MICROPROCESSORS A (17.383)
Fall 2010

Lecture Outline

Class # 02
September 14, 2010

Dohn Bowden

Today’s Lecture

Syllabus review

Microcontroller Hardware and/or Interface
Programming/Software

Understanding the LEDs of the PICKit 1
Lab

Homework

Finish Lab #1

Administrative

e Admin for tonight ...

— Syllabus Review

— Emaill Distribution List

Syllabus Review

Week Date Topics Lab Lab Report Due

~F—09767710—mtro;, Course & tatrOverview, Microcortrolter Basics T
2 09/14/10 | PIC16F684 Overview and General Input/Output 1 con't

g 3 09/21/10 | Switches 2
4 09/28/10 | Seven Segment LEDs P 1
5 10/05/10 | Examination 1 2 con't /
X 10/12/10 | No Class — Monday Schedule
6 10/19/10 | Analog to Digital Conversion 3 2
7 10/26/10 | Analog to Digital Conversion con’t 3 con’t
8 11/02/10 | LCD Interface and Assembly Language 4
9 11/09/10 | Comparators 4 con’t 3
10 11/16/10 | Timers and Pulse Width Modulation (PWM) 5
11 11/23/10 | Mixed C & Assembly Programming/Course Project Project 4
12 11/30/10 | Examination 2
13 12/07/10 | Course Project Project 5
14 12/14/10 | Final Exam/Course Project Brief and Demonstration Demo

Email Distribution List

e For those who sent me an email as of 8:30 PM Monday night ...
— Did you all receive my trial email on each email account?

e If not ... please send me another email

* < Email me at:

Dohn_Bowden@uml.edu

PIC16F684 Features

35 Instructions

8-level deep hardware stack

2048 Flash (words) Program Memory
Interrupt capability

12 1/0 pins with individual direction control
2 Comparators

A/D Converter (10-bit resolution and 8 channels)

2 Timers

PIC16F684 Features

Program Diata Memo
Device Memory Y ({8 10-bit AID Comparators ““‘Ef?
Flash SRAM EEPROM (ch) 8M6-bit
(words) (bytes) (bytes)
PIC16FE54 2048 128 256 12 B 2 2/

PIC16F684 Pin Diagram

14-pin PDIP, 50IC, TSSOP

Voo ——={|
FRAST1CKNOSCA/CLKIN -.-—-.-[
FRAMANITIGIOSC2ICLEOUT]

RAWMCLRN pr
RCWCCP1P1A

RCHCZOUTIP1B i
RC3IANTPIC i

'-Il_l-[

= O th &= 3 k3 =

I-.-F
LY

¥8949101d

14
13
12

110

10

V55

[|[+—— RANANDVCAIN+NCSPDAT/ULPWLU
[J+—— RATANTICTIN-NVReEFICSPCLK

. o RAZANHTOCKNINTIC1OUT

= . RCOFANAICZIN+

i RC1TANSCZIN-

i RC2FANG/P1D

[J—ro

10

TABLE 1-1: PIC16F684 PINOUT DESCRIPTION

Hame Function I.::';:: D.;_':ppem Description
RADFANDICA INSICSPODAT/ULPWU RAD TTL CMOS | PORTA /O wiprogrammable pull-up and intermupt-on-change
AND AN — AD Channel 0 input
C1IN+ AN — Comparator 1 input
ICSPDAT | TTL CMOS | Senial Programming Data /0
ULPwWuU AN — Ultra Low-power Wake-up input
RATANICTIN-NRer/ICSPCLE RA1 TTL CMOS | PORTA IO wiprogrammable pullup and intermupt-on-change
ANT AN — AD Chanmel 1 input
CAIN- AN — Comparator 1 input
VREF AN — External Voltage Reference for AID
ICSPCLK ST — Senal Programming Clock
RAZVAN2ZTOCKINTIC10OUT RAZ ST CMOS | PORTA /O wiprogrammable pull-up and intermupt-on-change
AN2 AN — AD Channel 2 input
TOCKI ST —_ TimerD clock input
INT ST — External Intermupt
C10UT — CMOS | Comparator 1 cutput
RAIMMCLRN =5 RA3 TTL — | PORTA input with interrupt-on-change
MCLR ST — Master Clear wiintemal pull-up
\ep HV — Programming voltage
RAAANITIGOSC2/CLKOUT RA4 TTL CMOS | PORTA /O wipregrammable pullup and intermupt-on-change
AN3Z AN — AD Channel 3 input
TG ST — Timer1 gate
osc2 — XTAL | CrystalResonator
CLKOUT — CMOS |Foscld output
RASITACKINOSC1CLEIM RAS TTL CMOS | PORTA 'O wiprogrammable pull-up and intermupt-on-change
T1CKI ST — Timer1 clock
asc XTAL — Crystal/Resonator
CLEIN ST — External clock inputRC oscillator connection
RCOFANSIC2IN+ RCD TIL | CMOS [PORTC IO
AN4 AN — ASD Channel 4 input
C2IN+ AN — Comparator 2 input
RCATANSIC2IN- RC1 TTL | CMOS [PORTC O
ANS AN — ASD Channel 5 input
C2IN- AN — Comparator 2 input
RCANG/IP1D RC2 TTL | CMOS |PORTC VO
ANE AN —_ AJD Channel & input
P1D — CMOS | PWM output
RCIANTIP1C RC3 TIL | CMOS [PORTC VO
ANT AN — AD Channel 7 input
P1C — CMOS | PWM output
RC4ICZOUTIP1B RC4 TIL | CMOS [PORTC O
C2oUT —_ CMOS | Comparator 2 cutput
P1B — CMOS | PWM output
RCSICCP1P1A RCS TIL | CMOS |[PORTC O
CCP1 ST CMQOS | Capture input/Compare output
P14 — CMOS | PWM output
\iss Vss Power — Ground reference
Voo Voo Power — Positive supply

Legend: TTL = TTL input buffer, ST = Schmitt Trigger input buffer, AN = Analog input

11

FIGURE 1-1:

