17.383 Microprocessors A
Lab 5
Fall 2010

Assembly Language Introduction Using the PIC16F684 Microcontroller

Objectives

1) To use MPLAB IDE software and the PICkit ™ 1 demonstrate the following:

a. Develop Assembly language code such that an LED on the PICkit ™ 1 flashes
b. Develop Assembly language code such that two LEDs on the PICkit ™ 1 flash
c. Develop Assembly language code for digital input

Materials

Computer (PC) with an available USB Port

MPLAB IDE and HI-Tech PICC Lite software installed on PC
PICKkit ™ 1 with USB cable

PIC16F684 — supplied with PICkit ™ 1 Starter Kit
Oscilloscope

Oooo0ooOono
N e

WARNINGS AND PRECAUTIONS

1) Never remove the PIC16F684 from an energized circuit
2) Do not construct circuits while energized

3) Follow electrical safety precautions

Page 1 of 11

17.383 Microprocessors A
Lab 5
Fall 2010

Source File Locations
1) HI-TECH Universal Toolsuite
O HI-TECH ANSI C Compiler
C:\Program Files\HI-TECH Softwarel9. 70\bin\picc.exe
2) Microchip MPASM Toolsuite
0O MPASM Assembler (mpasmwin.exe)
C:\Program Files\Microchip\MPASM Suite\mpasmwin.exe
0O MPLINK Object Linker (mplink.exe)
C:\Program Files\Microchip\MPASM Suite\mplink.exe
0 MPLIB Librarian (mplib.exe)

C:\Program Files\Microchip\MPASM Suite\mplib.exe

Background Information

Thus far we have been developing code written in a high level language, C. We have
performed various tasks utilizing the C language including flashing LEDs, monitoring for
switch actions, analog to digital conversions, etc.

We will explore assembly language. The differences between C and assembly are in the
basic statements and how they are used to create applications. The flow of the code is
the same. Assembly language is no more difficult than C. Assembly code tends to be
longer due to the need to do smaller tasks. C commands do many steps at a time.
Assembly commands will do one small step at a time.

Assembly language utilizes an assembler, which converts an assembly language program
into a file that will be utilized by the programmer to produce the actual code that will be
“burned” into the device. The assembler is analogous to the compiler that converts C
into the same type code. The assembler we will use is the MPASM, which is built into the
MPLAB IDE. You should recall that PICC, which was what we used for C programs, was
not built into MPLAB IDE.

The MPASM assembler is a full-featured, universal macro assembler for all PICmicro
MCUs. The MPASM assembler features include:

Page 2 of 11

17.383 Microprocessors A
Lab 5
Fall 2010

Integration into MPLAB IDE project

User defined macros to streamline assembly code

Conditional assembly for multi-purpose source files

Directives that allow complete control over the assembly process

This lab introduces the assembly language by utilizing some of the past labs written in C.

Pre-Lab Preparation

o Examine the provided code and understand how the commands are utilized

o Develop the required code as outlined in the procedural steps

Procedure

Experiment 1. CREATING MPASM PROJECT

a.

In this portion of the Lab we will write code in assembly language to flash
DO on the PICkit 1 Starter Kit.

. Start MPLAB IDE

Within MPLAB IDE, create a new file by typing in the code provided in
Figure 1.

IMPORTANT — to understand how the code is constructed, which
columns it needs to be placed in, etc, you will retype the code. Do
not copy and paste. For convenience, the Code is also located on the
Course Web page as Flash_DO.txt

. Save the file as Lab_5A.asm

Create a new project. Call the project Lab_Five and put it in the following
directory:

C:\Student Data Area Drive C
Set the Language Toolsuite to:

Microchip MPASM Toolsuite

Page 3 of 11

j-

17.383 Microprocessors A
Lab 5
Fall 2010

. Add Lab_5A.asm as the Source File

. Build the project. You should receive a Build Succeeded message. If not,

go back and determine the cause of the error(s) by looking at the error

messages

NOTE: You will receive the following warning

Message[302] C:\STUDENT DATA AREA DRIVE C\FLASH_DO.ASM 48
- Register in operand not in bank 0. Ensure that bank bits are
correct.

