by equation (3.1) we get

cos(x) =
1

2
(eix + e−ix);

subtracting, we obtain

sin(x) =
1

2i
(eix − e−ix).

These formulas allow us to extend the definition of cos and sin to complex
arguments z:

cos(z) =
1

2
(eiz + e−iz)

and

sin(z) =
1

2i
(eiz − e−iz).

In signal processing the complex exponential function is often used to de-
scribe functions of time that exhibit periodic behavior:

h(ωt + θ) = ei(ωt+θ) = cos(ωt + θ) + i sin(ωt + θ),

where the frequency ω and phase angle θ are real constants, and t denotes
time. We can alter the magnitude by multiplying h(ωt + θ) by a positive
constant |A|, called the amplitude, to get |A|h(ωt + θ). More generally, we
can combine the amplitude and the phase, writing

|A|h(ωt + θ) = |A|eiθeiωt = Aeiωt,

where A is the complex amplitude A = |A|eiθ. Many of the functions
encountered in signal processing can be modeled as linear combinations of
such complex exponential functions or sinusoids, as they are often called.

Exercise 1: Show that if sin x
2 6= 0 then

EM (x) =
∑M

m=1
eimx = eix( M+1

2
) sin(Mx/2)

sin(x/2)
. (3.2)
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Hint: Note that EM (x) is the geometric progression

EM (x) = eix + (eix)2 + (eix)3 + ... + (eix)M = eix(1 − eiMx)/(1 − eix).

Now use the fact that, for any t, we have

1 − eit = eit/2(e−it/2 − eit/2) = eit/2(−2i) sin(t/2).

Exercise 2: The Dirichlet kernel of size M is defined as

DM (x) =
∑M

m=−M
eimx.

Use equation (3.2) to obtain the closed-form expression

DM (x) =
sin((M + 1

2 )x)

sin(x
2 )

;

note that DM (x) is real-valued.
Hint: Reduce the problem to that of Exercise 1 by factoring appropriately.

Exercise 3: Use the result in equation (3.2) to obtain the closed-form
expressions

∑M

m=N
cos mx = cos(

M + N

2
x)

sin(M−N+1
2 x)

sin x
2

and
∑M

m=N
sinmx = sin(

M + N

2
x)

sin(M−N+1
2 x)

sin x
2

.

Hint: Recall that cos mx and sinmx are the real and imaginary parts of
eimx.

Exercise 4: Graph the function EM (x) for various values of M .
We note in passing that the function EM (x) equals M for x = 0 and

equals zero for the first time at x = 2π/M . This means that the main
lobe of EM (x), the inverted parabola-like portion of the graph centered at
x = 0, crosses the x-axis at x = 2π/M and x = −2π/M , so its height is M
and its width is 4π/M . As M grows larger the main lobe of EM (x) gets
higher and thinner.



Chapter 4

Hidden Periodicities

We begin with what we call the Ferris Wheel Problem. A Ferris Wheel
is a carnival ride, or perhaps a tourist attraction, like the London Eye,
consisting of a large rotating wheel supported so that its axis of rotation is
parallel to the ground. Around the rim of the wheel are seats for the riders.
Once the seats are filled the wheel rotates for some number of minutes, from
time t = 0 to t = T and then it slows to let the riders off. Suppose that the
radius of the wheel is R feet, the center of the wheel is R + H feet off the
ground and from time t = 0 to t = T the wheel completes one revolution in
P seconds, so that its frequency of rotation is ω = 2π

P radians per second.

Exercise 1: Determine the formulas giving the horizontal and vertical
coordinates of the position of a particular rider at an arbitrary time t in
the time interval [0, T ].

Now let us make it a bit more complicated. Suppose that, instead of seats
around the rim of the wheel, there is a smaller Ferris Wheel (or several
identical smaller wheels distributed around the rim, for stability). To avoid
confusion, let’s let R1 and ω1 be the radius and frequency of rotation of the
original wheel and let R2 and ω2 be the radius and frequency of rotation
of the second wheel.

Exercise 2: Now find the formulas giving the horizontal and vertical co-
ordinates of the position of a particular rider at an arbitrary time t in the
time interval [0, T ].

Continuing down this road, imagine a third wheel on the rim of the second,
a fourth on the rim of the third, and so on; in fact, let there be J nested
Ferris wheels, the j-th wheel having radius Rj and frequency of rotation
ωj . Figure 4.1 illustrates the case of J = 3.
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10 CHAPTER 4. HIDDEN PERIODICITIES

Exercise 3: Repeat the previous exercise, but for the case of J nested
wheels.

What we have been doing here is solving what is called a direct problem.
The simplest way to explain a direct problem is to contrast it with one that
is not direct, a so-called inverse problem [82], [142]. An inverse problem
involving the Ferris Wheels is the following. Suppose our data consists of
the positions of a particular rider at several distinct times, t1, ..., tM . From
this data alone determine J , the number of nested wheels, the radii Rj of
the wheels, and their frequencies of rotation ωj .

Direct problems usually look ahead in time to what would happen in a
certain situation. The formulas involved are usually straightforward appli-
cations of the relevant concepts and there is no data involved. In contrast,
inverse problems ask us to determine what did happen, given some mea-
surements of the outcome. The measurements may be unreliable or noisy
and there may not be enough measurements to determine a single unique
answer. In the inverse Ferris Wheel problem we would assume that J , the
number of wheels, is smaller than M , the number of measurements. Given
M measurements, it is usually possible to fit those measurements exactly to
a model involving more than M wheels; the hard part is to let the data tell
us what J is. A second issue is the choosing of the times tm at which the
measurements are taken. If we were to take all the measurements in rapid
succession, over a very small interval of time, the problem would become
much more difficult and the answer much more sensitive to slight errors
in the data. Just how we should select the times tm will depend on our
prior knowledge of what the frequencies of rotation might be. If some of
the wheels are turning very rapidly we must sample quickly to determine
that. Otherwise we get the strobe light type of aliasing.

The measured data giving the positions of the rider at various times is
said to contain information about the hidden periodicities involved. There
are periodicites, not always hidden, in many different data sets. For exam-
ple, data giving the temperature every hour in downtown Lowell for the
last one hundred million years would show several interest periodicities,
or almost periodicities. Clearly there is the periodicity corresponding to
the seasons of the year. There is also the periodicity associated with the
passage from day to night, although this is a somewhat more complicated
function of time, involving, as it does, the varying lengths of day and night
in different seasons. There will be other components corresponding to the
temperature changes from one day to the next, having no simple periodic
aspect. On top of all this there will be components with much longer pe-
riods (so much smaller frequencies), corresponding to the climate changes
from one century to the next. There will be components with even longer
periods, the climate changes studied in connection with global warming,
having periods of thousands of years. An interesting study is to try to
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relate, or to correlate, the periodic components in one data set with those
in another. For example, is earth weather related to the periodicities in
the sun spot activity?

Many of the signals we encounter in practice contain complex exponen-
tial components having different amplitudes and frequencies. The standard
model for such signals is

s(t) =
∑N

n=1
|An|ei(ωnt+θn). (4.1)

One of the main problems in signal processing is to determine the values of
the parameters N , |An|, ωn and θn from measurements of the function s(t);
that is, to determine the complex exponential components that constitute
the signal s(t). For example, in automated human voice recognition a par-
ticular individual speaker is identified by the combination of the |An| and
ωn present in the speech of that person when pronouncing a certain sound.
Our ears perform this identification task when we recognize the voice of a
particular singer or actor. In digital speech processing the assumption is
that the signal corresponding to the voicing of a particular sound has the
form given in equation (4.1), at least for a short time interval (until the
next sound is voiced). A second point of view is that equation (4.1) is a
model to be used to perform certain operations on a signal, such as noise
reduction or compression.

In some applications we do not have exact measurements of s(t) but
noisy estimates of what those exact values are. Our job is then to clean up
the data to extract the parameter values. In restoration of old recordings
the parameters are estimated from noisy measurements of the old recording
and these parameters modified and inserted to recreate digitally the original
sound. The noisy measurement data can then be modeled using equation
(4.1) and (at least some of ) the noise removed by subtracting certain
complex exponential components attributed to the noise. At the same time
the quality of the signal can be enhanced by modifying the amplitudes of
the components that remain. The resulting set of numbers can then be
converted back into audible sound.

In radar, sonar, radio astronomy and related remote sensing applica-
tions the variable ω may not be frequency but a direction in space relative
to a fixed coordinate system. In such cases the variable t denotes the loca-
tion in space at which the function s(t) is measured. The various parts of
the objects of interest send (or reflect) individual signals and the measuring
devices record the superposition of all these signals. Whether the objects
of interest are planes in radar, the stars in the heavens in optical or radio
astronomy, submarines and ships at sea in sonar, regions of a patient’s body
in medical tomography or portions of the earth’s surface in synthetic aper-
ture radar imaging, the received signals must be analyzed, that is, broken
down into their constituent parts, so that the individual sources of received
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energy can be separately known. A nonzero value of |An| then indicates
the presence of a source (or reflector) of electromagnetic or acoustic energy
at angle ωn. We measure s(t) at many different locations t and from that
data we try to decompose the signal into its components. How well we
are able to identify separate sources of energy is the resolving capablity of
the process. Our ability to resolve will depend on several things, including
the hardware we use, where we are able to measure s(t) and at how many
values of t we are able to employ, and also the mathematical methods we
use to perform the analysis of the signal.

Common to each of these applications is the need to isolate the individ-
ual complex exponential components in the measured signal. This is the
signal analysis problem, which we consider next.
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Figure 4.1: The Ferris Wheel for J = 3.
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Chapter 5

Signal Analysis: A First

Approach

We shall assume now that the signal we wish to analyze is s(t) given by
equation (4.1), which we rewrite as

s(t) =
∑N

n=1
Aneiωnt, (5.1)

with An = |An|eiθn the complex amplitudes. Although we shall often
speak of t as a time variable, that is not essential. We assume that we
have determined the value of the function s(t) at M points in time, called
the sampling times. Although it is not necessary, we shall assume the
sampling times are equispaced, that is, they are t = m∆, m = 1, ..., M ,
where ∆ > 0 is the difference between successive sampling times. So our
data are the values s(m∆), m = 1, ..., M . Our goal is to determine N ,
the number of complex exponential components in the signal s(t), their
complex amplitudes An and the frequencies ωn. We assume that N is
smaller than M .

The aliasing problem: Given our data, it is impossible for us to distin-
guish a frequency ω from ω + 2πn

∆ , for any integer n. This can result in
aliasing, if the sample spacing ∆ is not sufficiently small.

For every m we have

eiωnm∆ = ei(ωn+2π/∆)m∆,

which tells us that, using the data we have, we cannot distinguish between
the frequencies ωn and ωn+2π/∆. We shall therefore make the assumption
that ∆ has been selected small enough so that |ωn| ≤ π/∆ for all n. If we
have not selected ∆ small enough, we have undersampled and some of the

15
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frequencies ωn will be mistaken for lower frequencies; this is the aliasing
problem. We describe now an approach that determines N , the ωn and the
An well enough if the data is relatively noise-free, none of the ωn are too
close to one another and the M is large enough.

Our assumption: Our first approach to solving the signal analysis prob-
lem is based on a simplifying restriction on the possible locations of the
frequencies ωn. We assume that the ωn are some of the members of the set
{αk = − π

∆ +k 2π
∆M , k = 1, 2, ..., M}; these are the M frequencies equispaced

across the interval (− π
∆ , π

∆ ]. We then rewrite s(t) as

s(t) =
∑M

k=1
Bkeiαkt; (5.2)

values of k for which the Bk are not zero will be the ones for which αk is
one of the original ωn and Bk = An. Our data is then

s(m∆) =
∑M

k=1
Bke−imπei2πkm/M ,

for m = 1, ..., M .

The complex vector dot product : For any positive integer J and any
two J dimensional complex column vectors u and v we define the complex
vector dot product to be

u · v =
∑J

j=1
ujvj .

Note that u ·v = v†u, where v†, the conjugate transpose of the vector v, is
the row vector whose entries are the conjugates of the entries of the vector
v. Therefore, we can and do view the complex vector dot product as a
special case of matrix multiplication.

As we shall see in a later chapter on the Cauchy inequality, the dot
product is a way of checking how well two vectors resemble one another.
This idea is used extensively in signal processing, when we form the dot
product between the data vector and each of many potential component
vectors, to see how much the data resembles each of them. This is called
matching and is the basic idea in matched filtering, as we shall see later. We
now apply this idea of matching in our first attempt at solving the signal
analysis problem.

For each j = 1, 2, ..., M we ask what data we would have collected had
the signal s(t) consisted solely of a single complex exponential eiαjt with
frequency αj ; the answer is eiαjm∆, for m = 1, 2, ..., M . We now let these
numbers be the entries of a vector we call ej ; then we match ej with the
data vector d having the entries s(m∆).
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Therefore, for each j = 1, 2, ..., M , we let the entries of the column
vector ej be

ejm = eiαjm∆ = e−imπei2πjm/M .

Let e†
j denote the conjugate transpose of ej , that is, the row vector whose

entries are ejm, so that the matrix multiplication e†
jd is the complex dot

product of ej and d. Then

e†
jd =

∑M

m=1
s(m∆)e−iαjm∆ =

∑M

k=1
Bk(

∑M

m=1
e2πi(k−j)m/M ).

The inner sum is EM (x) for x = 2π(k − j)/M , so we can use the closed
form of this sum that we derived in an exercise earlier to conclude that the
inner sum equals M if k = j and is zero if k 6= j. Therefore, for each fixed
j, as we run through the index of summation k, all the terms being added
are zero, except when the index k reaches the fixed value j. Therefore

e†
jd = MBj

for each j. To isolate the original frequencies ωn we select those j for which
e†

jd is not zero; then the An is the associated value Bj .
So we know how to isolate the individual complex exponential com-

ponents of s(t), so long as each of the ωn is, at least approximately, one
of the αk, which imposes the constraint that no two of the ωn are closer
to each other than 2π/∆M ; this limits our ability to resolve components
whose frequencies are closer than that limit. If we know in advance that
we are seeking frequencies ωn closer than this limit we have at least two
choices: increase M or increase ∆. The latter choice is a bit dangerous in
that we risk aliasing if any of the ωn have magnitudes close to π/∆ already.
A third choice is to alter the method whereby we isolated the individual
components. There are many ways to do this, as we shall see.
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Chapter 6

Convolution and the

Vector DFT

Convolution is an important concept in signal processing and occurs in
several distinct contexts. In this chapter we shall discuss non-periodic
convolution and periodic convolution of vectors. Later we shall consider the
convolution of infinite sequences and of functions of a continuous variable.
The reader may recall an earlier encounter with convolution in a course
on differential equations. The simplest example of convolution is the non-
periodic convolution of finite vectors.

Non-periodic convolution:

Recall the algebra problem of multiplying one polynomial by another. Sup-
pose

A(x) = a0 + a1x + ... + aMxM

and

B(x) = b0 + b1x + ... + bNxN .

Let C(x) = A(x)B(x). With

C(x) = c0 + c1x + ... + cM+NxM+N ,

each of the coefficients cj , j = 0, ..., M +N, can be expressed in terms of the
am and bn (an easy exercise!). The vector c = (c0, ..., cM+N ) is called the
non-periodic convolution of the vectors a = (a0, ..., aM ) and b = (b0, ..., bN ).
Non-periodic convolution can be viewed as a particular case of periodic
convolution, as we see next.
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The DFT and the vector DFT:

As we just discussed, non-periodic convolution is another way of looking
at the multiplication of two polynomials. This relationship between con-
volution on the one hand and multiplication on the other is a fundamental
aspect of convolution, whenever it occurs. Whenever we have a convolution
we should ask what related mathematical objects are being multiplied. We
ask this question now with regard to periodic convolution; the answer turns
out to be the vector discrete Fourier transform.

Given the N by 1 vector f with complex entries f0, f1, ..., fN−1 define
the discrete Fourier transform (DFT) of f to be the function DFTf (ω),
defined for ω in [0, 2π), by

DFTf (ω) =

N−1
∑

n=0

fneinω.

The terminology can be confusing, since the expression ‘discrete Fourier
transform’ is often used to describe several slightly different mathematical
objects.

For example, in the exercise that follows we are interested solely in the
values Fk = DFTf (2πk/N), for k = 0, 1, ..., N − 1. In this case the DFT of
the vector f often means simply the vector F whose entries are the complex
numbers Fk, for k = 0, ..., N − 1; for the moment let us call this the vector
DFT of f and write F = vDFTf . The point of Exercise 1 is to show how
to use the vector DFT to perform the periodic convolution operation.

In some instances the numbers fn are obtained by evaluating a function
f(x) at some finite number of points xn; that is, fn = f(xn), for n =
0, ..., N − 1. As we shall see later, if the xn are equispaced, the DFT
provides an approximation of the Fourier transform of the function f(x).
Since the Fourier transform is another function of a continuous variable,
and not a vector, it is appropriate, then, to view the DFT also as such
a function. Since the practice is to use the term DFT to mean slightly
different things in different contexts, we adopt that practice here. The
reader will have to infer the precise meaning of DFT from the context.

Periodic convolution:

Given the N by 1 vectors f and d with complex entries fn and dn, respec-
tively, we define a third N by 1 vector f ∗ d, the periodic convolution of f
and d, to have the entries

(f ∗ d)n = f0dn + f1dn−1 + ... + fnd0 + fn+1dN−1 + ... + fN−1dn+1.

Periodic convolution is illustrated in Figure 6.1. The first exercise relates
the periodic convolution to the vector DFT.
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Exercise 1: Let F = vDFTf and D = vDFTd. Define a third vector E
having for its k-th entry Ek = FkDk, for k = 0, ..., N − 1. Show that E is
the vDFT of the vector f ∗ d.

The vector vDFTf can be obtained from the vector f by means of
matrix multiplcation by a certain matrix G, called the DFT matrix. The
matrix G has an inverse that is easily computed and can be used to go
from F = vDFTf back to the original f . The details are in Exercise 2.

Exercise 2: Let G be the N by N matrix whose entries are Gjk =
ei(j−1)(k−1)2π/N . The matrix G is sometimes called the DFT matrix. Show
that the inverse of G is G−1 = 1

N G†, where G† is the conjugate transpose
of the matrix G. Then f ∗ d = G−1E = 1

N G†E.
As we mentioned above, nonperiodic convolution is really a special case

of periodic convolution. Extend the M + 1 by 1 vector a to an M + N + 1
by 1 vector by appending N zero entries; similarly, extend the vector b to
an M + N + 1 by 1 vector by appending zeros. The vector c is now the
periodic convolution of these extended vectors. Therefore, since we have
an efficient algorithm for performing periodic convolution, namely the Fast
Fourier Transform algorithm (FFT), we have a fast way to do the periodic
(and thereby nonperiodic) convolution and polynomial multiplication.
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a(0)

a(1)

a(2)

a(3)

b(0)

b(1)

b(2)

b(3)

a(0)

a(1)

a(2)

a(3) b(2)

b(3)

b(0)

b(1)

a*b(0)=a(0)b(0)+a(1)b(3)+a(2)b(2) + a(3) b(1) 

a*b(1)=a(0) b(1)+a(1) b(0)+a(2)b(3) + a(3) b(2) 

Per iodic Con volution

Rot ate inner

disk clock wise

Multiply and add

Figure 6.1: Periodic convolution of vectors a = (a(0), a(1), a(2), a(3)) and
b = (b(0), b(1), b(2), b(3)).



Chapter 7

Signal Analysis: A Second

Approach

As before, we assume that we have data vector d with entries s(m∆), m =
1, ..., M from the signal s(t) given by equation (18.6). Unlike in our first
approach, we do not now make any assumptions about the location of the
frequencies ωn, except that |ωn| < π/∆.

For each ω in the interval (−π/∆, π/∆) let eω be the column vector
with entries eiωm∆, m = 1, ..., M . The output of the matched filter e†

ωd,
as a function of the continuous variable ω in the interval (−π/∆, π/∆) is

DFTd(ω) =
∑M

m=1
s(m∆)e−iωm∆

=
∑N

n=1
An(

∑M

m=1
ei(ωn−ω)m∆).

We know from our earlier calculations that

∑M

m=1
ei(ωn−ω)m∆ = ei M+1

2
(ωn−ω) sin(

M

2
(ωn − ω))/(sin

1

2
(ωn − ω)),

which equals M if ω = ωn. If the ωn are well separated then this sum is
significantly smaller if ω is not near ωn. So if the ωn are well separated
and M is significantly larger than N the function DFTd(ω) will be near
MAn when ω = ωn, for each n, and will be near zero otherwise. Of course
we cannot calculate DFTd(ω) for each ω; for the purposes of plotting we
select sufficiently many values of ω and calculate |DFTd(ω)| at these points.
Later we shall study a fast algorithm, known as the fast Fourier transform
(FFT), which does this calculation for us in an efficient manner.

Exercise 1: Let N = 2 and ω1 = −α, ω2 = α for some α > 0 in (−π, π).
Let A1 = A2 = 1. Select a value of M that is greater than two and

23
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calculate the values f(m) for m = 1, ..., M . Plot the graph of the function
DFTd(ω) on (−π, π). Repeat the exercise for various values of M and
values of α closer to zero. Notice how DFTd(0) behaves as α goes to zero.
For each fixed value of M there will be a critical value of α such that, for
any smaller values of α, DFTd(0) will be larger than DFTd(α). This is
loss of resolution.

As the exercise has shown, for each fixed value of M there will be a
limit to our ability to resolve closely spaced frequencies using DFTd(ω). If
we are unable to increase the M we can try other methods of isolating the
frequencies. We shall discuss these other methods later.



Chapter 8

Cauchy’s Inequality

So far our methods for analyzing the measured signal have been based on
the idea of matching the data against various potential complex exponen-
tial components to see which ones match best. The matching is done using
the complex dot product, e†

ωd. In the ideal case this dot product is large,
for those values of ω that correspond to an actual component of the signal;
otherwise it is small. Why this should be the case is the Cauchy-Schwarz
inequality (or sometimes, depending on the context, just Cauchy’s inequal-
ity, just Schwarz’s inequality, or, in the Russian literature, Bunyakovsky’s
inequality).

The complex vector dot product: Let u = (a, b) and v = (c, d) be
two vectors in two-dimensional space. Let u make the angle α > 0 with
the positive x-axis and v the angle β > 0. Let ||u|| =

√
a2 + b2 denote the

length of the vector u. Then a = ||u|| cos α, b = ||u|| sinα, c = ||v|| cos β
and d = ||v|| sinβ. So u · v = ac + bd = ||u||||v||(cos α cos β + sinα sinβ =
||u|| ||v|| cos(α − β). Therefore, we have

u · v = ||u|| ||v|| cos θ, (8.1)

where θ = α − β is the angle between u and v. Cauchy’s inequality is

|u · v| ≤ ||u|| ||v||,

with equality if and only if u and v are parallel.
Cauchy’s inequality extends to vectors of any size with complex entries.

For example, the complex M -dimensional vectors eω and eθ defined earlier
both have length equal to

√
M and

|e†
ωeθ| ≤ M,

with equality if and only if ω and θ differ by an integer multiple of π.
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From equation (8.1) we know that the dot product u · v is zero if and
only if the angle between these two vectors is a right angle; we say then
that u and v are mutually orthogonal. Orthogonality was at the core of our
first approach to signal analysis: the vectors ej and ek are orthogonal if
k 6= j. The notion of orthogonality is fundamental in signal processing and
we shall return to it repeatedly in what follows. The idea of using the dot
product to measure how similar two vectors are is called matched filtering;
it is a popular method in signal detection and estimation of parameters.

Proof of Cauchy’s inequality: To prove Cauchy’s inequality for the
complex vector dot product we write u · v = |u · v|eiθ. Let t be a real
variable and consider

0 ≤ ||e−iθu − tv||2 = (e−iθu − tv) · (e−iθu − tv)

= ||u||2 − t[(e−iθu) · v + v · (e−iθu)] + t2||v||2

= ||u||2 − t[(e−iθu) · v + (e−iθu) · v] + t2||v||2

= ||u||2 − 2Re(te−iθ(u · v)) + t2||v||2

= ||u||2 − 2Re(t|u · v|) + t2||v||2 = ||u||2 − 2t|u · v| + t2||v||2.
This is a nonnegative quadratic polynomial in the variable t, so cannot have
two distinct real roots. Therefore, the discriminant 4|u · v|2 − 4||v||2||u||2
must be non-positive; that is, |u · v|2 ≤ ||u||2||v||2. This is Cauchy’s
inequality.

Exercise 1: Use Cauchy’s inequality to show that

||u + v|| ≤ ||u|| + ||v||;

this is called the triangle inequality.

A careful examination of the proof just presented shows that we did not
explicitly use the definition of the complex vector dot product, but only
certain of its properties. This suggested to mathematicians the possibility
of abstracting these properties and using them to define a more general con-
cept, an inner product, between objects more general than complex vectors,
such as infinite sequences, random variables and matrices. Such an inner
product can then be used to define the norm of these objects and thereby a
distance between such objects. Once we have an inner product defined we
also have available the notions of orthogonality and best approximation.
We shall treat all of these topics in a later chapter.



Chapter 9

Orthogonal Vectors

Consider the problem of writing the two-dimensional real vector (3,−2) as
a linear combination of the vectors (1, 1) and (1,−1); that is, we want to
find constants a and b so that (3,−2) = a(1, 1) + b(1,−1). One way to do
this, of course, is to compare the components: 3 = a + b and −2 = a − b;
we can then solve this simple system for the a and b. In higher dimensions
this way of doing it becomes harder, however. A second way is to make
use of the dot product and orthogonality.

The dot product of two vectors (x, y) and (w, z) in R2 is (x, y) · (w, z) =
xw+yz. If the dot product is zero then the vectors are said to be orthogonal;
the two vectors (1, 1) and (1,−1) are orthogonal. We take the dot product
of both sides of (3,−2) = a(1, 1) + b(1,−1) with (1, 1) to get

1 = (3,−2) ·(1, 1) = a(1, 1) ·(1, 1)+b(1,−1) ·(1, 1) = a(1, 1) ·(1, 1)+0 = 2a,

so we see that a = 1
2 . Similarly, taking the dot product of both sides with

(1,−1) gives

5 = (3,−2) · (1,−1) = a(1, 1) · (1,−1) + b(1,−1) · (1,−1) = 2b,

so b = 5
2 . Therefore (3,−2) = 1

2 (1, 1) + 5
2 (1,−1). The beauty of this

approach is that it does not get much harder as we go to higher dimensions.
Since the cosine of the angle θ between vectors u and v is

cos θ = u · v/||u|| ||v||,

where ||u||2 = u · u, the projection of vector v onto the line through the
origin parallel to u is

Proju(v) =
u · v
u · uu.

Therefore the vector v can be written as

v = Proju(v) + (v − Proju(v)),
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where the first term on the right is parallel to u and the second one is
orthogonal to u.

How do we find vectors that are mutually orthogonal? Suppose we
begin with (1, 1). Take a second vector, say (1, 2), that is not parallel to
(1, 1) and write it as we did v earlier; that is, as a sum of two vectors,
one parallel to (1, 1) and the second orthogonal to (1, 1). The projection
of (1, 2) onto the line parallel to (1, 1) passing through the origin is

(1, 1) · (1, 2)

(1, 1) · (1, 1)
(1, 1) =

3

2
(1, 1) = (

3

2
,
3

2
)

so

(1, 2) = (
3

2
,
3

2
) + ((1, 2) − (

3

2
,
3

2
)) = (

3

2
,
3

2
) + (−1

2
,
1

2
).