PIC16F684 BLOCK DIAGRAM

INT
Configuration
13

B . Data Bus
i' Program Counter]l
Flash |
2k X 14 1l
Program RAM
Memory B-Level Stack 125 Bytes
{13-Bit) File
Registers
Program 14
Bus i Rt Addir H‘ 9
Instruction Reg LMA
|| Direct Addr 7 :
i
s
Power-up
; Timer
Instruction | Oescillator
Decode & [~—- | Start-up Timer
Conitrol
Power-on
Resst
Timing A Waichd
OSCANCLEIN 1 Generation [~ 'ﬁﬁwerog
il Brown-out
OSCAHCLKOUT ” Dete_.;j[u
Intemal
Oscillator
= Block CCP1/P1APIB PIC P1D
'%3 MCLR Yoo Vss % % % %
T1CKI R
E * TimerD Timer1 Timer2 ECCP
TOCKI
1 i

L

Analog-To-Digital Converter

2 Analog Comparators
and Reference

éééééééééé b

WREF AMD AN1 ANZ AN3 AM4 ANS ANG ANT C1IN- ClINs= ..,1CIUT C2IN- C2IN+ CECIUT

I

PORTA

RAD
RA1
RAZ
RA3
RAd
RAS

1]

I

PORTC

RCO
RC1
RC2
RC3
RC4
RCS

11

EEDATA

5 |256 Bytes
Data
EEPROM

EEADDR

12

Memory

There are two different architecture regarding memory ...

13

Program and Data Memory

Harvard von-Neumann
Data = i -;Ian-
Fogran - a0
Memery[tg ¥ 7Y [Wermory e <N

Harvard Architecture

Physically separate memory for instructions and data

Separate data buses to each memory

15

von Neumann

Architecture that uses a processing unit ... and ...

— a s/ingle separate storage structure to hold bot/ instructions and
data

16

PIC16F684 Memory

The PIC16F684 uses the Harvard Architecture vice the von
Neumann

17

Program and Data Memory

Separate Memory For ...
— Program Memory
— Variable Memory (data)/Register Spaces

— Program Counter

18

Program and Data Memory

Advantages of separate memories ...
— Ability of the processor to fetch new instructions ... while ...
e Accessing the program memory/registers
— However ... bad programs can still execute ... but ...

e |t will not try to execute data as instructions

19

Program and Data Memory

Disadvantages of separate memories ...
— Loss of flexibility in application organization ...

e i.e. Changing data or stack segment sizes to accommodate
different applications

20

Program Memory Types

Microchip offers three program memory types

The memory type is designated in the part number by the first
letter(s) after the family affiliation designators

— C, as in PIC16CXXX.
— These devices have £PROM type memory

— CR, as in PIC16CRXXX
— These devices have ROM type memory

— F, as in PIC16FXXX
— These devices have F/as/type memory

21

Program Memory Map and Stack for the PIC16F684

PC=12:0=
RETURN I.:. -
E, RETLW [
\Yi
Stack Lewel 1
Stack Level 2
&
Stack Level 8
Resst Vector 000k
P I
e
Intemupt Vector noo4
D00s
On-chip Program
Memony
O7FFh
D300k
iFFFh

22

Registers/Variable Memory

Registers ... also known as Special Function Registers (SFR)

Variable Memory ... also known as File Registers

23

Special Function Registers (SFR)

SFR functions/purpose:

— Monitors the status of program execution

— Provides an interface to hardware peripheral functions
SFR can be classified into two sets:

— Core and peripheral

24

FIGURE 2-2:

DATA MEMORY MAP OF

THE PIC16F684

File File
Address Address
Indirect Addr"! | pon Indirect Acdr | 8o
TMRD 0th OPTION_REG | 81h
PCL 0zh PCL 82h
STATUS 03h STATUS 83h
FSR 04h FSR 84h
PORTA 05h TRISA 85h
0sh 86h
PORTC a7h TRISC 87h
02h 83h
0gh 89h
PCLATH 0Ah PCLATH 84h
INTCON 0Bh INTCON 8Bh
PIR1 0Ch PIE1 8Ch
0Ch 80h
TMRIL OEh PCON BEh
TMR1H 0OFh OSCCON 8Fh
T1CON 10h OSCTUNE 90h
TMR2 11h ANSEL 31h
T2CON 12h FPR2 92h
CCPRIL 13h a3h
CCPR1H 14h 94n
CCP1CON 15h WPUA G5h
PWM1CON 16h 10CA 96h
ECCPAS 17h a7h
WDTCON 18h ash
CMCOND 13h VRCON 9gh
CMCON1 1Ah EEDAT 9Ah
1Bh EEADR 49Bh
1Ch EECON1 ach
1Dh EECON2IY aDh
ADRESH 1Eh ADRESL G9Eh
ADCONO 1Fh ADCON1 9Fh
20h General Alh
Purpose
Registers
General 32 Bytes BFh
Purpose
Registers
96 Bytes
6Fh
o Accesses 7T0h-TFh FOh
TFh FFh
Bank 0 Bank 1

D Unimplemented data memery locations, read as ‘o
Note 1: Motz physical register.

25

TABLE 2-1:

