MICROPROCESSORS A (17.383)

Fall 2010

Lecture Outline

Class # 02

September 14, 2010

Dohn Bowden

Today's Lecture

- Syllabus review
- Microcontroller Hardware and/or Interface
- Programming/Software
- Understanding the LEDs of the PICkit 1
- Lab
- Homework
- Finish Lab #1

Course Admin

Administrative

- Admin for tonight ...
 - Syllabus Review
 - Email Distribution List

Syllabus Review

	Week	Date	Topics	Lab	Lab Report Due
	1	09/07/10 Intro, Course & Lab Overview, Microcontroller Basics		1	
	2	09/14/10	PIC16F684 Overview and General Input/Output	1 con't	
1	3	09/21/10	Switches	2	
	4	09/28/10	Seven Segment LEDs		, 1
	5	10/05/10	Examination 1	2 con't	
	X	10/12/10	No Class - Monday Schedule		
	6	10/19/10	Analog to Digital Conversion	3	2
	7	10/26/10	Analog to Digital Conversion con't	3 con't	
	8	11/02/10	LCD Interface and Assembly Language	4	
	9	11/09/10	Comparators	4 con't	3
	10	11/16/10	Timers and Pulse Width Modulation (PWM)	5	
	11	11/23/10	Mixed C & Assembly Programming/Course Project	Project	4
	12	11/30/10	Examination 2		
	13	12/07/10	Course Project	Project	5
	14	12/14/10	Final Exam/Course Project Brief and Demonstration	Demo	

Email Distribution List

- For those who sent me an email as of 8:30 PM Monday night ...
 - Did you all receive my trial email on each email account?
- If not ... please send me another email

Dohn_Bowden@uml.edu

Microcontroller Hardware and / or Interfaces

PIC16F684 Features

- 35 Instructions
- 8-level deep hardware stack
- 2048 Flash (words) Program Memory
- Interrupt capability
- 12 I/O pins with individual direction control
- 2 Comparators
- A/D Converter (10-bit resolution and 8 channels)
- 2 Timers

PIC16F684 Features

Device	Program Memory	Data M	lemory	I/O	10-bit A/D	Comparators	Timers	
Device	Flash (words)	SRAM (bytes)	EEPROM (bytes)	20	(ch)	Comparators	8/16-bit	
PIC16F684	2048	128	256	12	8	2	2/1	

PIC16F684 Pin Diagram

14-pin PDIP, SOIC, TSSOP

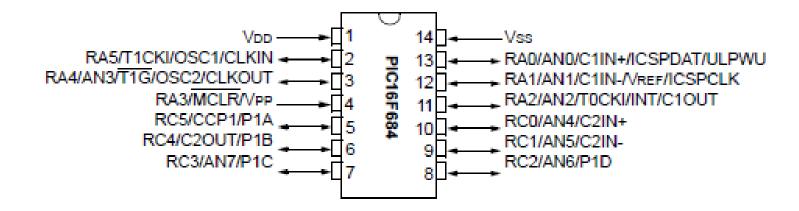
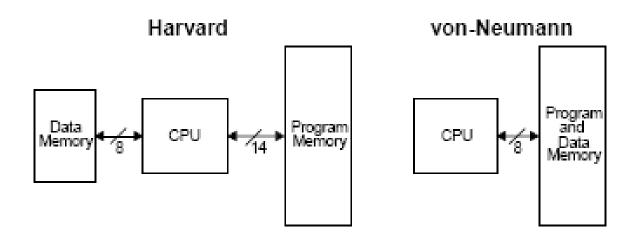


TABLE 1-1: PIC16F684 PINOUT DESCRIPTION


Name	Function	Input Type	Output Type	Description
RA0/AN0/C1IN+/ICSPDAT/ULPWU	RA0	ΠL	CMOS	PORTA I/O w/programmable pull-up and interrupt-on-change
	AN0	AN	_	A/D Channel 0 input
	C1IN+	AN	_	Comparator 1 input
	ICSPDAT	ΠL	CMOS	Serial Programming Data I/O
	ULPWU	AN	_	Ultra Low-power Wake-up input
RA1/AN1/C1IN-/VREF/ICSPCLK	RA1	ΠL	CMOS	PORTA I/O w/programmable pull-up and interrupt-on-change
	AN1	AN	_	A/D Channel 1 input
	C1IN-	AN	_	Comparator 1 input
	VREF	AN	_	External Voltage Reference for A/D
	ICSPCLK	ST	_	Serial Programming Clock
RA2/AN2/T0CKI/INT/C1OUT	RA2	ST	CMOS	PORTA I/O w/programmable pull-up and interrupt-on-change
	AN2	AN	_	A/D Channel 2 input
	TOCKI	ST	_	Timer0 clock input
	INT	ST	_	External Interrupt
	C10UT	_	CMOS	Comparator 1 output
RA3/MCLR/Vpp	RA3	ΠL	_	PORTA input with interrupt-on-change
	MCLR	ST	_	Master Clear w/internal pull-up
	Vpp	HV	_	Programming voltage
RA4/AN3/T1G/OSC2/CLKOUT	RA4	TTL	CMOS	PORTA I/O w/programmable pull-up and interrupt-on-change
TOWN TO GOOD DETROOT	AN3	AN	CINICO	A/D Channel 3 input
	TIG	ST		Timer1 gate
	OSC2	51	XTAL	Crystal/Resonator
	CLKOUT		CMOS	Fosc/4 output
RA5/T1CKI/OSC1/CLKIN	RA5	ΠL	CMOS	
RAS/TICKI/OSCI/CLKIN	T1CKI	ST	CIVIOS	PORTA I/O w/programmable pull-up and interrupt-on-change Timer1 clock
	OSC1	XTAL		Crystal/Resonator
	CLKIN	ST		•
RC0/AN4/C2IN+	RC0	ΠL	CMOS	External clock input/RC oscillator connection PORTC I/O
NCU/AN4/C2IN+	AN4	AN	CIVIOS	A/D Channel 4 input
	C2IN+	AN		Comparator 2 input
RC1/AN5/C2IN-		TTL	CMOS	
RC1/AN5/C2IN-	RC1 AN5	AN	CMOS	A/D Channel 5 input
	C2IN-	AN		·
RC2/AN6/P1D	RC2	TTL	CMOS	Comparator 2 input PORTC I/O
RC2/ANO/PTD	AN6	AN	CIVIOS	A/D Channel 6 input
	P1D		CMOS	•
DOS/ANZ/DAG				PWM output
RC3/AN7/P1C	RC3 AN7	AN	CMOS	
		AN	-	A/D Channel 7 input
RC4/C2OUT/P1B	P1C		CMOS	
NO4/CZOUT/PTB	RC4	ΠL		PORTC I/O
	C2OUT		CMOS	Comparator 2 output
DOCUGODA/DAA	P1B	_		PWM output
RC5/CCP1/P1A	RC5	ΠL	CMOS	
	CCP1	ST	CMOS	Capture input/Compare output
No.	P1A		CMOS	PWM output
Vss	Vss	Power		Ground reference
VDD	VDD	Power		Positive supply

Legend: TTL = TTL input buffer, ST = Schmitt Trigger input buffer, AN = Analog input

FIGURE 1-1: PIC16F684 BLOCK DIAGRAM INT 🛛 Configuration 13 8 PORTA Data Bus Program Counter < RA0 Flash 2k X 14 RA2 Program RAM Memory RA3 8-Level Stack 128 Bytes (13-Bit) File Registers Program Bus RAM Addr Addr MUX Instruction Req PORTC Indirect Direct Addr 8 X RCO Addr RC1 FSR Reg X RC2 RC3 Status Reg 8 MUX Power-up Timer Instruction Oscillator Decode & Start-up Timer ALU Control Power-on 8 Reset Timing Watchdog OSC1/CLKIN W Reg Generation Timer Brown-out OSC2/CLKOUT Detect Internal Oscillator Block CCP1/P1A P1B P1C P1D Vss \times T1G MCLR VDD \boxtimes T1CKI ECCP Timer0 Timer1 Timer2 T0CKI 2 Analog Comparators and Reference **EEDATA** Analog-To-Digital Converter 256 Bytes 8 Data **EEPROM** EEADDR $\dot{\times}$ X \times X \times VREF AND AN1 AN2 AN3 AN4 AN5 AN8 AN7 C1IN- C1IN+ C1OUT C2IN- C2IN+ C2OUT

Memory

• There are two different architecture regarding memory ...

Harvard Architecture

- Physically separate memory for instructions and data
- Separate data buses to each memory

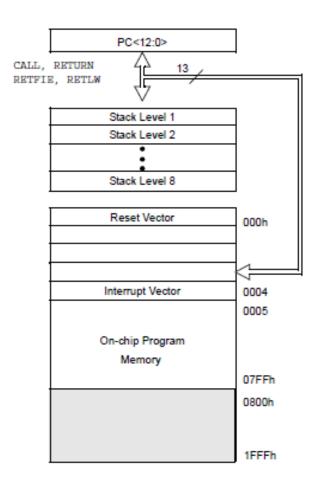
von Neumann

- Architecture that uses a processing unit ... and ...
 - a single separate storage structure to hold both instructions and data

PIC16F684 Memory

• The PIC16F684 uses the Harvard Architecture vice the von Neumann

- Separate Memory For ...
 - Program Memory
 - Variable Memory (data)/Register Spaces
 - Program Counter


- Advantages of separate memories ...
 - Ability of the processor to fetch new instructions ... while ...
 - Accessing the program memory/registers
 - However ... bad programs can still execute ... but ...
 - It will not try to execute data as instructions

- Disadvantages of separate memories ...
 - Loss of flexibility in application organization ...
 - i.e. Changing data or stack segment sizes to accommodate different applications

Program Memory Types

- Microchip offers three program memory types
- The memory type is designated in the part number by the first letter(s) after the family affiliation designators
 - C, as in PIC16CXXX.
 - These devices have EPROM type memory
 - CR, as in PIC16CRXXX
 - These devices have ROM type memory
 - F, as in PIC16FXXX
 - These devices have Flash type memory

Program Memory Map and Stack for the PIC16F684

Registers/Variable Memory

- Registers ... also known as Special Function Registers (SFR)
- Variable Memory ... also known as File Registers

Special Function Registers (SFR)

- SFR functions/purpose:
 - Monitors the status of program execution
 - Provides an interface to hardware peripheral functions
- SFR can be classified into two sets:
 - Core and peripheral