The vectors (− 1
2 , 1

2 ) = − 1
2 (1,−1) and, therefore, (1,−1) are then orthogo-

nal to (1, 1). This approach is the basis for the Gram-Schmidt method for
constructing a set of mutually orthogonal vectors.

Exercise 1: Use the Gram-Schmidt approach to find a third vector in R3

orthogonal to both (1, 1, 1) and (1, 0,−1).

Orthogonality is a convenient tool that can be exploited whenever we
have an inner product defined.



Chapter 10

Discrete Linear Filters

Let g = (g1, ..., gM )T be an M -dimensional complex column vector. The
discrete linear filter obtained from g operates on any other M -dimensional
column vector h = (h1, ..., hM )T through the complex dot product: when
the input of the filter is h the output of the filter is

g†h = h · g =
∑M

m=1
hmgm.

Earlier we analyzed the signal s(t) by applying the discrete linear filters
g = eω to the data vector d to obtain the function e†

ωd of the variable
ω. Such discrete linear filters are usually called matched filters because we
use the dot product to determine the degree of similarity between the two
vectors.

The term discrete linear filter also applies to the somewhat more general
convolution filter whereby vectors g and h are used to produce a third
vector f = g ∗ h, the periodic convolution of g and h, whose entries fn are

fn =
∑M

m=1
gmhn−m, (10.1)

where, for notational convenience, we define hn−m = hn−m+M whenever
the index n − m is less than one. Figure 10.1 illustrates the action of this
convolution filter.

To better understand the action of this filtering operation we associate
with each of the vectors f , g and h a function of ω: let

DFTg(ω) =
∑M

m=1
gmeimω

for ω in the interval [−π, π]; similarly define the functions DFTf (ω) and
DFTh(ω). Notice that these functions are the discrete Fourier transforms
(DFT) discussed earlier. We have the option here of considering the vector
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discrete Fourier transforms instead. However, since we shall also discuss
the theoretical case in which we have doubly infinite sequences {fn}∞

n=−∞,
it is more convenient to view the DFT as a function of the continuous
variable ω throughout the discussion. As we saw in an earlier exercise,
when f = g ∗ h we also have

DFTf (ω) = DFTg(ω)DFTh(ω)

for the values ω = 2π
M n, n = 1, 2, ..., M .

Time-invariant linear systems: Although in practice all digital filtering
is performed using finite length vectors, it is convenient, in theoretical
discussions, to permit the use of infinite sequences. Suppose now that g =
{gn}+∞

n=−∞ and h = {hn}+∞
n=−∞ are infinite sequences of complex numbers.

As above, we use g to obtain a convolution filter that, having h as the
input, will have as output the convolution of sequences g and h. This is
the infinite sequence f = g ∗ h with entries

fn =
∑+∞

m=−∞
gmhn−m.

This situation is commonly described by saying that the sequence {gn}
represents a time-invariant linear system in which the input sequence is
convolved with {gn} to produce the output sequence.

When dealing with infinite sequences we must be concerned with the
convergence of any infinite series we encounter. In Walnut’s book [145]
and elsewhere an infinite sequence {hn} is called a signal if it is absolutely
summable; that is,

∞
∑

n=−∞
|hn| < +∞.

The sequences {gn} used to define convolution filters are also required to
be absolutely summable, so that the output f = g ∗ h is also absolutely
summable and {fn} is therefore a signal. However, the requirement that
all signals be absolutely summable is a bit restrictive. For that reason
most authors, including Walnut, consider wider classes of sequences, such
as absolutely square summable h = {hn} for which we have

∞
∑

n=−∞
|hn|2 < +∞,

bounded sequences and sequences obtained from finitely nonzero ones by
periodic extension. Concepts such as stability can be defined in different
ways, depending on the type of signals being considered. Our discussion
here will be more formal and less rigorous. The reader should remember
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that integrals and infinite sums make sense only after appropriate assump-
tions are made.

We associate with doubly infinite sequences a function of ω: for each ω
in the interval [−π, π] let

G(ω) =
∑+∞

n=−∞
gneinω. (10.2)

Define F (ω) and H(ω) similarly. Because the sequences are infinite we have
a multiplication theorem that is somewhat stronger than with the vector
DFT.

Exercise 1: Show that F (ω) = G(ω)H(ω) for all ω in [−π, π].

We see from the exercise that the convolution filter obtained from the
sequence {gn} can be understood in terms of how it affects the individual
complex exponential components that make up the input. The filter con-
verts each H(ω) into F (ω) = G(ω)H(ω). If G(ω) = 0 for certain values of
ω then whenever h(t) has a complex exponential component corresponding
to that value of ω it will be removed upon filtering.

Convolution filters have the important property that they amplify or
depress sinusoidal inputs without distorting the frequency. Let ω be an
arbitrary but fixed frequency in the interval [−π, π] and let the input to
the filter be the doubly infinite sequence h with entries hn = e−inω; that
is, a pure sinusoid with frequency −ω. Then the output sequence is f with
entries

fn = e−inω
∑∞

m=−∞
gmeimω.

So the output is again a pure sinusoid, with the same frequency as the
input, but with amplitude G(ω) instead of one.

The function G(ω) in equation (10.2) is a Fourier series. Here we began
with an essentially arbitrary sequence g of complex numbers and formed
the function G. In a number of applications we begin with a function G(ω)
that is either defined on an interval of length 2π or is defined for all ω and
is 2π-periodic. We then seek the complex numbers gn so that the Fourier
series obtained using these gn gives us back the original function G as in
equation (10.2). This is called the Fourier series expansion of the function
G(ω).

Given the function H(ω) on [−π, π] the numbers hn can be determined:
we have

hn =

∫ π

−π

H(ω)e−inω dω

2π
. (10.3)

This follows from the orthogonality of the functions einω over the interval
[−π, π], as we shall discuss in the next chapter. We can interpret equation
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(10.3) as expressing the sequence h = {hn} as a continuously infinite super-
position of pure sinusoids, each with their own frequency −ω and amplitude
H(ω)/2π. We know that the output from the individual sinusoidal input
{e−inω} is G(ω){e−inω}. By the linearity of the filter, the output from
the input sequence h with entries given by equation (10.3) is therefore the
sequence f with entries

fn =

∫ π

−π

G(ω)H(ω)e−inω dω

2π
.

Since we also have

fn =

∫ π

−π

F (ω)e−inω dω

2π
,

we are led once again to F (ω) = G(ω)H(ω).

Suppose that the input to the filter is an impulsive sequence; that is,
let the input be the sequence h = δ0 with entries hn = 0 for n 6= 0 and
h0 = 1. Then the output is the sequence f with entries fn = gn. The
sequence g = {gn} used to build the discrete linear filter is therefore called
the impulse response sequence of the filter and the function G(ω) is the
filter function.

Exercise 2: The three-point moving average filter is defined as follows:
given the input sequence {hn, n = −∞, ...,∞} the output sequence is
{fn, n = −∞, ...,∞}, with

fn = (hn−1 + hn + hn+1)/3.

Let gm = 1/3, if m = 0, 1,−1 and gm = 0, otherwise. Then we have

fn =

∞
∑

m=−∞
gmhn−m,

so that f is the convolution of h and g. Let F (ω) be defined for ω in the
interval [−π, π] by equation (10.2); similarly define G and H. To recover
h from f we might proceed as follows: calculate F , then divide F by G to
get H, then compute h from H; does this always work?

If we let h be the sequence {..., 1, 1, 1, ...} then f = h; if we take h to be
the sequence {..., 3, 0, 0, 3, 0, 0, ...} then we again get f = {..., 1, 1, 1, ...}.
Therefore, we cannot expect to recover h from f in general. We know that
G(ω) = 1

3 (1 + 2 cos(ω)); what does this have to do with the problem of
recovering h from f?

Hint: Compute H. Where are the zeros of G?
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If we take the input sequence to our convolution filter the sequence h
with entries

hn = g−n

then the output sequence is f with entries

fn =
∑+∞

m=−∞
gmgm−n

and F (ω) = |G(ω)|2. The sequence f is called the autocorrelation sequence
for g and |G(ω)|2 is the power spectrum of g. The Cauchy inequality is
valid for infinite sequences also: with the length of f defined by

||f || = (
∑+∞

n=−∞
|fn|2)1/2

and the inner product of f and g given by

〈f, g〉 =
∑+∞

n=−∞
fngn

we have

|〈f, g〉| ≤ ||f || ||g||,

with equality if and only if g is a constant multiple of f .

Exercise 3: Let f be the autocorrelation sequence for g. Show that
f−n = fn and f0 ≥ |fn| for all n.

The z-transform: It is common to consider the case in which the input to
a time-invariant linear system g = {gn} is a discrete random process {Xn};
that is, each Xn is a random variable [119], [124]. The output sequence
{Yn} given by

Yn =

+∞
∑

m=−∞
gmXn−m

is then a second discrete random process whose statistics are related to
those of the input, as well as to properties of the sequence g. By analogy
with what we did earlier, we would like to be able to form the functions

X(ω) =

+∞
∑

n=−∞
Xneinω

and

Y (ω) =

+∞
∑

n=−∞
Yneinω
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and use them to study the action of the system on random input. For the
series for X(ω) to converge we would at least want

+∞
∑

n=−∞
|Xn|2 < +∞.

This poses a problem, because the random processes {Xn} we usually con-
sider do not go to zero as |n| → +∞. For this reason we need a somewhat
more general tool, the z-transform.

Given a doubly infinite sequence sequence g = {gn}+∞
n=−∞ we associate

with g its z-transform, the function of the complex variable z given by

G(z) =
∑+∞

n=−∞
gnz−n.

Doubly infinite series of this form are called Laurent series and occur in
the representation of functions analytic in an annulus. Note that if we
take z = e−iω then G(z) becomes G(ω) as defined by equation (10.2). The
z-transform is a somewhat more flexible tool in that we are not restricted
to those sequence g for which the z-transform is defined for z = e−iω.

The linear system determined by g is said to be stable [117] if the output
sequence is bounded in absolute value whenever the input sequence is.

Exercise 4: Show that the linear system determined by g is stable if and
only if

∑+∞
n=−∞ |gn| < +∞.

Hint: If
∑+∞

n=−∞ |gn| = +∞, consider as input the bounded sequence
fn = g−n/|gn| and show that h0 = +∞.

Exercise 5: Consider the linear system determined by the sequence g0 = 2,
gn = ( 1

2 )|n|, for n 6= 0. Show that this system is stable. Calculate the z-
transform of {gn} and determine its region of convergence.

The time-invariant linear system determined by g is said to be a causal
system if the sequence {gn} is itself causal; that is, gn = 0 for n < 0.

Exercise 6: Show that the function G(z) = (z − z0)
−1 is the z-transform

of a causal sequence g, where z0 is a fixed complex number. What is the
region of convergence? Show that the resulting linear system is stable if
and only if |z0| < 1.

Continuous time-invariant linear systems: An operator T associates
with function f another function Tf . For example, Tf could be the
derivative of f , if f is differentiable, or Tf could be F , the Fourier trans-
form of f . The operator T is called linear if T (f + h) = Tf + Th and



35

T (αf) = αTf for any functions f and h and scalar α. For any real number
τ let fτ (t) = f(t + τ). We say that T is time-invariant if h = Tf implies
that hτ = Tfτ . Suppose we fix a function g and define Tf = f ∗ g; such
an operator is called a convolution operator. Convolution operators are
linear and time-invariant. As we shall see, time-invariant linear systems
are convolution operators.

Exercise 7: Let f(t) = e−iωt for some fixed real number ω. Let h = Tf ,
where T is linear and time-invariant. Show that there is a constant c so
that h(t) = cf(t). Since the constant c may depend on ω we rewrite c as
G(ω).

Exercise 8: Let T be as in the previous exercise. For

f(t) =

∫ +∞

−∞
F (ω)e−iωtdω/2π

and h = Tf show that H(ω) = F (ω)G(ω) for each ω. Conclude that T is
a convolution operator whose function g(t) is the inverse FT of G(ω).
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h
g

f

f(n)= Σ   g(k) h(n-k)

C onv utionol Filter

Figure 10.1: Convolution filter g operating on input h to produce out put
f .



Chapter 11

Inner Products

The proof of Cauchy’s inequality rests not on the actual definition of the
complex vector dot product, but rather on four of its most basic prop-
erties. We use these properties to extend the concept of complex vector
dot product to that of inner product. Later in this chapter we shall give
several examples of inner products, applied to a variety of mathematical
objects, including infinite sequences, functions, random variables and ma-
trices. For now, let us denote our mathematical objects by u and v and
the inner product between them as 〈u,v〉 . The objects will then be said to
be members of an inner product space. We are interested in inner products
because they provide a notion of orthogonality, which is fundamental to
best approximation and optimal estimation.

Defining an inner product: The four basic properties that will serve to
define an inner product are as follows:

1: 〈u,u〉 ≥ 0, with equality if and only if u = 0;

2. 〈v,u〉 = 〈u,v〉 ;

3. 〈u,v + w〉 = 〈u,v〉 + 〈u,w〉;

4. 〈cu,v〉 = c〈u,v〉 for any complex number c.

The inner product is the basic ingredient in Hilbert space theory. Using
the inner product, we define the norm of u to be

||u|| =
√

〈u,u〉

and the distance between u and v to be ||u − v||.
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The Cauchy-Schwarz inequality: Because these four properties were
all we needed to prove the Cauchy inequality for the complex vector dot
product, we obtain the same inequality whenever we have an inner product.
This more general inequality is the Cauchy-Schwarz inequality:

|〈u,v〉| ≤
√

〈u,u〉
√

〈v,v〉

or

|〈u,v〉| ≤ ||u|| ||v||,

with equality if and only if there is a scalar c such that v = cu. We say
that the vectors u and v are orthogonal if 〈u,v〉 = 0. We turn now to
some examples.

Inner products of infinite sequences: Let u = {un} and v = {vn} be
infinite sequences of complex numbers. The inner product is then

〈u,v〉 =
∑

unvn,

and

||u|| =
√

∑

|un|2.

The sums are assumed to be finite; the index of summation n is singly or
doubly infinite, depending on the context. The Cauchy-Schwarz inequality
says that

|
∑

unvn| ≤
√

∑

|un|2
√

∑

|vn|2.

Inner product of functions: Now suppose that u = f(x) and v = g(x).
Then

〈u,v〉 =

∫

f(x)g(x)dx

and

||u|| =

√

∫

|f(x)|2dx.

The integrals are assumed to be finite; the limits of integration depend on
the support of the functions involved. The Cauchy-Schwarz inequality now
says that

|
∫

f(x)g(x)dx| ≤
√

∫

|f(x)|2dx

√

∫

|g(x)|2dx.



39

Inner product of random variables: Now suppose that u = X and
v = Y are random variables. Then

〈u,v〉 = E(XY )

and
||u|| =

√

E(|X|2),
which is the standard deviation of X if the mean of X is zero. The expected
values are assumed to be finite. The Cauchy-Schwarz inequality now says
that

|E(XY )| ≤
√

E(|X|2)
√

E(|Y |2).
If E(X) = 0 and E(Y ) = 0 the random variables X and Y are orthogonal
if and only if they are uncorrelated.

Inner product of complex matrices: Now suppose that u = A and
v = B are complex matrices. Then

〈u,v〉 = trace(B†A)

and

||u|| =
√

trace(A†A),

where the trace of a square matrix is the sum of the entries on the main
diagonal. As we shall see later, this inner product is simply the complex
vector dot product of the vectorized versions of the matrices involved. The
Cauchy-Schwarz inequality now says that

|trace(B†A)| ≤
√

trace(A†A)
√

trace(B†B).

Weighted inner products of complex vectors: Let u and v be com-
plex vectors and let Q be a Hermitian positive-definite matrix; that is,
Q† = Q and u†Qu > 0 for all nonzero vectors u .The inner product is then

〈u,v〉 = v†Qu

and
||u|| =

√

u†Qu.

We know from the eigenvector decomposition of Q that Q = C†C for some
matrix C. Therefore the inner product is simply the complex vector dot
product of the vectors Cu and Cv. The Cauchy-Schwarz inequality says
that

|v†Qu| ≤
√

u†Qu
√

v†Qv.
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The weighted inner product of functions: Now suppose that u = f(x)
and v = g(x) and w(x) > 0. Then define

〈u,v〉 =

∫

f(x)g(x)w(x)dx

and

||u|| =

√

∫

|f(x)|2w(x)dx.

The integrals are assumed to be finite; the limits of integration depend on
the support of the functions involved. This inner product is simply the
inner product of the functions f(x)

√

w(x) and g(x)
√

w(x). The Cauchy-
Schwarz inequality now says that

|
∫

f(x)g(x)w(x)dx| ≤
√

∫

|f(x)|2w(x)dx

√

∫

|g(x)|2w(x)dx.

Once we have an inner product defined we can speak about orthogonality
and best approximation. Important in that regard is the orthogonality
principle, the topic of the next chapter.



Chapter 12

The Orthogonality

Principle

Imagine that you are standing and looking down at the floor. The point
B on the floor that is closest to N , the tip of your nose, is the unique
point on the floor such that the vector from B to any other point A on the
floor is perpendicular to the vector from N to B; that is, 〈BN, BA〉 = 0.
This is a simple illustration of the orthogonality principle. Whenever we
have an inner product defined we can speak of orthogonality and apply the
orthogonality principle to find best approximations.

The orthogonality principle: Let u and v1, ...,vN be members of an
inner product space. For all choices of scalars a1, ..., aN we can compute
the distance from u to the member a1v

1 + ...aNvN . Then we minimize
this distance over all choices of the scalars; let b1, ..., bN be this best choice.
The orthogonality principle tells us that the member u − (b1v

1 + ...bNvN )
is orthogonal to the member (a1v

1 + ... + aNvN ) − (b1v
1 + ...bNvN ), that

is,

〈u − (b1v
1 + ...bNvN ), (a1v

1 + ... + aNvN ) − (b1v
1 + ...bNvN ) = 0,

for every choice of scalars an. We can then use the orthogonality principle
to find the best choice b1., , , .bN .

For each fixed index value j in the set {1, ..., N} let an = bn if j is not
equal to n and aj = bj + 1. Then we have

0 = 〈u − (b1v
1 + ...bNvN ),vj〉,

or

〈u,vj〉 =
∑N

n=1
bn〈vn,vj〉,
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for each j. The vn are known, so we can calculate the inner products
〈vn,vj〉 and solve this system of equations for the best bn.

We shall encounter a number of particular cases of the orthogonality
principle in subsequent chapters. The example of the least squares solution
of a system of linear equations provides a good example of the use of this
principle.

The least squares solution: Let V a = u be a system of M linear
equations in N unknowns. For n = 1, ..., N let vn be the n-th column of
the matrix V . For any choice of the vector a with entries an, n = 1, ..., N
the vector V a is

V a =
∑N

n=1
anvn.

Solving V a = u amounts to representing the vector u as a linear combina-
tion of the columns of V .

If there is no solution of V a = u then we can look for the best choice of
coefficients so as to minimize the distance ||u− (a1v

1 + ... + aNvN )||. The
matrix with entries 〈vn,vj〉 is V †V and the vector with entries 〈u,vj〉 is
V †u. According to the orthogonality principle we must solve the system of
equations V †u = V †V a, which leads to the least squares solution.

Exercise 1: Find polynomial functions f(x), g(x) and h(x) that are or-
thogonal on the interval [0, 1] and have the property that every polynomial
of degree two or less can be written as a linear combination of these three
functions.

Exercise 2: Show that the functions einx, n an integer, are orthogonal on
the interval [−π, π]. Let f(x) have the Fourier expansion

f(x) =
∑∞

n=−∞
aneinx, |x| ≤ π.

Use orthogonality to find the coefficients an.

We have seen that orthogonality can be used to determine the coeffi-
cients in the Fourier series representation of a function. There are other
useful representations in which orthogonality also plays a role; wavelets is
one such. Let f(x) be defined on the closed interval [0, X]. Suppose that we
change the function f(x) to a new function g(x) by altering the values for
x within a small interval, keeping the remaining values the same: then all
of the Fourier coefficients change. Looked at another way, a localized dis-
turbance in the function f(x) affects all of its Fourier coefficients. It would
be helpful to be able to represent f(x) as a sum of orthogonal functions in
such a way that localized changes in f(x) affect only a small number of the
components in the sum. One way to do this is with wavelets, as we shall
see shortly.



Chapter 13

Fourier Transforms and

Fourier Series

In a previous chapter we studied the problem of isolating the individual
complex exponential components of the signal function s(t), given the data
vector d with entries s(m∆), m = 1, ..., M , where s(t) is

s(t) =
∑N

n=1
Aneiωnt;

we assume that |ωn| < π/∆. The second approach we considered involved
calculating the function

DFTd(ω) =
∑M

m=1
s(m∆)e−iωm∆

for |ω| < π/∆. This sum is an example of a (finite) Fourier series. As
we just saw, we can extend the concept of Fourier series to include infinite
sums. In fact, we can generalize to summing over a continuous variable,
using integrals in place of summation; this is what is done in the definition
of the Fourier transform.

The Fourier transform:

In our discussion of linear filtering we saw that if f is a finite vector f =
(f1, ..., fM )T or an infinite sequence f = {fm}+∞

m=−∞ then it is convenient
to consider the function F (ω) defined for |ω| ≤ π by the finite or infinite
Fourier series expression

F (ω) =
∑

fmeimω.

If f(x) is a function of the real variable x, we can associate with f the
function F (ω), the Fourier transform (FT) of f(x), defined for all real ω
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by

F (ω) =

∫

f(x)eixωdx. (13.1)

Once we have F (ω) we can recover f(x) as the inverse Fourier transform
(IFT) of F (ω):

f(x) =

∫

F (ω)e−ixωdω/2π. (13.2)

We say then that the functions f and F form a Fourier transform pair. It
may happen that one or both of the integrals above will fail to be defined in
the usual way and will be interpreted as the principal value of the integral
[78].

Note that the definitions of the FT and IFT just given may differ slightly
from the ones found elsewhere. The differences are minor and involve only
the placement of the quantity 2π and the minus sign in the exponent. One
sometimes sees the FT of the function f denoted f̂ ; here we shall reserve
the symbol f̂ for estimates of the function f .

As an example of a Fourier transform pair let F (ω) be the function
χΩ(ω) that equals one for |ω| ≤ Ω and is zero otherwise. Then the inverse
Fourier transform of χΩ(ω) is

f(x) =

∫ Ω

−Ω

e−iωxdω/2π =
sin(Ωx)

πx
.

The function sin(x)
x is called the sinc function, sinc (x).

Fourier series:

If there is a positive Ω such that the Fourier transform F (ω) of the function
f(x) is zero for |ω| > Ω then the function f(x) is said to be Ω-bandlimited
and F (ω) has bandwidth Ω; in this case the function F (ω) can be written,
on the interval [−Ω,Ω], as an infinite discrete sum of complex exponentials.
For |ω| ≤ Ω we have

F (ω) =
∑+∞

n=−∞
fneinω π

Ω . (13.3)

We determine the coefficients fn in much the same way as in earlier dis-
cussions.

We know that the integral

∫ Ω

−Ω

ei(n−m)ω π
Ω dω
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equals zero if m 6= n and equals 2Ω for m = n. Therefore,

fm =
1

2Ω

∫ Ω

−Ω

F (ω)e−imω π
Ω dω (13.4)

for each integer m. If we wish, we can also write the coefficient fm in
terms of the inverse Fourier transform f(x) of the function F (ω): the right
side of equation (13.4) also equals π

Ωf(m π
Ω ), from which we conclude that

fm = π
Ωf(m π

Ω ).

The Shannon Sampling Theorem: Now that we have found the coef-
ficients of the Fourier series for F (ω) we can write

F (ω) =
π

Ω

∞
∑

n=−∞
f(n

π

Ω
)einω π

Ω (13.5)

for |ω| ≤ Ω. We apply the formula in equation (13.2) to get

f(x) =

∞
∑

n=−∞
f(n

π

Ω
)
sin(Ωx − nπ)

Ωx − nπ
. (13.6)

This is the famous Shannon sampling theorem, which tells us that if F (ω)
is zero outside [−Ω,Ω], then f(x) is completely determined by the infinite
sequence of values {f(n π

Ω )}+∞
n=−∞. If F (ω) is continuous and F (−Ω) =

F (Ω) then F (ω) has a continuous periodic extension to all of the real line.
Then the Fourier series in equation (13.3) converges to F (ω) for every ω
at which the function F (ω) has a left and right derivative. In general, if
F (−Ω) 6= F (Ω), or if F (ω) is discontinuous for some ω in (−Ω,Ω), the
series will still converge, but to the average of the one-sided limits F (ω+0)
and F (ω − 0), again, provided that F (ω) has one-sided derivatives at that
point. If

∫ Ω

−Ω

|F (ω)|2dω < ∞

then
∑+∞

n=−∞
|f(n

π

Ω
|2 < ∞

and the series in equation (13.6) converges to f(x) in the L2 sense. If, in
addition, we have

∑+∞

n=−∞
|f(n

π

Ω
| < ∞,

then the series converges uniformly to f(x) for x on the real line. There
are many books that can be consulted for details concerning convergence
of Fourier series, such as [13] and [78].
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Let f = {fm} and g = {gm} be the sequences of Fourier coeffcients for
the functions F (ω) and G(ω), respectively, defined on the interval [−π, π];
that is

F (ω) =
∑∞

m=−∞
fmeimω, |ω| ≤ π.

Exercise 1: Use the orthogonality of the functions eimω on [−π, π] to
establish Parseval’s equation:

〈f, g〉 =
∑∞

m=−∞
fmgm =

∫ π

−π

F (ω)G(ω)dω/2π,

from which it follows that

〈f, f〉 =

∫ ∞

−∞
|F (ω)|2dω/2π.

Similar results hold for the Fourier transform, as we shall see in the next
chapter.

Exercise 2: Let f(x) be defined for all real x and let F (ω) be its FT. Let

g(x) =

∞
∑

k=−∞
f(x + 2πk),

assuming the sum exists. Show that g is a 2π -periodic function. Compute
its Fourier series and use it to derive the Poisson summation formula:

∞
∑

k=−∞
f(2πk) =

1

2π

∞
∑

n=−∞
F (n).

In certain applications our main interest is the function f(x), for which we
have finitely many (usually noisy) values. For example, x may be the time
variable t and f(t) may be a short segment of spoken speech that we wish
to analyze. We model f(t) as a finite, infinite discrete or continuous sum
of complex exponentials, that is, as a Fourier series or Fourier transform,
in order to process the data, to remove the noise, to compress the data and
to identify the parameters.

In remote sensing applications (such as radar, sonar, tomography), on
the other hand, we have again noisy values of f(x), but it is not f(x) that
interests us. Instead, we are interested in F (ω), the Fourier transform of
f(x) or the sequence Fn of the complex Fourier coeffcients of f(x), if f(x) =
0 outside some finite interval. We cannot measure these quantities directly,
so we must content ourselves with estimating them from our measurements
of f(x).
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In yet a third class of applications, such as linear filtering, we are con-
cerned with constructing a digital procedure for performing certain oper-
ations on any signal we might receive as input. In such cases our goal is
to construct the sequence gn for which the associated Fourier series G(ω)
will have a desired shape. For example, we may want the filter to eliminate
all complex exponential components of the input signal whose frequency
is not in the interval [−Ω,Ω]. Then we would want G(ω) to be one for ω
within this interval and zero outside. To achieve this we would take the
sequence gn to be

gn =
sin(Ωn)

πn
.