PIC16F684 SPECIAL FUNCTION REGISTERS SUMMARY BANK 0

Addr | Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 P‘g’l'?‘jeB%“R Page
Bank 0
00h INDF Addressing this location uses contents of FSR to address data memory (not a physical register) wxwx xex | 19, 104
01h TMRO Timerd Module's Register Wk xaoox | 43, 104
0zh PCL Program Counter's (PC) Least Significant Byle 0000 0000 | 19, 104
03h | STATUS rRP | RPI® | R0 | TO PD z | bc c 0001 laocx | 13, 104
04h FSR Indirect Data Memory Address Pointer s xaoox | 19, 104
05h |PORTAI2 — — | ras | R RA3 Ra2 | RAI RA0O | --x0 xo000| 31, 104
06h — Unimplemented — —
07h | PORTCR) _ — | ros | Roe RC3 Rc2 | RCH RCO | --:x 0000 | 40, 104
08h — Unimplemented — —
09h — Unimplemented — —
DAR PCLATH — — — Write Buffer for upper 5 bits of Program Counter ---0 0000 | 19, 104
0Bh INTCON GIE FPEIE TOIE INTE RAIE TOIF INTF RAIF 0000 0000 | 15, 104
0Ch FIR1 EEIF ADIF CCP1IF C2IF C1IF OSFIF TMRZIF TMRI1IF | oooo oooo | 17, 104
0Dh — Unimplemented — —
DEh TMRIL Holding Register for the Least Significant Byte of the 16-bit TMR'1 Reqgister oo ook | 47, 104
OFh TMRTH Holding Register for the Most Significant Byte of the 16-bit TMR 1 Register M xaoex | 47, 104
10h |[T1CON TIGINV | TMRIGE | T1ICKPS1 | TICKPS0 | T1OSCEN | TISYNC | TMRICS | TMR1ON [0000 0000 | 50, 104
11h TMR2 Timer2 Module Register 0000 0000 | 53, 104
12n | T2CON — | Toutpss | TouTPs2 | TOUTPS1 | TOUTPSO | TMR2ON | T2CKPS1 | T2CKPSO | -000 0000 | 54, 104
13h CCPRI1L Capture/Compare/PWM Register 1 Low Byte XY¥E X¥X¥X | 80, 104
14h CCPR1H Capture/Compare/P\WM Register 1 High Byte XEME X¥XE | 80, 104
15h CCP1CON P1M1 P1MO DC1B1 DC1B0O CCP1M3 | CCPIM2 | CCP1M1 CCPIMOD | o000 o000 | 79, 104
16h PWM1CON PRSEN PDCB PDC5 PDC4 PDC3 PDOC2 PDC1 PDCO 000 0000 | 26, 104
17h ECCPAS ECCPASE | ECCPAS2 | ECCPAST | ECCPASD | PSSACT PSSACOD PSSBD1 PSSBDO | o000 0000 | 93, 104
18h WDTCON — — — WOTPS3 | WDTPS2 | WDTPS1 WODTPS0 | SWDTEN | ---0 1000 | 111, 104
15h CMCOND c20UT c1ouTt C2INV CTINY CIs chz CM1 CMOD o000 0000 | 61, 104
1Ah CMCON1 — — — — — — T1GSS C25YNC | ---- -- 10| 62, 104
1Bh — Linimplemented — —
1Ch — Unimplemented — —
1Dh — Unimplemented — —
1Eh ADRESH Most Significant 8 bits of the left shifted A/D result or 2 bits of right shifted result oo ook | 71, 104
1Fh ADCONOD ADFM VCFG — CHS2 CHS1 CHS0 GO/DONE ADON ao-0 0000 | 7o, 104
'I:legend: — = Unimplemented locations read as ‘o', u = unchanged, = = unknown, ¢ = value depends on condition, shaded = unimplemented

ote

1: IRP and RP1 bits are reserved, always maintain these bits clear.
: Port pins with analog functions controlled by the ANSEL register will read ‘o’ immediately after a Reset even though the data latches are
either undefined (POR) or unchanged (other Resets).

26

Core

The core pertains to the basic features that are required to make the device
operate ... which are ...

e Device Oscillator

e Reset logic

e CPU (Central Processing Unit) operation

e ALU (Arithmetic Logical Unit) operation

e Device memory map organization

e Interrupt operation

e |nstruction set

27

Peripherals

Peripherals are the features that add a differentiation from a
microprocessor/microcontroller

These ease In interfacing to the external world ... such as ...
— General purpose 1/0

— A/D inputs

— PWM outputs

And internal tasks ... such as ...

— Keeping different time bases (such as timers)

28

Peripherals

General purpose 1/0

TimerO

Timerl

Capture, Compare, and PWM (CCP)
Voltage References

Comparators

10-bit Analog to Digital (A/D)

29

Development

We will explore the features of the PIC16F684 microcontroller as we
encounter them

Same will be true for introducing the languages
e C

e Assembly

30

Microcontroller Hardware Interface

With LEDs ...

31

How does the hardware work?

Lets understand what we want to do ...

— Before we try to write a program to make it work

32

PIC16F684 Pin Diagram

14-pin PDIP, SOIC, TSSOP

O
VDD ——] |1 14|]|«—Vss
RAS5/T1CKI/OSC1/CLKIN -] |2 T 13| |«— RAO/ANO/C1IN+/ICSPDAT/ULPWU
RA4/AN3/T1G/OSC2/CLKOUT o =13 Q 12] RA1/AN1/C1IN-/VREF/ICSPCLK

RA3/MCLR/VPP = |4 % 1[] RA2/ANZ2/TOCKI/INT/C1QUT
RC5/CCP1/P1A [5 Eﬁ' 10[] RCO/AN4/C2IN+

RC4/C20UT/P1B e o] RC1/AN5/C2IN-

RC3/AN7/P1C [7 8] RC2/AN6/P1D

33

PICkit 1 Evaluation Socket

) J—<+55WITCHED>
1

SOC1

]

RAS
RA4
A

— C1
[0.1uf

S (]

o |

I
ﬁmﬁ
SAIEP]
|||

|

/

EVALUATION
SOCKET

34

PICKit 1 LED Layout

RED RED

(® D8 THRU D11 RE—
MAIN UNPOPULATED.

RA1
150

R6
RA5 NNAN— : .
150
D5 D8 &
@ o
4 RED Y RED
R7
(RAY—— "N~ ¢————— ¢+ | L
150
D7
RED
R8

TABLE 1-1:

PIC16F684 PINOUT DESCRIPTION

Name Function Input | Output Description
Type | Type
RAOANO/C1IN+ICSPDAT/ULPWU RAD TTL CMOS | PORTA IO wiprogrammable pull-up and interrupt-on-change
AMND AN —_ A/D Channel 0 input
C1IN+ AN — Comparator 1 input
ICSPDAT TTL CMOS | Serial Programming Data I'C
uLPwWuU AN —_ Ultra Low-power Wake-up input
RAT/ANT/C1IN-VREF/ICSPCLK RA1 TTL CMOS | PORTA IO w/programmable pull-up and interrupt-on-change
AN1 AN —_ AJD Channel 1 input
C1IM- AN —_ Comparator 1 input
VREF AN — External Voltage Reference for A/D
ICSPCLK 5T — Serial Programming Clock
RA2IAN2ITOCKIINT/C10OUT RA2 ST CMOS | PORTA IO wiprogrammable pull-up and interrupt-on-change
AN2 AN —_ AJD Channel 2 input
TOCKI ST —_ Timer(clock input
INT ST —_ External Interrupt
c1ouT — CMOS | Comparator 1 output
RA3MCLR/VFP RA3 TTL — | PORTA input with interrupt-on-change
MCLR ST —_ Master Clear wiinternal pull-up
VPP HV —_ Programming voltage
RA4/AN3TIG/OSC2/CLKOUT RA4 TTL CMOS | PORTA I/O w/pregrammable pull-up and interrupt-on-change
AMN3 AN — A/D Channel 3 input
TG ST —_ Timeri gate
Qs5C2 —_ XTAL |Crystal/Resonator
CLKOUT — CMOS | Fosc/4 output
RASTICKIIOSCPYCLKIN RAS TTL CMOS | PORTA IO wiprogrammahle pull-up and interrupt-on-change
Ti1CKI ST — Timer1 clock
Q5C1 XTAL —_ Crystal/Resonator
CLKIN ST —_ External clock input/RC oscillator connection
WN#CQINJf RCO TTL | CMOS |PORTC 11O
AN4 AN —_ AJD Channel 4 input
C2IN+ AN —_ Comparator 2 input
RC1/ANFC2IN- RC1 TTL | CMOS |PORTC l/O
AMNS AN —_ A/D Channel 5 input
C2IN- AN —_ Comparator 2 input
RC2/ANE/P1D RC2 TTL | CMOS |PORTC IO
ANE AN —_ AJD Channel & input
P1D — CMOS | PWM output
RC3I/ANTIPIC RC3 TTL | CMOS |PORTC I/O
AMNT AN —_ A/D Channel 7 input
P1C —_ CMOS | PWM output
RC4/C20UT/P1B RC4 TTL | CMOS |PORTC IO
C20oUT —_ CMOS | Comparator 2 output
Fi1B — CMOS | PWM output
RCS/CCP1/P1A RC5 TTL | CMOS |PORTC l/O
CCP1 ST CMOS | Capture input/Compare output
P1A —_ CMOS | PWM output
Vss Vss Power —_ Ground reference
Voo Voo Power —_ Positive supply

Legend: TTL = TTL input buffer, ST = Schmitt Trigger input buffer, AN = Analog input

36

In order to light DO ...

— We need a high on ...

* RA4

— And a low on ...

e RAS

So ...

37

Now ... Lets examine the software ...

Let see what we need to do in order to light DO via software

First we will need to understand the basic structure of a ...

— “C” program

38

Programming

Commands/instructions that we will encounter tonight
e C commands

e PIC16F684 control

40

C program structure
Comments

Include
Integer variables
for

while

NOP()

functions

C commands

41

The Structure of a Typical C Program

main()

{

}

The first line main()
— Informs the system that the name of the program is main

— () specify that main is a function
— () being empty indicates that the function main takes no
arguments

{ ... start of program statements for the routine
} ... end of program statements for the routine

42

The “Main” Function

Main is a special function

— Contains the main program blocks

e Within which all lower-level functions are contained

43

Functions

We have Functions other than the main() function within the
program

These functions perform certain tasks that can be called from within
the main() function

Up to now ... calling Functions always appear in the code following
the functions they call

They have been appearing prior to the main() Function

44

Function Prototypes

e You can place other functions after the main() Function ... if ...

— You place function prototypes in your program that describe a
function’s return and parameter types (to be discussed in a
future lecture)

void function_name(int x, Int y, Int z);

e Then the Function will appear after the main() Function

45

Function Prototypes

/**

* Function: PORT _init

*

* Description: Initializes PORTA to a known condition

*

* Notes: None

*

* Returns: None

*

**/

void PORTA._init(void)

{
PORTA = 0; /[All PORTA Pins are low
CMCONO0 =7; /I Turn off Comparators
ANSEL = 0; /I Turn off ADC
TRISA =0b001111; // RA4 and 5 are outputs; RAO0,1,2, and 3 are input
return;
}

/******** E N D O F PO RTA |n It ****************************/

46

Function Prototypes

If the following command is placed prior to the main() function

void PORTA 1nit(void);

Then the Function will can be placed after the main() Function

Now the main() function is at the beginning of the listing vice at the

end

47

Comments (Within Your Programs)
Comment statements in a program are used to ...

— Document ... and ...
— Enhance its readability

The use of comments are extremely important ...

— Enhances the routine or code
— Can be used during the debugging phase

Enter comments as you write the code

— While the code is fresh in your mind

48

Comments (Within Your Programs)

There are two ways to insert comments ... FIRST ...

— Initiate the comment by the two characters /7 and *
e This marks the beginning of the comment

— Terminate the comment by the two characters * and /
e This marks the end of the comment

— All characters included between the opening /* and the closing
*/ are ...

e Treated as part of the comment ... and ...
e Are ignored by the C compiler

— This is used when comments span several lines of the program

49

Comments (Within Your Programs)
The second way to insert comments ... is by ...
— Is by using two consecutive slash characters //

e Any characters that follow these slashes up to the end of
the line are ignored by the compiler

50

Comments (Within Your Programs)

Examples ...

/[l This entire line contains comments, next line not included

[* Comments go between the slashes and asterisk */

[* First line of a comment which runs multiple lines ...
This is a comment, line two
This is a comment, line three

Etc

The next line is the last line of a comment
*/

51

The #Zinclude Statement

The # include statement causes ...

— ... the entire contents of a specified source file to be processed
as If those contents had appeared in place of the # /include
command

— Useful for items that are frequently used in most applications
e Saves time retyping into the program

These files normally end in ./7 and are referred to as header or
include files

52

The # include Statement

e Example ...

include <pic.h>

e You can review the contents of the pi/c./1 header file ...