FIGURE 2-2: DATA MEMORY MAP OF THE PIC16F684

Indirect Addr.(1)	Address	r-	Addre
	00h	Indirect Addr. ⁽¹⁾ OPTION_REG	801
TMR0	01h		811
PCL	02h	PCL	821
STATUS	03h	STATUS	831
FSR	04h	FSR	841
PORTA	05h	TRISA	851
DODTO	06h	TRICO	861
PORTC	07h	TRISC	871
	08h		881
	09h		891
PCLATH	0Ah	PCLATH	8A
INTCON	0Bh	INTCON	8B
PIR1	0Ch	PIE1	8C
	0Dh		BD 8D
TMR1L	0Eh	PCON	8E
TMR1H	0Fh	OSCCON	8FI
T1CON	10h	OSCTUNE	901
TMR2	11h	ANSEL	91
T2CON	12h	PR2	92
CCPR1L	13h		931
CCPR1H	14h		941
CCP1CON	15h	WPUA	95
PWM1CON	16h	IOCA	96
ECCPAS	17h		97
WDTCON	18h		98
CMCON0	19h	VRCON	991
CMCON1	1Ah	EEDAT	9A
	1Bh	EEADR	9BI
	1Ch	EECON1	9C
	1Dh	EECON2 ⁽¹⁾	9D
ADRESH	1Eh	ADRESL	9E
ADCON0	1Fh	ADCON1	9F
. 1000110	20h	General	AO
	2011	Purpose	
		Registers	BF
General		32 Bytes	1 5
Purpose Registers			
_			
96 Bytes			
	6Fh		
	70 7Fh	Accesses 70h-7Fh	F0i
Bank 0		Bank 1	

TABLE 2-1: PIC16F684 SPECIAL FUNCTION REGISTERS SUMMARY BANK 0

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Page
Bank 0	Bank 0										
00h	Oh INDF Addressing this location uses contents of FSR to address data memory (not a physical register)								xxxx xxxx	19, 104	
01h	TMR0	Timer0 Mod	ule's Registe	r						xxxx xxxx	43, 104
02h	PCL	Program Co	unter's (PC)	Least Signifi	cant Byte					0000 0000	19, 104
03h	STATUS	IRP ⁽¹⁾	RP1 ⁽¹⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	13, 104
04h	FSR	Indirect Data	Memory Ad	dress Pointe	r					xxxx xxxx	19, 104
05h	PORTA ⁽²⁾	1	1	RA5	RA4	RA3	RA2	RA1	RA0	x0 x000	31, 104
06h	_	Unimplemen	ited							_	_
07h	PORTC ⁽²⁾	_	_	RC5	RC4	RC3	RC2	RC1	RC0	xx 0000	40, 104
08h	_	Unimplemen	ited							_	_
09h	_	Unimplemen	ited							_	_
0Ah	PCLATH	_	_	_	Write	Buffer for up	per 5 bits of	Program Co	unter	0 0000	19, 104
0Bh	INTCON	GIE	PEIE	T0IE	INTE	RAIE	T0IF	INTF	RAIF	0000 0000	15, 104
0Ch	PIR1	EEIF	ADIF	CCP1IF	C2IF	C1IF	OSFIF	TMR2IF	TMR1IF	0000 0000	17, 104
0Dh	-	Unimplemented —									-
0Eh	TMR1L	Holding Register for the Least Significant Byte of the 16-bit TMR1 Register xxxx xxxx								47, 104	
0Fh	TMR1H	Holding Register for the Most Significant Byte of the 16-bit TMR1 Register xxxx xx							xxxx xxxx	47, 104	
10h	T1CON	T1GINV	TMR1GE	T1CKPS1	T1CKPS0	T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON 00					50, 104
11h	TMR2	Timer2 Mod	ule Register							0000 0000	53, 104
12h	T2CON	-	TOUTPS3	TOUTPS2	PS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000						54, 104
13h	CCPR1L	Capture/Compare/PWM Register 1 Low Byte xxxx xxxx 8								80, 104	
14h	CCPR1H	Capture/Cor	mpare/PWM i	Register 1 Hi	gh Byte					XXXX XXXX	80, 104
15h	CCP1CON	P1M1	P1M0	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	0000 0000	79, 104
16h	PWM1CON	PRSEN	PDC6	PDC5	PDC4	PDC3	PDC2	PDC1	PDC0	0000 0000	96, 104
17h	ECCPAS	ECCPASE	ECCPAS2	ECCPAS1	ECCPAS0	PSSAC1	PSSAC0	PSSBD1	PSSBD0	0000 0000	93, 104
18h	WDTCON	_	-	_	WDTPS3	WDTPS2	WDTPS1	WDTPS0	SWDTEN	0 1000	111, 104
19h	CMCON0	C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000 0000	61, 104
1Ah	CMCON1	_	_	_	_	_	_	T1GSS	C2SYNC	10	62, 104
1Bh	_	Unimplemented —								_	
1Ch	_	Unimplemented —								_	
1Dh	_	Unimplemented —									_
1Eh	ADRESH	Most Signific	ant 8 bits of	the left shifte	d A/D result	or 2 bits of rig	ht shifted re	sult		xxxx xxxx	71, 104
1Fh	ADCON0	ADFM	VCFG	_	CHS2	CHS1	CHS0	GO/DONE	ADON	00-0 0000	70, 104
	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.									L	

 $\textbf{Legend:} \qquad \textbf{-= Unimplemented locations read as 'o', u= unchanged, x= unknown, q= value depends on condition, shaded = unimplemented}$

Note 1: IRP and RP1 bits are reserved, always maintain these bits clear.

^{2:} Port pins with analog functions controlled by the ANSEL register will read 'o' immediately after a Reset even though the data latches are either undefined (POR) or unchanged (other Resets).

Core

- The core pertains to the basic features that are required to make the device operate ... which are ...
 - Device Oscillator
 - Reset logic
 - CPU (Central Processing Unit) operation
 - ALU (Arithmetic Logical Unit) operation
 - Device memory map organization
 - Interrupt operation
 - Instruction set

Peripherals

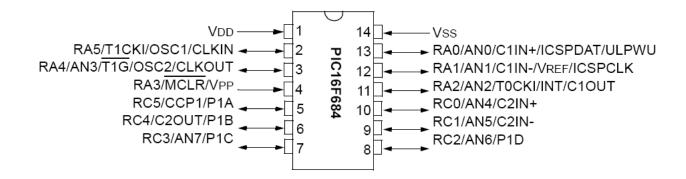
- Peripherals are the features that add a differentiation from a microprocessor/microcontroller
- These ease in interfacing to the external world ... such as ...
 - General purpose I/O
 - A/D inputs
 - PWM outputs
- And internal tasks ... such as ...
 - Keeping different time bases (such as timers)

Peripherals

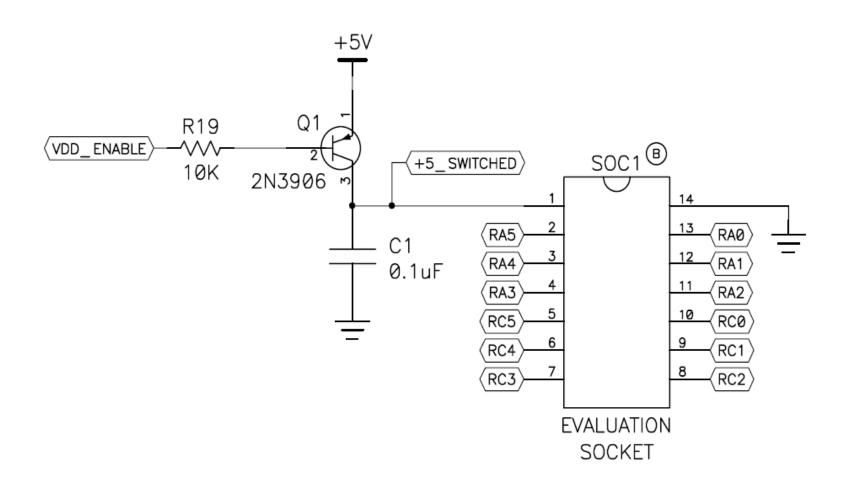
- General purpose I/O
- Timer0
- Timer1
- Capture, Compare, and PWM (CCP)
- Voltage References
- Comparators
- 10-bit Analog to Digital (A/D)

Development

- We will explore the features of the PIC16F684 microcontroller as we encounter them
- Same will be true for introducing the languages
 - C
 - Assembly


Microcontroller Hardware Interface With LEDs ...

How does the hardware work?


- Lets understand what we want to do ...
 - Before we try to write a program to make it work