In these applications there is no f(x) to be analyzed nor F (ω) to be esti-
mated.
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Chapter 14

More on the Fourier

Transform

We begin with exercises that treat basic properties of the FT and then
introduce several examples of Fourier transform pairs.

Exercise 1: Let F (ω) be the FT of the function f(x). Use the definitions
of the FT and IFT given in equations (13.1) and (13.2) to establish the
following basic properties of the Fourier transform operation:

Symmetry: The FT of the function F (x) is 2πf(−ω). For example, the

FT of the function f(x) = sin(Ωx)
πx is χΩ(ω), so the FT of g(x) = χΩ(x) is

G(ω) = 2π sin(Ωω)
πω .

Conjugation: The FT of f(x) is F (−ω).

Scaling: The FT of f(ax) is 1
|a|F (ω

a ) for any nonzero constant a.

Shifting: The FT of f(x − a) is e−iaωF (ω).

Modulation: The FT of f(x) cos(ω0x) is 1
2 [F (ω + ω0) + F (ω − ω0)].

Differentiation: The FT of the n-th derivative, f (n)(x) is (−iω)nF (ω).
The IFT of F (n)(ω) is (ix)nf(x).

Convolution in x: Let f, F , g, G and h, H be FT pairs, with

h(x) =

∫

f(y)g(x − y)dy,
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so that h(x) = (f ∗g)(x) is the convolution of f(x) and g(x). Then H(ω) =
F (ω)G(ω). For example, if we take g(x) = f(−x), then

h(x) =

∫

f(x + y)f(y)dy =

∫

f(y)f(y − x)dy = rf (x)

is the autocorrelation function associated with f(x) and

H(ω) = |F (ω)|2 = Rf (ω) ≥ 0

is the power spectrum of f(x).

Convolution in ω: Let f, F , g, G and h, H be FT pairs, with h(x) =
f(x)g(x). Then H(ω) = 1

2π (F ∗ G)(ω).

Exercise 2: Show that the Fourier transform of f(x) = e−α2x2

is F (ω) =√
π

α e−( ω
2α

)2 . Hint: Calculate the derivative F ′(ω) by differentiating under
the integral sign in the definition of F and integrating by parts. Then solve
the resulting differential equation.

Let u(x) be the Heaviside function that is +1 if x ≥ 0 and 0 otherwise.
Let χX(x) be the characteristic function of the interval [−X, X] that is +1
for x in [−X, X] and 0 otherwise. Let sgn(x) be the sign function that is
+1 if x > 0, −1 if x < 0 and zero for x = 0. Denote by δ(ω) the Dirac
delta ‘function’ that is defined formally as the FT of the constant function
that has the value 1

2π for all x.

Exercise 3: Calculate the FT of the function f(x) = u(x)e−ax, where a
is a positive constant.

Exercise 4: Calculate the FT of f(x) = χX(x).

Exercise 5: Show that the IFT of the function F (ω) = 2i/ω is f(x) =
sgn(x). Hints: write the formula for the inverse Fourier transform of F (ω)
as

f(x) =
1

2π

∫ +∞

−∞

2i

ω
cos ωxdω − i

2π

∫ +∞

−∞

2i

ω
sinωxdω

which reduces to

f(x) =
1

π

∫ +∞

−∞

1

ω
sinωxdω,

since the integrand of the first integral is odd. For x > 0 consider the
Fourier transform of the function χx(t). For x < 0 perform the change of
variables u = −x.
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Exercise 6: Use the fact that sgn(x) = 2u(x)−1 and the previous exercise
to show that f(x) = u(x) has the FT F (ω) = i/ω + πδ(ω).

Let f(x) be arbitrary and F (ω) its Fourier transform. The complex
numbers f(x) and F (ω) have real and imaginary parts; we wish to see how
these are related.

Exercise 7: Let F (ω) = R(ω) + iX(ω), where R and X are real-valued
functions, and similarly, let f(x) = f1(x) + if2(x), where f1 and f2 are
real-valued. Find relationships between the pairs R,X and f1,f2.

We saw earlier that the F (ω) = χΩ(ω) has for its inverse Fourier trans-
form the function f(x) = sin Ωx

πx ; note that f(0) = Ω
π and f(x) = 0 for

the first time when Ωx = π or x = π
Ω . Therefore, as Ω grows larger, f(0)

approaches +∞, while f(x) goes to zero for x 6= 0. The limit is therefore
not a function; it is a generalized function called the Dirac delta function
at zero, denoted δ(x). The FT of δ(x) is the function F (ω) = 1 for all
ω. The Dirac delta function δ(x) enjoys the sifting property: for any other
function g(x) we have

g(0) =

∫ ∞

−∞
g(x)δ(x)dx.

The generalized function δ(x − x0) then has the property that

g(x0) =

∫ ∞

−∞
g(x)δ(x − x0)dx.

It follows from the sifting and shifting properties that the FT of δ(x − x0)
is the function eix0ω.

The formula for the inverse FT nows says

δ(x) =
1

2π

∫ ∞

−∞
e−ixωdω. (14.1)

If we try to make sense of this integral according to the rules of calculus we
get stuck quickly. The problem is that the integral formula doesn’t mean
quite what it does ordinarily and the δ(x) is not really a function, but
an operator on functions; it is sometimes called a distribution. The Dirac
deltas are mathematical fictions, not in the bad sense of being lies or fakes,
but in the sense of being made up for some purpose. They provide helpful
descriptions of impulsive forces, probability densities in which a discrete
point has nonzero probability, or, in array processing, objects far enough
away to be viewed as occupying a discrete point in space.

We shall treat the relationship expressed by equation (14.1) as a formal
statement, rather than attempt to explain the use of the integral in what is
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surely an unconventional manner. Nevertheless, it is possible to motivate
this relationship by proving that, for any x 6= 0,

∫ ∞

−∞
e−ixωdω = 0.

Assume, for convenience, that x > 0. Notice first that we can write

∫ ∞

−∞
e−ixωdω =

∞
∑

k=−∞

∫ 2π
x

(k+1)

2π
x

k

e−ixωdω.

Since
e−ixω = e−ix(ω+ 2π

x
)

we can write
∫ 2π

x
(k+1)

2π
x

k

e−ixωdω =

∫ π
x

− π
x

e−ixωdω

=

∫ π
x

0

[e−ixω + e−ix(ω− π
x
)]dω

=
1

x

∫ π

0

[e−iω(1 + eiπ)]dω

=
1

x
(1 + eiπ)

∫ π

0

e−iωdω = 0.

Clearly, when x = 0 the integrand is one for all ω, which leads to the delta
function supported at zero.

If we move the discussion into the ω domain and define the Dirac delta
function δ(ω) to be the FT of the function that has the value 1

2π for all
x, then the FT of the complex exponential function 1

2π e−iω0x is δ(ω − ω0),
visualized as a ”spike” at ω0, that is, a generalized function that has the
value +∞ at ω = ω0 and zero elsewhere. This is a useful result, in that
it provides the motivation for considering the Fourier transform of a signal
s(t) containing hidden periodicities. If s(t) is a sum of complex exponentials
with frequencies −ωn then its Fourier transform will consist of Dirac delta
functions δ(ω −ωn). If we then estimate the Fourier transform of s(t) from
sampled data, we are looking for the peaks in the Fourier transform that
approximate the infinitely high spikes of these delta functions.

Exercise 8: Let f, F be a FT pair. Let g(x) =
∫ x

−∞ f(y)dy. Show that

the FT of g(x) is G(ω) = πF (0)δ(ω) + iF (ω)
ω .

Hint: For u(x) the Heaviside function we have
∫ x

−∞
f(y)dy =

∫ ∞

−∞
f(y)u(x − y)dy.
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We can use properties of the Dirac delta functions to extend the Parseval
equation to Fourier transforms, where it is usually called the Parseval-
Plancherel equation.

Exercise 9: Let f(x), F (ω) and g(x), G(ω) be Fourier transform pairs.
Use equation (14.1) to establish the Parseval-Plancherel equation

〈f, g〉 =

∫

f(x)g(x)dx =
1

2π

∫

F (ω)G(ω)dω,

from which it follows that

||f ||2 = 〈f, f〉 =

∫

|f(x)|2dx =
1

2π

∫

|F (ω)|2dω.

Exercise 10: We define the even part of f(x) to be the function

fe(x) =
f(x) + f(−x)

2
,

and the odd part of f(x) to be

fo(x) =
f(x) − f(−x)

2
;

define Fe and Fo similarly for F the FT of f . Let F (ω) = R(ω)+ iX(ω) be
the decomposition of F into its real and imaginary parts. We say that f is
a causal function if f(x) = 0 for all x < 0. Show that, if f is causal, then
R and X are related; specifically, show that X is the Hilbert transform of
R, that is,

X(ω) =
1

π

∫ ∞

−∞

R(α)

ω − α
dα.

Hint: If f(x) = 0 for x < 0 then f(x)sgn(x) = f(x). Apply the convolution
theorem, then compare real and imaginary parts.

Exercise 11: The one-sided Laplace transform (LT) of f is F given by

F(z) =

∫ ∞

0

f(x)e−zxdx.

Compute F(z) for f(x) = u(x), the Heaviside function. Compare F(−iω)
with the FT of u.
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Chapter 15

Directional Transmission

An important example of the use of the DFT is the design of directional
transmitting or receiving arrays of antennas. In this chapter we concentrate
on the transmission case; we shall return to array processing and consider
the passive or receiving case in a later chapter.

Parabolic mirrors behind car headlamps reflect the light from the bulb,
concentrating it directly ahead. Whispering at one focal point of an ellip-
tical room can be heard clearly at the other focal point. When I call to
someone across the street I cup my hands in the form of a megaphone to
concentrate the sound in that direction. In all these cases the transmit-
ted signal has acquired directionality. In the case of the elliptical room,
not only does the soft whispering reflect off the walls toward the oppo-
site focal point, but the travel times are independent of where on the wall
the reflections occur; otherwise, the differences in time would make the
received sound unintelligible. Parabolic satellite dishes perform much the
same function, concentrating incoming signals coherently. In this chapter
we discuss the use of amplitude and phase modulation of transmitted sig-
nals to concentrate the signal power in certain directions. Following the
lead of Richard Feynman in [72], we use radio broadcasting as a concrete
example of the use of directional transmission.

Radio broadcasts are meant to be received and the amount of energy
that reaches the receiver depends on the amount of energy put into the
transmission as well as on the distance from the transmitter to the receiver.
If the transmitter broadcasts a spherical wave front, with equal power in
all directions, the energy in the signal is the same over the spherical wave-
fronts, so that the energy per unit area is proportional to the reciprocal
of the surface area of the front. This means that, for omni-directional
broadcasting, the energy per unit area, that is, the energy supplied to any
receiver, falls off as the distance squared. The amplitude of the received
signal is then proportional to the reciprocal of the distance.
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Suppose you owned a radio station in Los Angeles. Most of the pop-
ulation resides along the north-south coast, with fewer to the east, in the
desert, and fewer still to the west, in the Pacific Ocean. You might well
want to transmit the radio signal in a way that concentrates most of the
power north and south. But how can you do this? The answer is to broad-
cast directionally. By shaping the wavefront to have most of its surface
area north and south you will enable to have the broadcast heard by more
people without increasing the total energy in the transmission. To achieve
this shaping you can use an array of multiple antennas.

Multiple antenna arrays: We place 2N + 1 transmitting antennas a
distance ∆ > 0 apart along an east-west axis. For convenience, let the
locations of the antennas be n∆, n = −N, ..., N . To begin with, let us
suppose that we have a fixed frequency ω and each of the transmitting
antennas sends out the same signal fn(t) = cos(ωt). Let (x, y) be an
arbitrary location on the ground and let s be the vector from the origin
to the point (x, y). Let θ be the angle measured counterclockwise from
the positive horizontal axis to the vector s. Let D be the distance from
(x, y) to the origin. Then, if (x, y) is sufficiently distant from the antennas,
the distance from n∆ on the horizontal axis to (x, y) is approximately
D − n∆ cos(θ). The signals arriving at (x, y) from the various antennas
will have travelled for different times and so will be out of phase with one
another to a degree that depends on the location of (x, y).

Since we are concerned only with wavefront shape, we omit for now the
distance-dependence in the amplitude of the received signal. The signal
received at (x, y) is proportional to

f(s, t) =

N
∑

n=−N

cos(ω(t − tn)),

where

tn =
1

c
(D − n∆ cos(θ))

and c is the speed of propagation of the signal. Writing

cos(ω(t − tn)) = cos(ω(t − D

c
) + nτ cos(θ))

for γ = ω∆
c , we have

cos(ω(t−tn)) = cos(ω(t− D

c
)) cos(nγ cos(θ))−sin(ω(t− D

c
)) sin(nγ cos(θ)).

Therefore the signal received at (x, y) is

f(s, t) = A(θ) cos(ω(t − D

c
)) (15.1)
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for

A(θ) =
sin((N + 1

2 )γ cos(θ))

sin( 1
2γ cos(θ))

;

when the denominator equals zero the signal equals (2N +1) cos(ω(t− D
c )).

We see from equation (15.1) that the maximum power is in the north-
south direction. What about the east-west direction? In order to have neg-
ligible signal power wasted in the east-west direction we want the numerator
in equation (15.1) to be zero when θ = 0. This means that ∆ = λ/(2N +1),
where λ = 2πc/ω is the wavelength. Recall that the wavelength for broad-
cast radio is tens to hundreds of meters.

Exercise 1: Graph the function A(θ) in polar coordinates for various
choices of N and ∆.

Phase and Amplitude Modulation: In the previous section the signal
broadcast from each of the antennas was the same. Now we look at what
directionality can be obtained by using different amplitudes and phases at
each of the antennas. Let the signal broadcast from the antenna at n∆ be

fn(t) = |An| cos(ωt − φn) = |An| cos(ω(t − τn)),

for some amplitude |An| > 0 and phase φn = ωτn. Now the signal received
at s is proportional to

f(s, t) =

N
∑

n=−N

|An| cos(ω(t − tn − τn)). (15.2)

If we wish, we can repeat the calculations done earlier to see what the effect
of the amplitude and phase changes is. Using complex notation simplifies
things somewhat.

Let us consider a complex signal; suppose that the signal transmitted
from the antenna at n∆ is gn(t) = |An|eiω(t−τn). Then the signal received
at location s is proportional to

g(s, t) =

N
∑

n=−N

|An|eiω(t−tn−τn).

Then we have

g(s, t) = B(θ)eiω(t− D
c

)

for

B(θ) =

N
∑

n=−N

Ane−inx,



58 CHAPTER 15. DIRECTIONAL TRANSMISSION

An = |An|e−iφn and x = ω∆
c sin(θ). Note that the complex amplitude

function B(θ) depends on our choices of N and ∆ and takes the form of
a finite Fourier series or DFT. We can design B(θ) to approximate the
desired directionality by choosing the appropriate complex coefficients An

and selecting the amplitudes |An| and phases φn accordingly. We can
generalize further by allowing the antennas to be spaced irregularly along
the east-west axis, or even distributed irregularly over a two-dimensional
area on the ground.

Exercise 2: Use the Fourier transform of the characteristic function of
an interval to design a transmitting array that maximally concentrates
signal power within the sectors northwest to northeast and southwest to
southeast.



Chapter 16

The FT in Higher

Dimensions

The Fourier transform is also defined for functions of several real variables
f(x1, ..., xN ) = f(x). The multidimensional FT arises in image processing,
scattering, transmission tomography, and many other areas.

We adopt the usual vector notation that ω and x are N -dimensional
real vectors. We say that F (ω) is the N-dimensional Fourier transform of
the possibly complex-valued function f(x) if the following relation holds:

F (ω) =

∫ ∞

−∞
...

∫ ∞

−∞
f(x)eiω·xdx,

where ω·x denotes the vector dot product and dx = dx1dx2...dxN . In most
cases we then have

f(x) =

∫ ∞

−∞
...

∫ ∞

−∞
F (ω)e−iω·xdω/(2π)N ;

we describe this by saying that f(x) is the inverse Fourier transform of
F (ω).

Consider the FT of a function of two variables f(x, y):

F (α, β) =

∫ ∫

f(x, y)ei(xα+yβ)dxdy.

We convert to polar coordinates using (x, y) = r(cos θ, sin θ) and (α, β) =
ρ(cos ω, sinω). Then

F (ρ, ω) =

∫ ∞

0

∫ π

−π

f(r, θ)eirρ cos(θ−ω)rdrdθ. (16.1)
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Say that a function f(x, y) of two variables is a radial function if x2 + y2 =
x2

1 + y2
1 implies f(x, y) = f(x1, y1), for all points (x, y) and (x1, y1); that

is, f(x, y) = g(
√

x2 + y2) for some function g of one variable.

Exercise 1: Show that if f is radial then its FT F is also radial. Find the
FT of the radial function f(x, y) = 1√

x2+y2
.

Hints: Insert f(r, θ) = g(r) in equation (16.1) to obtain

F (ρ, ω) =

∫ ∞

0

∫ π

−π

g(r)eirρ cos(θ−ω)rdrdθ

or

F (ρ, ω) =

∫ ∞

0

rg(r)[

∫ π

−π

eirρ cos(θ−ω)dθ]dr. (16.2)

Show that the inner integral is independent of ω and then use the fact that

∫ π

−π

eirρ cos θdθ = 2πJ0(rρ),

with J0 the 0-th order Bessel function, to get

F (ρ, ω) = H(ρ) = 2π

∫ ∞

0

rg(r)J0(rρ)dr. (16.3)

The function H(ρ) is called the Hankel transform of g(r). Summarizing,
we say that if f(x, y) is a radial function obtained using g then its Fourier
transform F (α, β) is also a radial function, obtained using the Hankel trans-
form of g.



Chapter 17

The Fast Fourier

Transform

A fundamental problem in signal processing is to estimate finitely many
values of the function F (ω) from finitely many values of its (inverse) Fourier
transform, f(t). As we have seen, the DFT arises in several ways in that
estimation effort. The fast Fourier transform (FFT), discovered in 1965 by
Cooley and Tukey, is an important and efficient algorithm for calculating
the vector DFT [61]. John Tukey has been quoted as saying that his main
contribution to this discovery was the firm and often voiced belief that such
an algorithm must exist.

To illustrate the main idea behind the FFT consider the problem of
evaluating a real polynomial P (x) at a point, say x = c: let the polynomial
be

P (x) = a0 + a1x + a2x
2 + ... + a2Kx2K ,

where a2K might be zero. Performing the evaluation efficiently by Horner’s
method,

P (c) = (((a2Kc + a2K−1)c + a2K−2)c + a2K−3)c + ...,

requires 2K multiplications, so the complexity is on the order of the degree
of the polynomial being evaluated. But suppose we also want P (−c). We
can write

P (x) = (a0 + a2x
2 + ... + a2Kx2K) + x(a1 + a3x

2 + ... + a2K−1x
2K−2)

or
P (x) = Q(x2) + xR(x2).

Therefore we have P (c) = Q(c2) + cR(c2) and P (−c) = Q(c2) − cR(c2).
If we evaluate P (c) by evaluating Q(c2) and R(c2) separately, one more
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multiplication gives us P (−c) as well. The FFT is based on repeated use
of this idea, which turns out to be more powerful when we are using complex
exponentials, because of their periodicity.

Say the data are the samples are {f(n∆), n = 1, ..., N}, where ∆ > 0 is
the sampling increment or sampling spacing.

The DFT estimate of F (ω) is the function FDFT (ω), defined for ω in
[−π/∆, π/∆], and given by

FDFT (ω) = ∆

N
∑

n=1

f(n∆)ein∆ω.

The DFT estimate FDFT (ω) is data consistent; its inverse Fourier trans-
form value at t = n∆ is f(n∆) for n = 1, ..., N . The DFT is sometimes
used in a slightly more general context in which the coefficients are not
necessarily viewed as samples of a function f(t).

Given the complex N -dimensional column vector f = (f0, f1, ..., fN−1)
T

define the DFT of vector f to be the function DFTf (ω), defined for ω in
[0, 2π), given by

DFTf (ω) =

N−1
∑

n=0

fneinω.

Let F be the complex N -dimensional vector F = (F0, F1, ..., FN−1)
T , where

Fk = DFTf (2πk/N), k = 0, 1, ..., N−1. So the vector F consists of N values
of the function DFTf , taken at N equispaced points 2π/N apart in [0, 2π).

From the formula for DFTf we have, for k = 0, 1, ..., N − 1,

Fk = F (2πk/N) =

N−1
∑

n=0

fne2πink/N . (17.1)

To calculate a single Fk requires N multiplications; it would seem that to
calculate all N of them would require N2 multiplications. However, using
the FFT algorithm we can calculate vector F in approximately N log2(N)
multiplications.

Suppose that N = 2M is even. We can rewrite equation(17.1) as fol-
lows:

Fk =

M−1
∑

m=0

f2me2πi(2m)k/N +

M−1
∑

m=0

f2m+1e
2πi(2m+1)k/N ,

or, equivalently,

Fk =

M−1
∑

m=0

f2me2πimk/M + e2πik/N
M−1
∑

m=0

f2m+1e
2πimk/M . (17.2)
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Note that if 0 ≤ k ≤ M − 1 then

Fk+M =

M−1
∑

m=0

f2me2πimk/M − e2πik/N
M−1
∑

m=0

f2m+1e
2πimk/M , (17.3)

so there is no additional computational cost in calculating the second half
of the entries of F, once we have calculated the first half. The FFT is the
algorithm that results when take full advantage of the savings obtainable
by splitting a DFT calculating into two similar calculations of half the size.

We assume now that N = 2L. Notice that if we use equations (17.2)
and (17.3) to calculate vector F, the problem reduces to the calculation of
two similar DFT evaluations, both involving half as many entries, followed
by one multiplication for each of the k between 0 and M − 1. We can split
these in half as well. The FFT algorithm involves repeated splitting of the
calculations of DFTs at each step into two similar DFTs, but with half the
number of entries, followed by as many multiplications as there are entries
in either one of these smaller DFTs. We use recursion to calculate the cost
C(N) of computing F using this FFT method. From equation (17.2) we
see that C(N) = 2C(N/2) + (N/2). Applying the same reasoning to get
C(N/2) = 2C(N/4) + (N/4), we obtain

C(N) = 2C(N/2) + (N/2) = 4C(N/4) + 2(N/2) = ...

= 2LC(N/2L) + L(N/2) = N + L(N/2).

Therefore the cost required to calculate F is approximately N log2 N .
From our earlier discussion of discrete linear filters and convolution we

see that the FFT can be used to calculate the periodic convolution (or even
the non-periodic convolution) of finite length vectors.

Finally, let’s return to the original context of estimating the Fourier
transform F (ω) of function f(t) from finitely many samples of f(t). If we
have N equispaced samples we can use them to form the vector f as above
and perform the FFT algorithm to get vector F consisting of N values of
the DFT estimate of F (ω). It may happen that we wish to calculate more
than N values of the DFT estimate, perhaps to produce a smooth looking
graph. We can still use the FFT, but we must trick it into thinking we have
more data that the N samples we really have. We do this by zero-padding.
Instead of creating the N -dimensional vector f , we make a longer vector by
appending, say, J zeros to the data, to make a vector that has dimension
N + J . The DFT estimate is still the same function of ω, since we have
only included new zero coefficients as fake data. But the FFT thinks we
have N + J data values, so it returns N + J values of the DFT, at N + J
equispaced values of ω in [0, 2π).
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Chapter 18

Discretization

Computer simulations play a large role in the design and testing of recon-
struction algorithms. In such simulations functions of a continuous variable
are replaced by finite vectors obtained by sampling. In this chapter we look
at the effects this discretization step can have on the calculation of Fourier
transform values.

Throughout this chapter we let F (ω) be defined for ω ∈ [0, 2π], with

f(x) =
1

2π

∫ 2π

0

F (ω)e−ixωdω. (18.1)

In subsequent chapters we shall be concerned with the problem of recon-
structing the function F (ω), having bounded support, from finitely many
values of f(x). In applications F (ω) usually represents some physical ob-
ject of limited extent; remote sensing has provided (usually noisy) values
of f(x) for finitely many x.

When algorithms are being developed and tested one often works with
simulations. If the F (ω) to be simulated is specified analytically we may
be able to compute values of f(x) by performing the integrals in equation
(18.1). It may be the case, however, that the integrals cannot be performed
exactly or even that F (ω) is represented by a finite vector of samples.
Estimating values of f(x) in such cases is the topic for this chapter.

We assume that we have the values Fn = F (2πn/N), n = 0, 1, ..., N −1
and wish to estimate f(x) for certain values of x. We are particularly
interested in the role to be played by the vector DFT of these samples,
defined for k = 0, 1, ..., N − 1 by

fk =
1

N

N−1
∑

n=0

Fne−2πikn/N . (18.2)

It is tempting to take fk as our estimate of f(2πk/N) for each k, but this
is not a good idea.

65



66 CHAPTER 18. DISCRETIZATION

Let us assume that F (ω) is Riemann integrable. For each x we can
approximate the integral in equation (18.1) by the Riemann sum

rs(x;N) =
1

N

N−1
∑

n=0

Fne−2πinx/N . (18.3)

The problem is that how good an approximation of f(x) rs(x;N) is will
depend on x; as |x| gets large the integrand becomes ever more oscillatory
and a larger value of N will be needed to obtain a good approximation of
the integral.

To see this from another viewpoint, consider the step function approx-
imation of F (ω) given by

S(ω) =

N−1
∑

n=0

Fnχπ/N (ω − 2n + 1

N
π) (18.4)

with

s(x) =
1

2π

∫ 2π

0

S(ω)e−2πixωdω. (18.5)

Performing the integrations we find that

s(x) = rs(x;N)
sin(πx/N)

πx/N
. (18.6)

If N is large enough for S(ω) to provide a reasonable approximation of
F (ω) then s(x) should be a good estimate of f(x), at least for smaller
values of x. Of course, since the rate of decay of f(x) as |x| approaches
infinity depends on the smoothness of F (ω) we must not expect s(x) to
approximate f(x) well for larger values of x.

Notice that the first positive zero of sin(πx/N) occurs at x = N , which
suggests that rs(x;N) provides a reasonable estimate of f(x) for |x| not
larger than, say, N/2; therefore we may use fk to estimate f(k) for 0 ≤
k ≤ N/2. To be safe, we may wish to use a smaller upper bound on k.
Note also that rs(−x;N) = rs(−x + N ;N), which means that we may use
fN−k to approximate f(−k) for 0 < k ≤ N/2.

To summarize, the N samples of F (ω) provide useful estimates of f(k)
for −N/2 < k ≤ N/2. For N = 2K we have −K < k ≤ K, so that the N
samples of F (ω) provide 2K = N useful estimates of f(k).