C:\Program Files\HI-TECH Software\PICC\9.70\i1nclude\pic.h

e Take note of all the other header files available in the include
directory

53

The pic.h Header File

#ifndef _PIC_H_
#define _PIC_H_

#ifndef HTC H_
#include <htc.h>
#endif

#if defined(_10F200)
defined(_10F204)
#include
#endif
#if defined(_10F220)
#include
#endif
#if defined(_12C508)
defined(_12F508)
defined(_12C508A)
defined(_12CE518)
defined(_12C509AG)
defined(_12CR509A)
defined(_RF509AF)
#include
#endif
#if defined(_12F510)
#include

THE FILE CONTINUES .

|| defined(_10F202)
|| defined(_10F206)
<pic10f20x.h>

|| defined(_10F222)
<pic10f22x.h>

|| defined(_12C509)

|| defined(_12F509)

|| defined(_12C509A)
|| defined(_12CE519)
|| defined(_12C509AF)
|| defined(_ RF509AG)

<pic125xx.h>

<pic12f510.h>

I\

I\
I\
I\
I\
I\
I\

54

Working with Variables

C programming allows you to assign symbolic names, known as
variable names, for computations and results

Variable declaration format:
data_type Variable Name = initial_value;

More than one variable can be declared at once using the following
format:

data type Name = initial _value, Name = initial _value, ... ;

55

Variables --- data type

Data types are summarized in Table 3.1 (PICC Pro Manual)
Table 3.1: Basic data types

Type Size (bits) Arithmetic Type
bit 1 unsigned integer
char 8 signed or unsigned integer
unsigned char 8 unsigned integer
short 16 signed integer
unsigned short 16 unsigned integer
int 16 signed integer
unsigned int 16 unsigned integer
short long 24 signed integer
unsigned short long | 24 unsigned integer
long 32 signed integer
unsigned long 32 unsigned integer
float 24 real
double 24 or 32 real

56

Variables --- Variable Name

Rules for forming variable names (Variable_Name) ...

e Can start with any upper or lower case letter or the
underscore character

e After the starting character ... any letter, number, or
underscore character can be used. NO BLANKS

57

Variables --- initial value

Assignment of initial value is optional
Signed integer (16 bits) range as follows ...

-32,768 to 32,767

58

Examples ...

Working with Variables

Int i;
Int j;

inti, j;

Inti=1;)=5;

59

The for Statement

e« The general format for declaring the for statement is as follows:

for (expression_1; expression_2; expression_3)
program_statement

e expression_1 is evaluated once the loop begins

e Next ... expression_2 is evaluated

— If the value is nonzero, program_statement is executed and then
expression_3 Is evaluated

e Execution of program_statement continues as long as the value of
expression_2 IS honzero

60

The for Statement

e To summarize ... the for statement is as follows:

for (initialization; Loop test expression; Loop Increment)
program_statement

Loop increment:

variable = variable + 1 Adds one to the variable
variable ++ Adds one to the variable
variable = variable -1 Subtracts one to variable
variable -- Subtracts one to variable
for(;:) Loop forever

61

The for Statement

e Example ...

inti, j

for (1= 0; 1< 255; i++)
for (j = 0; j < 255; j++);

 The loop test expression is evaluated as follows:

| < 255 has the value 1 if i is less than 255, and 0 otherwise

62

The while Statement

e The while loop allows you to repeatedly execute a set of
instructions while a test expression is true

 The general format for declaring the while statement is as follows:

while (expression)
program_statement

e program_statement is executed as long as the value of expression is
nonzero

e Note that, because expression is evaluated each time before the
execution of program_statement, program_statement may never be
executed

63

The while Statement

Example ...

while(1 == 1)

{

delay_routine();
RA4 =1,;
delay_routine();

RA4 = 0;

/[Loop Forever

/[DO LED On by making RA4 high

/[DO LED Off by making RA4 low

/| ** END OF While (1 == 1) LOOP

64

NOP() Statement

The NOP(), statement
— No operation

Can be used as a breakpoint without affecting the operation of the
C program

You cannot set a breakpoint on a line without code!

65

General Purpose Input Output Associated Registers

PORTA

TRISA

PORTC

TRISC

66

PORTA Reqgister

PORTA register make up six of the twelve general purpose
Input/Output (1/0) pins available

PORTA is a 6-bit wide, bidirectional port
— Active PORTA Register bits are 0 through 5

e Individual Register bits are called RAO, RA1, RA2, ... RAS
— PORTA Register bits 6 and 7 are not used/unimplemented

PORTA corresponding data direction register is the TRISA Register

67

PORTA Register (continued)

REGISTER 4-1: PORTA - PORTA REGISTER (ADDRESS: 05h)

U0 U-0 RAW-x RMW-x RAN-x RAN-x RANW-0 RAW-0
— — RAS RAd RA3 RAZ RA1 RAD
hit 7 bit O
hit 7-6: Unimplemented: Read as ‘o’

bit 5-0: RA<3:0=. PORTA 11O Pin bit

1 =Port pinis=VIH
0 = Port pin is = VIL

Legend:
R = Readable hit W = Writable bit U = Unimplemented bit, read as 0"
-n = Value at POR “1"=Bitis set ‘0" =Bitis cleared ¥ = Bit is unknown

68

TRISA Register

e The TRISA Register controls the data direction of the six general
purpose Input/Output pins of PORTA

e Meaning, the state of each TRISA bit will set the data direction for
each corresponding PORTA pin

e Setting an individual TRISA bit (= 1)
— will make the corresponding PORTA pin an input

e Clearing an individual TRISA bit (= 0)
— will make the corresponding PORTA pin an output

e The exception is RA3, which is input only ... and ...
e its TRIS bit will always read as ‘1’, meaning input only

69

TRISA Register

REGISTER 4-2: TRISA - PORTA TRI-STATE REGISTER (ADDRESS: 85h)

u-0 u-0 RAW-1 RAN-1 R-1 RAW-1 RAN-1 R/AW-1
— — TRISAS | TRISA4 TRISA3 TRISAZ | TRISA1 | TRISAD
hit 7 hit 0
hit 7-6: Unimplemented: Read as ‘0’
hit 5-0: TRISA<5:0>: PORTA Tri-State Control bit

1 = PORTA pin configured as an input (tri-stated)
0 = PORTA pin configured as an output

Note 1: TRISA=3= always reads 1"
2: TRISA<54= always reads ‘1" in XT, HS and LP OSC modes.