This message is just a warning and is not a problem. The following
is the definition of the message (From MPASM Assembler Guide):

302 Register in operand not in bank 0. Ensure that
bank bits are correct.

This is a commonly seen reminder message to tell you that a
variable that is being accessed in not in bank 0. This message
was added to remind you to check your code, particularly
code in banks other than 0. Review the section on banksel
(Section 4.7 “banksel — Generate Bank Selecting
Code”) and bankisel (Section 4.6 “bankisel — Generate
Indirect Bank Selecting Code (PI1C12/16 MCUs)”) and
ensure that your code uses bank bits whenever changing
from ANY bank to ANY other bank (including bank 0).

Since the assembler or linker can't tell which path your code
will take, you will always get this message for any variable not
in bank 0. You can use the errorlevel command to turn this
and other messages on and off, but be careful as you may
not spot a banking problem with this message turned off. For
more about errorlevel, see Section 4.29 “errorlevel — Set
Message Level”.

A similar message is 306 for paging.

Use the animate feature of the simulator. Watch the Code execute paying
particular attention to the delay routines.

QUESTION: What is the actual delay time?

Page 4 of 11

k.

17.383 Microprocessors A
Lab 5
Fall 2010

After you verify that the code is executing properly. Connect the PICKit to
the computer and program the device.

The LED will appear as though it is always on due to the short delay that
we have utilized.

. OPTIONAL: To verify that the LED is in fact turning on and off, connect

an oscilloscope to the circuit.

. When the software and hardware are operating properly, notify the

instructor so it can be observed.

Insert a copy of your code, Lab_5A.asm at the end of the lab report in the
space provided as well as email a copy.

Experiment 2. DELAY ROUTINE USING TMRO

a.

The delay routine in Experiment 1 does not produce a sufficient amount
delay so that visually we can see that the LED actually turns on and shuts
off. In this section we will add a delay routine that is written around the
use of the TMRO timer of the PIC16F684.

Replace the current delay code in Lab_5A with the Code shown in Figure 2.
Save this new Code as Lab_5B.asm.

Use the animate feature of the simulator. Watch the Code execute paying
particular attention to the delay routines.

. QUESTION: Using the features of the simulator, what is the actual delay

time?

After you verify that the code is executing properly. Connect the PICKit to
the computer and program the device.

The LED will now be flashing.

. When the software and hardware are operating properly, notify the

instructor so it can be observed.

Insert a copy of your code, Lab_5B.asm at the end of the lab report in the
space provided as well as email a copy.

Page 5 of 11

17.383 Microprocessors A
Lab 5
Fall 2010

Experiment 3. FLASHING TWO LEDs

a. Alter the assembly language code developed in Experiments 1 and 2 such
that D3 and D7 flash (i.e. D3 will come on, go off, D7 comes on, goes off,
and then repeat the sequence). You may need to add more delay to you
code in order to see the alternating lights. Ensure that you include the
header information as shown in Figure 3. Save your code as Lab_5C.asm

b. When the software and hardware are operating properly, notify the
instructor so it can be observed.

c. Insert a copy of your code, Lab_5C.asm at the end of the lab report in the
space provided as well as email a copy.
Experiment 4. ASSEMBLY LANGUAGE AND DIGITAL SWITCH INTERFACE

a. Review the schematic in Figure 4 and determine how the PICKIT1 Starter
kit pushbutton switch (SW1) is connected to the PIC16F684.

b. Create assembly language code that will perform as follows:
1. When the switch is off, all of the LEDs will be off.

2. When the switch is on, D5 LED will be on. Schematic for the LEDs is
shown in Figure 5.

3. When the switch is release, D5 LED will go out.
4. The code will contain the following:

Write the code in assembly language.

The header information as shown in Figure 3

Include the “p16f684.inc” file

Include the proper configuration word at the proper location
Initialize PORTA to zero

Turn off the comparators

Turn off ADCs

@000 o

c. Save the program as “c:\ Student Data Area Drive C\Lab_5D.asm”

d. Burn the code into your PIC16F684 microcontroller and verify that your
hardware is functioning as planned.

Page 6 of 11

17.383 Microprocessors A
Lab 5
Fall 2010

e. When the software and hardware are operating properly, notify the
instructor so it can be observed.

f. Insert a copy of your code, Lab_5D.asm at the end of the lab report in the
space provided as well as email a copy.

Summary:

This lab provided an introduction to assembly language as well as an introduction to the
Timer O feature of the PIC 16F684.