There is yet another way to look at this problem. If F (ω) is twice con-
tinuously differentiable when periodically extended then its Fourier series
expansion

F (ω) =

∞
∑

m=−∞
f(m)eimω (18.7)
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converges uniformly for all ω. Therefore, for M large enough, we can
estimate F (ω) using the truncated Fourier series

T (ω;M) =

M
∑

m=−M

f(m)eimω. (18.8)

Let N = 2M + 1 now.
Substituting ω = 2πn/N into equation (18.8) we obtain

T (2πn/N ;M) =

M
∑

m=−M

f(m)e2πimn/N . (18.9)

For j = −M, ..., M multiply both sides of equation (18.9) by e−2πinj/N ,
sum over n = 0, ..., N − 1 and use orthogonality to get f(j) on the right
side and

1

N

N−1
∑

n=0

T (2πn/N ;M)e−2πinj/N (18.10)

on the left. Viewing T (2πn/N ;M) as an estimate of F (2πn/N) and replac-
ing the former by the latter in equation (18.10), we conclude once again
that f(k) is well approximated by fk for 0 ≤ k ≤ M and f(−k) by fN−k

for 1 ≤ k ≤ M .
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Chapter 19

Fourier Transform

Estimation

The basic problem we want to solve is the reconstruction of an object
function F (ω) from finitely many values of its inverse Fourier transform

f(x) =

∫

F (ω) exp(−ixω)dω/2π, (19.1)

where, for notational convenience, we use single letters x and ω to denote
possibly multi-dimensional variables. We assume that the formula

F (ω) =

∫

f(x) exp(ixω)dx

also holds.
Let the data be f(xm), m = 1, ..., M . Given this data, we want to

estimate F (ω). Notice that any estimate of F (ω), which we denote as
F̂ (ω), corresponds to an estimate of f(x) by inserting F̂ (ω) into equation
(19.1); that is

f̂(x) =

∫

F̂ (ω) exp(−ixω)dω/2π. (19.2)

We shall say that the estimate F̂ (ω) is data consistent if

f̂(xm) = f(xm), m = 1, ..., M.

A first estimate for F (ω): It seems reasonable to take as our first attempt
the estimate

F̂ (ω) =

M
∑

m=1

f(xm) exp(ixmω). (19.3)
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Is this estimate data consistent? Let’s calculate f̂(x) and see. Inserting
F̂ (ω) in equation (19.3) into equation (19.2) we get

f̂(x) =

M
∑

m=1

f(xm)δ(x − xm),

where δ(x − a) denotes the Dirac delta function supported at the point a.
The estimate is not data consistent, since what we measured at x = xm

was not the top of a delta function, but just a number, f(xm). Does
our estimate seem reasonable now? Is it reasonable that the estimate of
the function f(x) just happens to have delta function components located
at precisely the places we chose to sample and is zero everywhere else?
Perhaps we can do better.

We go beyond our first estimation attempt by incorporating some prior
knowledge in our estimate, or, at least, making reasonable assumptions
about the function F (ω) being estimated. The first type of assumption we
make concerns the support of F (ω), that is, the region in ω-space outside
of which F (ω) is identically equal to zero.

Including a support constraint: Let Ω > 0 and suppose that the func-
tion F (ω) = 0 for |ω| > Ω. Let χΩ(ω) be the function that is one for
|ω| ≤ Ω and zero otherwise. Building on our first attempt, we try the
estimate

F̂ (ω) = χΩ(ω)

M
∑

m=1

f(xm) exp(ixmω). (19.4)

Is this estimate data consistent? Inserting F̂ (ω) in equation (19.4) into
equation (19.2) we get

f̂(x) =

M
∑

m=1

f(xm)
sin Ω(x − xm)

π(x − xm)
. (19.5)

Now we ask if it is true that

f(xn) =

M
∑

m=1

f(xm)
sin Ω(xn − xm)

π(xn − xm)
(19.6)

for n = 1, ..., M . The answer is, generally, no, although in special cases,
the answer is yes, or almost yes.

The Nyquist case: Suppose that Ω = π, F (ω) is zero for |ω| > π and the
data is f(m), m = 1, ..., M . Then the estimate

F̂ (ω) = χπ(ω)

M
∑

m=1

f(m) exp(imω)
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is data consistent; it is then what is often called the discrete Fourier trans-
form (DFT) of the data, defined for ω in the interval [−π, π]. For this
reason we write the estimate as FDFT (ω). The inversion formula gives

f̂(x) =

M
∑

m=1

f(m)
sinπ(x − m)

π(x − m)

and

f̂(n) =

M
∑

m=1

f(m)
sinπ(n − m)

π(n − m)

holds for each n = 1, ..., M , since the matrix becomes the identity matrix.
Suppose, more generally, that Ω = π

∆ for some ∆ > 0, F (ω) is zero for
|ω| > π

∆ and the data is f(m∆), m = 1, ..., M . Then the estimate

F̂ (ω) = χ π
∆

(ω)

M
∑

m=1

f(m∆) exp(im∆ω)

is almost data consistent. The inversion formula gives

f̂(x) =

M
∑

m=1

f(m∆)
sin π

∆ (x − m∆)

π(x − m∆)

and so

f̂(n∆) =
1

∆

M
∑

m=1

f(m∆)
sinπ(n − m)

π(n − m)
=

1

∆
f(n∆)

holds for each n = 1, ..., M . To get data consistency we multiply our
estimate by ∆; that is, we take

F̂ (ω) = ∆χ π
∆

(ω)

M
∑

m=1

f(m∆) exp(im∆ω).

Now this estimate is both data consistent and supported on the interval
[− π

∆ , π
∆ ]. This estimate may also be called the DFT, ignoring the ∆ mul-

tiplier or redefining variables to make ∆ = 1.

Exercise 1: Use the orthogonality principle to show that the DFT mini-
mizes the distance

∫ π

−π

|F (ω) −
∑M

m=1
ameimω|2dω.

When the data is f(m∆), so is equispaced, we assume that F (ω) = 0 for
|ω| > π

∆ ; that is, we assume that our sample spacing ∆ is small enough to



72 CHAPTER 19. FOURIER TRANSFORM ESTIMATION

avoid aliasing. What happens when we oversample; that is, when F (ω) = 0
for |ω| > Ω, where Ω < π

∆?

The general case: Even for integer spaced data f(m), m = 1, ..., M , the
estimate

F̂ (ω) = χΩ(ω)

M
∑

m=1

f(m) exp(imω)

will not be data consistent if Ω < π. For more generally spaced data f(xm),
m = 1, ..., M the estimate

F̂ (ω) = χΩ(ω)

M
∑

m=1

f(xm) exp(ixmω)

will not be data consistent. The approach we take is to retain the algebraic
form of these estimators, but to allow the coefficients to be determined by
data consistency.

Take as the estimate of F (ω) the function

FΩ(ω) = χΩ(ω)

M
∑

m=1

am exp(ixmω), (19.7)

with the coefficients am chosen to give data consistency. This means we
must select the am to satisfy the equations

f(xn) =

M
∑

m=1

am
sin Ω(xn − xm)

π(xn − xm)

for n = 1, ..., M . The resulting estimate FΩ(ω) is both data consistent and
supported on the interval [−Ω,Ω]. We shall refer to this estimator as the
non-iterative bandlimited extrapolation method. Figure 19.1 below shows
the advantage of the non-iterative bandlimited extrapolation method, in
the top frame, over the DFT below. The true object to be reconstructed
is the solid figure. The sampling spacing is ∆ = 1, but Ω = π/30, so the
129 data points are thirty times oversampled.

A paradox: It follows from what we just did that for any finite data
and any α < β there is a function F̂ (ω) supported on the interval [α, β]
and consistent with the data. Does the data contain no information about
the actual support of F (ω)? This would seem to say that the data we
have measured contains essentially no information, since we can generate
thousands of additional data points, select any α and β and still find a data
consistent estimate of F (ω). How can this be true when, at the same time,
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we have plenty of simulation cases in which we are able to generate fairly
accurate estimates of the correct answer using these techniques?

The answer is that while the data we have does not eliminate any pos-
sible support for the function F (ω) it is capable of indicating preferences.
When we use equation (19.7) we do get an estimate that is data consistent,
but if the support [−Ω,Ω] is a poor choice we usually have an indication
of that in the norm of the estimate. The norm of FΩ(ω) is

||FΩ|| =

√

∫ Ω

−Ω

|FΩ(ω)|2dω

and can be quite large if the data and the Ω are poorly matched. Usually,
the true F (ω) is a physically meaningful function that does not have un-
usually large norm, so any estimate FΩ(x) with a large norm is probably
incorrect and a better Ω should be sought.

Properties of the estimate FΩ(ω): In addition to being data consistent
and having for its support the interval [−Ω,Ω] the estimate FΩ(ω) given by
equation (19.7) has two additional properties that are worth mentioning.
The choice G(ω) = FΩ(ω) minimizes the integral

∫ Ω

−Ω

|G(ω)|2dx

over all estimates G(ω) that are data consistent. It also minimizes the
approximation error

∫ Ω

−Ω

|F (ω) −
M
∑

m=1

am exp(ixmω)|2dω (19.8)

over all choices of coefficients am. So in this sense it is the best approxi-
mation of the truth that we can find that has its particular algebraic form,
provided, of course, that F (ω) is supported on [−Ω,Ω].

Exercise 2: Suppose that 0 < Ω and F (ω) = 0 for |ω| > Ω. Let f(x)
be the inverse Fourier transform of F (ω) and suppose that the data is
f(xm), m = 1, ..., M . Use the orthogonality principle to find the coeffi-
cients am that minimize the error given by equation (19.8). Show that the
resulting estimate of F (ω) is consistent with the data.

The choice of Ω is left up to us. Suppose that our choice is too big.
Then the estimate in equation (19.7) gives the best estimate of its algebraic
form over the interval [−Ω,Ω], but since F (ω) is zero on a portion of this
interval, the estimate spends some effort estimating the value zero. If we
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can get a more accurate estimate of the true support of F (ω) then we can
modify the Ω and get a better estimate of F (ω).

Once we have calculated the estimate FΩ(ω) we obtain a procedure for
extrapolating the data by computing its inverse Fourier transform:

fΩ(x) =

M
∑

m=1

am
sin Ω(x − xm)

π(x − xm)

estimates the values f(x) we did not measure. This procedure is called
bandlimited extrapolation. The Gerchberg-Papoulis (GP) method for ban-
dlimited extrapolation is an iterative algorithm for calculating FΩ(ω) and,
equivalently, fΩ(x). For large data sets it provides an alternative to solving
a large system of linear equations. Discrete versions of the GP algorithm
work with finite vectors and exploit the FFT to perform the estimation
quickly. We consider the GP method in a later chapter.

The PDFT: The estimate FΩ(ω) is the product of two terms: the first
is χΩ(ω), which incorporates prior knowledge about the function F (ω),
and the second is the sum, whose coefficients are calculated to insure data
consistency. We obtain a more flexible class of estimators by replacing the
first term, χΩ(ω), with P (ω) ≥ 0, a prior estimate of the magnitude of
F (ω). The resulting estimate, called the PDFT, is the subject of the next
chapter.
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Figure 19.1: The non-iterative bandlimited extrapolation method (top) and
the DFT (below) for M = 129, ∆ = 1 and Ω = π/30.
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Chapter 20

The PDFT

Most of the time the data we have is noisy, the data we have isn’t really
the data we want, the locations where we measured the data were the ones
available, not the ones we wanted to use, the physical model we are using
to interpret the data is not quite right, but is the best we can do, and
we don’t have enough data. All these difficulties are important and we
shall deal with each one of them in one way or another. Beginning with
the discussion of bandlimited extrapolation and continuing through this
chapter, we focus on the last problem, the limited data problem.

In many estimation and reconstruction problems we have a limited
amount of data that is not sufficient, by itself, to provide a useful result;
additional information is needed. In the bandlimited extrapolation prob-
lem just discussed we were able to use the information about the support of
the Fourier transform function F (ω) to improve our estimate. We may, at
times, have some prior estimate not only of the support, but of its overall
shape; such prior profile information can be useful in estimating F (ω). The
PDFT [35], [36] is a generalization of the non-iterative bandlimited extrap-
olation method in equation (19.7), designed to permit the use of such prior
profile estimates.

Suppose now that the data is f(xm), m = 1, ..., M . Suppose also that
we have some prior estimate of the magnitude of F (ω) for each real ω, in
the form of a function P (ω) ≥ 0. In the previous chapter P (ω) appeared as
χπ(ω) and χΩ(ω). We take as our estimate of F the function of the form

FPDFT (ω) = P (ω)
∑M

m=1
cm exp(ixmω), (20.1)

where the cm are chosen to give data consistency.

Exercise 1: Show that the cm must satisfy the equations

f(xn) =
∑M

m=1
cmp(xn − xm), n = 1, ..., M, (20.2)
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where p(x) is the inverse Fourier transform of P (ω). Note that for P (ω) =

χΩ(ω) we have p(x) = sin(Ωx)
πx .

Both of the estimates FDFT (ω) and FΩ(ω) provide a best approximation
of its form and support for F (ω). The same is true of the PDFT.

Exercise 2: Show that the estimate FPDFT (ω) minimizes the distance

∫

|F (ω) − P (ω)
∑M

m=1
am exp(ixmω)|2P (ω)−1dω

over all choices of the coefficients am.

Both of the estimates FDFT (ω) and FΩ(ω) minimize an energy, subject
to data consistency. Something similar happens with the PDFT; the PDFT
minimizes the weighted energy

∫ π

−π

|FPDFT (ω)|2P (ω)−1dω, (20.3)

subject to data consistency, with the understanding that P (ω)−1 = 0 if
P (ω) = 0. That the PDFT is a minimum weighted energy solution will be
important later when we turn to the discrete PDFT.

For relatively small M the PDFT is easily calculated. The difficult part
is constructing the matrix P having the entries Pm,n = p(xm − xn), which
requires the calculation of the inverse Fourier transform of P (ω) at the
irregularly spaced points xm − xn. In addition, the matrix P is often ill-
conditioned, meaning that some of its (necessarily positive) eigenvalues are
near zero. Noise in the data f(xm) can lead to unreasonably large values
of cm and to a PDFT estimate that is useless. To combat this problem
we can multiply the terms Pn,n on the main diagonal of P by (say) 1.001.
This prevents the eigenvalues from becoming too small.

For large data sets it is more difficult to work with the PDFT as formu-
lated. The matrix P is very large, its entries difficult to compute, storage
becomes a problem and solving the resulting system of equations is expen-
sive. To avoid all these problems and to have a formulation of the PDFT
that is conceptually easier to use we turn to a discrete formulation, which
we call the DPDFT.

In a recent article [123] Poggio and Smale discuss the use of positive-
definite kernels for interpolation, in the context of artificial intelligence and
supervised learning.
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Bandlimited

Extrapolation

The continuous formulation of the bandlimited extrapolation problem is the
following: let f(x) and F (ω) be a Fourier transform pair. We assume
that F (ω) = 0, for |ω| > Ω, where Ω is a positive quantity. The function
f(x) is then said to be Ω-bandlimited. If we know f(x) for x in some
bounded interval of the real line, then this data determines F (ω) uniquely,
by analyticity; the extension of f(x) to complex z, given by the Fourier-
Laplace transform

f(z) =

∫ ∞

−∞
F (ω)e−izωdω/2π, (21.1)

can be differentiated under the integral sign, since the limits of integration
are finite. In fact, the function f(z) is a complex-valued function that is
analytic through the complex plane. Therefore, the known values of f(x)
determine f(z) for all other values of z; we can, in theory, extrapolate
f outside the data window. The iterative and non-iterative methods we
describe below are usually called super-resolution techniques in the signal
processing literature. Similar methods applied in sonar and radar array
processing are called super-directive methods [62].

Exercise 1: Show that there can be no Fourier transform pair f, F for
which positive constants a and b exist such that f(x) = 0 for |x| > a and
F (ω) = 0 for |ω| > b. Thus it is not possible for both f and F to be
band-limited.
Hint: Use the analyticity of the function f(z).

In practice, we have only finitely many values of f(x) and these are
typically noisy. We shall not address the noise problem here, except to say
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that it is usually handled by including regularization in the solving of each
of the systems of linear equations we encounter in what follows.

The finitely many values of f , say f(x1), ..., f(xN ), may be obtained
at irregularly spaced sample points {xn} but often correspond to uni-
formly spaced sampling points {xn = a + n∆}. We rstrict ourselves to
uniformly spaced data when discussing the iterative Gerchberg-Papoulis
(GP) method. The non-iterative estimate FΩ(ω) permits non-uniformly
spaced data.

The case of uniformly spaced data:

We assume that the function F (ω) is supported on the interval [−Ω,Ω], for
some Ω < π. The sequence of Fourier coefficients of F is denoted f . Our
data are the Fourier coefficients f(n), for n ∈ {M, M + 1, ..., N}, forming
the vector d. The function χΩ(ω) is one for |ω| ≤ Ω and zero otherwise. For
notational convenience we denote by (ΩG)(ω) the product of the functions
χΩ(ω) and G(ω).

The Gerchberg-Papoulis algorithm [80], [118] is an iterative procedure
that works as follows. Begin with the DFT estimate, F 0(ω) = FDFT (ω)
defined for ω in the interval [−π, π], which is data consistent but not sup-
ported on [−Ω,Ω]. Multiply F 0(ω) by the function χΩ(ω); the result is now
supported on [−Ω,Ω], but is no longer data consistent. Take the doubly in-
finite sequence of its Fourier coeffcients and replace those for n = M, ..., N
with the known data. Now use this new sequence as the Fourier coefficients
of a function F 1(ω), which is then data consistent, but not supported on
[−Ω,Ω]. Multiply F 1(ω) by χΩ(ω), take its Fourier coefficients, etc. In the
limit we obtain a function supported on [−Ω,Ω] that is consistent with the
data. Let us consider the GP algorithm in more detail.

For any sequence of Fourier coefficients g = {g(n)} let Dg denote the
sequence whose terms are g(n) for n ∈ {M, M+1, ..., N} and zero otherwise.
Let Fg = G be the operator taking a sequence of Fourier coefficients g into
the function

G(ω) =
∑+∞

n=−∞
g(n) exp(inω),

for ω ∈ (−π, π).

Let H = L2(−π, π), C1 = L2(−Ω,Ω) and C2 the set of all members
G(ω) of H whose Fourier coefficients satisfy g(n) = f(n) for n = M, M +
1, ..., N . The metric projection of a function G(ω) ∈ H onto C1 is (χΩG)(ω);
this is the function in C1 closest to G(ω). The metric projection onto
C2 is implemented by passing from G(ω) to the sequence of its Fourier
coefficients F−1G = g, then replacing those coefficients for n = M, M +
1, ..., N with f(n) and calculating the resulting Fourier series; that is, the
metric projection of G onto C2 is F(Df + (I − D)F−1G).
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We begin the Gerchberg-Papoulis (GP) iteration with the function
F 0(ω) = 0 for all ω ∈ (−π, π). For k = 0, 1, ... having calculated F k

with fk its sequence of Fourier coefficients, we define F k+1 by

F k+1 = ΩF(Df + (I − D)F−1F k).

It would appear that, in order to implement this algorithm, we must cal-
culate the entries of the sequence {(I −D)F−1F k} for all integers n not in
the set {M, M + 1, ..., N}; this is not the case, fortunately. Note that

F k+1 − F k = ΩFD(f − fk) = ΩFak,

where the entries of the sequence D(f − fk) = ak are zero, except for n =
M, ..., N . Since F 0 = 0 it follows that each F k has the form F k = ΩFbk,
for some sequence bk with bk(n) = 0 for n not in the set {M, M +1, ..., N}.
From this we conclude that the limit F∞ has the form

F∞(ω) = Ω
∑N

n=M
cn exp(inω)

for appropriate cn. The coefficients cn can then be determined by equating
the Fourier coefficients of both sides of this equation. To do this we must
solve the finite system of linear equations

f(m) =

N
∑

m=M

cn
sin Ω(m − n)

π(m − n)
, (21.2)

where m = M, ..., N . This, of course, can also be done iteratively, if we de-
sire. This leads us to the non-iterative bandlimited extrapolation estimate
FΩ(ω) given by equation (19.7).

A different approach is frequently used, resulting in a slightly different
extrapolation. This second approach formulates the problem entirely in
terms of finite vectors and interprets the Fourier transform as a linear
transformation between finite vectors, as is done with the Fast Fourier
Transform (FFT) algorithm.

From the discussion above we see that for an arbitrary data vector d
and an arbitrary choice of the band [−Ω,Ω] in [−π, π] there is a function
FΩ(ω) supported on [−Ω,Ω] that is consistent with the data in the vector
d. The function FΩ has the form

FΩ(ω) = χΩ(ω)
∑N

n=M
cn exp(inω), (21.3)

where χΩ(ω) = 1 if |ω| ≤ Ω and zero otherwise. The coefficients cn solve
the equations (21.2). To perform data extrapolation one now evaluates
the Fourier transform of FΩ at the desired points. Note that this method
applies equally to uniformly and nonuniformly spaced data and is easily ex-
tended to higher dimensions. This noniterative implementation of the GP
extrapolation is not new; it was presented in [34], and has been rediscovered
several times since then (see p. 209 of [136]).
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Chapter 22

More on Bandlimited

Extrapolation

Let our data be f(xm), m = 1, ..., M , where the xm are arbitrary values of
the variable x. If F (ω) is zero outside [−Ω,Ω], then minimizing the energy
over [−Ω,Ω] subject to data consistency produces an estimate of the form

FΩ(ω) = χΩ(ω)
∑M

m=1
bm exp(ixmω),

with the bm satisfying the equations

f(xn) =
∑M

m=1
bm

sin(Ω(xm − xn))

π(xm − xn)
,

for n = 1, ..., M . The matrix SΩ with entries sin(Ω(xm−xn))
π(xm−xn) we call a sinc

matrix.

Although it seems reasonable that incorporating the additional infor-
mation about the support of F (ω) should improve the estimation, it would
be more convincing if we had a more mathematical argument to make. For
that we turn to an analysis of the eigenvectors of the sinc matrix.

Exercise 1: The purpose of this exercise is to show that, for an Hermitian
nonnegative-definite M by M matrix Q, a norm-one eigenvector u1 of Q as-
sociated with its largest eigenvalue, λ1, maximizes the quadratic form a†Qa
over all vectors a with norm one. Let Q = ULU† be the eigenvector decom-
position of Q, where the columns of U are mutually orthogonal eigenvectors
un with norms equal to one, so that U†U = I, and L = diag{λ1, ..., λM} is
the diagonal matrix with the eigenvalues of Q as its entries along the main
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diagonal. Assume that λ1 ≥ λ2 ≥ ... ≥ λM . Then maximize

a†Qa =

M
∑

n=1

λn |a†un|2,

subject to the constraint

a†a = a†U†Ua =

M
∑

n=1

|a†un|2 = 1.

Hint: Show a†Qa is a convex combination of the eigenvalues of Q.

Exercise 2: Show that for the sinc matrix Q = SΩ the quadratic form
a†Qa in the previous exercise becomes

a†SΩa =
1

2π

∫ Ω

−Ω

|
∑M

n=1
aneinω|2dω.

Show that the norm of the vector a is the integral

1

2π

∫ π

−π

|
∑M

n=1
aneinω|2dω.

Exercise 3: For M = 30 compute the eigenvalues of the matrix SΩ for
various choices of Ω, such as Ω = π

k , for k = 2, 3, ..., 10. For each k arrange
the set of eigenvalues in decreasing order and note the proportion of them
that are not near zero. The set of eigenvalues of a matrix is sometimes
called its eigenspectrum and the nonnegative function χΩ(ω) is a power
spectrum; here is one time in which different notions of a spectrum are
related.

Suppose that the vector u1 = (u1
1, ..., u

1
M )T is an eigenvector of SΩ

corresponding to the largest eigenvalue, λ1. Associate with u1 the function

U1(ω) =
∑M

n=1
u1

neinω.

Then

λ1 =

∫ Ω

−Ω

|U1(ω)|2dω/

∫ π

−π

|U1(ω)|2dω

and U1(ω) is the function of its form that is most concentrated within the
interval [−Ω,Ω].

Similarly, if uM is an eigenvector of SΩ associated with the smallest
eigenvalue λM , then the corrsponding function UM (ω) is the function of
its form least concentrated in the interval [−Ω,Ω].
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Exercise 4: Plot for |ω| ≤ π the functions |Um(ω)| corresponding to each
of the eigenvectors of the sinc matrix SΩ. Pay particular attention to the
places where each of these functions is zero.

The eigenvectors of SΩ corresponding to different eigenvalues are or-
thogonal, that is (um)†un = 0 if m is not n. We can write this in terms of
integrals:

∫ π

−π

Un(ω)Um(ω)dω = 0

if m is not n. The mutual orthogonality of these functions is related to the
locations of their roots, which were studied in the previous exercise.

Any Hermitian matrix Q is invertible if and only if none of its eigenval-
ues is zero. With λm and um, m = 1, ..., M the eigenvalues and eigenvectors
of Q the inverse of Q can then be written as

Q−1 = (1/λ1)u
1(u1)† + ... + (1/λM )uM (uM )†.

Exercise 5: Show that the non-iterative bandlimited extrapolation esti-
mate (19.7) FΩ(ω) can be written as

FΩ(ω) = χΩ(ω)
∑M

m=1

1

λm
(um)†dUm(ω),

where d is the data vector.

Exercise 6: Show that the DFT estimate of F (ω), restricted to the interval
[−Ω,Ω], is

FDFT (ω) = χΩ(ω)
∑M

m=1
(um)†dUm(ω).

From these two exercises we can learn why it is that the estimate FΩ(ω)
resolves better than the DFT. The former makes more use of the functions
Um(ω) for higher values of m, since these are the ones for which λm is
closer to zero. Since those functions are the ones having most of their
roots within the interval [−Ω,Ω], they have the most flexibility within that
region and are better able to describe those features in F (ω) that are not
resolved by the DFT.
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Chapter 23

A Little Matrix Theory

The 2 by 2 matrix A =

[

a b
c d

]

has an inverse

A−1 =
1

ad − bc

[

d −b
−c a

]

whenever the determinant of A, det(A) = ad − bc 6= 0. More generally,
associated with every complex square matrix is the complex number called
its determinant, which is obtained from the entries of the matrix using
formulas that can be found in any text on linear algebra. The significance of
the determinant is that the matrix is invertible if and only if its determinant
is not zero. This is of more theoretical than practical importance, since no
computer can tell when a number is precisely zero.

Given N by N complex matrix A, we say that a complex number λ is an
eigenvalue of A if there is a nonzero vector u with Au = λu. The column
vector u is then called an eigenvector of A associated with eigenvalue λ;
clearly, if u is an eigenvector of A, then so is cu, for any constant c 6= 0.
If λ is an eigenvalue of A then the matrix A − λI fails to have an inverse,
since (A − λI)u = 0 but u 6= 0. If we treat λ as a variable and compute
the determinant of A − λI we obtain a polynomial of degree N in λ. Its
roots λ1, ..., λN are then the eigenvalues of A. If ||u||2 = u†u = 1 then
u†Au = λu†u = λ.

Suppose that Ax = b is a consistent linear system of M equations in
N unknowns, where M < N . Then there are infinitely many solutions.
A standard procedure in such cases is to find that solution x having the
smallest norm

||x|| =

√

∑N

n=1
|xn|2.

As we shall see shortly, the minimum norm solution of Ax = b is a vector of
the form x = A†z, where A† denotes the conjugate transpose of the matrix
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A. Then Ax = b becomes AA†z = b. Typically (AA†)−1 will exist and we
get z = (AA†)−1b, from which it follows that the minimum norm solution
is x = A†(AA†)−1b. When M and N are not too large forming the matrix
AA† and solving for z is not prohibitively expensive and time-consuming.
However, in image processing the vector x is often a vectorization of a two-
dimensional (or even three-dimensional) image and M and N can be on
the order of tens of thousands or more. The ART algorithm gives us a fast
method for finding the minimum norm solution without computing AA†.