Legend:

R = Readable hit W = Writable bit U = Unimplemented hit, read as 0"
-n =Value at POR ‘1" = Bitis s&t ‘" = Bitis cleared ¥ = Bit is unknown

TRISA Register

e When the chip is powered up ... TRISA bits ...
e Default to “1”, meaning input
 Therefore, we do not need to Initialize for input, only output

e Why?
e If the pin is incorrectly wired, it could be easily damaged if it
was set to an output ... why?

— If the pin is accidentally grounded ... and ...

— Driven to a high state
» The short circuit would likely damage the output

circuit

» If set to an input, no damage would be done

71

TRISA Register

When used as analog inputs (will discuss in more detail in a future
lecture) ...

— The TRISA register controls the direction of the PORTA pins,
even when they are being used as analog inputs

— We must ensure the bits in the TRISA register are maintained
set when using them as analog inputs

— 1/0 pins configured as analog input always read ‘0’

72

TRIS — Explained

Three-State logic, also known as TRI-STATE logic
The name is misleading ... it is not digital logic with 3 voltage levels
It is just ordinary logic

— High ()
— Low (0)

With a third output state ...
— Open circuit (disconnected)
Therefore ... The three states (TRI-STATE) are ...
 HIGH

e LOW
e Disconnected (open circuit)

73

TRIS — Explained

A separate “enable” input determines whether the output ...
— Behaves like ordinary logic (high/low) ... or ...

— The “third” (open) state

In the “open” state ... which ...

— Cuts off the logic states

74

Software Control Of Registers

The HI-TECH PICC compilers contains header files that equate
variables to Special Function Registers

— pIcl61684.h is the header file used for the 684
— Variable names are usually the same as the Register name
— Variable names are also assigned to individual bits

Assess to each register is via reading or writing from/to a particular
variable

— Can either be the entire register or an individual bit

75

PIC16F684 PICC STD Variables

e Today we shall explore a few variables used 1In Lab

#1

PORTA
RA4
TRISA
CMCONO
ANSEL

__config

76

PORTA Register PICC Pro C Variables

PORTA

R&#

— Where
& represents the port (either A or C)
represents the port’s pin (0 — 5)

TRIS&#H

— Same convention as above

77

Input/Output Commands on PORTA

Examples ...

PORTA = 0; Il Initializes PORTA. All pins are set to zero
RA4 = 0; /l Makes RA4 low (0 volts)

RA4 =1, /l Makes RA4 high (5 volts)

TRISA = 0; /l Makes all PORTA pins outputs

TRISA4 = 0; /l Makes RA4 an Output

TRISAS =1, /l Makes RAS5 an Input

RA5 = 0; /l Makes RAS low (0 volts)

RAS = 1, /l Makes RAS high (5 volts)

78

PORTA Pins are Multipurpose

e From the Pin-out diagram ... pins 2,

14-pin PDIP, 50IC, TSS0OP

3,4, 11, 12, and 13

o
Voo ——=[]1 14[Ja— Va5
RASTICKIOSCA/CLKIN —{]2 w 13[] RANANMCTIN+ICSPDATULPWU
RAHANITIGIOSCZCLKOUT «— 13 @ 12[Je— RAVANUCIIN-VREFICSPCLE

RAIMCLR N pe 4] L] P— FRAZANZTOCKVINTIC1OUT
RCS/CCP1P1A (15 o 10[]- . FCOFANSICIIN+

RCA/C20UTIP1B i * a[] RC1FANSICZIN-

RCIANTPIC 07 a[] RC2IANGIP1D

79

PORTA Pins are Multipurpose (con’t)

We see that the pins are multipurpose
— Input/Output
— Analog to digital converter

— Comparator

To use PORTA for the 1/0 function

e \We need to turn off the other functions

80

PORTA Pins are Multipurpose (con’t)

e To turn off the other functions we use the following commands

CMCONO =7, I/l Turns off the comparators

ANSEL = 0; // Turns off the Analog to Digital Converter

e \We will discuss the above commands in more details when we are
using the associated peripheral features

Configuration Bits

e Configuration bits can select various device configurations (shown in
Register 12-1)

 Bits are “programmed”
— Read as ‘0’

e Or ... “unprogrammed” ...
— Read as ‘1’

e These bits are mapped in program memory location 2007h

e Note: Address 2007h is beyond the user program memory
space. It belongs to the special configuration memory space
(2000h-3FFFh), which can be accessed only during
programming

82

Configuration Word

Together ... all the configuration bits make up the configuration
word

Operating configuration parameters which are set on power up

These parameters are specified by writing to a special word In
memory

This word is called the Configuration Word

___CONFIG (xxx & yyy & etc);

Note ... __ are two underscore characters

83

REGISTER 12-1: CONFIG — CONFIGURATION WORD (ADDRESS: 2007Th)

| — | — [Fcmen| Eso [sopeni|eopeno] ©P0 | TF | mcLre |PWRTE | woTE |Foscz [Fosct [Fosco |
bit 13 bit0

kit 13-12 Unimplemented: Read as 2’
kit 11 FCMEM: Fail-Safe Clock Monitor Enalded bit
1 = Fail-5afe Clock Monitor is enabled
o = Fail-5afe Clock Monitor is disabled
bit 10 IESO: Intemal Extermnal Switchover bit
1 = Intemal Extemnal Switchover mode is enabled
0 = Intemal Extemnal Switchover mode is disabled
bit 9-5 BODEN<1:0>: Brown-out Detect Selection bits(!)
11 = BOD enabled
10 = BOD enabled during operation and dizabled in Sleep
01 = BOD controlled by SBEODEN bit (PCOMN<=4=)
oo = BOD disabled
bit 7 CPD: Data Code Protection bitl?!
1 = Diata memaory code protection is disabled
0 = Data memaory code profection is enabled
bit. & CP: Code Protection biti®!
1 = Program memory code protection is disabled
0 = Program memory code protection is enabiled
bit. 5 MCLRE: RAIMCLR pin function select bitt*!
1 = RAIMCLR pin function is MCLR
o = RAINMCLR pin function is digital input, MCLR internally tied to Voo
bit 4 PWRTE: Power-up Timer Enable bit
1 = PWRT dizabiled
o = PWRT enabled
bit 3 WDOTE: Watchdog Timer Enalbile bit
1 =WDT enabled
o =WDT dizabled and can be enabled by SWDTEN bit (WDTCOMN<0=)
bit 2-0 FOSC<2:0>: Oscillator Selection bits
111 = RC oscillator: CLKOUT function on RA4OSCACLKOUT pin, RC on RAS/OSC1/CLKIN
110 = RCIO oscillator: VO function on RAYOSCHCLKOUT pin, RC on RAS/OSC1/CLEIN
101 =INTOSC escillator: CLKOUT funciion on RAYOSCHCLKOUT pin, /X funcion on RASIOSC1/CLEIN
100 = INTOSCIO oscillator: 1D funciion on RAAOSCHCTLEOUT pin, O funclion on RAS/OSC1/CLKIN
011 = EC: IO function on RAAOSCHEL KOUT pin, CLKIN on RAS/OSCA/CLKIN
010 = HS escillator: High-speed crystalresonator on RAHOSCZICLKOUT and RASIOSCI/CLEIN
ool = XT oscillator: Crystaliresonator on RAMOSCHCLKOUT and RASNOSCAMCLEKIN
oo0 = LP oscillator: Low-power crystal on RAAIOSC2CLEOUT and RASOSC1/CLKIN