Questions:

1. Answer the questions throughout the lab.

2. Ensure that you have recorded all the data requested during the lab as well as
provide the requested printouts.

Page 7 of 11

17.383 Microprocessors A
Lab 5
Fall 2010

Figure 1 — Flash DO Assembly Code

title “Flash_DO.asm — Flash DO LED”

Program File Name: Lab_XA.c

Program Title: XXXX

Microprocessors A 17.383

XXXXXXXX — Put in Semester (i.e. Fall 2010) here
XXXXXXXX — Put in your name here

XX/xx/xx - Put date here

list r=dec
#include "pl16f684.inc"

__CONFIG _FCMEN_OFF & _IESO_OFF & _BOD_OFF & _CPD _OFF & _CP_OFF & _MCLRE_OFF &
_PWRTE_ON & _WDT_OFF & _INTOSCIO

; Defining constants or variables in data memory space

Cblock 0x20 ; start of GPR
count :
endc ; This directive must be

; supplied to terminate the
; cblock list

e main program --------——---——-
org 0x000 ; Hex address 0x000, the first
; program memory location
étart BCF STATUS, RPO ; Select Bank 0O
’ CLRF PORTA ; Initialize PORTA (to all zeros)
| MOVLW 7 . Load w with 7
MOVWF CMCONO ; Load CMCONO with 7
; Turns off comparators
’ BSF STATUS, RPO ; Select Bank 1
’ CLRF ANSEL ; Shut off ADC (digital 1/0)
’ MOVLW b"001111°F ; Load w — RA4 and RA5 outputs
MOVWF TRISA ; copy w to TRIS PORTA
’ BCF STATUS,RPO ; Select Bank 0
Loop BSF PORTA, 4 ; Make RA4 high -- DO ON
CALL Delay ; Goto the delay routine
’ BCF PORTA, 4 ; Make RA4 low -- DO OFF
’ CALL Delay ; Goto the delay routine

Page 8 of 11

17.383 Microprocessors A

Lab 5
Fall 2010

GOTO Loop ; Do it again
; ——- Start of delay routine --———————————————————
;Delay MOVLW 10 ; Decimal 10
; MOVWF count ; Initialize counter to 10
;Repeat DECFSZ count, f ; Decrement counter
; GOTO Repeat ; If counter <> O
; RETURN ; 1T counter = 0 (end delay)
;-—- End of delay routine --———————————————
“end

Figure 2 — TMRO Delay Routine

--- New Delay Routine using TMRO - ————————-—————————————————

Delay CLRF TMRO ; Clear TimerO register, start counting
CLRF INTCON ; Disable interrupts and clear TOIF
BSF STATUS, RPO ; Bankl
MOVLW OxC7 PortB pull-ups are disabled,

; TimerO increment from internal clock
; with a prescaler of 1:256

; BankO

MOVWF OPTION_REG ; Interrupt on rising edge of RBO
BCF STATUS, RPO -

BSF INTCON, TOIE ; Enable TMRO interrupt

again btfss INTCON,2 ; Bit 2 set?
goto again ; No, bit is clear, goto again
return

; -—— End of new Delay routine -------- - - - - - - - —~—~—«—«—(———(—(——(—————_

Figure 3 Required Header Code

Program File Name: Lab XA.c

Program Title: XXXX

Microprocessors A 17.383

XXXXXXXX — Put in Semester (i.e. Fall 2010) here
XXXXXXXX — Put in your name here

XX/XxX/xx - Put date here

Page 9 of 11

17.383 Microprocessors A
Lab 5
Fall 2010

Fiqure 4 — PICKit 1 Starter Kit - Switch (SW1) Schematic

R3
1K
SW1
R2 I
+5_SWITCHED AMA———¢10 | O
10K 2|33

Page 10 of 11

17.383 Microprocessors A

Lab 5
Fall 2010

Figure 5 - PICkit 1 Starter Kit LED Layout

QG|
vy
8y
a3y a3y =7
AP 9@ @
0G|
e e Eal Lty eEE L LR Lt Rl —VV AL
! aY|
a3y 4 a3y A3y 47 | a3y a3y 47
@ 210 @ 60 8Q @ | GQ. ¥Q @
m 0S|
; ek YAYAY; Gvy
"Q3LYINDOANN NIVA ! 9y
—3¢ LI NYHL B ® | g3y a3y ¢ g3y a3y A
Ry) vy
.. X za 10, 20
0S|
ANN— vy
Gy

Page 11 of 11