We begin by proving that the minimum norm solution of Ax = b has
the form x = A†z for some M -dimensional complex vector z.

Let the null space of the matrix A be all N -dimensional complex vectors
w with Aw = 0. If Ax = b then A(x + w) = b for all w in the null space
of A. If x = A†z and w is in the null space of A then

||x + w||2 = ||A†z + w||2 = (A†z + w)†(A†z + w)

= (A†z)†(A†z) + (A†z)†w + w†(A†z) + w†w

= ||A†z||2 + (A†z)†w + w†(A†z) + ||w||2

= ||A†z||2 + ||w||2,
since

w†(A†z) = (Aw)†z = 0†z = 0

and
(A†z)†w = z†Aw = z†0 = 0.

Therefore ||x + w|| = ||A†z + w|| > ||A†z|| = ||x|| unless w = 0. This
completes the proof.

Exercise 1: Show that if z = (z1, ..., zN )T is a column vector with complex
entries and H = H† is an N by N Hermitian matrix with complex entries
then the quadratic form z†Hz is a real number. Show that the quadratic
form z†Hz can be calculated using only real numbers. Let z = x+ iy, with
x and y real vectors and let H = A+ iB, where A and B are real matrices.
Then show that AT = A, BT = −B, xT Bx = 0 and finally,

z†Hz = [xT yT ]

[

A −B
B A

] [

x
y

]

.

Use the fact that z†Hz is real for every vector z to conclude that the
eigenvalues of H are real.

It can be shown that it is possible to find a set of N mutually orthogonal
eigenvectors of the Hermitian matrix H; call them {u1, ...,uN}. The matrix
H can then be written as

H =
∑N

n=1
λnun(un)†,
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a linear superposition of the dyad matrices un(un)†. We can also write
H = ULU†, where U is the matrix whose n-th column is the column
vector un and L is the diagonal matrix with the eigenvalues down the
main diagonal and zero elsewhere.

The matrix H is invertible if and only if none of the λ are zero and its
inverse is

H−1 =
∑N

n=1
λ−1

n un(un)†.

We also have H−1 = UL−1U†.
A Hermitian matrix Q is said to be nonnegative- (positive-)definite if

all the eigenvalues of Q are nonnegative (positive). The matrix Q is a
nonnegative-definite matrix if and only if there is another matrix C such
that Q = C†C. Since the eigenvalues of Q are nonnegative, the diagonal
matrix L has a square root,

√
L. Using the fact that U†U = I we have

Q = ULU† = U
√

LU†U
√

LU†;

we then take C = U
√

LU†, so C† = C. Then z†Qz = z†C†Cz = ||Cz||2,
so that Q is positive-definite if and only if C is invertible.

Exercise 2: Let A be an M by N matrix with complex entries. View A as
a linear function with domain CN , the space of all N -dimensional complex
column vectors, and range contained within CM , via the expression A(x) =
Ax. Suppose that M > N . The range of A, denoted R(A), cannot be all
of CM . Show that every vector z in CM can be written uniquely in the
form z = Ax + w, where A†w = 0. Show that ‖z‖2 = ‖Ax‖2 + ‖w‖2,
where ‖z‖2 denotes the square of the norm of z. Hint: If z = Ax + w then
consider A†z. Assume A†A is invertible.

Exercise 3: When the complex M by N matrix A is stored in the computer
it is usually vectorized; that is, the matrix

A =















A11 A12 . . . A1N

A21 A22 . . . A2N

.

.

.
AM1 AM2 . . . AMN















becomes

vec(A) = (A11, A21, ..., AM1, A12, A22, ..., AM2, ..., AMN )T .
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a: Show that the complex dot product vec(A)·vec(B) = vec(B)†vec(A)
can be obtained by

vec(A)·vec(B) = trace (AB†) = tr(AB†),

where, for a square matrix C, trace (C) means the sum of the entries along
the main diagonal of C. We can therefore use the trace to define an inner
product between matrices: < A, B >= trace (AB†).

b: Show that trace (AA†) ≥ 0 for all A, so that we can use the trace to
define a norm on matrices: ||A||2 = trace (AA†).

Exercise 4: Let B = ULD† be an M by N matrix in diagonalized form;
that is, L is an M by N diagonal matrix with entries λ1, ..., λK on its main
diagonal, where K = min(M, N), and U and V are square matrices. Let
the nth column of U be denoted un and similarly for the columns of V .
Such a diagonal decomposition occurs in the singular value decomposition
(SVD). Show that we can write

B = λ1u
1(v1)† + ... + λKuK(vK)†.

If B is an N by N Hermitian matrix then we can take U = V and K =
M = N , with the columns of U the eigenvectors of B, normalized to
have Euclidean norm equal to one, and the λn to be the eigenvalues of
B. In this case we may also assume that U is a unitary matrix, that is,
UU† = U†U = I, where I denotes the identity matrix.

Regularization of linear systems of equations:

A consistent linear system of equations Ax = b is ill-conditioned if small
changes in the entries of vector b can result in large changes in the solution.
Such situations are common in signal processing and are usually dealt with
by regularization. We consider regularization in this subsection.

We assume, throughout this subsection, that A is a real M by N matrix
with full rank; then either AAT or AT A is invertible, whichever one has
the smaller size.

Exercise 5: Show that the vector x = (x1, ..., xN )T minimizes the mean
squared error

‖Ax − b‖2 =

N
∑

m=1

(Axm − bm)2,

if and only if x satisfies the system of linear equations AT (Ax − b) = 0,

where Axm = (Ax)m =
∑N

n=1 Amnxn.
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Hint: Calculate the partial derivatives of ‖Ax − b‖2 with respect to each
xn.

Exercise 6: Let ε be in (0, 1) and let I be the identity matrix whose
dimensions are understood from the context. Show that

((1 − ε)AAT + εI)−1A = A((1 − ε)AT A + εI)−1,

and, taking transposes,

AT ((1 − ε)AAT + εI)−1 = ((1 − ε)AT A + εI)−1AT .

Hint: use the identity

A((1 − ε)AT A + εI) = ((1 − ε)AAT + εI)A.

Exercise 7: Show that any vector p in RN can be written as p = AT q+r,
where Ar = 0.

We want to solve Ax = b, at least in some approximate sense. Of
course, there may be no solution, a unique solution or even multiple solu-
tions. It often happens in applications that, even when there is an exact
solution of Ax = b, noise in the vector b makes such as exact solution un-
desirable; in such cases a regularized solution is usually used instead. Let
ε > 0 and define

Fε(x) = (1 − ε)‖Ax − b‖2 + ε‖x − p‖2.

Exercise 8: Show that Fε always has a unique minimizer x̂ε given by

x̂ε = ((1 − ε)AT A + εI)−1((1 − ε)AT b + εp);

this is a regularized solution of Ax = b. Here p is a prior estimate of the
desired solution. Note that the inverse above always exists.

What happens to x̂ε as ε goes to zero? This will depend on which case
we are in:

Case 1: N ≤ M, AT A invertible; or

Case 2: N > M, AAT invertible.

Exercise 9: Show that, in Case 1, taking limits as ε → 0 on both sides of
the expression for x̂ε gives x̂ε → (AT A)−1AT b, the least squares solution
of Ax = b.
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We consider Case 2 now. Write p = AT q + r, with Ar = 0. Then

x̂ε = AT ((1 − ε)AAT + εI)−1((1 − ε)b + εq) + ((1 − ε)AT A + εI)−1(εr).

Exercise 10: (a): Show that

((1 − ε)AT A + εI)−1(εr) = r,∀ε.

Hint: let
tε = ((1 − ε)AT A + εI)−1(εr).

Then multiplying by A gives

Atε = A((1 − ε)AT A + εI)−1(εr).

Now show that Atε = 0.
(b): Now take the limit of x̂ε, as ε → 0, to get x̂ε → AT (AAT )−1b + r.
Show that this is the solution of Ax = b closest to p.
Hint: Draw a diagram for the case of one equation in two unknowns.

Some useful matrix identities: In the exercise that follows we consider
several matrix identities that are useful in developing the Kalman filter.

Exercise 11: Establish the following identities, assuming that all the prod-
ucts and inverses involved are defined:

CDA−1B(C−1 − DA−1B)−1 = (C−1 − DA−1B)−1 − C; (23.1)

(A − BCD)−1 = A−1 + A−1B(C−1 − DA−1B)−1DA−1; (23.2)

A−1B(C−1 − DA−1B)−1 = (A − BCD)−1BC; (23.3)

(A − BCD)−1 = (I + GD)A−1, (23.4)

for
G = A−1B(C−1 − DA−1B)−1.

Hints: To get equation (23.1) use

C(C−1 − DA−1B) = I − CDA−1B.

For the second identity, multiply both sides of equation (23.2) on the left
by A−BCD and at the appropriate step use the identity (23.1). For (23.3)
show that

BC(C−1 − DA−1B) = B − BCDA−1B = (A − BCD)A−1B.

For (23.4), substitute what G is and use (23.2).
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The Singular Value

Decomposition

We saw earlier that an N by N Hermitian matrix H can be written in
terms of its eigenvalues and eigenvectors as H = ULU† or as

H =
∑N

n=1
λnun(un)†.

The singular value decomposition (SVD) is a similar result that applies to
any rectangular matrix. It is an important tool in image compression and
pseudo-inversion.

Let C be any N by K complex matrix, with K ≥ N . Let A = C†C and
B = CC†; we assume, reasonably, that B, the smaller of the two matrices,
is invertible, so all the eigenvalues λ1, ..., λN of B are positive. Then write
the eigenvalue/eigenvector decomposition of B as B = ULU†.

Exercise 1: Show that the nonzero eigenvalues of A and B are the same.

Let V be the K by K matrix whose first N columns are those of the
matrix C†UL−1/2 and whose remaining K − N columns are any mutually
orthogonal norm-one vectors that are all orthogonal to each of the first
N columns. Let M be the N by K matrix with diagonal entries Mnn =√

λn for n = 1, ..., N and whose remaining entries are zero. The nonzero
entries of M ,

√
λn, are called the singular values of C. The singular value

decomposition (SVD) of C is C = UMV †. The SVD of C† is C† = V MT U†.

Exercise 2: Show that UMV † equals C.

Using the SVD of C we can write

C =
∑N

n=1

√

λnun(vn)†,
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where vn denotes the n-th column of the matrix V .
In image processing matrices such as C are used to represent discrete

two-dimensional images, with the entries of C corresponding to the grey
level or color at each pixel. It is common to find that most of the N singular
values of C are nearly zero, so that C can be written approximately as a
sum of far fewer than N dyads; this is SVD image compression.

If N 6= K then C cannot have an inverse; it does, however, have a
pseudo-inverse, C∗ = V M∗U†, where M∗ is the matrix obtained from M
by taking the inverse of each of its nonzero entries and leaving the remaining
zeros the same.

Some important properties of the pseudo-inverse are the following:

a. CC∗C = C;

b. C∗CC∗ = C∗;

c. (C∗C)† = C∗C;

d. (CC∗)† = CC∗.
The pseudo-inverse C∗ can be used in much the same way as the inverse

is, to obtain exact or approximate solutions of systems of equations Cx = d
by multiplying d by C∗, as the examples in the next two exercises illustrate.

Exercise 3: If N > K the system Cx = d probably has no exact solution.
Show that C∗ = (C†C)−1C† so that the vector x = C∗d is the least squares
approximate solution.

Exercise 4: If N < K the system Cx = d probably has infinitely many
solutions. Show that the pseudo-inverse is now C∗ = C†(CC†)−1, so that
the vector x = C∗d is the exact solution of Cx = d closest to the origin;
that is, it is the minimum norm solution.



Chapter 25

Discrete Random

Processes

The most common model used in signal processing is that of a sum of
complex exponential functions plus noise. The noise is viewed as a sequence
of random variables, and the signal components also may involve random
parameters, such as random amplitudes and phase angles. Such models are
best studied as discrete random processes.

A discrete random process is an infinite sequence {Xn}+∞
n=−∞ in which

each Xn is a complex-valued random variable. The autocorrelation function
associated with the random process is defined for all index values m and n
by rx(m, n) = E(XmXn), where E(·) is the expectation or expected value
operator. For m = n we get r(n, n) = variance(Xn). We say that the
random process is wide-sense stationary if E(Xn) is independent of n and
rx(m, n) is a function only of the difference, m − n, so that variance(Xn)
is independent of n. The autocorrelation function can then be redefined as
rx(k) = E(Xn+kXn). The power spectrum Rx(ω) of the random process is
defined using the values rx(k) as its Fourier coeffcients:

Rx(ω) =
∑+∞

k=−∞
rx(k)eikω,

for all ω in the interval [−π, π]. It can be proved that the power spectrum
is a nonnegative function of the form Rx(ω) = |G(ω)|2 and the autocorre-
lation sequence {rx(k)} satisfies the equations

rx(k) =
∑+∞

n=−∞
gk+ngn,

for

G(ω) =
∑+∞

n=−∞
g(n)einω.
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In practice we will have actual values Xn = xn, for only finitely many of the
Xn, say for n = 1, ..., m. These can be used to estimate the values rx(k), at
least for values of k between, say, −M/5 and M/5. For example, we could
estimate rx(k) by averaging all the products of the form xk+mxm that we
can compute from the data. Clearly, as k gets farther away from zero we
have fewer such products, so our average is a less accurate estimate.

Once we have rx(k), |k| ≤ N we form the N +1 by N +1 autocorrelation
matrix R having the entries Rm,n = rx(m−n). This autocorrelation matrix
is what is used in the design of optimal filtering.

The matrix R is Hermitian, that is, Rn,m = Rm,n, so that R† = R. An
M by M Hermitian matrix H is said to be nonnegative-definite if, for all
complex column vectors a = (a1, ..., aM )T , the quadratic form a†Ha is a
nonnegative number and positive-definite if such a quadratic form is always
positive.

Exercise 1: Show that the autocorrelation matrix R is nonnegative defi-
nite. Hint: Let

A(ω) =
∑N+1

n=1
aneinω

and express the integral

∫

|A(ω)|2R(ω)dω

in terms of the an and the Rm,n. Under what conditions can R fail to be
positive-definite?

Later we shall consider the maximum entropy method for estimating
the power spectrum from finitely many values of rx(k).

Autoregressive processes: We noted at the beginning of the chapter
that the case of a discrete-time signal with additive random noise provides
a good example of a discrete random process; there are others. One partic-
ularly important type is the autoregressive (AR) process, which is closely
related to ordinary linear differential equations.

When a smooth periodic function has noise added the new function
is rough. Imagine, though, a fairly weighty pendulum of a clock, moving
smoothly and periodically. Now imagine that a young child is throwing
small stones at the bob of the pendulum. The movement of the pendulum is
no longer periodic, but it is not rough. The pendulum is moving randomly
in response to the random external disturbance, but not as if a random noise
component has been added to its motion. To model such random processes
we need to extend the notion of an ordinary differential equation. That
leads us to the AR processes.
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Recall that an ordinary linear M -th order differential equation with
constant coefficients has the form

x(M)(t) + c1x
(M−1)(t) + c2x

(M−2)(t) + ... + cM−1x
′(t) + cMx(t) = f(t),

where x(m)(t) denotes the m-th derivative of the function x(t) and the cm

are constants. In many applications the variable t is time and the function
f(t) is an external effect driving the linear system, with system response
given by the unknown function x(t). How the system responds to a variety
of external drivers is of great interest. It is sometimes convenient to re-
place this continuous formulation with a discrete analog, called a difference
equation.

In switching from differential equations to difference equations we dis-
cretize the time variable and replace the driving function f(t) with fn,
x(t) with xn, the first derivative at time t, x′(t), with the first differ-
ence, xn − xn−1, the second derivative x′′(t) with the second difference,
(xn − xn−1) − (xn−1 − xn−2), and so on. The differential equation is then
replaced by the difference equation

xn − a1xn−1 − a2xn−2 − ... − aMxn−M = fn (25.1)

for some constants am; the negative signs are a technical convenience only.
We now assume that the driving function is a discrete random process

{fn}, so that the system response becomes a discrete random process,
{Xn}. If we assume that the driver fn is white noise, independent of the
{Xn}, then the process {Xn} is called an autoregressive (AR) process.
What the system does at time n depends partly on what it has done at the
M discrete times prior to time n, as well as what the external disturbance
fn is at time n. Our goal is usually to determine the constants am; this
is system identification. Our data is typically some number of consecutive
measurements of the Xn.

Multiplying both sides of equation (25.1) by Xn−k, for some k > 0 and
taking the expected value, we obtain

E(XnXn−k) − ... − aME(Xn−MXn−k) = 0.

or
rx(k) − a1rx(k − 1) − ... − aMrx(k − M) = 0.

Taking k = 0 we get

rx(0) − a1rx(−1) − ... − aMrx(−M) = E(|fn|2) = var (fn).

To find the am we use the data to estimate rx(k) at least for k = 0, 1, ..., M .
Then we use these estimates in the linear equations above, solving them
for the am.



98 CHAPTER 25. DISCRETE RANDOM PROCESSES

Linear systems with random input: In our discussion of discrete linear
filters, also called time-invariant linear systems, we noted that it is common
to consider as the input to such a system a discrete random process, {Xn}.
The output is then another random process {Yn} given by

Yn =

+∞
∑

m=−∞
gmXn−m,

for each n.

Exercise 2: Show that if the input process is wide-sense stationary then
so is the output. Show that the power spectrum Ry(ω) of the output is

Ry(ω) = |G(ω)|2Rx(ω).



Chapter 26

Best Linear Unbiased

Estimation

In most signal and image processing applications the measured data in-
cludes unwanted components termed noise. Noise often appears as an
additive term, which we then try to remove. If we knew precisely the noisy
part added to each data value we would simply subtract it; of course, we
never have such information. How then do we remove something when we
don’t know what it is? Statistics provides a way out.

The basic idea in statistics is to use procedures that perform well on
average, when applied to a class of problems. The procedures are built
using properties of that class, usually involving probabilistic notions, and
are evaluated by examining how they would have performed had they been
applied to every problem in the class. To use such methods to remove
additive noise we need a description of the class of noises we expect to
encounter, not specific values of the noise component in any one particular
instance. We also need some idea about what signal components look like.
In this chapter we discuss solving this noise removal problem using the best
linear unbiased estimation (BLUE) . We begin with the simplest case and
then proceed to discuss increasingly complex scenarios.

The simplest problem:

Suppose our data is zj = c + vj , for j = 1, ..., J , where c is an unknown
constant to be estimated and the vj are additive noise. We assume that
E(vj) = 0, E(vjvk) = 0, for j 6= k and E(|vj |2) = σ2

j . So the additive
noises are assumed to have mean zero and to be independent (or at least
uncorrelated). In order to estimate c we adopt the following rules:

a. The estimate ĉ is linear in the data z = (z1, ..., zJ)T ; that is, ĉ = k†z,
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for some vector k = (k1, ..., kJ)T .

b. The estimate is unbiased; that is E(ĉ) = c. This means
∑J

j=1 kj = 1.

c. The estimate is best in the sense that it minimizes the expected error
squared; that is, E(|ĉ − c|2) is minimized.

The resulting vector k is calculated to be

ki = σ−2
i /(

J
∑

j=1

σ−2
j )

and the BLUE estimator of c is then

ĉ =
∑J

i=1
ziσ

−2
i /(

∑J

j=1
σ−2

j ).

The general case of the BLUE:

Suppose now that our data vector is z = Hx + v. Here x is a random
vector whose value is to be estimated, the random vector v is additive noise
whose mean is E(v) = 0 and whose correlation matrix is Q = E(vv†), not
necessarily diagonal, and the known matrix H is J by N , with J > N .
Now we seek an estimate of the vector x. The rules we use are now

a. The estimate x̂ must have the form x̂ = K†z, where the matrix K is to
be determined.

b. The estimate is unbiased; that is, E(x̂) = E(x).

c. The K is determined as the minimizer of the expected squared error;
that is, once again we minimize E(|x̂ − x|2).

Exercise 1: Show that

E(|x̂ − x|2) = trace K†QK.

Hints: Write the left side as

E(trace ((x̂ − x)(x̂ − x)†).

Also use the fact that the trace and expected value operations commute.

Exercise 2: Show that for the estimator to be unbiased we need K†H = I,
the identity matrix.
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The problem then is to minimize trace K†QK subject to the constraint
equation K†H = I. We solve this problem using a technique known as
prewhitening.

Since the noise correlation matrix Q is Hermitian and nonnegative def-
inite, we have Q = UDU†, where the columns of U are the (mutually
orthogonal) eigenvectors of Q and D is a diagonal matrix whose diago-
nal entries are the (necessarily nonnegative) eigenvalues of Q; therefore,
U†U = I. We call C = UD1/2U† the Hermitian square root of Q, since
C† = C and C2 = Q. We assume that Q is invertible, so that C is also.
Given the system of equations

z = Hx + v,

as above, we obtain a new system

y = Gx + w

by multiplying both sides by C−1 = Q−1/2; here G = C−1H and w =
C−1v. The new noise correlation matrix is

E(ww†) = C−1QC−1 = I,

so the new noise is white. For this reason the step of multiplying by C−1

is called prewhitening.
With J = CK and M = C−1H we have

K†QK = J†J

and
K†H = J†M.

Our problem then is to minimize trace J†J , subject to J†M = I.
Let L = L† = (M†M)−1 and let f(J) be the function

f(J) = trace[(J† − L†M†)(J − ML)].

The minimum value of f(J) is zero, which occurs when J = LM . Note
that this choice for J has the property J†M = I. So minimizing f(J)
is equivalent to minimizing f(J) subject to the constraint J†M = I and
both problems have the solution J = LM . But minimizing f(J) subject to
J†M = I is equivalent to minimizing trace J†J subject to J†M = I, which
is our original problem. Therefore the optimal choice for J is J = LM .
Consequently the optimal choice for K is

K = Q−1HL = Q−1H(H†Q−1H)−1.

and the BLUE estimate of x is

x̂ = K†z = (H†Q−1H)−1H†Q−1z.
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The simplest case can be obtained from this more general formula by taking
N = 1, H = (1, 1, ..., 1)T and x = c.

Note that if the noise is white, that is, Q = σ2I, then x̂ = (H†H)−1H†z,
which is the least squares solution of the equation z = Hx. The effect of
requiring that the estimate be unbiased is that, in this case, we simply
ignore the presence of the noise and calculate the least squares solution of
the noise-free equation z = Hx.

The BLUE with a prior estimate

In Kalman filtering we have the situation in which we want to estimate
the random vector x given measurements z = Hx + v, but also given a
prior estimate y of x. It is the case there that E(y) = E(x), so we write
y = x + w, with w independent of both x and v and E(w) = 0. The
covariance matrix for w we denote by E(ww†) = R. We now require that
the estimate x̂ be linear in both z and y; that is, the estimate has the form

x̂ = C†z + D†y,

for matrices C and D to be determined.
The approach is to apply the BLUE to the combined system of linear

equations

z = Hx + v,

y = x + w.

In matrix language this combined system becomes u = Jx+n, with uT =
[zT yT ], JT = [HT IT ] and nT = [vT wT ]. The noise covariance matrix
becomes

P =

[

Q 0
0 R

]

.

The BLUE estimate is K†u, with K†J = I. Minimizing the variance, we
find that the optimal K† is

K† = (J†P−1J)−1J†P−1.

The optimal estimate is then

x̂ = (H†Q−1H + R−1)−1(H†Q−1z + R−1y).

Therefore

C† = (H†Q−1H + R−1)−1H†Q−1

and

D† = (H†Q−1H + R−1)−1R−1.
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Using the matrix identities in equations (23.2) and (23.3) we can rewrite
this estimate in the more useful form

x̂ = y + G(z − Hy),

for

G = RH†(Q + HRH†)−1. (26.1)

The covariance matrix of the optimal estimator is K†PK, which can be
written as

K†PK = (R−1 + H†Q−1H)−1 = (I − GH)R.

In the context of the Kalman filter R is the covariance of the prior estimate
of the current state, G is the Kalman gain matrix and K†PK is the pos-
terior covariance of the current state. The algorithm proceeds recursively
from one state to the next in time.

Adaptive BLUE

We have assumed so far that we know the covariance matrix Q corre-
sponding to the measurement noise. If we do not, then we may attempt
to estimate Q from the measurements themselves; such methods are called
noise-adaptive. To illustrate, let the innovations vector be e = z − Hy.
Then the covariance matrix of e is S = HRH† + Q. Having obtained an
estimate Ŝ of S from the data, we use Ŝ −HRH† in place of Q in equation
(26.1).

In this chapter we have focused on the filtering problem: given the data
vector z, estimate x, assuming that z consists of noisy measurements of
Hx; that is, z = Hx + v. An important extension of this problem is that
of stochastic prediction. In the next chapter we discuss the Kalman filter
method for solving this more general problem.
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Chapter 27

Kalman Filters

One area in which prediction plays an important role is the tracking of
moving targets, such as ballistic missiles, using radar. The range to the
target, its angle of elevation and its azimuthal angle are all functions of
time governed by linear differential equations. The state vector of the
system at time t might then be a vector with nine components, the three
functions just mentioned, along with their first and second derivatives. In
theory, if we knew the initial state perfectly and our differential equations
model of the physics was perfect, that would be enough to determine the
future states. In practice neither of these is true and we need to assist the
differential equation by taking radar measurements of the state at various
times. The problem then is to estimate the state at time t using both the
measurements taken prior to time t and the estimate based on the physics.

When such tracking is performed digitally the functions of time are re-
placed by discrete sequences. Let the state vector at time k∆t be denoted
by xk, for k an integer and ∆t > 0. Then, with the derivatives in the dif-
ferential equation approximated by divided differences, the physical model
for the evolution of the system in time becomes

xk = Ak−1xk−1 + mk−1.

The matrix Ak−1, which we assume is known, is obtained from the differen-
tial equation, which may have nonconstant coefficients, as well as from the
divided difference approximations to the derivatives. The random vector
sequence mk−1 represents the error in the physical model due to the dis-
cretization and necessary simplification inherent in the original differential
equation itself. We assume that the expected value of mk is zero for each
k. The covariance matrix is E(mkm

†
k) = Mk.

At time k∆t we have the measurements

zk = Hkxk + vk,
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where Hk is a known matrix describing the nature of the linear measure-
ments of the state vector and the random vector vk is the noise in these
measurements. We assume that the mean value of vk is zero for each k.
The covariance matrix is E(vkv

†
k) = Qk. We assume that the initial state

vector x0 is random and independent of the noise sequences.
Given an estimate x̂k−1 of the state vector xk−1, our prior estimate of

xk based solely on the physics is

yk = Ak−1x̂k−1.

Exercise 1: Show that E(yk − xk) = 0, so the prior estimate of xk is
unbiased. We can then write yk = xk + wk, with E(wk) = 0.

Kalman filtering: The Kalman filter [99], [79], [56] is a recursive algo-
rithm to estimate the state vector xk at time k∆t as a linear combination
of the vectors zk and yk. The estimate x̂k will have the form

x̂k = C†
kzk + D†

kyk, (27.1)

for matrices Ck and Dk to be determined. As we shall see, this estimate
can also be written as

x̂k = yk + Gk(zk − Hkyk), (27.2)

which shows that the estimate involves a prior prediction step, the yk,
followed by a correction step, in which Hkyk is compared to the measured
data vector zk; such estimation methods are sometimes called predictor-
corrector methods.