Note 1: Enabling Brown-out Detect does not automatically enable Power-up Timer.
2: The entire data EEPROM will be erased when the code protection is tumed off.
3: The entire program memory will be erased when the code protection is tumed off.
4: When MCLR is asserted in INTOSC or RC maode, the internal clock oscillator is disabled.

Legend:
R = Readable W = Writable bit U = Unimplemented bit, read as ‘0’
-n =Value at POR 1" = Bit iz set ‘0" = Bit is clearsd x = Bit is unknown

picl161684.h Configuration Word Definitions

/I Configuration Mask Definitions
#define CONFIG_ADDR

/I Fail-Safe clock monitor
#define FCMEN

#define FCMDIS

/I Internal External Switch Over
#define IESOEN

#define IESODIS

/I Brown-out detect modes
#define BOREN

#define BOREN_XSLP
#define SBOREN

#define BORDIS

/I Protection of data block
#define UNPROTECT
#define CPD

/I Protection of program code
#define UNPROTECT
#define PROTECT

/I Master clear reset pin function
#define MCLREN

#define MCLRDIS

/I Power up timer enable
#define PWRTDIS

#define PWRTEN

/I Watchdog timer enable
#define WDTEN

#define WDTDIS

/I Oscillator configurations
#define RCCLK

#define RCIO

#define INTCLK

#define INTIO

#define EC

#define HS

#define XT

#define LP

Ox37FF
Ox3FFF
Ox3BFF

Ox3EFF
Ox3DFF
O0x3CFF

Ox3FFF

Ox3FFF

Ox3FBF

Ox3FFF
Ox3FDF

Ox3FFF
Ox3FEF

Ox3FFF
Ox3FF7

0x2007

Ox3FFF

Ox3FFF

Ox3F7F

Ox3FFF
Ox3FFE
Ox3FFD
Ox3FFC
Ox3FFB
Ox3FFA
O0x3FF9
Ox3FF8

85

Configuration Word (con’t)

e We will talk more about the Configuration Word in future lectures

e In the meantime ... use the following

__ _CONFIG(INTIO & WDTDIS & PWRTEN & MCLRDIS & UNPROTECT & BORDIS & IESODIS & FCMDIS);

Note ... __ are two underscore characters

e From Register 12-1 and the pic16f684.h file we can see that we
have set the following conditions:

86

Configuration Word (con’t)

__CONFIG(INTIO & WDTDIS & PWRTEN & MCLRDIS & UNPROTECT & BORDIS & IESODIS & FCMDIS);

 PICC Labels as defined in ... pic16f684.h

— Internal oscillator

— Disable Watchdog timer

— 70 ms Power Up Delay Timer Enabled

— _MCLR Pin Function Inactive/Pin is Input RA3
— Program Memory Protect Enabled

— Brownout Detect/Reset Disabled

— Internal/External Switchover Mode Disabled
— Fail-Safe Clock Disabled

87

Design Parameters

Flash DO of the PICkit 1 Starter Kit on and off
Write the Code in C

No other actions required

89

Understand the Hardware

R5
(RA4)— AN
150
DO AXD1 @ D B e
4+ RED \P/ RED) RED P RED | (® D8 THRU D11 RE—
R6 | MAIN UNPOPULATED. |
(RAS ANN— . . |
150 | | |
D4 D5 | D8 "D D1@ D11 !
¥ RED @ RED | /,® RED @ RED /,® RED @ RED |
R7 | |
(RA2 AAN— . R T B e e .
150
D6 D7
,F RED @ RED
R8
(RAT AN~

150

PIC16F684 Pin Diagram

14-pin PDIP, SOIC, TSSOP

A
Voo ——=]1 14[Ja—Vsas
RASMICKIOSCAUCLKIN —] |2 v 13[]=— RANAND/ICAIN+ICSPDAT/ULPWLU
RA#ANITIGIOSCZCLKOUT «——[J3 G 12[]e— RATVANUCTIN-VREFICSPCLK

