Chapter 9: Atomic Absorption &
Atomic Fluorescence Spectrometry

« Sample Atomization
» Atomic Absorption (AA)
* Atomic Fluorescence (AF)

- Both AA and AF require a light source

- Like Molecular Absorption & Fluorescence,
in AA high intensity is NOT required, in AF
high intensity results in greater sensitivity
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Sample introduction for solutions:
1) Pneumatic nebulizers
2) Ultrasonic nebulizers
3) Electrothermal vaporizers
4) Hydride generation
3BH, + 3H"* + 4 H,AsO,; >
3 H;BO; + 4 AsH, + 3 H,0

5) Cold vapor generation

Hg?* + Sn** > Hg® + Sn#
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Figure 9-6 (a) ﬁunu?mmnnon& view of a graphite furnace. (Courtesy of the Perkin-Elmer Cor-
poration, Nerwalk, CT,) (b) The L'vov platform and its position in the graphite furnace.
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Figure 9-9 A hydride generation and atomization system

for atomic absorption spectrometry.
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Interferences in AA can be

» Spectral — atomic spectral lines overlap or
are too close to resolve — these are rare &
generally well known or characterized

« Matrix — scattering of radiation during
atomization (smoke), enhancement by
matrix elements, structured background —
handled by background correction

* Chemical — reactions that take place to
alter the analyte (like Ca atoms reacting
with PO, to form a new species) — change
conditions



Background Correction in AA
* Two-Line correction (not very common)

» Continuous source correction (very
common)

« Zeeman background correction (common
for graphite furnace instruments)

« Smith-Hieftje correction (relatively new ‘83)
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Figure 9-10 Absorption of a resonance line by atoms.



7 Normally assume baseline is flat
not structured. In the absence
| of peak would have flat baseline

Peak height easily measured

What if baseline is sloped?
How is peak height measured?

" & here Need measurement of baseline

here

What if the baseline is really a mess?

Use Background Correction
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Figure 9-10 Absorption of a resonance line by atoms.

The AA source

(HCL or EDL) tells
us the absorbance
at the A of interest

Using another light
source will allow us

to determine the
background absorbance

Typically we are
interested in points on
either side of the peak
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Figure 9-14 Schematic of a continuum-source back-
ground correction system. Note that the chopper can be
dispensed with by alternately pulsing each lamp.
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The Zeeman effect splits the absorption peak in a magnetic
field & shifts absorption to higher & lower wavelength. The

new absorption peaks interact differently with polarized light
allowing analyte & background absorbance to be measured
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Figure 9-15 5chematic of an electrothermal atomic absorption instrument that pro-
vides a background correction based upon the Zeeman effect. (Courtesy of Hitachi Scientifi
Instruments, Mountain View, CA.)



The Smith-Hieftje technique splits the HCL line
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Figure 9-16 Emission line profiles for a hollow-cathode
lamp operated at high and low currents.



Another type of matrix interference not alleviated by
background correction involves variable amounts of
analyte ionization in flames or plasmas

TABLE 9-2 Degree of lonization of Metals at Flame Temperatures*

Fraction lonized at the Indicated Pressure
and Temperature

lonization p = 10"%atm p = 10% atm

Potential, —
Element eV 2000 K 3500 K 2000 K 3500 K
Cs 3.893 0.01 0.86 0.11 >(.99 |
Rb 4.176 0.004 0.74 0.04 =>0.99 :
K 4.339 0.003 0.66 0.03 0.99 |
Na 5.138 0.0003 0.26 0.003 \ 0.90 J
Li 5.390 0.0001 0.18 0.001 0.82 |
Ba 5.210 0.0006 041 0.006 0.95 |
Sr 5.692 0.0001 0.21 0.001 0.87 |
Ca 6.111 3x10°° .11 0.0003 0.67 |
Mg 7.644 4 X 1077 (.01 4 % 1076 0.09 |'

*Data from B. L. Vallee and R, E. Thiers, in Treatise on Analyical Chemistry, 1. M. Kolthoff and P, I, Elving, Eds., Part I, Vol. 6, p. 3500. New York: Interscience,

1965. Reprinted with permission of John Wiley & Sons, Inc
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Figure 9-17 Effect of potassium concentration on the
calibration curve for strontium. (Reprinted with permmssion from
I. A. Bowman and |. B. Willis, Anal. Chem., 1967, 39, 1220. Copyright
1967 American Chemical Society.)

One other
factor (other
than temp.)
that influences
degree of
lonization is the
presence of
another easily
lonized
species. Here
K enhances the
Sr AA signal by
suppressing Sr
lonization



Atomic Fluorescence — use an intense light
source to excite AF of elements in a flame
or plasma.