PIC16F684 Pin Diagram

14-pin PDIP, SOIC, TSSOP

PICkit 1 Evaluation Socket

PICkit 1 LED Layout

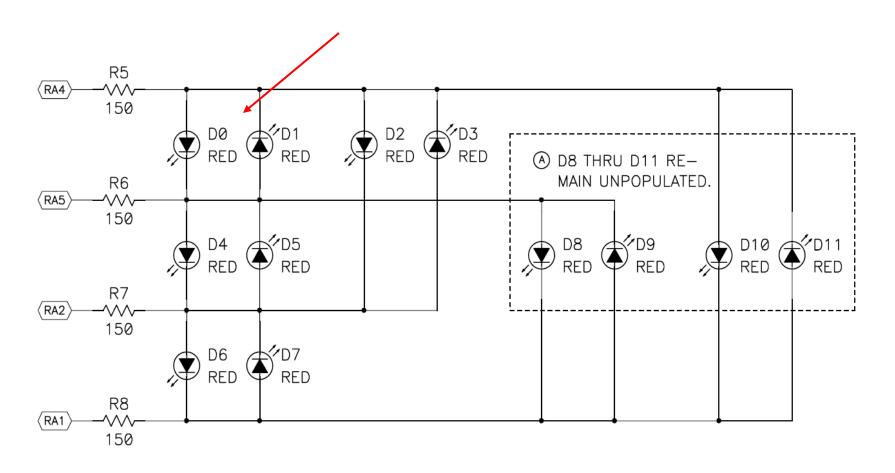


TABLE 1-1: PIC16F684 PINOUT DESCRIPTION

RA0/AN0/C1IN+/ICSPDAT/ULPWU	RA0			
	RAU	TTL	CMOS	PORTA I/O w/programmable pull-up and interrupt-on-change
	AN0	AN	_	A/D Channel 0 input
	C1IN+	AN	_	Comparator 1 input
	ICSPDAT	TTL	CMOS	Serial Programming Data I/O
	ULPWU	AN	_	Ultra Low-power Wake-up input
RA1/AN1/C1IN-/VREF/ICSPCLK	RA1	TTL	CMOS	PORTA I/O w/programmable pull-up and interrupt-on-change
	AN1	AN	_	A/D Channel 1 input
	C1IN-	AN	_	Comparator 1 input
	VREF	AN	_	External Voltage Reference for A/D
	ICSPCLK	ST	_	Serial Programming Clock
RA2/AN2/T0CKI/INT/C1OUT	RA2	ST	CMOS	PORTA I/O w/programmable pull-up and interrupt-on-change
	AN2	AN	_	A/D Channel 2 input
	T0CKI	ST	_	Timer0 clock input
	INT	ST	_	External Interrupt
	C1OUT	_	CMOS	Comparator 1 output
RA3/MCLR/VPP	RA3	TTL	_	PORTA input with interrupt-on-change
	MCLR	ST	_	Master Clear w/internal pull-up
	VPP	HV	_	Programming voltage
RA4/AN3/T1G/OSC2/CLKOUT	RA4	TTL	смоѕ	PORTA I/O w/programmable pull-up and interrupt-on-change
,	AN3	AN	_	A/D Channel 3 input
	TIG	ST	_	Timer1 gate
	OSC2	_	XTAL	Crystal/Resonator
	CLKOUT		CMOS	Fosc/4 output
RA5/T1CKI/OSC1/CLKIN	RA5	TTL	CMOS	PORTA I/O w/programmable pull-up and interrupt-on-change
OGS/ TOK/OSCI CEKIN	T1CKI	ST	CIVIOS	Timer1 clock
	OSC1	XTAL		Crystal/Resonator
	CLKIN	ST		External clock input/RC oscillator connection
RCZ/AN4/C2IN+	RC0	TTL	CMOS	PORTC I/O
ICB/AN4/C2IN+	AN4	AN	- CIVICS	A/D Channel 4 input
	C2IN+	AN		Comparator 2 input
RC1/AN5/C2IN-	RC1	TTL	CMOS	PORTC I/O
C I/AN /CZIN-	AN5	AN	CIVIOS	A/D Channel 5 input
	C2IN-	AN		
RC2/AN6/P1D	RC2	TTL	CMOS	Comparator 2 input PORTC I/O
(CZ/ANB/PTD	AN6	AN	- CMOS	
	P1D	_ AN	CMOS	A/D Channel 6 input
RC3/AN7/P1C	RC3	TTL	CMOS	PWM output PORTC I/O
(C3/AN7/FTC	AN7	AN	- CIVIOS	A/D Channel 7 input
	P1C	_ AN		
DOM/COOLIT/D4B			CMOS	PWM output
RC4/C2OUT/P1B	RC4 C2OUT	TTL	CMOS	PORTC I/O
				Comparator 2 output
205/00D4/D4A	P1B		CMOS	PWM output
RC5/CCP1/P1A	RC5	TTL	CMOS	PORTC I/O
	CCP1	ST	CMOS	Capture input/Compare output
	D44			
/ss	P1A Vss	Power	CMOS	PWM output Ground reference

Legend: TTL = TTL input buffer, ST = Schmitt Trigger input buffer, AN = Analog input

So ...

- In order to light D0 ...
 - We need a high on ...
 - RA4
 - And a low on ...
 - RA5

Now ... Lets examine the software ...

- Let see what we need to do in order to light D0 via software
- First we will need to understand the basic structure of a ...
 - "C" program

Programming / Software

Programming

- Commands/instructions that we will encounter tonight
 - C commands
 - PIC16F684 control

C commands

- C program structure
- Comments
- # include
- Integer variables
- for
- while
- NOP()
- functions

The Structure of a Typical C Program

```
mai n()
{
}
```

- The first line main()
 - Informs the system that the name of the program is main
 - () specify that main is a function
 - () being empty indicates that the function main takes no arguments
- { ... start of program statements for the routine
- } ... end of program statements for the routine

The "Main" Function

- Main is a special function
 - Contains the main program blocks
 - · Within which all lower-level functions are contained

Functions

- We have Functions other than the main() function within the program
- These functions perform certain tasks that can be called from within the main() function
- Up to now ... calling Functions always appear in the code following the functions they call
- They have been appearing prior to the main() Function

Function Prototypes

- You can place other functions after the main() Function ... if ...
 - You place function prototypes in your program that describe a function's return and parameter types (to be discussed in a future lecture)

```
void function_name(int x, int y, int z);
```

Then the Function will appear after the main() Function

Function Prototypes

```
* Function: PORT_init
* Description: Initializes PORTA to a known condition
* Notes: None
* Returns: None
void PORTA_init(void)
             PORTA = 0; // All PORTA Pins are low

CMCON0 = 7; // Turn off Comparators

ANSEL = 0; // Turn off ADC

TRISA = 0b001111; // RA4 and 5 are outputs; RA0,1,2, and 3 are input
             return;
```

Function Prototypes

• If the following command is placed prior to the main() function

```
void PORTA_i ni t(void);
```

- Then the Function will can be placed after the main() Function
- Now the main() function is at the beginning of the listing vice at the end

- Comment statements in a program are used to ...
 - Document ... and ...
 - Enhance its readability
- The use of comments are extremely important ...
 - Enhances the routine or code
 - Can be used during the debugging phase
- Enter comments as you write the code
 - While the code is fresh in your mind

- There are two ways to insert comments ... FIRST ...
 - Initiate the comment by the two characters / and *
 - This marks the beginning of the comment
 - Terminate the comment by the two characters * and /
 - This marks the end of the comment
 - All characters included between the opening /* and the closing
 */ are ...
 - Treated as part of the comment ... and ...
 - Are ignored by the C compiler
 - This is used when comments span several lines of the program

- The second way to insert comments ... is by ...
 - Is by using two consecutive slash characters //
 - Any characters that follow these slashes up to the end of the line are ignored by the compiler

• Examples ...

```
This entire line contains comments, next line not included
   Comments go between the slashes and asterisk
   First line of a comment which runs multiple lines ...
           This is a comment, line two
           This is a comment, line three
           Etc
   The next line is the last line of a comment
*/
```

The #include Statement

- The # include statement causes ...
 - ... the entire contents of a specified source file to be processed as if those contents had appeared in place of the # include command
 - Useful for items that are frequently used in most applications
 - Saves time retyping into the program
- These files normally end in .h and are referred to as header or include files

The # include Statement

• Example ...

include <pic.h>

You can review the contents of the pic.h header file ...

C: \Program Files\HI-TECH Software\PICC\9. 70\include\pic. h

 Take note of all the other header files available in the include directory

The *pic.h* Header File

```
_PIC_H_
#ifndef
            _PIC_H_
#define
#ifndef _HTC_H_
#include <htc.h>
#endif
#if defined(_10F200)
                         || defined(_10F202)
                                                   |||
  defined(_10F204)
                         || defined(_10F206)
                         <pic10f20x.h>
            #include
#endif
#if defined( 10F220)
                         || defined(_10F222)
                         <pic10f22x.h>
            #include
#endif
#if defined(_12C508)
                         || defined(_12C509)
                                                   |||
  defined( 12F508)
                         || defined( 12F509)
                                                   |||
  defined(_12C508A)
                         || defined(_12C509A)
  defined(_12CE518)
                         || defined( 12CE519)
                                                   |||
  defined(_12C509AG)
                         || defined(_12C509AF)
  defined(_12CR509A)
                         || defined(_RF509AG)
                                                   |||
  defined(_RF509AF)
            #include
                         <pic125xx.h>
#endif
#if defined(_12F510)
            #include
                         <pic12f510.h>
THE FILE CONTINUES ...
```

Working with Variables

- C programming allows you to assign symbolic names, known as variable names, for computations and results
- Variable declaration format:

```
data_type Variable_Name = initial_value;
```

 More than one variable can be declared at once using the following format:

```
data_type Name = initial_value, Name = initial_value, ... ;
```

Variables --- data_type

• Data types are summarized in Table 3.1 (PICC Pro Manual)

Table 3.1: Basic data types

Type	Size (bits)	Arithmetic Type
bit	1	unsigned integer
char	8	signed or unsigned integer
unsigned char	8	unsigned integer
short	16	signed integer
unsigned short	16	unsigned integer
int	16	signed integer
unsigned int	16	unsigned integer
short long	24	signed integer
unsigned short long	24	unsigned integer
long	32	signed integer
unsigned long	32	unsigned integer
float	24	real
double	24 or 32	real

Variables --- Variable_Name

- Rules for forming variable names (Variable_Name) ...
 - Can start with any upper or lower case letter or the underscore character
 - After the starting character ... any letter, number, or underscore character can be used. NO BLANKS

Variables --- initial_value

- Assignment of initial value is optional
- Signed integer (16 bits) range as follows ...

-32,768 to 32,767

Working with Variables

• Examples ...

```
int i; int j; int i, j;
```

```
int i = 1; j = 5;
```

The *for* Statement

The general format for declaring the for statement is as follows:

```
for ( expressi on_1; expressi on_2; expressi on_3 )
    program_statement
```

- expression_1 is evaluated once the loop begins
- Next ... expression_2 is evaluated
 - If the value is nonzero, program_statement is executed and then expression_3 is evaluated
- Execution of program_statement continues as long as the value of expression_2 is nonzero

The *for* Statement

• To summarize ... the *for* statement is as follows:

```
for (initialization; Loop test expression; Loop increment)
    program_statement
```

Loop increment:

variable = variable + 1	Adds one to the variable
variable ++	Adds one to the variable
variable = variable -1	Subtracts one to variable
variable	Subtracts one to variable
for(;;)	Loop forever

The *for* Statement

• Example ...

```
int i, j; for (i = 0; i < 255; i++) for (j = 0; j < 255; j++);
```

The loop test expression is evaluated as follows:

i < 255 has the value 1 if i is less than 255, and 0 otherwise

The while Statement

- The while loop allows you to repeatedly execute a set of instructions while a test expression is true
- The general format for declaring the while statement is as follows:

```
while ( expression )
    program_statement
```

- program_statement is executed as long as the value of expression is nonzero
- Note that, because expression is evaluated each time before the execution of program_statement, program_statement may never be executed

The while Statement

• Example ...

NOP() Statement

- The **NOP()**; statement
 - No operation
- Can be used as a breakpoint without affecting the operation of the C program
- You cannot set a breakpoint on a line without code!

General Purpose Input Output Associated Registers

- PORTA
- TRISA
- PORTC
- TRISC

PORTA Register

- PORTA register make up six of the twelve general purpose Input/Output (I/O) pins available
- PORTA is a 6-bit wide, bidirectional port
 - Active PORTA Register bits are 0 through 5
 - Individual Register bits are called RAO, RA1, RA2, ... RA5
 - PORTA Register bits 6 and 7 are not used/unimplemented
- PORTA corresponding data direction register is the TRISA Register

PORTA Register (continued)

REGISTER 4-1: PORTA - PORTA REGISTER (ADDRESS: 05h)

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-0	R/W-0
_	_	RA5	RA4	RA3	RA2	RA1	RA0

bit 7 bit 0

bit 7-6: Unimplemented: Read as '0'

bit 5-0: RA<5:0>: PORTA I/O Pin bit

1 = Port pin is > VIH 0 = Port pin is < VIL

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

- The TRISA Register controls the data direction of the six general purpose Input/Output pins of PORTA
- Meaning, the state of each TRISA bit will set the data direction for each corresponding PORTA pin
 - Setting an individual TRISA bit (= 1)
 - will make the corresponding PORTA pin an input
 - Clearing an individual TRISA bit (= 0)
 - will make the corresponding PORTA pin an output
- The exception is RA3, which is input only ... and ...
 - its TRIS bit will always read as '1', meaning input only

REGISTER 4-2: TRISA – PORTA TRI-STATE REGISTER (ADDRESS: 85h)

U-0	U-0	R/W-1	R/W-1	R-1	R/W-1	R/W-1	R/W-1
_	_	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0
bit 7							bit 0

bit 7-6: Unimplemented: Read as '0'

bit 5-0: TRISA<5:0>: PORTA Tri-State Control bit

1 = PORTA pin configured as an input (tri-stated)

o = PORTA pin configured as an output

Note 1: TRISA<3> always reads '1'.