In our discussion of the BLUE we saw how to incorporate a prior esti-
mate of the vector to be estimated. The trick was to form a larger matrix
equation and then to apply the BLUE to that system. The Kalman filter
does just that.

The correction step in the Kalman filter uses the BLUE to solve the
combined linear system

zk = Hkxk + vk

and
yk = xk + wk.

The covariance matrix of x̂k−1 − xk−1 is denoted Pk−1 and we let Qk =
E(wkw

†
k). The covariance matrix of yk − xk is

cov(yk − xk) = Rk = Mk−1 + Ak−1Pk−1A
†
k−1.

It follows from our earlier discussion of the BLUE that the estimate of xk

is
x̂k = yk + Gk(zk − Hyk),
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with
Gk = RkH†

k(Qk + HkRkH†
k)−1.

Then the covariance matrix of x̂k − xk is

Pk = (I − GkHk)Rk.

The recursive procedure is to go from Pk−1 and Mk−1 to Rk, then to Gk,
from which x̂k is formed, and finally to Pk, which, along with the known
matrix Mk, provides the input to the next step. The time-consuming part
of this recursive algorithm is the matrix inversion in the calculation of Gk.
Simpler versions of the algorithm are based on the assumption that the
matrices Qk are diagonal, or on the convergence of the matrices Gk to a
limiting matrix G [56].

There are many variants of the Kalman filter, corresponding to varia-
tions in the physical model, as well as in the statistical assumptions. The
differential equation may be nonlinear, so that the matrices Ak depend on
xk. The system noise sequence {wk} and the measurement noise sequence
{vk} may be correlated. For computational convenience the various func-
tions that describe the state may be treated separately. The model may
include known external inputs to drive the differential system, as in the
tracking of spacecraft capable of firing booster rockets. Finally, the noise
covariance matrices may not be known a priori and adaptive filtering may
be needed. We discuss this last issue briefly in the next section.

Adaptive Kalman filtering: As in [56] we consider only the case in
which the covariance matrix Qk of the measurement noise vk is unknown.
As we saw in the discussion of adaptive BLUE, the covariance matrix of
the innovations vector ek = zk − Hkyk is

Sk = HkRkH†
k + Qk.

Once we have an estimate for Sk, we estimate Qk using

Q̂k = Ŝk − HkRkH†
k.

We might assume that Sk is independent of k and estimate Sk = S using
past and present innovations; for example, we could use

Ŝ =
1

k − 1

k
∑

j=1

(zj − Hjyj)(zj − Hjyj)
†.
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Chapter 28

The Vector Wiener Filter

The vector Wiener filter (VWF) provides another method for estimating
the vector x given noisy measurements z, where

z = Hx + v,

with x and v independent random vectors and H a known matrix. We
shall assume throughout this chapter that E(v) = 0 and let Q = E(vv†).

It is common to formulate the VWF in the context of filtering a signal
vector s from signal plus noise. The data is the vector

z = s + v

and we want to estimate s. Each entry of our estimate of the vector s
will be a linear combination of the data values; that is, our estimate is
ŝ = B†z for some matrix B to be determined. This B will be called the
vector Wiener filter. To extract the signal from the noise we must know
something about possible signals and possible noises. We consider several
stages of increasing complexity and correspondence with reality.

Suppose, initially, that all signals must have the form s = au, where a is
an unknown scalar and u is a known vector. Suppose that all noises must
have the form v = bw, where b is an unknown scalar and w is a known
vector. Then to estimate s we must find a. So long as J ≥ 2 we should be
able to solve for a and b. We form the two equations

u†z = au†u + bu†w

and
w†z = aw†u + bw†w.

This system of two equations in two unknowns will have a unique solu-
tion unless u and w are proportional, in which case we cannot expect to
distinguish signal from noise.
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We move now to a somewhat more complicated model. Suppose now
that all signals must have the form

s =

N
∑

n=1

anun,

where the an are unknown scalars and the un are known vectors. Suppose
that all noises must have the form

v =

M
∑

m=1

bmwm,

where the bm are unknown scalars and wm are known vectors. Then to
estimate s we must find the an. So long as J ≥ N +M we should be able to
solve for the unique an and bm. However, we usually do not know a great
deal about the signal and the noise, so we find ourselves in the situation
in which the N and M are large. Let U be the J by N matrix whose nth
column is un and W the J by M matrix whose mth column is wm. Let V
be the J by N + M matrix whose first N columns contain U and whose
last M columns contain W ; so V = [U W ]. Let c be the N + M by 1
column vector whose first N entries are the an and whose last M entries
are the bm. We want to solve z = V c. But this system of linear equations
has too many unknowns when N + M > J , so we seek the minimum norm
solution. In closed form this solution is

ĉ = V †(V V †)−1z.

The matrix V V † = (UU† + WW †) involves the signal correlation matrix
UU† and the noise correlation matrix WW †. Consider UU†. The matrix
UU† is J by J and the (i, j) entry of UU† is given by

UU†
ij =

N
∑

n=1

un
i un

j ,

so the matrix 1
N UU† has for its entries the average, over all the n = 1, ..., N ,

of the product of the ith and jth entries of the vectors un. Therefore,
1
N UU† is statistical information about the signal; it tells us how these
products look, on average, over all members of the family {un}, the en-
semble, to use the statistical word.

To pass to a more formal statistical framework, we let the coefficient
vectors a = (a1, a2, ..., aN )T and b = (b1, b2, ..., bM )T be independent ran-
dom white noise vectors, both with mean zero and covariance matrices
E(aa†) = I and E(bb†) = I. Then

UU† = E(ss†) = Rs
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and
WW † = E(vv†) = Q = Rv.

The estimate of s is the result of applying the vector Wiener filter to the
vector z and is given by

ŝ = UU†(UU† + WW †)−1z.

Exercise 1: Apply the vector Wiener filter to the simplest problem dis-
cussed earlier; here let N = 1. It will help to use the matrix inversion
identity

(Q + uu†)−1 = Q−1 − (1 + u†Q−1u)−1Q−1uu†Q−1. (28.1)

The VWF and the BLUE: To apply the VWF to the problem considered
in the discussion of the BLUE let the vector s be Hx. We assume, in
addition, that the vector x is a white noise vector; that is, E(xx†) = σ2I.
Then Rs = σ2HH†.

In the VWF approach we estimate s using

ŝ = B†z,

where the matrix B is chosen so as to minimize the mean squared error,
E|ŝ − s|2. This is equivalent to minimizing

trace E((Bz − s)(Bz − s)†).

Expanding the matrix products and using the definitions above, we see
that we must minimize

trace (B†(Rs + Rv)B − RsB − B†Rs + Rs).

Differentiating with respect to the matrix B using equations (??) and (??),
we find

(Rs + Rv)B − Rs = 0,

so that
B = (Rs + Rv)−1Rs.

Our estimate of the signal component is then

ŝ = Rs(Rs + Rv)−1z.

With s = Hx, our estimate of s is

ŝ = σ2HH†(σ2HH† + Q)−1z

and the VWF estimate of x is

x̂ = σ2H†(σ2HH† + Q)−1z.
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How does this estimate relate to the one we got from the BLUE?
The BLUE estimate of x is

x̂ = (H†Q−1H)−1H†Q−1z.

From the matrix identity in equation (23.3) we know that

(H†Q−1H + σ−2I)−1H†Q−1 = σ2H†(σ2HH† + Q)−1.

Therefore the VWF estimate of x is

x̂ = (H†Q−1H + σ−2I)−1H†Q−1z.

Note that the BLUE estimate is unbiased and unaffected by changes in
the signal strength or the noise strength. In contrast, the VWF is not
unbiased and does depend on the signal-to-noise ratio; that is, it depends
on the ratio σ2/trace (Q). The BLUE estimate is the limiting case of the
VWF estimate, as the signal-to-noise ratio goes to infinity.

The BLUE estimates s = Hx by first finding the BLUE estimate of x
and then multiplying it by H to get the estimate of the signal s.

Exercise 2: Show that the mean squared error in the estimation of s is

E(|ŝ − s|2) = trace (H(H†Q−1H)−1H†).

The VWF finds the linear estimate of s = Hx that minimizes the mean
squared error E(|ŝ − s|2). Consequently, the mean squared error in the
VWF is less than that in the BLUE.

Exercise 3: Assume that E(xx†) = σ2I. Show that the mean squared
error for the VWF estimate is

E(|ŝ − s|2) = trace (H(H†Q−1H + σ−2I)−1H†).

The functional Wiener filter The Wiener filter is often presented in
the context of random functions of, say, time. In this model signal is s(t)
and noise is q(t), where these functions of time are viewed as random func-
tions (stochastic processes). The data is taken to be z(t), a function of
t, so that the matrices UU† and WW † are now infinite matrices; the dis-
crete index j = 1, ..., J is now replaced by the continuous index variable
t. Instead of the finite family {un, n = 1..., N}, we now have an infinite
family of functions u(t) in U . The entries of UU† are essentially the av-
erage values of the products u(t1)u(t2) over all the members of U . It is
often assumed that this average of products is a function not of t1 and
t2 separately, but only of their difference t1 − t2; this is called stationar-
ity. So, aver{u(t1)u(t2)} = rs(t1 − t2) comes from a function rs(τ) of a
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single variable. The Fourier transform of rs(τ) is Rs(ω), the signal power
spectrum. The matrix UU† is then an infinite Toeplitz matrix, constant
on each diagonal. The Wiener filtering can actually be achieved by taking
Fourier transforms and multiplying and dividing by power spectra, instead
of inverting infinite matrices. It is also common to discretize the time vari-
able and to consider the Wiener filter operating on infinite sequences, as
we see in the next chapter.
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Chapter 29

Wiener Filter

Approximation

As we saw in the previous chapter, when the data is a finite vector composed
of signal plus noise the vector Wiener filter can be used to estimate the
signal component, provided we know something about the possible signals
and possible noises. In theoretical discussion of filtering signal from signal
plus noise it is traditional to assume that both components are doubly
infinite sequences of random variables. In this case the Wiener filter is a
convolution filter that operates on the input signal plus noise sequence to
produce the output estimate of the signal-only sequence. The derivation
of the Wiener filter is in terms of the autocorrelation sequences of the two
components, as well as their respective power spectra.

Suppose now that the discrete stationary random process to be filtered
is the doubly infinite sequence {zn = sn + qn}∞

n=−∞, where {sn} is the
signal component with autocorrelation function rs(k) = E(sn+ksn) and
power spectrum Rs(ω) defined for ω in the interval [−π, π], {qn} is the noise
component with autocorrelation function rq(k) and power spectrum Rq(ω)
defined for ω in [−π, π]. We assume that for each n the random variables
sn and qn have mean zero and that the signal and noise are independent
of one another. Then the autocorrelation function for the signal plus noise
sequence {zn} is

rz(n) = rs(n) + rq(n)

for all n and
Rz(ω) = Rs(ω) + Rq(ω).

is the signal plus noise power spectrum.
Let h = {hk}∞

k=−∞ be a linear filter with transfer function

H(ω) =
∑∞

k=−∞
hkeikω,
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for ω in [−π, π]. Given the sequence {zn} as input to this filter, the output
is the sequence

yn =
∑∞

k=−∞
hkzn−k. (29.1)

The goal of Wiener filtering is to select the filter h so that the output se-
quence yn approximates the signal sn sequence as well as possible. Specifi-
cally, we seek h so as to minimize the expected squared error, E(|yn−sn|2),
which, because of stationarity, is independent of n. We have

E(|yn|2) =
∑∞

k=−∞
hk(

∑∞

j=−∞
hj(rs(j − k) + rq(j − k)))

=
∑∞

k=−∞
hk(rz ∗ h)k

which, by the Parseval equation, equals

1

2π

∫

H(ω)Rz(ω)H(ω)dω =
1

2π

∫

|H(ω)|2Rz(ω)dω.

Similarly,

E(snyn) =
∑∞

j=−∞
hjrs(j)

which equals
1

2π

∫

Rs(ω)H(ω)dω,

and

E(|sn|2) =
1

2π

∫

Rs(ω)dω.

Therefore,

E(|yn − sn|2) =
1

2π

∫

|H(ω)|2Rz(ω)dω − 1

2π

∫

Rs(ω)H(ω)dω

− 1

2π

∫

Rs(ω)H(ω)dω +
1

2π

∫

Rs(ω)dω.

As we shall see shortly, minimizing E(|yn − sn|2) with respect to the func-
tion H(ω) leads to the equation

Rz(ω)H(ω) = Rs(ω),

so that the transfer function of the optimal filter is

H(ω) = Rs(ω)/Rz(ω).

The Wiener filter is then the sequence {hk} of the Fourier coefficients of
this function H(ω).
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To prove that this choice of H(ω) minimizes E(|yn − sn|2) we note that

|H(ω)|2Rz(ω) − Rs(ω)H(ω) − Rs(ω)H(ω) + Rs(ω)

= |H(ω) − Rs(ω)/Rz(ω)|2 − Rs(ω) + Rs(ω)2/Rz(ω).

Only the first term involves the function H(ω).

Since H(ω) is a nonnegative function of ω, therefore real-valued, its
Fourier coefficients hk will be conjugate symmetric, that is, h−k = hk.
This poses a problem when the random process zn is a discrete time series,
with zn denoting the measurement recorded at time n. From the equation
(29.1) we see that to produce the output yn corresponding to time n we
need the input for every time, past and future. To remedy this we can
obtain the best causal approximation of the Wiener filter h.

A filter g = {gk}∞
k=−∞ is said to be causal if gk = 0 for k < 0; this

means that given the input sequence {zn}, the output

wn =
∑∞

k=−∞
gkzn−k =

∑∞

k=0
gkzn−k

requires only values of zm up to m = n. To obtain the causal filter g
that best approximates the Wiener filter, we find the coeffcients gk that
minimize the quantity

∫ π

−π

|H(ω) −
∑+∞

k=0
gkeikω|2Rz(ω)dω. (29.2)

The orthogonality principle tells us that the optimal coefficients must sat-
isfy the equations

rs(m) =
∑+∞

k=0
gkrz(m − k), (29.3)

for all m. These are the Wiener-Hopf equations [119].

Even having a causal filter does not completely solve the problem, since
we would have to record and store the infinite past. Instead, we can decide
to use a filter f = {fk}∞

k=−∞ for which fk = 0 unless −K ≤ k ≤ L for
some positive integers K and L. This means we must store L values and
wait until time n + K to obtain the output for time n. Such a linear filter
is a finite memory, finite delay filter, also called a finite impulse response
filter.

To obtain the filter f of this type that best approximates the Wiener
filter, we find the coefficients fk that minimize the quantity

∫ π

−π

|H(ω) −
∑L

k=−K
fkeikω|2Rz(ω)dω. (29.4)
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The orthogonality principle tells us that the optimal coefficients must sat-
isfy the equations

rs(m) =
∑L

k=−K
fkrz(m − k), (29.5)

for −K ≤ m ≤ L.
In [39] it was pointed out that the linear equations that arise in Wiener

filter approximation also occur in image reconstruction from projections,
with the image to be reconstructed playing the role of the power spectrum
to be approximated. The methods of Wiener filter approximation were
then used to derive linear and nonlinear image reconstruction procedures.
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Adaptive Wiener Filters

Once again, we consider a stationary random process zn = sn + vn with
autocorrelation function E(znzn−m) = rz(m) = rs(m) + rv(m). The finite
causal Wiener filter (FCWF) f = (f0, f1, ..., fL)T is convolved with {zn} to
produce an estimate of sn given by

ŝn =

L
∑

k=0

fkzn−k.

With y†
n = (zn, zn−1, ..., zn−L) we can write ŝn = y†

nf . The FCWF f
minimizes the expected squared error

J(f) = E(|sn − ŝn|2)

and is obtained as the solution of the equations

rs(m) =
∑L

k=0
fkrz(m − k),

for 0 ≤ m ≤ L. Therefore, to use the FCWF we need the values rs(m) and
rz(m − k) for m and k in the set {0, 1, ..., L}. When these autocorrelation
values are not known we can use adaptive methods to approximate the
FCWF.

An adaptive least mean square approach: We assume now that we
have z0, z1, ..., zN and p0, p1, ..., pN , where pn is a prior estimate of sn, but
that we do not know the correlation functions rz and rs.

The gradient of the function J(f) is

∇J(f) = Rzzf − rs,
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where Rzz is the square matrix with entries rz(m − n) and rs is the vector
with entries rs(m). An iterative gradient descent method for solving the
system of equations Rzzf = rs is

fτ = fτ−1 − µτ∇J(fτ−1),

for some step-size parameters µτ > 0.
The adaptive least mean square (LMS) approach [45] replaces the gra-

dient of J(f) with an approximation of the gradient of the function G(f) =
|sn − ŝn|2, which is −2(sn − ŝn)yn. Since we do not know sn we replace
that term with the estimate pn. The iterative step of the LMS method is

fτ = fτ−1 + µτ (pτ − y†
τ fτ−1)yτ , (30.1)

for L ≤ τ ≤ N . Notice that it is the approximate gradient of the function
|sτ − ŝτ |2 that is used at this step, in order to involve all the data z0, ..., zN

as we iterate from τ = L to τ = N . We illustrate the use of this method
in adaptive interference cancellation.

Adaptive interference cancellation: Adaptive interference cancellation
(AIC) [146] is used to suppress a dominant noise component vn in the
discrete sequence zn = sn + vn. It is assumed that we have available a
good estimate qn of vn. The main idea is to switch the roles of signal and
noise in the adaptive LMS method and design a filter to estimate vn. Once
we have that estimate, we subtract it from zn to get our estimate of sn.

In the role of zn we use

qn = vn + εn,

where εn denotes a low level error component. In the role of pn we take
zn, which is approximately vn, since the signal sn is much lower than the
noise vn. Then y†

n = (qn, qn−1, ..., qn−L). The iterative step used to find
the filter f is then

fτ = fτ−1 + µτ (zτ − y†
τ fτ−1)yτ ,

for L ≤ τ ≤ N . When the iterative process has converged to f we take as
our estimate of sn

ŝn = zn −
L

∑

k=0

fkqn−k.

It has been suggested that this procedure be used in computerized tomog-
raphy to correct artifacts due to patient motion [69].

Recursive least squares: An alternative to the LMS method is to find
the least squares solution of the system of N − L + 1 linear equations

pn =

L
∑

k=0

fkzn−k,
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for L ≤ n ≤ N . The recursive least squares (RLS) method is a recursive
approach to solving this system.

For L ≤ τ ≤ N let Zτ be the matrix whose rows are y†
n for n = L, ..., τ ,

pT
τ = (pL, pL+1, ..., pτ ) and Qτ = Z†

τZτ . The least squares solution we seek
is

f = Q−1
N Z†

NpN .

Exercise 1: Show that Qτ = Qτ−1 + yτy
†
τ , for L < τ ≤ N .

Exercise 2: Use the matrix inversion identity in equation (28.1) to write
Q−1

τ in terms of Q−1
τ−1.

Exercise 3: Using the previous exercise, show that the desired least
squares solution f is f = fN , where, for L ≤ τ ≤ N we let

fτ = fτ−1 + (
pτ − y†

τ fτ−1

1 + y†
τQ−1

τ−1yτ

)Q−1
τ−1yτ .

Comparing this iterative step with that given by equation (30.1) we see that
the former gives an explicit value for µτ and uses Q−1

τ−1yτ instead of yτ

as the direction vector for the iterative step. The RMS iteration produces
a more accurate estimate of the FCWF than does the LMS method, but
requires more computation.
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Chapter 31

Entropy Maximization

The problem of estimating the nonnegative function R(ω), for |ω| ≤ π,
from the finitely many Fourier transform values

r(n) =

∫ π

−π

R(ω) exp(−inω)dω/2π, n = −N, ..., N

is an underdetermined problem, meaning that the data alone is insufficient
to determine a unique answer. In such situations we must select one so-
lution out of the infinitely many that are mathematically possible. The
obvious questions we need to answer are: What criteria do we use in this
selection? How do we find algorithms that meet our chosen criteria? In
this chapter we look at some of the answers people have offered and at one
particular algorithm, Burg’s maximum entropy method (MEM) [19], [20].

These values r(n) are autocorrelation function values associated with a
random process having R(ω) for its power spectrum. In many applications,
such as seismic remote sensing, these autocorrelation values are estimates
obtained from relatively few samples of the underlying random process, so
that N is not large. The DFT estimate,

RDFT (ω) =

N
∑

n=−N

r(n) exp(inω),

is real-valued and consistent with the data, but is not necessarily nonnega-
tive. For small values of N the DFT may not be sufficiently resolving to be
useful. This suggests that one criterion we can use to perform our selection
process is to require that the method provide better resolution than the
DFT for relatively small values of N , when reconstructing power spectra
that consist mainly of delta functions.
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A brief side trip to philosophy:

Generally speaking, we would expect to do a better job of estimating a
function from data pertaining to that function if we also possess additional
prior information about the function to be estimated and are able to em-
ploy estimation techniques that make use of that additional information.
There is the danger, however, that we may end up with an answer that
is influenced more by our prior guesses than by the actual measured data.
Striking a balance between including prior knowledge and letting the data
speak for itself is a noble goal; how to achieve that is the question. At this
stage, we begin to suspect that the problem is as much philosophical as it
is mathematical.

We are essentially looking for principles of induction that enable us to
extrapolate from what we have measured to what we have not. Unwilling to
turn the problem over entirely to the philosophers, a number of mathemati-
cians and physicists have sought mathematical solutions to this inference
problem, framed in terms of what the most likely answer is, or which an-
swer involves the smallest amount of additional prior information. This is
not, of course, a new issue; it has been argued for centuries with regard to
the use of what we now call Bayesian statistics; objective Bayesians allow
the use of prior information, but only if it is the right prior information.
The interested reader should consult the books [134] and [135], contain-
ing papers by Ed Jaynes, Roy Frieden and others originally presented at
workshops on this topic held in the early 1980’s.

The maximum entropy method is a general approach to such problems
that includes Burg’s algorithm as a particular case. It is argued that by
maximizing entropy we are, in some sense, being maximally noncommittal
about what we do not know and thereby introducing a minimum of prior
knowledge (some would say prior guesswork) into the solution. In the case
of Burg’s MEM a somewhat more mathematical argument is available.

Let {xn}∞
n=−∞ be a stationary random process with autocorrelation

sequence r(m) and power spectrum R(ω), |ω| ≤ π. The prediction problem
is the following: suppose we have measured the values of the process prior
to time n and we want to predict the value of the process at time n.
On average, how much error do we expect to make in predicting xn from
knowledge of the infinite past? The answer, according to Szegö’s theorem
[90], is

exp[

∫ π

−π

log R(ω)dω];

the integral
∫ π

−π

log R(ω)dω

is the Burg entropy of the random process [124]. Processes that are very
predictable have low entropy, while those that are quite unpredictable, or,
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like white noise, completely unpredictable, have high entropy; to make
entropies comparable we assume a fixed value of r(0). Given the data r(n),
|n| ≤ N , Burg’s method selects that power spectrum consistent with these
autocorrelation values that corresponds to the most unpredictable random
process.

Other similar procedures are also based on selection through optimiza-
tion. We have seen the minimum norm approach to finding a solution
to an underdetermined system of linear equations, the minimum expected
squared error approach in statistical filtering and later we shall see the
maximum likelihood method used in detection. We must keep in mind
that, however comforting it may be to know that we are on solid philo-
sophical ground (if such exists) in choosing our selection criteria, if the
method does not work well, we must use something else. As we shall see,
the MEM, like every other reasonable method, works well sometimes and
not so well other times. There is certainly philosophical precedent for con-
sidering the consequences of our choices, as Blaise Pascal’s famous wager
about the existence of God nicely illustrates. As an attentive reader of the
books [134] and [135] will surely note, there is a certain theological tone to
some of the arguments offered in support of entropy maximization. One
group of authors (reference omitted) went so far as to declare that entropy
maximization was what one did if one cared what happened to one’s data.

The objective of Burg’s MEM for estimating a power spectrum is to
seek better resolution by combining nonnegativity and data-consistency in
a single closed-form estimate. The MEM is remarkable in that it is the only
closed-form (that is, noniterative) estimation method that is guaranteed
to produce an estimate that is both nonnegative and consistent with the
autocorrelation samples. Later we shall consider a more general method,
the inverse PDFT (IPDFT), that is both data-consistent and positive in
most cases.

Properties of the sequence {r(n)}:
We begin our discussion with a look at important properties of the sequence
{r(n)}. Because R(ω) ≥ 0, the values r(n) are often called autocorrelation
values.

Since R(ω) ≥ 0, it follows immediately that r(0) ≥ 0. In addition,
r(0) ≥ |r(n)| for all n:

|r(n)| = |
∫ π

−π

R(ω) exp(−inω)dω/2π|

≤
∫ π

−π

R(ω)| exp(−inω)|dω/2π = r(0).

In fact, if r(0) = |r(n)| > 0 for some n > 0, then R is a sum of at most
n + 1 delta functions with nonnegative amplitudes. To see this, suppose
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that r(n) = |r(n)| exp(iθ) = r(0) exp(iθ). Then

∫ π

−π

R(ω)|1 − exp(i(θ + nω))|2dω/2π

=

∫ π

−π

R(ω)(1 − exp(i(θ + nω))(1 − exp(−i(θ + nω))dω/2π

=

∫ π

−π

R(ω)[2 − exp(i(θ + nω)) − exp(−i(θ + nω))]dω/2π

= 2r(0) − exp(iθ)r(n) − exp(−iθ)r(n) = 2r(0) − r(0) − r(0) = 0.

Therefore, R(ω) > 0 only at the values of ω where |1−exp(i(θ+nω))|2 = 0;
that is, only at ω = n−1(2πk − θ) for some integer k. Since |ω| ≤ π there
are only finitely many such k.

In discussing the Burg MEM estimate we shall need to refer to the
concept of minimum phase vectors. We consider that briefly now.

Minimum phase vectors:

We say that the finite column vector with complex entries (a0, a1, ..., aN )T

is a minimum phase vector if the complex polynomial

A(z) = a0 + a1z + ... + aNzN

has the property that A(z) = 0 implies that |z| > 1; that is, all roots of
A(z) are outside the unit circle. Consequently, the function B(z) given by
B(z) = 1/A(z) is analytic in a disk centered at the origin and including
the unit circle. Therefore, we can write

B(z) = b0 + b1z + b2z
2 + ...

and taking z = exp(iω), we get

B(exp(iω)) = b0 + b1 exp(iω) + b2 exp(2iω) + ....

The point here is that B(exp(iω)) is a one-sided trigonometric series, with
only terms corresponding to exp(inω) for nonnegative n.

Burg’s MEM:

The approach is to estimate R(ω) by the function S(ω) > 0 that maximizes
the so-called Burg entropy,

∫ π

−π
log S(θ)dθ, subject to the data constraints.

The Euler-Lagrange equation from the calculus of variations allows us
to conclude that S(ω) has the form

S(ω) = 1/H(ω)
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for

H(ω) =

N
∑

n=−N

hneinω > 0.

From the Fejér-Riesz theorem ?? we know that H(ω) = |A(eiω)|2 for min-
imum phase A(z) as above. As we now show, the coefficients an satisfy a
system of linear equations formed using the data r(n).