TABLE 9-3 Detection Limits (ng/mL)* for Selected Elements¥

AASE AASS AESE AESE AFSE
Element Flame Electrothermal Flame ICP Flame
Al 30 0.005 5 2 5
As 100 0.02 0.0005 40 100
Ca ] 0.02 0.1 0.02 0.001
Cd 1 0.0001 800 2 0.01
Cr 3 0.01 4 0.3 4
Cu 2 0.002 10 0.1 1
Fe 5 0.005 30 0.3 8
Hg 500 0.1 0.0004 1 20
Mg 0.1 0.00002 5 0.05 1
Mn 2 0.0002 5 0.06 2
Mo 30 0.005 100 0.2 60
Na 2 0.0002 0.1 0.2 —_
Ni 5 0.02 20 0.4 3
Pb 10 0.002 100 2 10
Sn 20 0.1 300 30 50
\ 20 0.1 10 0.2 70
Zn 2 0.00005 0.0005 2 0.02

*Nanogram/milliliter = 102 we/ml = 10~3 ppm.




Chapter 10: Emission Spectroscopy
Using Plasmas, Arcs or Sparks

* Inductively Coupled Plasma (ICP)
* Direct Current Plasma (DCP)
* Arcs and Sparks
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Figure 10-5 A three-electrode dc plasma jet. (Courtesy of
Spectra Metrics, Inc. Haverhill, MA.)
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Figure 10-7 Schematic of an echelle polychromator system.
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Figare 10-9 Optical diagram of an echelle spectrometer with a charge-injection detector.
(From R. B. Bilhorn and M. B. Denton, Appl. Spectrosc., 1990, 44, 1615. With permission.)
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Figure 10-8 Schematic of an ICP polychromator. (Courtesy of Thermo Jarrell Ash Corp.)
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Figure 10-11 An echelle spectrometer with segmented array of charge-coupled devices. (From
T. W. Barmard et al., Anal. Chem., 1993, 65, 1232. With permission.)



Characterization of the Detection Power of ICP-AES
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Figure 10-13 Periodic table characterizing the detection power and number
of useful emission lines of ICP by employing a pneumatic nebulizer. The degree
of shading indicates the range of detection limits for the useful lines. The area
of shading indicates the number of useful lines.
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Figure 10-14 Typical calibration curves. (From V. A, Fassel
and R. N. Kniseley, Anal. Chem., 1974, 46, 1117A. With permission.)
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Figure 10-15 Calibration curves with an inductively

coupled plasma source. Here, an yttrium line at 242.2 nm
served as an internal standard. Notice the lack of interele-
ment interference. From V. A. Fassel, Science, 1978, 202, 187.
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Figure 10-19 A three-channel photometer for monitoring emission by K, Li, and Na. (From
J. D. Ingle Jr. and 8. R. Crouch, Spectrochemical Analysis, p. 254. Englewood Cliffs, NJ: Prentice-Hall, 1988. With

permission.)



TABLE 10-1 Desirable Properties of an Emission
Spectrometer

1. High resolution (0.01 nm or A/AX > 100,000)

2. Rapid signal acquisition and recovery
3. Low stray light

4. Wide dynamic range (>>109)

5.

Accurate and precise wavelength identification and
selection

6. Precise intensity readings (<1% RSD at 500 X the
detection limit)

7. High stability with respect to environmental changes
8. Easy background corrections

9. Computerized operation: readout, storage data
manipulation, etc.




ABLE 10-2 Effect of Standardization Frequency on Precision of ICP Data*

Relative Standard Deviation, %
Frequency of Concentration Multiple above Detection Limit
Recalibration, hr 10! to 102 102 to 103 103 to 104 10% to 10°
0.5 3-7 1-3 1-2 1.5-2
2 5-10 2-6 1.5-2.5 2-3
8 8-15 3-10 3-1 4-8

ta from: R. M. Bames, in Applications of Inductively Coupled Plasmas to Emission Spectroscopy, R. M. Bamnes, Ed., p. 16. Philadelphia: The Franklin Institute
ress, 1978. With permission.




LE 10-3 Comparison of Detection Limits for Several Atomic Spectral Methods*

Number of Elements Detected at Concentrations of

<1 ppb 1-10 ppb 11-100 ppb 101-500 ppb >500 ppb
4 ly coupled plasma emission 9 32 14 6 0
2 atomic emission 4 12 19 6 19
e atomic fluorescence 4 14 16 4 6
atomic absorption 1 14 25 3 14

.w. its correspond to a signal that is twice as great as the standard deviation for the background noise. Data abstracted with permission from V. A. Fassel
LN Kniseley, Anal. Chem., 1974, 46(13), 1111A, Copyright 1974 American Chemical Society,