2: TRISA<5:4> always reads '1' in XT, HS and LP OSC modes.

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

- When the chip is powered up ... TRISA bits ...
 - Default to "1", meaning input
- Therefore, we do not need to initialize for input, only output
- Why?
 - If the pin is incorrectly wired, it could be easily damaged if it was set to an output ... why?
 - If the pin is accidentally grounded ... and ...
 - Driven to a high state
 - » The short circuit would likely damage the output circuit
 - » If set to an input, no damage would be done

- When used as analog inputs (will discuss in more detail in a future lecture) ...
 - The TRISA register controls the direction of the PORTA pins, even when they are being used as analog inputs
 - We must ensure the bits in the TRISA register are maintained set when using them as analog inputs
 - I/O pins configured as analog input always read '0'

TRIS – Explained

- Three-State logic, also known as TRI-STATE logic
- The name is misleading ... it is not digital logic with 3 voltage levels
- It is just ordinary logic
 - High (1)
 - Low (0)
- With a third output state ...
 - Open circuit (disconnected)
- Therefore ... The three states (TRI-STATE) are ...
 - HIGH
 - LOW
 - Disconnected (open circuit)

TRIS – Explained

- A separate "enable" input determines whether the output ...
 - Behaves like ordinary logic (high/low) ... or ...
 - The "third" (open) state
- In the "open" state ... which ...
 - Cuts off the logic states

Software Control Of Registers

- The HI-TECH PICC compilers contains header files that equate variables to Special Function Registers
 - pi c16f684. h is the header file used for the 684
 - Variable names are usually the same as the Register name
 - Variable names are also assigned to individual bits
- Assess to each register is via reading or writing from/to a particular variable
 - Can either be the entire register or an individual bit

PIC16F684 PICC STD Variables

• Today we shall explore a few variables used in Lab #1 **PORTA** RA4 TRI SA **CMCONO** ANSEL __confi g

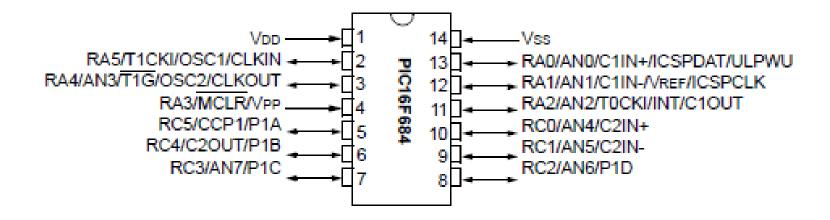
PORTA Register PICC Pro C Variables

- PORTA
- R&#
 - Where

```
& represents the port (either A or C) # represents the port's pin (0 - 5)
```

- TRIS&#
 - Same convention as above

Input/Output Commands on PORTA


Examples ...

```
PORTA = 0; // Initializes PORTA. All pins are set to zero
RA4 = 0; // Makes RA4 low (0 volts)
RA4 = 1; // Makes RA4 high (5 volts)
TRISA = 0; // Makes all PORTA pins outputs
TRISA4 = 0; // Makes RA4 an Output
TRISA5 = 1; // Makes RA5 an Input
RA5 = 0; // Makes RA5 low (0 volts)
RA5 = 1; // Makes RA5 high (5 volts)
```

PORTA Pins are Multipurpose

• From the Pin-out diagram ... pins 2, 3, 4, 11, 12, and 13

14-pin PDIP, SOIC, TSSOP

PORTA Pins are Multipurpose (con't)

- We see that the pins are multipurpose
 - Input/Output
 - Analog to digital converter
 - Comparator

- To use PORTA for the I/O function
 - We need to turn off the other functions

PORTA Pins are Multipurpose (con't)

To turn off the other functions we use the following commands

```
CMCON0 = 7; // Turns off the comparators

ANSEL = 0; // Turns off the Analog to Digital Converter
```

 We will discuss the above commands in more details when we are using the associated peripheral features

Configuration Bits

- Configuration bits can select various device configurations (shown in Register 12-1)
 - Bits are "programmed"
 - Read as '0'
 - Or ... "unprogrammed" ...
 - Read as '1'
- These bits are mapped in program memory location 2007h
 - Note: Address 2007h is beyond the user program memory space. It belongs to the special configuration memory space (2000h-3FFFh), which can be accessed only during programming

Configuration Word

- Together ... all the configuration bits make up the configuration word
- Operating configuration parameters which are set on power up
- These parameters are specified by writing to a special word in memory
- This word is called the Configuration Word

```
__CONFIG (xxx & yyy & etc);
```

Note ... ___ are two underscore characters

REGISTER 12-1: CONFIG - CONFIGURATION WORD (ADDRESS: 2007h)