RAIMCLR N pe 4 2 11[Je—on RAZANZTOCKIINTAC1OUT
RCICCP1P1A _ (15 - 10[]= . RCOFAMAICZIN+

RCAICZOUTIP1B e - a[] RC1ANSICZIN-

RCIANTPIC 07 al] RC2IAMNGP1D

91

TABLE 1-1: PIC16F684 PINOUT DESCRIPTION

Hame Function I.::';:: D.;_':ppem Description
RADFANDICA INSICSPODAT/ULPWU RAD TTL CMOS | PORTA /O wiprogrammable pull-up and intermupt-on-change
AND AN — AD Channel 0 input
C1IN+ AN — Comparator 1 input
ICSPDAT | TTL CMOS | Senial Programming Data /0
ULPwWuU AN — Ultra Low-power Wake-up input
RATANICTIN-NRer/ICSPCLE RA1 TTL CMOS | PORTA IO wiprogrammable pullup and intermupt-on-change
ANT AN — AD Chanmel 1 input
CAIN- AN — Comparator 1 input
VREF AN — External Voltage Reference for AID
ICSPCLK ST — Senal Programming Clock
RAZVAN2ZTOCKINTIC10OUT RAZ ST CMOS | PORTA /O wiprogrammable pull-up and intermupt-on-change
AN2 AN — AD Channel 2 input
TOCKI ST —_ TimerD clock input
INT ST — External Intermupt
C10UT — CMOS | Comparator 1 cutput
RAIMMCLRN =5 RA3 TTL — | PORTA input with interrupt-on-change
MCLR ST — Master Clear wiintemal pull-up
\ep HV — Programming voltage
RAAANITIGOSC2/CLKOUT RA4 TTL CMOS | PORTA /O wipregrammable pullup and intermupt-on-change
AN3Z AN — AD Channel 3 input
TG ST — Timer1 gate
osc2 — XTAL | CrystalResonator
CLKOUT — CMOS |Foscld output
RASITACKINOSC1CLEIM RAS TTL CMOS | PORTA 'O wiprogrammable pull-up and intermupt-on-change
T1CKI ST — Timer1 clock
asc XTAL — Crystal/Resonator
CLEIN ST — External clock inputRC oscillator connection
RCOFANSIC2IN+ RCD TIL | CMOS [PORTC IO
AN4 AN — ASD Channel 4 input
C2IN+ AN — Comparator 2 input
RCATANSIC2IN- RC1 TTL | CMOS [PORTC O
ANS AN — ASD Channel 5 input
C2IN- AN — Comparator 2 input
RCANG/IP1D RC2 TTL | CMOS |PORTC VO
ANE AN —_ AJD Channel & input
P1D — CMOS | PWM output
RCIANTIP1C RC3 TIL | CMOS [PORTC VO
ANT AN — AD Channel 7 input
P1C — CMOS | PWM output
RC4ICZOUTIP1B RC4 TIL | CMOS [PORTC O
C2oUT —_ CMOS | Comparator 2 cutput
P1B — CMOS | PWM output
RCSICCP1P1A RCS TIL | CMOS |[PORTC O
CCP1 ST CMQOS | Capture input/Compare output
P14 — CMOS | PWM output
\iss Vss Power — Ground reference
Voo Voo Power — Positive supply

Legend: TTL = TTL input buffer, ST = Schmitt Trigger input buffer, AN = Analog input

92

Circuit Evaluation

LED “DO” is connected between RA5 and RA4

Pin 2 ... RA5

Pin 3 ... RA4

A high on RA4 and a low on RA5 will energize the LED

We are using PORTA as our 1/0 Port ... in this case as an output

93

Lab 1A.c Evaluation (sheet 1 of 5)

#include <pic.h>

/**
*

* Program Title: Flash DO

*

* Program File Name: Lab_1A.c

*

* Microprocessors A 17.383
*

* XXXXXXXX - Put in Semester (i.e. Fall 2010) here

*

* XXXXXXXX - Put in your name here

*

* xx/xx/xx - Put date here

*

**/

94

Lab 1A.c Evaluation (sheet 2 of 5)

/**

* Function: PORT _init

*

* Description: Initializes PORTA to a known condition
*

* Notes: None
*

* Returns: None
*

**/

void PORTA._init(void)

{
PORTA = 0; /[All PORTA Pins are low
CMCONO0 =7; /I Turn off Comparators
ANSEL = 0; /I Turn off ADC
TRISA =0b001111; // RA4 &5 are outputs; RAO0,1,2, and 3 are input
return;
}

/******** E N D O F PO RTA |n It ****************************/

95

Lab 1A.c Evaluation (sheet 3 of 5)

/**

* Function: delay_routine

*

* Description: Causes a delay in program execution

*

* Notes:

*

* Delay was determined through trial and error

*

* Returns: None
*

**/

void delay_routine(void)

{
inti, j;
for (i=0; i< 255; i++)
for (j = 0; j < 255; j++);
return;
}

/******** END OF delay rOUtlne *************************/

96

Lab 1A.c Evaluation (sheet 4 of 5)

/**

* Function: main

*

* Description: DO on PICKkit 1 will Flash on and off

*

* Notes:

*

* RA4 - Positive LED Connection for DO

* RA5 - Negative LED Connection for DO

*

* Returns: This routine contains an infinite loop
*

**/

[* Configuration Word */

__CONFIG(INTIO & WDTDIS & PWRTEN & MCLRDIS & UNPROTECT \
& UNPROTECT & BORDIS & IESODIS & FCMDIS);

97

Lab 1A.c Evaluation (sheet 5 of 5)

main()

{
PORTA _init();
while(1 == 1) /I Loop Forever
{

delay_routine();

RA4 =1; /[DO LED On by making RA4 high

delay_routine();

RA4 = 0; // DO LED Off by making RA4 low
} /| *** END OF While (1 == 1) LOOP
return;

}

/******** E N D O F mal n RO UTI N E ***************************/

98

PICkit 1 LEDs

PICkit 1 LEDs

To Light LED Dx, RAx values

RA5

RA4

RA3

RA2

RA1

RAO

DO

0

1

D1

D2

D3

D4

D5

D6

D7

99

PORT

PICkit 1 LEDs

RAS

RA4

RA3

RA2

RA1

RAO

PORTA (binary)

PORTA (HEX)

DO

0b010000

0x10

D1

D2

D3

D4

D5

D6

D7

100

PICkit 1 LEDs

TRISAX - 0 is an output; 1 is an input;

TRISAS

TRISA4

TRISA3

TRISA2

TRISA1

TRISAO

TRISA (binary)

TRISA (HEX)

DO

0

0

1

Ob001111

OxOf

D1

D2

D3

D4

D5

D6

D7

101

Next Week ...

Next Class Topics

Switches
C commands
Number systems

Start Lab #2

103

Homework

. Send an email with your email address or addresses (for class
distribution list), if not already sent

. Optional - Read the C commands discussed in today’s lecture found
In any Programming in C text

. Read the PIC16F684 data manual sections for the areas

encountered tonight
. Finish Lab #1 and prepare for Lab #2, which will be on the web site

. Work on Lab #1 Report ... due in two weeks (September 28, 2010)

105

Time TO ...
Start the Lab ...

References

1. PIC16F684 Data Sheet 41202F
a) Pages 7 — 18 (memory organization)

107