Given the data r(n), |n| ≤ N , we form the autocorrelation matrix R
with entries Rmn = r(m − n), for −N ≤ m, n ≤ N . Let δ be the column
vector δ = (1, 0, ..., 0)T . Let a = (a0, a1, ..., aN )T be the solution of the sys-
tem Ra = δ. Then Burg’s MEM estimate is the function S(ω) = RMEM (ω)
given by

RMEM (ω) = a0/|A(exp(iω))|2, |ω| ≤ π.

Once we show that a0 ≥ 0 then it will be obvious that RMEM (ω) ≥ 0. We
also must show that RMEM is data-consistent; that is,

r(n) =

∫ π

−π

RMEM (ω) exp(−inω)dω/2π =, n = −N, ..., N.

Let us write RMEM (ω) as a Fourier series; that is

RMEM (ω) =

+∞
∑

n=−∞
q(n) exp(inω), |ω| ≤ π.

From the form of RMEM (ω) we have

RMEM (ω)A(exp(iω)) = a0B(exp(iω)).

Suppose, as we shall shortly show, that A(z) has all its roots outside the
unit circle and so B(exp(iω)) is a one-sided trigonometric series, with only
terms corresponding to exp(inω) for nonnegative n. Then, multiplying on
the left side of the equation above and equating coefficients corresponding
to n = 0,−1,−2, ..., we find that, provided q(n) = r(n), for |n| ≤ N , we
must have Ra = δ. Notice that these are precisely the same equations we
solve in calculating the coefficients of an AR process. For that reason the
MEM is sometimes called an autoregressive method for spectral estimation.

We now show that if Ra = δ then A(z) has all its roots outside the unit
circle. Let r exp(iθ) be a root of A(z). Then write

A(z) = (z − r exp(iθ))C(z),

where

C(z) = c0 + c1z + c2z
2 + ... + cN−1z

N−1.
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Then the vector a = (a0, a1, ..., aN )T can be written as a = −r exp(iθ)c+d,
where c = (c0, c1, ..., cN−1, 0)T and d = (0, c0, c1, ..., cN−1)

T . So δ = Ra =
−r exp(iθ)Rc + Rd and

0 = d†δ = −r exp(iθ)d†Rc + d†Rd,

so that
r exp(iθ)d†Rc = d†Rd.

From the Cauchy inequality we know that

|d†Rc|2 ≤ (d†Rd)(c†Rc) = (d†Rd)2, (31.1)

where the last equality comes from the special form of the matrix R and
the similarity between c and d.

With
D(ω) = c0e

iω + c1e
2iω... + cN−1e

iNω

and
C(ω) = c0 + c1e

iω + ... + cN−1e
i(N−1)ω,

we can easily show that

d†Rd = c†Rc =
1

2π

∫ π

−π

R(ω)|D(ω)|2dω

and

d†Rc =
1

2π

∫ π

−π

R(ω)D(ω)C(ω)dω.

If there is equality in the Cauchy inequality (31.1) then r = 1 and we would
have

exp(iθ)
1

2π

∫ π

−π

R(ω)D(ω)C(ω)dω =
1

2π

∫ π

−π

R(ω)|D(ω)|2dω.

From the Cauchy inequality for integrals, we can conclude that

exp(iθ)D(ω)C(ω) = |D(ω)|2

for all ω for which R(ω) > 0. But

exp(iω)C(ω) = D(ω).

Therefore we cannot have r = 1 unless R(ω) = δ(ω − θ). In all other cases
we have

|d†Rc|2 < |r|2|d†Rc|2,
from which we conclude that |r| > 1.
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Solving Ra = δ using Levinson’s algorithm: Because the matrix R
is Toeplitz (constant on diagonals) and positive definite, there is a fast
algorithm for solving Ra = δ for a. Instead of a single R we let RM be the
matrix defined for M = 0, 1, ..., N by

RM =















r(0) r(−1) ... r(−M)
r(1) r(0) ... r(−M + 1)

.

.

.
r(M) r(M − 1) ... r(0)















so that R = RN . We also let δM be the M + 1-dimensional column
vector δM = (1, 0, ..., 0)T . We want to find the column vector aM =
(aM

0 , aM
1 , ..., aM

M )T that satisfies the equation RMaM = δM . The point
of Levinson’s algorithm is to calculate aM+1 quickly from aM .

For fixed M find constants α and β so that

δM = RM

{

α



















aM−1
0

aM−1
1

.

.

.
aM−1

M−1

0



















+ β





















0
aM−1

M−1

aM−1
M−2

.

.

.
aM−1
0





















}

=

{

α



















1
0
.
.
.
0

γM



















+ β



















γM

0
.
.
.
0
1



















}

,

where
γM = r(M)aM−1

0 + r(M − 1)aM−1
1 + ... + r(1)aM−1

M−1.

We then have
α + βγM = 1, αγM + β = 0

or
β = −αγM , α − α|γM |2 = 1,

so
α = 1/(1 − |γM |2), β = −γM/(1 − |γM |2).

Therefore, the algorithm begins with M = 0, R0 = [r(0)], a0
0 = r(0)−1. At

each step calculate the γM , solve for α and β and form the next aM .
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The MEM resolves better than the DFT when the true power spectrum
being reconstructed is a sum of delta functions plus a flat background.
When the background itself is not flat performance of the MEM degrades
rapidly; the MEM tends to interpret any non-flat background in terms of
additional delta functions. In the next chapter we consider an extension of
the MEM, called the indirect PDFT (IPDFT), that corrects this flaw.

Why Burg’s MEM and the IPDFT are able to resolve closely spaced
sinusoidal components better than the DFT is best answered by studying
the eigenvalues and eigenvectors of the matrix R; we turn to this topic in
a later chapter.

A sufficient condition for positive-definiteness:

If the function
R(ω) =

∑∞

n=−∞
r(n)einω

is nonnegative on the interval [−π, π] then the matrices RM above are
nonnegative-definite for every M . Theorems by Herglotz and by Bochner
go in the reverse direction [3]. Katznelson [100] gives the following result.

Theorem 31.1 Let {f(n)}∞
n=−∞ be a sequence of nonnegative real num-

bers converging to zero, with f(−n) = f(n) for each n. If, for each n > 0,
we have

(f(n − 1) − f(n)) − (f(n) − f(n + 1)) > 0,

then there is a nonnegative function R(ω) on the interval [−π, π] with
f(n) = r(n) for each n.



Chapter 32

Eigenvector Methods

Prony’s method showed that information about the signal can sometimes
be obtained from the roots of certain polynomials formed from the data.
Eigenvector methods assume the data is correlation values and involve poly-
nomials formed from the eigenvectors of the correlation matrix. Schmidt’s
multiple signal classification (MUSIC) algorithm is one such method [129].
A related technique used in direction-of-arrival array processing is the esti-
mation of signal parameters by rotational invariance techniques (ESPRIT)
of Paulraj, Roy and Kailath [120].

We suppose now that the function f(t) being measured is signal plus
noise, with the form

f(t) =
∑J

j=1
Aje

iθj eiωjt + n(t) = s(t) + n(t),

where the phases θj are random variables, independent and uniformly dis-
tributed in the interval [0, 2π) and n(t) denotes the random complex sta-
tionary noise component. Assume that E(n(t)) = 0 for all t and that
the noise is independent of the signal components. We want to estimate
J , the number of sinusoidal components, their magnitudes |Aj | and their
frequencies ωj .

The autocorrelation function associated with s(t) is

rs(τ) =
∑J

j=1
|Aj |2e−iωjτ

and the signal power spectrum is the Fourier transform of rs(τ),

Rs(ω) =
∑J

j=1
|Aj |2δ(ω − ωj).

The noise autocorrelation is denoted rn(τ) and the noise power spectrum
is denoted Rn(ω). For the remainder of this section we shall assume that
the noise is white noise, that is, Rn(ω) is constant and rn(τ) = 0 for τ 6= 0.
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We collect samples of the function f(t) and use them to estimate some of
the values of rs(τ). From these values of rs(τ) we estimate Rs(ω), primarily
looking for the locations ωj at which there are delta functions.

We assume that the samples of f(t) have been taken over an interval
of time sufficiently long to take advantage of the independent nature of
the phase angles θj and the noise. This means that when we estimate the

rs(τ) from products of the form f(t + τ)f(t) the cross terms between one
signal component and another, as well as between a signal component and
the noise, are nearly zero, due to destructive interference coming fro the
random phases.

Suppose now that we have the values rf (m) for m = −(M−1), ..., M−1,
where M > J , rf (m) = rs(m) for m 6= 0 and rf (0) = rs(0) + σ2, for σ2

the variance (or power) of the noise. We form the M by M autocorrelation
matrix R with entries Rm,k = rf (m − k).

Exercise 1: Show that the matrix R has the following form:

R =
∑J

j=1
|Aj |2eje

†
j + σ2I,

where ej is the column vector with entries e−iωjm, for m = −(M −
1), ..., M − 1.

Let λ1 ≥ λ2 ≥ ... ≥ λM > 0 be the eigenvalues of R and let um be a
norm-one eigenvector associated with λm.

Exercise 2: Show that λm = σ2 for m = J + 1, ..., M , while λm > σ2 for
m = 1, ..., J . Hint: since M > J the M − J orthogonal eigenvectors um

corresponding to λm for m = J +1, ..., M will be orthogonal to each of the
ej . Then consider the quadratic forms (um)†Rum.

By calculating the eigenvalues of R and noting how many of them are
greater than the smallest one we find J . Now we seek the ωj .

For each ω let eω have the entries e−iωm and form the function

T (ω) =
∑M

m=J+1
|e†

ωum|2.

This function T (ω) will have zeros at precisely the values ω = ωj , for j =
1, ..., J . Once we have determined J and the ωj we estimate the magnitudes
|Aj | using Fourier transform estimation techniques already discussed. This
is basically Schmidt’s MUSIC method.

We have made several assumptions here that may not hold in practice
and we must modify this eigenvector approach somewhat. First, the time
over which we are able to measure the function f(t) may not be long enough
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to give good estimates of the rf (τ). In that case we may work directly with
the samples of f(t). Second, the smallest eigenvalues will not be exactly
equal to σ2 and some will be larger than others. If the ωj are not well
separated, or if some of the |Aj | are quite small, it may be hard to tell
what the value of J is. Third, we often have measurements of f(t) that
have errors other than those due to background noise; inexpensive sensors
can introduce their own random phases that can complicate the estimation
process. Finally, the noise may not be white, so that the estimated rf (τ)
will not equal rs(τ) for τ 6= 0, as above. If we know the noise power
spectrum or have a decent idea what it is we can perform a prewhitening
to R, which will then return us to the case considered above, although this
can be a tricky procedure.
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Chapter 33

Signal Detection and

Estimation

In this chapter we consider the problem of deciding whether or not a par-
ticular signal is present in the measured data; this is the detection problem.
The underlying framework for the detection problem is optimal estimation
and statistical hypothesis testing [79].

The general model of signal in additive noise:

The basic model used in detection is that of a signal in additive noise. The
complex data vector is x = (x1, x2, ..., xN )T . We assume that there are two
possibilities:

Case 1: noise only

xn = zn, n = 1, ..., N,

or

Case 2: signal in noise

xn = γsn + zn,

where z = (z1, z2, ..., zN )T is a complex vector whose entries zn are values
of random variables that we call noise, about which we have only statistical
information (that is to say, information about the average behavior), s =
(s1, s2, ..., sN )T is a complex signal vector that we may known exactly, or
at least for which we have a specific parametric model and γ is a scalar that
may be viewed either as deterministic or random (but unknown, in either
case). Unless otherwise stated, we shall assume that γ is deterministic.
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The detection problem is to decide which case we are in, based on some
calculation performed on the data x. Since Case 1 can be viewed as a
special case of Case 2 in which the value of γ is zero, the detection problem
is closely related to the problem of estimating γ, which we discussed in the
chapter dealing with the best linear unbiased estimator, the BLUE.

We shall assume throughout that the entries of z correspond to random
variables with means equal to zero. What the variances are and whether or
not these random variables are mutually correlated will be discussed below.
In all cases we shall assume that this information has been determined
previously and is available to us in the form of the correlation matrix Q =
E(zz†) of the vector z; the symbol E denotes expected value, so the entries
of Q are the quantities Qmn = E(zmzn). The diagonal entries of Q are
Qnn = σ2

n, the variance of zn.
Note that we have adopted the common practice of using the same

symbols, zn, when speaking about the random variables and about the
specific values of these random variables that are present in our data. The
context should make it clear to which we are referring.

In case 2 we say that the signal power is equal to |γ|2 1
N

∑N
n=1 |sn|2 =

1
N |γ|2s†s and the noise power is 1

N

∑N
n=1 σ2

n = 1
N tr(Q), where tr(Q) is the

trace of the matrix Q, that is, the sum of its diagonal terms; therefore the
noise power is the average of the variances σ2

n. The input signal-to-noise
ratio (SNRin) is the ratio of the signal power to that of the noise, prior to
processing the data; that is,

SNRin =
1

N
|γ|2s†s/

1

N
tr(Q) = |γ|2s†s/tr(Q).

Optimal linear filtering for detection:

In each case to be considered below, our detector will take the form of a
linear estimate of γ; that is, we shall compute the estimate γ̂ given by

γ̂ =

N
∑

n=1

bnxn = b†x,

where b = (b1, b2, ..., bN )T is a vector to be determined. The objective is
to use what we know about the situation to select the optimal b, which
will depend on s and Q.

For any given vector b, the quantity

γ̂ = b†x = γb†s + b†z

is a random variable whose mean value is equal to γb†s and whose variance
is

var(γ̂) = E(|b†z|2) = E(b†zz†b) = b†E(zz†)b = b†Qb.
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Therefore, the output signal-to-noise ratio (SNRout) is defined to be

SNRout = |γb†s|2/b†Qb.

The advantage we obtain from processing the data is called the gain asso-
ciated with b and is defined to be the ratio of the SNRout to SNRin; that
is

gain(b) =
|γb†s|2/(b†Qb)

|γ|2(s†s)/tr(Q)
=

|b†s|2 tr(Q)

(b†Qb)(s†s)
.

The best b to use will be the one for which gain(b) is the largest. So,
ignoring the terms in the gain formula that do not involve b, we see that

the problem becomes maximize |b†s|2
b†Qb

, for fixed signal vector s and fixed
noise correlation matrix Q.

The Cauchy inequality plays a major role in optimal filtering and de-
tection:

Cauchy’s inequality: for any vectors a and b we have

|a†b|2 ≤ (a†a)(b†b),

with equality if and only if a is proportional to b, that is, there is a scalar
β such that b = βa.

Exercise 1: Use Cauchy’s inequality to show that, for any fixed vector a,
the choice b = βa maximizes the quantity |b†a|2/b†b, for any constant β.

Exercise 2: Use the definition of the correlation matrix Q to show that
Q is Hermitian and that, for any vector y, y†Qy ≥ 0. Therefore Q is a
nonnegative definite matrix and, using its eigenvector decomposition, can
be written as Q = CC†, for some invertible square matrix C.

Exercise 3: Consider now the problem of maximizing |b†s|2/b†Qb. Using
the two previous exercises, show that the solution is b = βQ−1s, for some
arbitrary constant β.

We can now use the results of these exercises to continue our discussion.
We choose the constant β = 1/(s†Q−1s) so that the optimal b has b†s = 1;
that is, the optimal filter b is

b = (1/(s†Q−1s))Q−1s

and the optimal estimate of γ is

γ̂ = b†x = (1/(s†Q−1s))(s†Q−1x).
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The random variable γ̂ has mean equal to γb†s = γ and variance equal to
1/(s†Q−1s). Therefore, the output signal power is |γ|2, the output noise
power is 1/(s†Q−1s) and so the output signal-to-noise ratio (SNRout) is

SNRout = |γ|2(s†Q−1s).

The gain associated with the optimal vector b is then

maximum gain =
(s†Q−1s) tr(Q)

(s†s)
.

The calculation of the vector C−1x is sometimes called prewhitening since
C−1x = γC−1s + C−1z and the new noise vector, C−1z, has the identity
matrix for its correlation matrix. The new signal vector is C−1s. The
filtering operation that gives γ̂ = b†x can be written as

γ̂ = (1/(s†Q−1s))(C−1s)†C−1x;

the term (C−1s)†C−1x is described by saying that we prewhiten, then do
a matched filter. Now we consider some special cases of noise.

The case of white noise:

We say that the noise is white noise if the correlation matrix is Q = σ2I,
where I denotes the identity matrix that is one on the main diagonal and
zero elsewhere and σ > 0 is the common standard deviation of the zn. This
means that the zn are mutually uncorrelated (independent, in the Gaussian
case) and share a common variance.

In this case the optimal vector b is b = 1
(s†s)

s and the gain is N . Notice

that γ̂ now involves only a matched filter. We consider now some special
cases of the signal vectors s.

Constant signal: Suppose that the vector s is constant, that is, s = 1 =
(1, 1, ..., 1)T . Then we have

γ̂ =
1

N

N
∑

n=1

xn.

This is the same result we found in our discussion of the BLUE, when we
estimated the mean value and the noise was white.

Sinusoidal signal - known frequency: Suppose

s = e(ω0) = (exp(−iω0), exp(−2iω0), ..., exp(−Niω0))
T ,
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where ω0 denotes a known frequency in [−π, π). Then b = 1
N e(ω0) and

γ̂ =
1

N

N
∑

n=1

xn exp(inω0);

so we see yet another occurrence of the DFT.

Sinusoidal signal - unknown frequency: If we do not know the value
of the signal frequency ω0 a reasonable thing to do is to calculate the γ̂ for
each (actually, finitely many) of the possible frequencies within [−π, π) and
base the detection decision on the largest value; that is, we calculate the
DFT as a function of the variable ω. If there is only a single ω0 for which
there is a sinusoidal signal present in the data, the values of γ̂ obtained at
frequencies other than ω0 provide estimates of the noise power σ2, against
which the value of γ̂ for ω0 can be compared.

The case of correlated noise:

We say that the noise is correlated if the correlation matrix is Q is not a
multiple of the identity matrix. This means either that the zn are mutually
correlated (dependent, in the Gaussian case) or that they are uncorrelated,
but have different variances.

In this case, as we saw above, the optimal vector b is

b =
1

(s†Q−1s)
Q−1s

and the gain is

maximum gain =
(s†Q−1s) tr(Q)

(s†s)
.

How large or small the gain is depends on how the signal vector s relates
to the matrix Q.

For sinusoidal signals, the quantity s†s is the same, for all values of the
parameter ω; this is not always the case, however. In passive detection of
sources in acoustic array processing, for example, the signal vectors arise
from models of the acoustic medium involved. For far-field sources in an
(acoustically) isotropic deep ocean, planewave models for s will have the
property that s†s does not change with source location. However, for near-
field or shallow-water environments, this is usually no longer the case.

It follows from an earlier exercise that the quantity s†Q−1s

s†s
achieves its

maximum value when s is an eigenvector of Q associated with its smallest
eigenvalue, λN ; in this case, we are saying that the signal vector does not
look very much like a typical noise vector. The maximum gain is then
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λ−1
N tr(Q). Since tr(Q) equals the sum of its eigenvalues, multiplying by

tr(Q) serves to normalize the gain, so that we cannot get larger gain simply
by having all the eigenvalues of Q small.

On the other hand, if s should be an eigenvector of Q associated with
its largest eigenvalue, say λ1, then the maximum gain is λ−1

1 tr(Q). If
the noise is signal-like, that is, has one dominant eigenvalue, then tr(Q)
is approximately λ1 and the maximum gain is around one, so we have
lost the maximum gain of N we were able to get in the white noise case.
This makes sense, in that it says that we cannot significantly improve our
ability to discriminate between signal and noise by taking more samples, if
the signal and noise are very similar.

Constant signal with unequal-variance uncorrelated noise: Sup-
pose that the vector s is constant, that is, s = 1 = (1, 1, ..., 1)T . Suppose
also that the noise correlation matrix is Q = diag{σ1, ..., σN}.

In this case the optimal vector b has entries

bm =
1

(
∑N

n=1 σ−1
n )

σ−1
m ,

for m = 1, ..., N , and we have

γ̂ =
1

(
∑N

n=1 σ−1
n )

N
∑

m=1

σ−1
m xm.

This is the BLUE estimate of γ in this case.

Sinusoidal signal - known frequency, in correlated noise: Suppose

s = e(ω0) = (exp(−iω0), exp(−2iω0), ..., exp(−Niω0))
T ,

where ω0 denotes a known frequency in [−π, π). In this case the optimal
vector b is

b =
1

e(ω0)†Q−1e(ω0)
Q−1e(ω0)

and the gain is

maximum gain =
1

N
[e(ω0)

†Q−1e(ω0)]tr(Q).

How large or small the gain is depends on the quantity q(ω0), where

q(ω) = e(ω)†Q−1e(ω).

The function 1/q(ω) can be viewed as a sort of noise power spectrum,
describing how the noise power appears when decomposed over the various
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frequencies in [−π, π). The maximum gain will be large if this noise power
spectrum is relatively small near ω = ω0; however, when the noise is similar
to the signal, that is, when the noise power specrum is relatively large near
ω = ω0, the maximum gain can be small. In this case the noise power
spectrum plays a role analogous to that played by the eigenvalues of Q
earlier.

To see more clearly why it is that the function 1/q(ω) can be viewed
as a sort of noise power spectrum, consider what we get when we apply
the optimal filter associated with ω to data containing only noise. The
average output should tell us how much power there is in the component of
the noise that resembles e(ω); this is essentially what is meant by a noise
power spectrum. The result is b†z = (1/q(ω))e(ω)†Q−1z. The expected
value of |b†z|2 is then 1/q(ω).

Sinusoidal signal - unknown frequency: Again, if we do not know the
value of the signal frequency ω0 a reasonable thing to do is to calculate
the γ̂ for each (actually, finitely many) of the possible frequencies within
[−π, π) and base the detection decision on the largest value. For each ω
the corresponding value of γ̂ is

γ̂(ω) = [1/(e(ω)†Q−1e(ω))]

N
∑

n=1

an exp(inω),

where a = (a1, a2, ..., aN )T satisfies the linear system Qa = x or a =
Q−1x. It is interesting to note the similarity between this estimation pro-
cedure and the PDFT discussed in earlier notes; to see the connection view
[1/(e(ω)†Q−1e(ω))] in the role of P (ω) and Q its corresponding matrix of
Fourier transform values. The analogy breaks down when we notice that
Q need not be Toeplitz, as in the PDFT case; however, the similarity is
intriguing.
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Chapter 34

Random Signal Detection

We consider now the detection and estimation problem for the case in which
the signal components have random aspects as well.

Random amplitude sinusoid in noise:

A somewhat more general model for sinusoids in additive noise is the fol-
lowing. The complex data vector is x = (x1, x2, ..., xN )T . We assume that
there are two possibilities:

Case 1: noise only

xn = zn, n = 1, ..., N,

or

Case 2: signal in noise

xn = γsn + zn,

where γ = |γ| exp(iθ) is an unknown value of a complex random variable
whose magnitude |γ| and phase θ are mutually independent and indepen-
dent of the noise. In this case the mean value of γ can be zero, if θ is
distributed uniformly over [−π, π). The presence of a nonzero signal com-
ponent is detected through the increase in the variance, not through a
nonzero mean value, as above. The calculations are basically the same as
the earlier ones and we shall not consider this case further.

Multiple independent sinusoids in noise:

We mention briefly the case in which there may be more than one sinusoid
present. For this case a random model is typically used, in which the
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magnitudes and phases of the different sinusoids are taken to be mutually
independent. Statistical hypothesis testing theory tells us that we should
detect in two steps now:

1: perform a maximum likelihood estimation of the number and location
(in frequency space) of the sinusoidal components; then

2: use the optimal linear filtering to estimate their respective coefficients,
the γ’s.

The first step is computationally intractible and various suboptimal, but
computationally efficient, alternatives are commonly used. These alterna-
tive methods can involve the eigenvector- or singular value decomposition
of certain matrices formed from the data vector x, and so are nonlinear
procedures. How well we can detect two or more separate signals will, of
course, depend on how distinct their s vectors are, how distinct each is
from the noise, how accurate our knowledge of the noise correlation matrix
Q is, how accurate our model of the s is and on the value of N ; this is
the resolution problem. Our ability to resolve will also depend on the ac-
curacy of the measurements, therefore on the hardware used to collect the
measurements.

Data-adaptive high resolution methods:

In all of the discussion so far, we have assumed that the noise correlation
matrix Q was available to use in forming the optimal filter b. The Q may
depend on data previously obtained or may simply be the result of a model
chosen to describe the physical situation. In some applications, such as
sonar array processing, the Q may vary from minute to minute; it would
be helpful if we could obtain as good an estimate as possible of the current
value of Q, but this would require measurements, at the present moment, of
the noise without the embedded signal, which is impossible. One approach,
due to Capon [46], is a data-adaptive high resolution detection; it has been
used in the case in which there are potentially more than one signal present,
to achieve higher resolution than that obtainable by the methods we have
discussed so far.

Data-adaptive high resolution methods- sinusoidal signals
The idea behind these methods is to use the data vector x to estimate

the noise correlation matrix. Since the vector x may also contain signals, it
would seem that we would be lumping signals in with noise and designing
a filter b to suppress everything. The constraint b†e(ω) = 1 saves us,
however.

Suppose that there are two signals present: then the vector x has com-
ponents

xn = γ1 exp(−inω1) + γ2 exp(−inω2) + zn,
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for n = 1, ..., N . When we are trying to detect e(ω1) it is fine if the e(ω2)
component is viewed as noise, and vice versa. High resolution depends
on what the output of our filter is when we look at a frequency ω that is
between ω1 and ω2; now it is advantageous that the signal components are
lumped in with the noise.

To obtain a substitute for Q we partition the N by 1 data vector x into
K smaller M by 1 vectors, denoted yk, for k = 1, ..., K and N = MK.
Specifically, we let

yk
m = x(k−1)M+m, m = 1, ..., M,

for k = 1, 2, ..., K. We then define the M by M matrix R as follows:

Rjm =
1

K

K
∑

k=1

yk
j yk

m,

for j, m = 1, 2, ..., M . The matrix R is then Hermitian and nonnegative
definite. The signal components involving e(ω1) and e(ω2) are transformed
into shorter components of the form

ẽ(ω) = (exp(−iω), ..., exp(−iMω))T .

To obtain our data-adaptive estimate of the γ of the potential signal com-
ponent ẽ(ω) we apply the optimal filtering, as before, but to each of the
vectors yk separately, using R instead of Q and using ẽ(ω) instead of e(ω).
We then average the squared magnitudes of the resulting estimates over
k = 1, ..., K, to obtain our estimate of the |γ|2 associated with ω.

Capon’s data-adaptive estimator:

|γ̂(ω)|2 = 1/(ẽ(ω)†R−1(ẽ(ω)).

Exercise 1: (or better, Research Project 1.) What is going on here?
Why is this method ‘high resolution’ ? What does R look like? What are
its eigenvalues and eigenvectors? Can we apply it to signals other than
sinusoids? Is it important that the signal coefficients (the γ’s) be random?
What can go wrong? How can it be fixed?
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Chapter 35

The Wave Equation

In this chapter and the next we demonstrate how the problem of Fourier
transform estimation from sampled data arises in the processing of measure-
ments obtained by sampling electromagnetic or acoustic field fluctuations,
as in radar or sonar.