bit 13-12 Unimplemented: Read as '1' bit 13-12 Unimplemented: Read as '1' bit 11 FCMENI. FailSafe Clock Monitor Enabled bit 1 = FailSafe Clock Monitor is enabled 0 = FailSafe Clock Monitor is disabled bit 10 IESO: Internal External Switchover mode is enabled 0 = Internal External Switchover mode is enabled 0 = Internal External Switchover mode is disabled bit 9-8 BODEN<1:0>: BoDD enabled 10 = BOD enabled 10 = BOD enabled during operation and disabled in Sleep 01 = BOD controlled by SBODEN bit (PCON<4>) 00 = BOD disabled 10 = BOD enabled 10 = Data memory code protection is disabled 0 = Data memory code protection is enabled 0 = Data memory code protection is enabled 0 = Program memory code protection is enabled 0 = Program memory code protection is enabled bit 6 CP: Code Protection bit ¹⁰ 1 = Program memory code protection is enabled bit 5 MCLRE: RA3/MCLR pin function select bit ⁽⁴⁾ 1 = RA3/MCLR pin function is MCLR 0 = RA3/MCLR pin function is MGLR 0 = RA3/MCLR pin function is digital input, MCLR internally tied to Voo bit 4 PWNTE: Power-up Timer Enable bit 1 = PWRT disabled 0 = PWRT enabled bit 3 WDTE: Watchdog Timer Enable bit 1 = PWRT disabled 0 = WDT disabled and can be enabled by SWDTEN bit (WDTCON<0>) FOSC<2:0>: Oscillator Selection bits 11 = RC oscillator: I/O function on RA4/OSC2/LCKOUT pin, RC on RA5/OSC1/CLKIN 110 = RCIO oscillator: I/O function on RA4/OSC2/LCKOUT pin, I/O function on RA5/OSC1/CLKIN 101 = HITOSC oscillator: Uo function on RA4/OSC2/LCKOUT pin, I/O function on RA5/OSC1/CLKIN 010 = HT oscillator: ClyoUT disabled on RA4/OSC2/LCKOUT pin, I/O function on RA5/OSC1/CLKIN 010 = HT oscillator: ClyoUT disabled on RA4/OSC2/LCKOUT pin, I/O function on RA5/OSC1/CLKIN 010 = HT oscillator: ClyoUT disabled on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN 010 = HT oscillator: ClyoUT disabled on the RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN 010 = HT oscillator: ClyoUT disabled on the RA4/OSC2/CLKOUT pin, I/O function on RA4/OSC2/CLKOUT pin, I/O function on RA4/OSC2/CLKOUT pin,	_	- FCMEN IESO BODENI BODENO CPD CP MCLRE PWRTE WDTE FOSC2 FOSC1 FOSC	CO									
bit 11 FCMEN: Fail-Safe Clock Monitor Enabled bit 1 = Fail-Safe Clock Monitor is enabled 0 = Fail-Safe Clock Monitor is enabled 0 = Fail-Safe Clock Monitor is enabled 0 = Fail-Safe Clock Monitor is disabled bit 10 IESO: Internal External Switchover mode is enabled 0 = Internal External Switchover mode is disabled bit 9-8 BODEN-1:0-: Brown-out Detect Selection bits(1) 1 = BOD enabled 1 = BOD enabled during operation and disabled in Sleep 0 = BOD enabled during operation and disabled in Sleep 0 = BOD disabled 0 = Dot and the Monitor of th	bit 13	bi	it O									
bit 11 FCMEN: Fail-Safe Clock Monitor Enabled bit 1 = Fail-Safe Clock Monitor is disabled 0 = Fail-Safe Clock Monitor is disabled bit 10 IESO: Internal External Switchover mode is enabled 0 = Internal External Switchover mode is disabled bit 9-8 BODEN-1:0-: Brown-out Detect Selection bits(1) 1 = BOD enabled 10 = BOD enabled during operation and disabled in Sleep 01 = BOD enabled by SBODEN bit (PCON-4>) 00 = BOD disabled bit 7 CPD: Data Code Protection bits(2) 1 = Data memory code protection is disabled 0 = Data memory code protection is disabled 0 = Data memory code protection is disabled 0 = Data memory code protection is enabled bit 6 CP: Code Protection bits(3) 1 = Program memory code protection is enabled bit 5 MCLRE: RA3/MCLR pin function select bits(4) 1 = RA3/MCLR pin function is MCLR 0 = RA3/MCLR pin function is MCLR 1 = RA3/MCLR pin function is MCLR 1 = PWRTE: Power-up Timer Enable bit 1 = PWRTE: Power-up Timer Enable bit 1 = WDTE enabled bit 3 WDTE: Watchdog Timer Enable bit 1 = WDT enabled 0 = WDT disabled and can be enabled by SWDTEN bit (WDTCON-0) bit 2-0 FOS <2-20: Coellator Selection bits 11 = RC oscillator: CLKOUT function on RA4/OSC2/CLKOUT pin, RC on RA5/OSC1/CLKIN 110 = RCIO oscillator: I/O function on RA4/OSC2/CLKOUT pin, RC on RA5/OSC1/CLKIN 110 = RITOSCIO oscillator: I/O function on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN 110 = HS oscillator: Ligh-speed crystal/resonator on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN 111 = RC oscillator: Crystal/resonator on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN 111 = RC oscillator: Crystal/resonator on RA4/OSC2/CLKOUT pin pin pin function on RA5/OSC1/CLKIN 111 = RC oscillator: Crystal/resonator on RA4/OSC2/CLKOUT pin pin pin function on RA5/OSC1/CLKIN 111 = RC oscillator: Love-power crystal on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 111 = RC oscillator: Love-power crystal on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 112 = RC oscillator: Love-power crystal on RA4/OSC2/CLKOUT and RA5/OSC1/CL												
1 = Fail-Safe Clock Monitor is enabled 0 = Fail-Safe Clock Monitor is disabled bit 10 lESO: Internal External Switchover bit 1 = Internal External Switchover mode is enabled 0 = Internal External Switchover mode is disabled bit 9-8 BODEN-1:00: Brown-out Detect Selection bits(1) 1 = BOD enabled 10 = BOD enabled during operation and disabled in Sleep 01 = BOD controlled by SBODEN bit (PCON-4>) 00 = BOD disabled bit 7 CPD: Data Code Protection bit(2) 1 = Data memory code protection is disabled 0 = Data memory code protection is disabled 0 = Data memory code protection is enabled bit 6 CP: Code Protection bit(3) 1 = Program memory code protection is enabled bit 5 MCLE: RA3/MCLR pin function select bit(4) 1 = RA3/MCLR pin function select bit(4) 1 = RA3/MCLR pin function is MCLR 0 = RA3/MCLR pin function is MCLR 0 = RA3/MCLR pin function is MCLR 1 = PWRTE: Power-up Timer Enable bit 1 = PWRTE: Power-up Timer Enable bit 1 = PWRTE disabled 0 = PWRTE: Hower-up Timer Enable bit 1 = WDT enabled bit 3 WDTE: Watchdog Timer Enable bit 1 = WDT enabled 0 = WDT disabled and can be enabled by SWDTEN bit (WDTCON-0>) bit 2-0 FOSC<2:0-: Oscillator: CLKOUT function on RA4/OSC2/CLKOUT pin, RC on RA5/OSC1/CLKIN 101 = INTOSC oscillator: CLKOUT function on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN 102 = INTOSC Oscillator: CLKOUT function on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN 103 = HT Oscillator: CURD function on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN 104 = EC: I/O function on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN 105 = HT Oscillator: Curden on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN 106 = HT Oscillator: Curden on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN 107 = HT Oscillator: Curden on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN 108 = HT Oscillator: Curden on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN 109 = HT Oscillator: Curden on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 100 = HT Oscillator: Curden on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 101 = HT Osc	bit 13-1	•										
o = Fail-Safe Clock Monitor is disabled bit 10 IESO: Internal External Switchover mode is enabled	bit 11											
bit 10 IESO: Internal External Switchover bit 1 = Internal External Switchover mode is enabled 0 = Internal External Switchover mode is disabled bit 9-8 BODEN<1:0>: Brown-out Detect Selection bits ⁽¹⁾ 11 = BOD enabled 10 = BOD enabled during operation and disabled in Sleep 01 = BOD controlled by SBODEN bit (PCON<4>) 00 = BOD disabled bit 7 CPD: Data Code Protection bit ⁽²⁾ 1 = Data memory code protection is disabled 0 = Data memory code protection is disabled 0 = Data memory code protection is disabled 0 = Program memory code protection is disabled 0 = Program memory code protection is enabled bit 5 MCLRE: RA3/MCLR pin function select bit ⁽⁴⁾ 1 = RA3/MCLR pin function is MCLR 0 = RA3/MCLR pin function is MCLR 1 = RA3/MCLR pin function is digital input, MCLR internally tied to Vop bit 4 PWRTE: Power-up Timer Enable bit 1 = PWRT disabled 0 = PWRT disabled 0 = WDT disabled and can be enabled by SWDTEN bit (WDTCON<0>) bit 2-0 FOSC<2:0>: Oscillator Selection bits 11 = RC oscillator: CLKOUT function on RA4/OSC2/CLKOUT pin, RC on RA5/OSC1/CLKIN 101 = RIOS coscillator: CLKOUT function on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN 101 = RS oscillator: CLKOUT function on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN 101 = HS oscillator: High-speed crystal/resonator on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN 101 = XT oscillator: Crystal/resonator on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN 101 = XT oscillator: Crystal/resonator on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 101 = XT oscillator: Crystal/resonator on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 101 = XT oscillator: Crystal/resonator on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 102 = XT oscillator: Crystal/resonator on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 103 = XT oscillator: Crystal/resonator on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 104 = XT oscillator: Crystal/resonator on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 105 = XT oscillator: Crystal/resonator on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 106 = XT oscillator: Crystal/resonator on RA4/OSC2/												
1 = Internal External Switchover mode is enabled 0 = Internal External Switchover mode is disabled 10 = Internal External Switchover mode is disabled 11 = BOD Enabled 10 = BOD enabled 10 = BOD enabled during operation and disabled in Sleep 01 = BOD controlled by SBODEN bit (PCON<4>) 00 = BOD controlled by SBODEN bit (PCON<4>) 00 = BOD disabled bit 7 CPD: Data Code Protection bit ⁽²⁾ 1 = Data memory code protection is disabled 0 = Data memory code protection is enabled bit 6 CP: Code Protection bit ⁽³⁾ 1 = Porgram memory code protection is enabled bit 5 MCLRE: RA3/MCLR pin function is MCLR 1 = RA3/MCLR pin function is MCLR 1 = RA3/MCLR pin function is MCLR 0 = RA3/MCLR pin function is MCLR 1 = RA3/MCLR pin function is MCLR 1 = RA9/MCLR pin function is MCLR 0 = RA3/MCLR pin function is MCLR 1 = PWRT disabled 0 = PWRT enabled 1 = PWRT disabled 0 = PWRT enabled 0 = WDT disabled and can be enabled by SWDTEN bit (WDTCON<0>) bit 2-0 FOSC<2:00: Oscillator Selection bits 11 = RCIo oscillator: CLKOUT function on RA4/OSC2/CLKOUT pin, RC on RA5/OSC1/CLKIN 101 = INTOSC oscillator: I/O function on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN 101 = INTOSC Oscillator: CLKOUT function on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN 101 = HS oscillator: High-speed crystal/resonator on RA5/OSC1/CLKIN 101 = TS oscillator: Ligh-speed crystal/resonator on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 101 = HS oscillator: Low-power crystal on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 102 = The entire data EEPROM will be erased when the code protection is turned off. 3: The entire program memory will be erased when the code protection is turned off.	bit 10											
bit 9-8 BODEN<1:0>: Brown-out Detect Selection bits ⁽¹⁾ 11 = BOD enabled 10 = BOD enabled during operation and disabled in Sleep 01 = BOD controlled by SBODEN bit (PCON<4>) 00 = BOD disabled bit 7 CPD: Data Code Protection bit ⁽²⁾ 1 = Data memory code protection is disabled 0 = Data memory code protection is enabled bit 6 CP: Code Protection bit ⁽³⁾ 1 = Program memory code protection is disabled 0 = Program memory code protection is enabled bit 5 MCLRE: RA3/MCLR pin function is MCLR 0 = PWRTE: Power-up Timer Enable bit 1 = PWRT disabled 0 = PWRT enabled 0 = PWRT enabled 0 = WDT disabled and can be enabled by SWDTEN bit (WDTCON<0>) bit 2-0 FOSC<2:0>: Oscillator Selection bits 11 = RC oscillator: I/O function on RA4/OSC2/CLKOUT pin, RC on RA5/OSC1/CLKIN 10 = RCIO oscillator: I/O function on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN 10 = INTOSC oscillator: I/O function on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN 10 = INTOSC oscillator: I/O function on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN 10 = RCIO oscillator: I/O function on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN 10 = INTOSCI oscillator: I/O function on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN 10 = RCIO oscillator: I/O function on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN 10 = RCIO oscillator: I/O function on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 10 = RCIO oscillator: I/O function on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 10 = RCIO oscillator: I/O function on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 10 = RCIO oscillator: I/O function on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 10 = RCIO oscillator: I/O function on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 10 = RCIO oscillator: I/O function on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 10 = RCIO oscillator: I/O function on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 10 = RCIO oscillator: I/O function on RA4/OSC2												
11 = BOD enabled during operation and disabled in Sleep 10 = BOD controlled by SBODEN bit (PCON<4>) 00 = BOD disabled bit 7		o = Internal External Switchover mode is disabled										
10 = BOD enabled during operation and disabled in Sleep 01 = BOD controlled by SBODEN bit (PCON<4>) 00 = BOD disabled bit 7 CPD: Data Code Protection bit ⁽²⁾ 1 = Data memory code protection is disabled 0 = Data memory code protection is disabled 0 = Data memory code protection is disabled 0 = Program memory code protection is disabled 0 = Program memory code protection is disabled 0 = Program memory code protection is disabled 1 = RA3/MCLR pin function select bit ⁽⁴⁾ 1 = RA3/MCLR pin function is MCLR 0 = RA3/MCLR pin function is MGLR 0 = RA3/MCLR pin function is digital input, MCLR internally tied to Vbb bit 4 PWRTE: Power-up Timer Enable bit 1 = PWRT disabled 0 = PWRT enabled 0 = PWRT enabled 1 = WDT enabled 1 = WDT enabled 1 = WDT disabled and can be enabled by SWDTEN bit (WDTCON<0>) bit 2-0 FOSC<2:0>: Oscillator: ELKOUT function on RA4/OSC2/CLKOUT pin, RC on RA5/OSC1/CLKIN 110 = RCIO oscillator: I/O function on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN 101 = INTOSC oscillator: I/O function on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN 011 = EC: I/O function on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN 012 = EC: I/O function on RA4/OSC2/CLKOUT pin, CLKIN on RA5/OSC1/CLKIN 013 = EC: I/O function on RA4/OSC2/CLKOUT pin, CLKIN on RA5/OSC1/CLKIN 014 = Soscillator: High-speed crystal/resonator on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 015 = EC: I/O function on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 016 = Expecial to the crystal/resonator on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 017 = CL P oscillator: Low-power crystal on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 018 = Enabling Brown-out Detect does not automatically enable Power-up Timer. 2: The entire data EEPROM will be erased when the code protection is turned off.	bit 9-8											
o1 = BOD controlled by \$BODEN bit (PCON<4>) o0 = BOD disabled CPD: Data Code Protection bit ⁽²⁾ 1 = Data memory code protection is disabled o = Data memory code protection is enabled bit 6												
bit 7												
1 = Data memory code protection is disabled 0 = Data memory code protection is enabled bit 6												
bit 6 CP: Code Protection bit ⁵¹ 1 = Program memory code protection is disabled 0 = Program memory code protection is disabled 1 = RA3/MCLR pin function select bit ⁴⁰ 1 = RA3/MCLR pin function is MCLR 0 = RA3/MCLR pin function is MCLR 1 = RA3/MCLR pin function is MCLR 1 = PWRTE; Power-up Timer Enable bit 1 = PWRT disabled 0 = PWRT enabled bit 3 WDTE: Watchdog Timer Enable bit 1 = WDT disabled 0 = WDT disabled and can be enabled by SWDTEN bit (WDTCON<0>) bit 2-0 FOSC<2:0>: Oscillator: CLKOUT function on RA4/OSC2/CLKOUT pin, RC on RA5/OSC1/CLKIN 101 = RCIO oscillator: I/O function on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN 101 = INTOSC IO scillator: U/O function on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN 101 = EC: I/O function on RA4/OSC2/CLKOUT pin, CURION on RA5/OSC1/CLKIN 011 = CSC: I/O function on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN 012 = XT oscillator: High-speed crystal/resonator on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 001 = XT oscillator: Low-power crystal on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN Note 1: Enabling Brown-out Detect does not automatically enable Power-up Timer. 2: The entire data EEPROM will be erased when the code protection is turned off.	bit 7	CPD: Data Code Protection bit ⁽²⁾										
bit 6 CP: Code Protection bit ⁽³⁾ 1 = Program memory code protection is disabled 0 = Program memory code protection is enabled bit 5 MCLRE: RA3/MCLR pin function select bit ⁽⁴⁾ 1 = RA3/MCLR pin function is MCLR 0 = RA3/MCLR pin function is MCLR 1 = RA3/MCLR pin function is MCLR 1 = PWRTE: Power-up Timer Enable bit 1 = PWRT disabled 0 = PWRT enabled bit 3 WDTE: Watchdog Timer Enable bit 1 = WDT enabled 0 = WDT disabled and can be enabled by SWDTEN bit (WDTCON<0>) bit 2-0 FOSC<2:0>: Oscillator Selection bits 11 = RC oscillator: CLKOUT function on RA4/OSC2/CLKOUT pin, RC on RA5/OSC1/CLKIN 10 = RCIO oscillator: I/O function on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN 101 = INTOSC oscillator: I/O function on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN 101 = EC: I/O function on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN 011 = EC: I/O function on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN 012 = HS oscillator: Clystal/resonator on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 013 = XT oscillator: Crystal/resonator on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 014 = XT oscillator: Low-power crystal on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 015 = XT oscillator: Low-power crystal on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 016 = XT oscillator: Low-power crystal on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 017 = XT oscillator: Low-power crystal on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 018 = XT oscillator: Low-power crystal on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 019 = XT oscillator: Low-power crystal on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 019 = XT oscillator: Low-power crystal on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 019 = XT oscillator: Low-power crystal on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 019 = XT oscillator: Low-power crystal on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 019 = XT oscillator: Low-power crystal on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 019 = XT oscillator: Low-power crystal on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 019 = XT oscillator: Low-power crystal on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 019 = XT oscillator: Low-po		·										
1 = Program memory code protection is disabled 0 = Program memory code protection is enabled bit 5 MCLRE: RA3/MCLR pin function select bit ⁽⁴⁾ 1 = RA3/MCLR pin function is MCLR 0 = RA3/MCLR pin function is digital input, MCLR internally tied to Vbb bit 4 PWRTE: Power-up Timer Enable bit 1 = PWRT disabled 0 = PWRT enabled bit 3 WDTE: Watchdog Timer Enable bit 1 = WDT enabled 0 = WDT disabled and can be enabled by SWDTEN bit (WDTCON<0>) bit 2-0 FOSC<2:0>: Oscillator Selection bits 11 = RC oscillator: CLKOUT function on RA4/OSC2/CLKOUT pin, RC on RA5/OSC1/CLKIN 110 = RCIO oscillator: I/O function on RA4/OSC2/CLKOUT pin, Wo function on RA5/OSC1/CLKIN 110 = INTOSC oscillator: CLKOUT function on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN 110 = INTOSCIO oscillator: I/O function on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN 110 = EC: I/O function on RA4/OSC2/CLKOUT pin, ClKIN on RA5/OSC1/CLKIN 011 = EC: I/O function on RA4/OSC2/CLKOUT pin, CLKIN on RA5/OSC1/CLKIN 012 = XT oscillator: Clystal/resonator on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 013 = XT oscillator: Clystal/resonator on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 014 = XT oscillator: Low-power crystal on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 015 = XT oscillator: Low-power crystal on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 016 = XT oscillator: Low-power crystal on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 017 = XT oscillator: Low-power crystal on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 018 = XT oscillator: Low-power crystal on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 019 = XT oscillator: Low-power crystal on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 019 = XT oscillator: Low-power crystal on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 019 = XT oscillator: Low-power crystal on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 019 = XT oscillator: Low-power crystal on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 019 = XT oscillator: Low-power crystal on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 019 = XT oscillator: Low-power crystal on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 019 = XT oscillator: Low-power crystal on RA4/OSC2/C	L-11 C	<u> </u>										
bit 5 MCLRE: RA3/MCLR pin function select bit(4) 1 = RA3/MCLR pin function is MCLR 0 = RA3/MCLR pin function is MCLR 1 = RA3/MCLR pin function is MCLR 0 = RA3/MCLR pin function is MCLR PWRTE: Power-up Timer Enable bit 1 = PWRT disabled 0 = PWRT enabled bit 3 WDTE: Watchdog Timer Enable bit 1 = WDT enabled 0 = WDT disabled and can be enabled by SWDTEN bit (WDTCON<0>) bit 2-0 FOSC<2:0>: Oscillator Selection bits 11 = RC oscillator: CLKOUT function on RA4/OSC2/CLKOUT pin, RC on RA5/OSC1/CLKIN 110 = RCIO oscillator: I/O function on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN 101 = INTOSC oscillator: I/O function on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN 101 = EC: I/O function on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN 011 = EC: I/O function on RA4/OSC2/CLKOUT pin, CLKIN on RA5/OSC1/CLKIN 012 = KC oscillator: Crystal/resonator on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 013 = KC oscillator: Crystal/resonator on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 014 = KC oscillator: Low-power crystal on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN Note 1: Enabling Brown-out Detect does not automatically enable Power-up Timer. 2: The entire data EEPROM will be erased when the code protection is turned off.	e na											
bit 5 MCLRE: RA3/MCLR pin function select bit(4) 1 = RA3/MCLR pin function is MCLR 0 = RA3/MCLR pin function is digital input, MCLR internally tied to Vpp Bit 4 PWRTE: Power-up Timer Enable bit 1 = PWRT disabled 0 = PWRT enabled bit 3 WDTE: Watchdog Timer Enable bit 1 = WDT enabled 0 = WDT disabled and can be enabled by SWDTEN bit (WDTCON<0>) bit 2-0 FOSC<2:0>: Oscillator Selection bits 11 = RC oscillator: L/O function on RA4/OSC2/CLKOUT pin, RC on RA5/OSC1/CLKIN 110 = RCIO oscillator: I/O function on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN 101 = INTOSC oscillator: L/O function on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN 101 = EC: I/O function on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN 011 = EC: I/O function on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN 010 = HS oscillator: Crystal/resonator on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 010 = KT oscillator: Low-power crystal on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 011 = CHOSCA CANDON CRASCA												
1 = RA3/MCLR pin function is MCLR 0 = RA3/MCLR pin function is digital input, MCLR internally tied to Vpp Bit 4 PWRTE: Power-up Timer Enable bit 1 = PWRT disabled 0 = PWRT enabled bit 3 WDTE: Watchdog Timer Enable bit 1 = WDT enabled 0 = WDT disabled and can be enabled by SWDTEN bit (WDTCON<0>) bit 2-0 FOSC<2:0>: Oscillator Selection bits 111 = RC oscillator: CLKOUT function on RA4/OSC2/CLKOUT pin, RC on RA5/OSC1/CLKIN 110 = RCIO oscillator: I/O function on RA4/OSC2/CLKOUT pin, RC on RA5/OSC1/CLKIN 101 = INTOSC oscillator: CLKOUT function on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN 100 = INTOSCIO oscillator: I/O function on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN 101 = EC: I/O function on RA4/OSC2/CLKOUT pin, CLKIN on RA5/OSC1/CLKIN 010 = HS oscillator: High-speed crystal/resonator on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 001 = XT oscillator: Crystal/resonator on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 002 = LP oscillator: Low-power crystal on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN Note 1: Enabling Brown-out Detect does not automatically enable Power-up Timer. 2: The entire data EEPROM will be erased when the code protection is turned off. 3: The entire program memory will be erased when the code protection is turned off.	bit 5	<u> </u>										
bit 4 PWRTE: Power-up Timer Enable bit 1 = PWRT disabled 0 = PWRT enabled bit 3 WDTE: Watchdog Timer Enable bit 1 = WDT enabled 0 = WDT disabled and can be enabled by SWDTEN bit (WDTCON<0>) bit 2-0 FOSC<2:0>: Oscillator Selection bits 111 = RC oscillator: CLKOUT function on RA4/OSC2/CLKOUT pin, RC on RA5/OSC1/CLKIN 110 = RCIO oscillator: CLKOUT function on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN 101 = INTOSC oscillator: CLKOUT function on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN 100 = INTOSCIO oscillator: I/O function on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN 101 = EC: I/O function on RA4/OSC2/CLKOUT pin, CLKIN on RA5/OSC1/CLKIN 101 = HS oscillator: High-speed crystal/resonator on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 100 = LY oscillator: Low-power crystal on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 100 = LP oscillator: Low-power crystal on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 100 = LP oscillator: Low-power crystal on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 100 = LP oscillator: Low-power crystal on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 100 = LP oscillator: Low-power crystal on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 100 = LP oscillator: Low-power crystal on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 100 = LP oscillator: Low-power crystal on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 100 = LP oscillator: Low-power crystal on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 100 = LP oscillator: Low-power crystal on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 100 = LP oscillator: Low-power crystal on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 11												
1 = PWRT disabled 0 = PWRT enabled bit 3 WDTE: Watchdog Timer Enable bit 1 = WDT enabled 0 = WDT disabled and can be enabled by SWDTEN bit (WDTCON<0>) bit 2-0 FOSC<2:0>: Oscillator Selection bits 11 = RC oscillator: CLKOUT function on RA4/OSC2/CLKOUT pin, RC on RA5/OSC1/CLKIN 110 = RCIO oscillator: I/O function on RA4/OSC2/CLKOUT pin, RC on RA5/OSC1/CLKIN 100 = INTOSC oscillator: CLKOUT function on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN 100 = INTOSCIO oscillator: I/O function on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN 101 = EC: I/O function on RA4/OSC2/CLKOUT pin, CLKIN on RA5/OSC1/CLKIN 102 = HS oscillator: High-speed crystal/resonator on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 103 = XT oscillator: Crystal/resonator on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 104 = XT oscillator: Low-power crystal on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 105 = LP oscillator: Low-power crystal on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 106 = XT oscillator: Low-power crystal on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 11		o = RA3/MCLR pin function is digital input, MCLR internally tied to VDD										
bit 3 WDTE: Watchdog Timer Enable bit 1 = WDT enabled 0 = WDT disabled and can be enabled by SWDTEN bit (WDTCON<0>) bit 2-0 FOSC<2:0>: Oscillator Selection bits 11 = RC oscillator: CLKOUT function on RA4/OSC2/CLKOUT pin, RC on RA5/OSC1/CLKIN 100 = RCIO oscillator: I/O function on RA4/OSC2/CLKOUT pin, RC on RA5/OSC1/CLKIN 101 = INTOSC oscillator: LKOUT function on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN 100 = INTOSCIO oscillator: I/O function on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN 101 = EC: I/O function on RA4/OSC2/CLKOUT pin, CLKIN on RA5/OSC1/CLKIN 101 = HS oscillator: High-speed crystal/resonator on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 100 = LP oscillator: Crystal/resonator on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 100 = LP oscillator: Low-power crystal on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN Note 1: Enabling Brown-out Detect does not automatically enable Power-up Timer. 2: The entire data EEPROM will be erased when the code protection is turned off. 3: The entire program memory will be erased when the code protection is turned off.	bit 4	•										
bit 3 WDTE: Watchdog Timer Enable bit 1 = WDT enabled 0 = WDT disabled and can be enabled by SWDTEN bit (WDTCON<0>) bit 2-0 FOSC<2:0>: Oscillator Selection bits 11 = RC oscillator: CLKOUT function on RA4/OSC2/CLKOUT pin, RC on RA5/OSC1/CLKIN 10 = RCIO oscillator: I/O function on RA4/OSC2/CLKOUT pin, RC on RA5/OSC1/CLKIN 101 = INTOSC oscillator: CLKOUT function on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN 100 = INTOSCIO oscillator: I/O function on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN 011 = EC: I/O function on RA4/OSC2/CLKOUT pin, CLKIN on RA5/OSC1/CLKIN 010 = HS oscillator: High-speed crystal/resonator on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 001 = XT oscillator: Crystal/resonator on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 000 = LP oscillator: Low-power crystal on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN Note 1: Enabling Brown-out Detect does not automatically enable Power-up Timer. 2: The entire data EEPROM will be erased when the code protection is turned off. 3: The entire program memory will be erased when the code protection is turned off.												
1 = WDT enabled 0 = WDT disabled and can be enabled by SWDTEN bit (WDTCON<0>) bit 2-0 FOSC<2:0>: Oscillator Selection bits 111 = RC oscillator: CLKOUT function on RA4/OSC2/CLKOUT pin, RC on RA5/OSC1/CLKIN 110 = RCIO oscillator: I/O function on RA4/OSC2/CLKOUT pin, RC on RA5/OSC1/CLKIN 101 = INTOSC oscillator: CLKOUT function on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN 100 = INTOSCIO oscillator: I/O function on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN 111 = EC: I/O function on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN 112 = EC: I/O function on RA4/OSC2/CLKOUT pin, CLKIN on RA5/OSC1/CLKIN 113 = EC: I/O function on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN 114 = EC: I/O function on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 115 = EC: I/O function on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 116 = EC: I/O function on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 117 = EC: I/O function on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 118 = EC: I/O function on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 119 = EC: I/O function on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 110 = EC: I/O function on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 110 = EC: I/O function on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 110 = EC: I/O function on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 110 = EC: I/O function on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 110 = EC: I/O function on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 110 = EC: I/O function on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 110 = EC: I/O function on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 110 = EC: I/O function on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 111 = EC: I/O function on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 111 = EC: I/O function on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 111 = EC: I/O function on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 111 = EC: I/O function on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 111 = EC: I/O function on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 111 = EC: I/O function on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 111 = EC: I/O function on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 111 = EC: I/O function on RA4/	hit 3											
bit 2-0 FOSC<2:0>: Oscillator Selection bits 111 = RC oscillator: CLKOUT function on RA4/OSC2/CLKOUT pin, RC on RA5/OSC1/CLKIN 100 = RCIO oscillator: I/O function on RA4/OSC2/CLKOUT pin, RC on RA5/OSC1/CLKIN 101 = INTOSC oscillator: CLKOUT function on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN 100 = INTOSCIO oscillator: I/O function on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN 101 = EC: I/O function on RA4/OSC2/CLKOUT pin, CLKIN on RA5/OSC1/CLKIN 102 = HS oscillator: High-speed crystal/resonator on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 103 = XT oscillator: Crystal/resonator on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 104 = XT oscillator: Low-power crystal on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 105 = LP oscillator: Low-power crystal on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 115 = Rabling Brown-out Detect does not automatically enable Power-up Timer. 116 = Rabling Brown-out Detect does not automatically enable Power-up Timer. 117 = Rabling Brown-out Detect does not automatically enable Power-up Timer. 118 = RC oscillator: CLKOUT function on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN	DIL 3											
111 = RC oscillator: CLKOUT function on RA4/OSC2/CLKOUT pin, RC on RA5/OSC1/CLKIN 110 = RCIO oscillator: I/O function on RA4/OSC2/CLKOUT pin, RC on RA5/OSC1/CLKIN 101 = INTOSC oscillator: CLKOUT function on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN 100 = INTOSCIO oscillator: I/O function on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN 011 = EC: I/O function on RA4/OSC2/CLKOUT pin, CLKIN on RA5/OSC1/CLKIN 010 = HS oscillator: High-speed crystal/resonator on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 001 = XT oscillator: Crystal/resonator on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 000 = LP oscillator: Low-power crystal on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN Note 1: Enabling Brown-out Detect does not automatically enable Power-up Timer. 2: The entire data EEPROM will be erased when the code protection is turned off. 3: The entire program memory will be erased when the code protection is turned off.		0 = WDT disabled and can be enabled by SWDTEN bit (WDTCON<0>)										
110 = RCIO oscillator: I/O function on RA4/OSC2/CLKOUT pin, RC on RA5/OSC1/CLKIN 101 = INTOSC oscillator: CLKOUT function on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN 100 = INTOSCIO oscillator: I/O function on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN 011 = EC: I/O function on RA4/OSC2/CLKOUT pin, CLKIN on RA5/OSC1/CLKIN 010 = HS oscillator: High-speed crystal/resonator on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 001 = XT oscillator: Crystal/resonator on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 000 = LP oscillator: Low-power crystal on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN Note 1: Enabling Brown-out Detect does not automatically enable Power-up Timer. 2: The entire data EEPROM will be erased when the code protection is turned off. 3: The entire program memory will be erased when the code protection is turned off.	bit 2-0	FOSC<2:0>: Oscillator Selection bits										
101 = INTOSC oscillator: CLKOUT function on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN 100 = INTOSCIO oscillator: I/O function on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN 011 = EC: I/O function on RA4/OSC2/CLKOUT pin, CLKIN on RA5/OSC1/CLKIN 010 = HS oscillator: High-speed crystal/resonator on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 001 = XT oscillator: Crystal/resonator on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 000 = LP oscillator: Low-power crystal on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN Note 1: Enabling Brown-out Detect does not automatically enable Power-up Timer. 2: The entire data EEPROM will be erased when the code protection is turned off. 3: The entire program memory will be erased when the code protection is turned off.		···										
100 = INTOSCIO oscillator: I/O function on RA4/OSC2/CLKOUT pin, I/O function on RA5/OSC1/CLKIN 011 = EC: I/O function on RA4/OSC2/CLKOUT pin, CLKIN on RA5/OSC1/CLKIN 010 = HS oscillator: High-speed crystal/resonator on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 001 = XT oscillator: Crystal/resonator on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 000 = LP oscillator: Low-power crystal on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN Note 1: Enabling Brown-out Detect does not automatically enable Power-up Timer. 2: The entire data EEPROM will be erased when the code protection is turned off. 3: The entire program memory will be erased when the code protection is turned off.		·										
011 = EC: I/O function on RA4/OSC2/CLKOUT pin, CLKIN on RA5/OSC1/CLKIN 010 = HS oscillator: High-speed crystal/resonator on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 001 = XT oscillator: Crystal/resonator on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 000 = LP oscillator: Low-power crystal on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN Note 1: Enabling Brown-out Detect does not automatically enable Power-up Timer. 2: The entire data EEPROM will be erased when the code protection is turned off. 3: The entire program memory will be erased when the code protection is turned off.		• •										
010 = HS oscillator: High-speed crystal/resonator on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 001 = XT oscillator: Crystal/resonator on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN 000 = LP oscillator: Low-power crystal on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN Note 1: Enabling Brown-out Detect does not automatically enable Power-up Timer. 2: The entire data EEPROM will be erased when the code protection is turned off. 3: The entire program memory will be erased when the code protection is turned off.		• • •										
Note 1: Enabling Brown-out Detect does not automatically enable Power-up Timer. 2: The entire data EEPROM will be erased when the code protection is turned off. 3: The entire program memory will be erased when the code protection is turned off.		• •										
Note 1: Enabling Brown-out Detect does not automatically enable Power-up Timer. 2: The entire data EEPROM will be erased when the code protection is turned off. 3: The entire program memory will be erased when the code protection is turned off.		•										
 The entire data EEPROM will be erased when the code protection is turned off. The entire program memory will be erased when the code protection is turned off. 		000 = LP oscillator: Low-power crystal on RA4/OSC2/CLKOUT and RA5/OSC1/CLKIN										
The entire program memory will be erased when the code protection is turned off.		Note 1: Enabling Brown-out Detect does not automatically enable Power-up Timer.										
		2: The entire data EEPROM will be erased when the code protection is turned off.										
 When MCIR is asserted in INTOSC or RC mode, the internal clock oscillator is disabled. 		3: The entire program memory will be erased when the code protection is turned off.										
		4: When MCLR is asserted in INTOSC or RC mode, the internal clock oscillator is disabled.										