In many areas of remote sensing what we measure are the fluctuations
in time of an electromagnetic or acoustic field. Such fields are described
mathematically as solutions of certain partial differential equations, such
as the wave equation. A function u(x, y, z, t) is said to satisfy the three-
dimensional wave equation if

utt = c2(uxx + uyy + uzz) = c2∇2u,

where utt denotes the second partial derivative of u with respect to the time
variable t twice and c > 0 is the (constant) speed of propagation. More
complicated versions of the wave equation permit the speed of propagation
c to vary with the spatial variables x, y, z, but we shall not consider that
here.

We use the method of separation of variables at this point, to get some
idea about the nature of solutions of the wave equation. Assume, for the
moment, that the solution u(t, x, y, z) has the simple form

u(t, x, y, z) = f(t)g(x, y, z).

Inserting this separated form into the wave equation we get

f ′′(t)g(x, y, z) = c2f(t)∇2g(x, y, z)

or
f ′′(t)/f(t) = c2∇2g(x, y, z)/g(x, y, z).

The function on the left is independent of the spatial variables, while the
one on the right is independent of the time variable; consequently, they
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must both equal the same constant, which we denote −ω2. From this we
have two separate equations,

f ′′(t) + ω2f(t) = 0, (35.1)

and

∇2g(x, y, z) +
ω2

c2
g(x, y, z) = 0. (35.2)

The equation (35.2) is the Helmholtz equation.
Equation (35.1) has for its solutions the functions f(t) = cos(ωt) and

sin(ωt), or, in complex form, the complex exponential functions f(t) = eiωt

and f(t) = e−iωt. Functions u(t, x, y, z) = f(t)g(x, y, z) with such time
dependence are called time-harmonic solutions.

In three-dimensional spherical coordinates with r =
√

x2 + y2 + z2 a
radial function u(r, t) satisfies the wave equation if

utt = c2(urr +
2

r
ur).

Exercise 1: Show that the radial function u(r, t) = 1
r h(r−ct) satisfies the

wave equation for any twice differentiable function h.

Radial solutions to the wave equation have the property that at any
fixed time the value of u is the same for all the points on a sphere centered
at the origin; the curves of constant value of u are these spheres, for each
fixed time.

Suppose at time t = 0 the function h(r, 0) is zero except for r near zero;
that is, initially, there is a localized disturbance centered at the origin. As
time passes that disturbance spreads out spherically. When the radius of a
sphere is very large, the surface of the sphere appears planar, to an observer
on that surface, who is said then to be in the far field. This motivates the
study of solutions of the wave equation that are constant on planes; the
so-called planewave solutions.

Exercise 2: Let s = (x, y, z) and u(s, t) = u(x, y, z, t) = eiωteik·s. Show
that u satisfies the wave equation utt = c2∇2u for any real vector k, so long
as ||k||2 = ω2/c2. This solution is a planewave associated with frequency
ω and wavevector k; at any fixed time the function u(s, t) is constant on
any plane in three dimensional space having k as a normal vector.
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Array Processing

In radar and sonar the field u(s, t) being sampled is usually viewed as a
discrete or continuous superposition of planewave solutions with various
amplitudes, frequencies and wavevectors. We sample the field at various
spatial locations sm, m = 1, ..., M , for t in some finite interval of time.
We simplify the situation a bit now by assuming that all the planewave
solutions are associated with the same frequency, ω. If not, we perform an
FFT on the functions of time received at each sensor location sm and keep
only the value associated with the desired frequency ω.

In the continuous superposition model the field is

u(s, t) = eiωt

∫

f(k)eik·sdk.

Our measurements at the sensor locations sm give us the values

F (sm) =

∫

f(k)eik·smdk,

for m = 1, ..., M . The data are then Fourier transform values of the complex
function f(k); f(k) is defined for all three-dimensional real vectors k, but
is zero, in theory, at least, for those k whose squared length ||k||2 is not
equal to ω2/c2. Our goal is then to estimate f(k) from finitely many values
of its Fourier transform. Since each k is a normal vector for its planewave
field component, determining the value of f(k) will tell us the strength of
the planewave component coming from the direction k.

The collection of sensors at the spatial locations sm, m = 1, ..., M ,
is called an array and the size of the array, in units of the wavelength
λ = 2πc/ω, is called the aperture of the array. Generally the larger the
aperture the better, but what is a large aperture for one value of ω will
be a smaller aperture for a lower frequency. The book by Haykin [84] is a
useful reference, as is the review paper by Wright, Pridham and Kay [148].
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In some applications the sensor locations are essentially arbitrary, while
in others their locations are carefully chosen. Sometimes, the sensors are
collinear, as in sonar towed arrays. Let’s look more closely at the collinear
case.

θ

u

k

array

wavevector

∆ ∆ ∆

uniformly spaced sensor

spacing = ∆

plane wave  fronts

Figure 36.1: A uniform line array sensing a planewave field.

We assume now that the sensors are equispaced along the x-axis, at
locations (m∆, 0, 0), m = 1, ..., M , where ∆ > 0 is the sensor spacing; such
an arrangement is called a uniform line array; this setup is illustrated in
Figure 36.1. Our data is then

Fm = F (sm) = F ((m∆, 0, 0)) =

∫

f(k)eim∆k·(1,0,0)dk.
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Since k · (1, 0, 0) = ω
c cos θ, for θ the angle between the vector k and the

x-axis, we see that there is some ambiguity now; we cannot distinguish the
cone of vectors that have the same θ. It is common then to assume that the
wavevectors k have no z-component and that θ is the angle between two
vectors in the x, y-plane, the so-called angle of arrival. The wavenumber
variable k = ω

c cos θ lies in the interval [−ω
c , ω

c ] and we imagine that f(k)
is now f(k), defined for |k| ≤ ω

c . The Fourier transform of f(k) is F (s), a
function of a single real variable s. Our data is then viewed as the values
F (m∆), for m = 1, ..., M . Since the function f(k) is zero for |k| > ω

c the

Nyquist spacing in s is πc
ω , which is λ

2 , where λ = 2πc
ω is the wavelength.

To avoid aliasing, which now means mistaking one direction of arrival
for another, we need to select ∆ ≤ λ

2 . When we have oversampled, so that

∆ < λ
2 , the interval [−ω

c , ω
c ], the so-called visible region, is strictly smaller

than the interval [− π
∆ , π

∆ ]. If the model of propagation is accurate all
the signal component planewaves will correspond to wavenumbers k in the
visible region and the background noise will also appear as a superposition
of such propagating planewaves. In practice, there can be components in
the noise that appear to come from wavenumbers k outside of the visible
region; this means these components of the noise are not due to distant
sources propagating as planewaves, but, perhaps, to sources that are in
the near field, or localized around individual sensors, or coming from the
electronics within the sensors.

Using the formula λω = 2πc we can calculate the Nyquist spacing for
any particular case of planewave array processing. For electromagnetic
waves the propagation speed is the speed of light, which we shall take here
to be c = 3 × 108 meters per second. The wavelength λ for gamma rays
is around one Angstrom, which is 10−10 meters; for x-rays it is about one
millimicron, or 10−9 meters; the visible spectrum has wavelengths that are
a little less than one micron, that is, 10−6 meters. Shortwave radio has
wavelength around one millimeter; broadcast radio has a λ running from
about 10 meters to 1000 meters, while the so-called long radio waves can
have wavelengths several thousand meters long. At the one extreme it is
impractical (if not physically impossible) to place individual sensors at the
Nyquist spacing of fractions of microns, while at the other end, managing
to place the sensors far enough apart is the challenge.

The wavelengths used in primitive early radar at the start of World War
II were several meters long. Since resolution is proportional to aperture,
which, in turn, is the length of the array, in units of wavelength, antennae
for such radar needed to be quite large. As Körner notes in [102], the
general feeling at the time was that the side with the shortest wavelength
would win the war. The cavity magnetron, invented during the war by
British scientists, made possible 10 cm wavelength radar, which could then
easily be mounted on planes.
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In ocean acoustics it is usually assumed that the speed of propagation
of sound is around 1500 meters per second, although deviations from this
ambient sound speed are significant, and since they are caused by such
things as temperature differences in the ocean, can be used to estimate these
differences. At around the frequency ω = 50 Hz we find sound generated
by man-made machinery, such as motors in vessels, with higher frequency
harmonics sometimes present also; at other frequencies the main sources of
acoustic energy may be wind-driven waves or whales. The wavelength for
50 Hz is λ = 30 meters; sonar will typically operate both above and below
this wavelength. It is sometimes the case that the array of sensors is fixed
in place, so what may be Nyquist spacing for 50 Hz will be oversampling
for 20 Hz.

It is often the case that we are primarily interested in the values |f(k)|,
not the complex values f(k). Since the Fourier transform of the function
|f(k)|2 is the autocorrelation function obtained by convolving the function
F with F , we can mimic the approach used earlier for power spectrum
estimation to find |f(k)|. We can now employ the nonlinear methods such
as Burg’s MEM and Capon’s maximum likelihood method.

In array processing, as in other forms of signal and image processing, we
want to remove the noise and enhance the information-bearing component,
the signal. To do this we need some idea of the statistical behavior of
the noise, we need a physically accurate description of what the signals
probably look like and we need a way to use this information. Much of our
discussion up to now has been about the many ways in which such prior
information can be incorporated in linear and nonlinear procedures. We
have not said much about the important issue of the sensitivity of these
methods to mismatch; that is, What happens when our physical model is
wrong or the statistics of the noise is not what we thought it was? We
did note earlier how Burg’s MEM resolves closely spaced sinusoids when
the background is white noise, but when the noise is correlated, MEM can
degrade rapidly.

Even when the physical model and noise statistics are reasonably ac-
curate, slight errors in the hardware can cause rapid degradation of the
processor. Sometimes acoustic signal processing is performed with sensors
that are designed to be expendable and are therefore less expensive and
more prone to errors than more permanent equipment. Knowing what a
sensor has received is important, but so is knowing when it received it.
Slight phase errors caused by the hardware can go unnoticed when the
data is processed in one manner, but can ruin the performance of another
method.

The information we seek is often stored redundantly in the data and
hardware errors may harm only some of these storage locations, making
robust processing still possible. As we saw in our discussion of eigenvec-
tor methods, information about the frequencies of the complex exponential
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components of the signal are stored in the roots of the polynomials ob-
tained from some of the eigenvectors. In [42] it was demonstrated that, in
the presence of correlated noise background, phase errors distort the roots
of some of these polynomials more than others; robust estimation of the
frequencies is still possible if the stable roots are interrogated.

We have focused here exclusively on planewave propagation, which re-
sults when the source is far enough way from the sensors and the speed of
propagation is constant. In many important applications these conditions
are violated, different versions of the wave equation are needed, which have
different solutions. For example, sonar signal processing in environments
such as shallow channels, in which some of the sound reaches the sensors
only after interacting with the ocean floor or the surface, requires more
complicated parameterized models for solutions of the appropriate wave
equation. Lack of information about the depth and nature of the bottom
can also cause errors in the signal processing. In some cases it is possi-
ble to use acoustic energy from known sources to determine the needed
information.

Array signal processing can be done in passive or active mode. In passive
mode the energy is either reflected off of or originates at the object of
interest: the moon reflects sunlight, while ships generate their own noise.
In the active mode the object of interest does not generate or reflect enough
energy by itself, so the energy is generated by the party doing the sensing:
active sonor is sometimes used to locate quiet vessels, while radar is used to
locate planes in the sky or to map the surface of the earth. In the February
2003 issue of Harper’s is an article on scientific apocalypse, dealing with
the search for near-earth asteroids. These objects are initially detected
by passive optical observation, as small dots of reflected sunlight; once
detected, they are then imaged by active radar to determine their size,
shape, rotation and such.
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Chapter 37

Transmission Tomography

In this chapter we show how the two dimensional Fourier transform arises
in transmission tomographic image processing. See the texts [115] and [116]
for more detailed discussion of these matters.

As an x-ray beam passes through the body it encounters various types
of matter, soft tissue, bone, ligaments, air, each weakening the beam to a
greater or lesser extent. If the strength of the beam upon entry is Sin and
Sout is its lesser strength after passing through the body, then

Sout = Sine
−

∫

L
f
,

where f = f(x, y) ≥ 0 is the attenuation function describing the two-
dimensional distribution of matter within the slice of the body being scanned
and

∫

L
f is the integral of the function f over the line L along which the

x-ray beam has passed. From knowledge of Sin and Sout we can determine
∫

L
f . As we shall see, if we know

∫

L
f for every line in the x, y-plane we

can reconstruct the attenuation function f . In actual computer-assisted to-
mography (CAT) scans we know line integrals only approximately and only
for finitely many lines. Figure 37.1 illustrates the situation. In practice the
function f is replaced by a grid of pixels, as shown in Figure 37.2.

Let θ be a fixed angle in the interval [0, π) and consider the rotation of
the x, y coordinate axes to produce the t, s axis system, where

t = x cos θ + y sin θ,

and

s = −x sin θ + y cos θ.

We can then write the attenuation function f as a function of the variables
t and s. For each fixed value of t we compute the integral

∫

f(x, y)ds,
obtaining the integral of f(x, y) = f(t cos θ − s sin θ, t sin θ + s cos θ) along
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the single line L corresponding to the fixed values of θ and t. We repeat
this process for every value of t and then change the angle θ and repeat
again. In this way we obtain the integrals of f over every line L in the
plane. We denote by rf (θ, t) the integral

rf (θ, t) =

∫

L

f(x, y)ds.

The function rf (θ, t) is called the Radon transform of f .
For fixed θ the function rf (θ, t) is a function of the single real variable

t; let Rf (θ, ω) be its Fourier transform. Then

Rf (θ, ω) =

∫

(

∫

f(x, y)ds)eiωtdt,

which we can write as

Rf (θ, ω) =

∫ ∫

f(x, y)eiω(x cos θ+y sin θ)dxdy = F (ω cos θ, ω sin θ),

where F (ω cos θ, ω sin θ) is the two-dimensional Fourier transform of the
function f(x, y), evaluated at the point (ω cos θ, ω sin θ); this relationship
is called the central slice theorem. For fixed θ as we change the value of ω we
obtain the values of the function F along the points of the line making the
angle θ with the horizontal axis. As θ varies in [0, π) we get all the values
of the function F . Once we have F we can obtain f using the formula for
the two-dimensional inverse Fourier transform. We conclude that we are
able to determine f from its line integrals.

The inversion formula tells us that the function f(x, y) can be obtained
as

f(x, y) =
1

4π2

∫ ∫

F (u, v)e−i(xu+yv)dudv.

Expressing the double integral in polar coordinates (ω, θ), with ω ≥ 0,
u = ω cos θ and v = ω sin θ, we get

f(x, y) =
1

4π2

∫ 2π

0

∫ ∞

0

F (u, v)e−i(xu+yv)ωdωdθ,

or

f(x, y) =
1

4π2

∫ π

0

∫ ∞

−∞
F (u, v)e−i(xu+yv)|ω|dωdθ.

Now write
F (u, v) = F (ω cos θ, ω sin θ) = Rf (θ, ω),

where Rf (θ, ω) is the FT with respect to t of rf (θ, t) so that

∫ ∞

−∞
F (u, v)e−i(xu+yv)|ω|dω =

∫ ∞

−∞
Rf (θ, ω)|ω|e−iωtdω.
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The function hf (θ, t) defined for t = x cos θ + y sin θ by

hf (θ, x cos θ + y sin θ) =

∫ ∞

−∞
Rf (θ, ω)|ω|e−iωtdω

is the result of a linear filtering of rf (θ, t) using a ramp filter with transfer
function G(ω) = |ω|. Then

f(x, y) =

∫ π

0

hf (θ, x cos θ + y sin θ)dθ

gives f(x, y) as the result of a backprojection operator; for every fixed value
of (θ, t) add hf (θ, t) to the current value at the point (x, y) for all (x, y)
lying on the straight line determined by θ and t by t = x cos θ+y sin θ. The
final value at a fixed point (x, y) is then the sum of all the values hf (θ, t)
for those (θ, t) for which (x, y) is on the line t = x cos θ + y sin θ. It is
therefore said that f(x, y) can be obtained by filtered backprojection (FBP)
of the line integral data.

Knowing that f(x, y) is related to the complete set of line integrals by
filtered backprojection suggests that when only finitely many line integrals
are available a similar ramp filtering and backprojection can be used to
estimate f(x, y); in the clinic this is the most widely used method for the
reconstruction of tomographic images.

There is a second way to recover f(x, y) using backprojection and fil-
tering, this time in the reverse order; that is, we backproject the Radon
transform and then ramp filter the resulting function of two variables. We
begin again with the relation

f(x, y) =
1

4π2

∫ 2π

0

∫ ∞

0

F (u, v)e−i(xu+yv)ωdωdθ,

which we write as

f(x, y) =
1

4π2

∫ 2π

0

∫ ∞

0

F (u, v)√
u2 + v2

√

u2 + v2e−i(xu+yv)ωdωdθ

=
1

4π2

∫ 2π

0

∫ ∞

0

G(u, v)
√

u2 + v2e−i(xu+yv)ωdωdθ, (37.1)

using

G(u, v) =
F (u, v)√
u2 + v2

for (u, v) 6= (0, 0). Equation (37.1) expresses f(x, y) as the result of ramp
filtering g(x, y), the inverse Fourier transform of G(u, v). We show now
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that g(x, y) is the backprojection of the function rf (ω, t); that is, we show
that

g(x, y) =

∫ π

0

rf (θ, x cos θ + y sin θ)dθ.

From the central slice theorem we know that g(x, y) can be written as

g(x, y) =

∫ π

0

hg(θ, x cos θ + y sin θ)dθ,

where

hg(θ, x cos θ + y sin θ) =

∫ ∞

−∞
Rg(θ, ω)|ω|e−iω(x cos θ+y sin θ)dω.

Since
Rg(θ, ω) = G(ω cos θ, ω sin θ)

we have

g(x, y) =

∫ π

0

∫ ∞

−∞
G(ω cos θ, ω sin θ)|ω|e−iω(x cos θ+y sin θ)dωdθ

=

∫ π

0

∫ ∞

−∞
F (ω cos θ, ω sin θ)e−iω(x cos θ+y sin θ)dωdθ

=

∫ π

0

∫ ∞

−∞
Rf (θ, ω)e−iω(x cos θ+y sin θ)dωdθ

=

∫ π

0

rf (θ, x cos θ + y sin θ)dθ.

This is what we wanted.
We have found that the recovery of f(x, y) from its line integrals can

be accomplished using filtering and backprojection in two different ways:
one way is to filter the function rf (θ, t), viewed as a function of t, with a
ramp filter, then backproject; the other way is to backproject rf (θ, t) first
and then filter the resulting function of two variables with a ramp filter in
two dimensions. Both of these filtered backprojection methods have their
analogs in the processing of actual finite data.

As we noted above, in actual CAT scans only finitely many θ are used
and for each θ only finitely many t are employed. Therefore at each step
along the way we are dealing only with approximations of what the theory
would provide. In addition to that, the data we have are not exactly line
integrals of f but more precisely integrals of f along narrow strips.

Although the one and two dimensional Fourier transforms do play roles
in CAT scan imaging there are better reconstruction methods based on
iterative algorithms such as ART and the EMML.
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Figure 37.1: The Radon transform of f at (t, θ) is the line integral of f
along line L.
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Figure 37.2: The Radon transform for a discretized object.



Chapter 38

Resolution Limits

We began in the introductory chapter by saying that our data has been
obtained through some form of sensing; physical models, often simplified,
describe how the data we have obtained relates to the information we seek;
there usually isn’t enough data and what we have is corrupted by noise
and other distortions. All of the models and algorithms we have considered
have as their aim the overcoming of this inherent problem of limited data.
But just how limited is the data and in what sense limited? After all,
if Burg’s maximum entropy method (MEM) resolves peaks that are left
unresolved by the DFT, the problem would seem to lie not with the data,
which must still retain the desired information, but with the method used.
When Burg’s MEM produces incorrect reconstructions in the presence of a
background that is not flat, but the IPDFT is able to use an estimate of the
background to provide a better answer, is it the data or the method that is
limiting? On the other hand, when we say MEM has produced an incorrect
answer what do we mean? We know that MEM gives a positive estimate of
the power spectrum that is exactly consistent with the autocorrelation data;
it is only incorrect because we know the true spectrum, having created it in
our simulations. Such questions concern everyone using inversion methods,
and yet have no completely satisfying answers. Bertero’s paper [8] is a
good place to start one’s education in these matters. In this chapter we
consider some of these issues, in so far as they concern the methods we
have discussed in this text.

The DFT:

The exercise following our discussion of the second approach to signal anal-
ysis uses the DFT to illustrate the notion of resolution limit. The signal
there was the sum of two sinusoids, at frequencies ω1 = −α and ω2 = α.
As the α approached zero resolution in the DFT was eventually lost; for
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larger data lengths the α could be smaller before this happened. We know
from successful application of high-resolution methods that this does not
mean that the information about the two sinusoids has been lost. What
does it mean?

The DFT shows up almost everywhere in signal processing. As a fi-
nite Fourier series it can be viewed as a best approximation of the infinite
Fourier series; as a matched filter it is the optimal linear method for detect-
ing a single sinusoid in white noise. However, it is not the optimal linear
method for detecting two sinusoids in white noise. If we know that the sig-
nal is the sum of two sinusoids (with equal amplitudes, for now) in additive

white noise, the optimal linear filter is a matched filter of the form e†
αβd,

where d is the data vector and eαβ is the data we would have received
had the signal consisted solely of eiαt + eiβt. The output of the matched
filter is a function of the two variables α and β. We plot the magnitude
of this function of two variables and select the pair for which the magni-
tude is greatest. If we apply this procedure to the signal in the exercise
we would find that we could still determine that there are sinusoids at α
and β = −α. The DFT manages to resolve sinusoids when they are far
enough apart to be treated as two separate signals, each with a single sinu-
soid. Otherwise, the DFT is simply not the proper estimate of frequency
location for multiple sinusoids. A proper notion of resolution limit should
be based on something other than the behavior of the DFT in the presence
of two sinusoids.

Bandlimited extrapolation reconsidered:

Suppose we want to estimate the function F (ω), known to be zero for
|ω| > Ω, where 0 < Ω < π. Our data will be samples of the inverse
Fourier transform, f(x). Suppose, in addition, that we are able to select
our finitely many samples only for x within the bounded interval [0, X],
but are otherwise unrestricted; that is, we can take as many samples at
whichever x values we wish. What should we do?

Shannon’s sampling theorem tells us that we can reconstruct F (ω) ex-
actly if we know the values f(n π

Ω ) for all the integers n. Then we have

F (ω) =
π

Ω

∑∞

n=−∞
f(n

π

Ω
)ein π

Ω
ω.

The sampling rate of ∆ = π
Ω is the Nyquist rate and the doubly infinite

sequence of samples at this rate is all we need. But, of course, we can-
not actually measure infinitely many values of f(x). Furthermore, we are
restricted to the interval [0, X]. If

(N − 1)
π

Ω
≤ X < N

π

Ω
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then there are N Nyquist samples available within the interval [0, X]. Some
have concluded that the sampling theorem tells us that we can do no better
than to take the N samples f(n π

Ω ), n = 0, 1, ..., N − 1, that we have N
degrees of freedom in selecting data from within the interval [0, X] and
our freedom is thus exhausted when we have taken these N samples. The
questions are: Can we do better? and Is there a quantifiable limit to our
freedom to extract information under these restrictions? If someone offered
to give you the value of f(x) at one new point x within the interval [0, X],
would you take it?

No one would argue that the N Nyquist samples determine completely
the values of f(x) for the remaining x within the interval [0, X]. The
problem is more how to use this new data value. The DFT

FDFT (ω) =
π

Ω
χΩ(ω)

∑N−1

n=0
f(n

π

Ω
)ein π

Ω
ω

is zero outside the interval [−Ω,Ω], is consistent with the data and therefore
could be the right answer. If we are given the additional value f(a) the
estimate

π

Ω
χΩ(ω)[f(a)eiaω +

∑N−1

n=0
f(n

π

Ω
)ein π

Ω
ω]

is not consistent with the data.
Using the non-iterative bandlimited extrapolation estimate given in

equation (19.7) we can get an estimate with is consistent with this no
longer uniformly spaced data as well as with the band limitation. So it is
possible to make good use of the additional sample offered to us; we should
accept it. Is there no end to this, however? Should we simply take as many
samples as we desire, equispaced or not? Is there some limit to our freedom
to squeeze information out of the behavior of the function f(x) within the
interval [0, X]? The answer is Yes, there are limits, but the limits depend
in sometimes subtle ways on themethod being used and the amount and
nature of the noise involved, which must include round-off error and quan-
tization. Let’s consider this more closely, with respect to the non-iterative
bandlimited extrapolation method.

As we saw earlier, the non-iterative Gerchberg-Papoulis bandlimited
extrapolation method leads to the estimate

FΩ(ω) = χΩ(ω)
∑M

m=1

1

λm
(um)†dUm(ω),

where d is the data vector. In contrast, the DFT estimate is

FDFT (ω) =
∑M

m=1
(um)†dUm(ω).

The estimate FΩ(ω) can provide better resolution within the interval [−Ω,Ω]
because of the multiplier 1/λm, causing the estimate to rely more heavily on
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those functions Um(ω) having more roots, therefore more structure, within
that interval. But therein lies the danger, as well.

When the data is noise-free the dot product (um)†d is relatively small
for those eigenvectors um corresponding to the small eigenvalues; therefore
the product (1/λm)(um)†d is not large. However, when the data vector d
contains noise, the dot product of the noise component with each of the
eigenvectors is about the same size. Therefore, the product (1/λm)(um)†d
is now quite large and the estimate is dominated by the noise. This sensi-
tivity to the noise is the limiting factor in the bandlimited extrapolation.
Any reasonable definitions of degrees of freedom and resolution limit must
include the signal-to-noise ratio, as well as the fall-off rate of the eigenval-
ues of the matrix. In our bandlimited extrapolation problem the matrix
is the sinc matrix. The proportion of nearly zero eigenvalues will be ap-
proximately 1 − Ω

π ; the smaller the ratio Ω
π the fewer essentially nonzero

eigenvalues there will be. For other extrapolation methods, such as the
PDFT, the fall-off rate may be somewhat different. For analogous meth-
ods in higher dimensions the fall-off rate may be quite different [8].

High-resolution methods:

The bandlimited extrapolation methods we have studied are linear in the
data, while the high-resolution methods are not. The high-resolution meth-
ods we have considered, such as MEM, Capon’s method, the IPDFT and
the eigenvector techniques, exploit the fact that the frequencies of sinu-
soidal components can be associated with the roots of certain polynomials
obtained from eigenvectors of the autocorrelation matrix. When the roots
are disturbed by phase errors or are displaced by the presence of a non-
flat background, the methods that use these roots perform badly. As we
mentioned earlier, there is some redundancy in the storage of information
in these roots and stable processing is still possible in many cases. Not
all the eigenvectors store this information and a successful method must
interrogate the ones that do. Additive white noise causes MEM to fail by
increasing all the eigenvalues, but does not hurt explicit eigenvector meth-
ods. Correlated noise that cannot be effectively prewhitened hurts all these
methods, by making it more difficult to separate the information-bearing
eigenvectors from the others. Correlation between sinusoidal components,
as may occur in multipath arrivals in shallow water, causes additional dif-
ficulty, as does short data length, which corrupts the estimates of the au-
tocorrelation values.
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la dilatabilité de fluides élastiques et sur celles de la force expansion
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