pic 16f684.h Configuration Word Definitions

// Configu	ration Mask Definitions		
#define C	CONFIG_ADDR		0x2007
// Fail-Sat	fe clock monitor		
#define F	CMEN		0x3FFF
#define F	CMDIS	0x37FF	
// Internal	External Switch Over		
#define IE	ESOEN	0x3FFF	
#define IE	ESODIS	0x3BFF	
// Brown-	out detect modes		
#define B	BOREN		0x3FFF
#define B	BOREN_XSLP	0x3EFF	
#define S	BOREN	0x3DFF	
#define B	BORDIS	0x3CFF	
// Protecti	ion of data block		
#define U	INPROTECT	0x3FFF	
#define C	PD		0x3F7F
// Protecti	ion of program code		
#define U	INPROTECT	0x3FFF	
#define P	PROTECT	0x3FBF	
// Master	clear reset pin function		
#define M	MCLREN	0x3FFF	
#define M	MCLRDIS	0x3FDF	
// Power u	up timer enable		
#define P	WRTDIS	0x3FFF	
#define P	PWRTEN	0x3FEF	
	log timer enable		
#define V	VDTEN	0x3FFF	
#define V	VDTDIS	0x3FF7	
// Oscillat	or configurations		
#define R	RCCLK		0x3FFF
#define R	RCIO		0x3FFE
#define IN	NTCLK		0x3FFD
#define IN	OITV		0x3FFC
#define E	C		0x3FFB
#define H	IS		0x3FFA
#define X	άT		0x3FF9
#define L	P		0x3FF8

Configuration Word (con't)

- We will talk more about the Configuration Word in future lectures
- In the meantime ... use the following

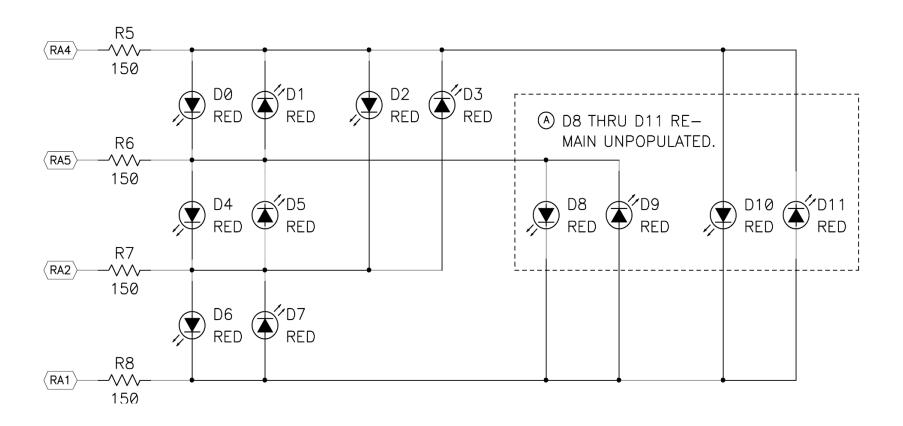
_CONFIG(INTIO & WDTDIS & PWRTEN & MCLRDIS & UNPROTECT & BORDIS & IESODIS & FCMDIS);

Note ... ___ are two underscore characters

 From Register 12-1 and the pic16f684.h file we can see that we have set the following conditions:

Configuration Word (con't)

_CONFIG(INTIO & WDTDIS & PWRTEN & MCLRDIS & UNPROTECT & BORDIS & IESODIS & FCMDIS);


- PICC Labels as defined in ... pic16f684.h
 - Internal oscillator
 - Disable Watchdog timer
 - 70 ms Power Up Delay Timer Enabled
 - MCLR Pin Function Inactive/Pin is Input RA3
 - Program Memory Protect Enabled
 - Brownout Detect/Reset Disabled
 - Internal/External Switchover Mode Disabled
 - Fail-Safe Clock Disabled

Design Parameters

- Flash D0 of the PICkit 1 Starter Kit on and off
- Write the Code in C
- No other actions required

Understand the Hardware

PIC16F684 Pin Diagram

14-pin PDIP, SOIC, TSSOP

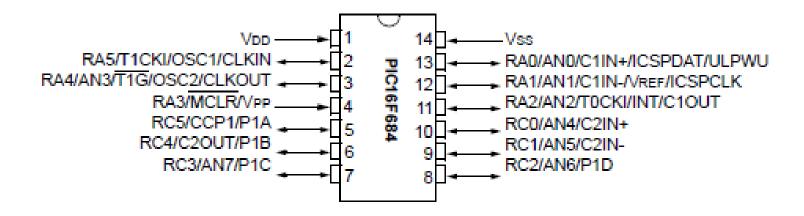


TABLE 1-1: PIC16F684 PINOUT DESCRIPTION

Name	Function	Input Type	Output Type	Description		
RA0/AN0/C1IN+/ICSPDAT/ULPWU	RA0	ΠL	CMOS	PORTA I/O w/programmable pull-up and interrupt-on-change		
	AN0	AN	_	A/D Channel 0 input		
	C1IN+	AN	_	Comparator 1 input		
	ICSPDAT	ΠL	CMOS	Serial Programming Data I/O		
	ULPWU	AN	_	Ultra Low-power Wake-up input		
RA1/AN1/C1IN-/VREF/ICSPCLK	RA1	ΠL	CMOS	PORTA I/O w/programmable pull-up and interrupt-on-change		
	AN1	AN	_	A/D Channel 1 input		
	C1IN-	AN		Comparator 1 input		
	VREF	AN		External Voltage Reference for A/D		
	ICSPCLK	ST	_	Serial Programming Clock		
RA2/AN2/T0CKI/INT/C1OUT	RA2	ST	CMOS	PORTA I/O w/programmable pull-up and interrupt-on-change		
	AN2	AN	_	A/D Channel 2 input		
	TOCKI	ST	_	Timer0 clock input		
	INT	ST	_	External Interrupt		
	C10UT	_	CMOS	Comparator 1 output		
RA3/MCLR/Vpp	RA3	ΠL	_	PORTA input with interrupt-on-change		
	MCLR	ST	_	Master Clear w/internal pull-up		
	Vpp	HV	_	Programming voltage		
RA4/AN3/T1G/OSC2/CLKOUT	RA4	ΠL	CMOS	PORTA I/O w/programmable pull-up and interrupt-on-change		
	AN3	AN	_	A/D Channel 3 input		
	T1G	ST	_	Timer1 gate		
	OSC2	_	XTAL	Crystal/Resonator		
	CLKOUT	_	CMOS	Fosc/4 output		
RA5/T1CKI/OSC1/CLKIN	RA5	ΠL	CMOS	PORTA I/O w/programmable pull-up and interrupt-on-change		
	T1CKI	ST	_	Timer1 clock		
	OSC1	XTAL	_	Crystal/Resonator		
	CLKIN	ST	_	External clock input/RC oscillator connection		
RC0/AN4/C2IN+	RC0	ΠL	CMOS	PORTC I/O		
	AN4	AN	_	A/D Channel 4 input		
	C2IN+	AN	_	Comparator 2 input		
RC1/AN5/C2IN-	RC1	ΠL	CMOS	PORTC I/O		
	AN5	AN	_	A/D Channel 5 input		
	C2IN-	AN	_	Comparator 2 input		
RC2/AN6/P1D	RC2	ΠL	CMOS	PORTC I/O		
	AN6	AN	_	A/D Channel 6 input		
	P1D	_	CMOS	PWM output		
RC3/AN7/P1C	RC3	ΠL	CMOS	PORTC I/O		
	AN7	AN	_	A/D Channel 7 input		
	P1C	_	CMOS	PWM output		
RC4/C2OUT/P1B	RC4	ΠL	CMOS	PORTC I/O		
	C2OUT	_	CMOS	Comparator 2 output		
	P1B	_	CMOS	PWM output		
RC5/CCP1/P1A	RC5	ΠL	CMOS	PORTC I/O		
	CCP1	ST	CMOS	Capture input/Compare output		
	P1A	_	CMOS	PWM output		
Vss	Vss	Power	_	Ground reference		
VDD	VDD	Power	_	Positive supply		

Legend: TTL = TTL input buffer, ST = Schmitt Trigger input buffer, AN = Analog input

Circuit Evaluation

- LED "DO" is connected between RA5 and RA4
- Pin 2 ... RA5
- Pin 3 ... RA4
- A high on RA4 and a low on RA5 will energize the LED
- We are using PORTA as our I/O Port ... in this case as an output

Lab_1A.c Evaluation (sheet 1 of 5)

```
#include <pic.h>
* Program Title:
                Flash D0
* Program File Name: Lab_1A.c
* Microprocessors A 17.383
* xxxxxxxx - Put in Semester (i.e. Fall 2010) here
* xxxxxxxx - Put in your name here
* xx/xx/xx - Put date here
*****************
```

Lab_1A.c Evaluation (sheet 2 of 5)

```
* Function: PORT_init
* Description: Initializes PORTA to a known condition
* Notes: None
* Returns: None
void PORTA_init(void)
       PORTA = 0;  // All PORTA Pins are low

CMCON0 = 7;  // Turn off Comparators

ANSEL = 0;  // Turn off ADC

TRISA = 0b001111;  // RA4 & 5 are outputs; RA0,1,2, and 3 are input
       return;
/****** END OF PORTA init **************/
```

Lab_1A.c Evaluation (sheet 3 of 5)

```
* Function: delay_routine
* Description: Causes a delay in program execution
* Notes:
* Delay was determined through trial and error
* Returns: None
void delay_routine(void)
     int i, j;
     for (i = 0; i < 255; i++)
        for (j = 0; j < 255; j++);
     return;
/****** END OF delay_routine *************/
```

Lab_1A.c Evaluation (sheet 4 of 5)

```
* Function: main
* Description: D0 on PICkit 1 will Flash on and off
* Notes:
* RA4 - Positive LED Connection for D0
* RA5 - Negative LED Connection for D0
* Returns: This routine contains an infinite loop
/* Configuration Word */
 _CONFIG(INTIO & WDTDIS & PWRTEN & MCLRDIS & UNPROTECT \
& UNPROTECT & BORDIS & IESODIS & FCMDIS);
```

Lab_1A.c Evaluation (sheet 5 of 5)

```
main()
 PORTA_init();
               // Loop Forever
 while(1 == 1)
    delay_routine();
    RA4 = 1; // D0 LED On by making RA4 high
    delay_routine();
    RA4 = 0; // D0 LED Off by making RA4 low
                  // *** END OF While (1 == 1) LOOP
 return;
/****** END OF main ROUTINE **************/
```

PICkit 1 LEDs

PICkit 1 LEDs

To Light LED Dx, RAx values

	RA5	RA4	RA3	RA2	RA1	RAO
DO	0	1				
D1						
D2						
D3						
D4						
D5						
D6						
D7						

PICkit 1 LEDs

PORT A

	RA5	RA4	RA3	RA2	RA1	RAO	PORTA (bi nary)	PORTA (HEX)
DO	0	1					0b010000	0x10
D1								
D2								
D3								
D4								
D5								
D6								
D7								

PICkit 1 LEDs

TRISAx - 0 is an output; 1 is an input;

	TRI SA5	TRI SA4	TRI SA3	TRI SA2	TRI SA1	TRI SAO	TRISA (bi nary)	TRI SA (HEX)
DO	0	0	1	1	1	1	0b001111	0x0f
D1								
D2								
D3								
D4								
D5								
D6								
D7								

Next Week

Next Class Topics

- Switches
- C commands
- Number systems
- Start Lab #2

HomeWork

Homework

- 1. Send an email with your email address or addresses (for class distribution list), if not already sent
- 2. Optional Read the C commands discussed in today's lecture found in any Programming in C text
- 3. Read the PIC16F684 data manual sections for the areas encountered tonight
- 4. Finish <u>Lab #1</u> and prepare for Lab #2, which will be on the web site
- 5. Work on Lab #1 Report ... due in two weeks (September 28, 2010)

Time To Start the Lab

References

- 1. PIC16F684 Data Sheet 41202F
 - a) Pages 7 18 (memory organization)