
1

MICROPROCESSORS A (17.383)

Fall 2010

Lecture Outline

Class # 02

September 14, 2010

Dohn Bowden

2

Today’s Lecture

• Syllabus review

• Microcontroller Hardware and/or Interface

• Programming/Software

• Understanding the LEDs of the PICkit 1

• Lab

• Homework

• Finish Lab #1

3

4

Administrative

• Admin for tonight …

– Syllabus Review

– Email Distribution List

5

Syllabus Review

23Analog to Digital Conversion 10/19/106

DemoFinal Exam/Course Project Brief and Demonstration 12/14/1014

5ProjectCourse Project 12/07/1013

Examination 211/30/1012

4ProjectMixed C & Assembly Programming/Course Project11/23/1011

5Timers and Pulse Width Modulation (PWM)11/16/1010

34 con’tComparators11/09/109

4LCD Interface and Assembly Language11/02/108

1Intro, Course & Lab Overview, Microcontroller Basics09/07/101

1 con’tPIC16F684 Overview and General Input/Output 09/14/102

2Switches 09/21/103

1Seven Segment LEDs 09/28/104

2 con’tExamination 110/05/105

No Class – Monday Schedule10/12/10X

3 con’tAnalog to Digital Conversion con’t10/26/107

Lab Report DueLabTopicsDateWeek

6

Email Distribution List

• For those who sent me an email as of 8:30 PM Monday night …

– Did you all receive my trial email on each email account?

• If not … please send me another email

• ◊ Email me at:

Dohn_Bowden@uml.edu

7

8

PIC16F684 Features

• 35 Instructions

• 8-level deep hardware stack

• 2048 Flash (words) Program Memory

• Interrupt capability

• 12 I/O pins with individual direction control

• 2 Comparators

• A/D Converter (10-bit resolution and 8 channels)

• 2 Timers

9

PIC16F684 Features

10

PIC16F684 Pin Diagram

11

12

13

Memory

• There are two different architecture regarding memory …

14

Program and Data Memory

15

Harvard Architecture

• Physically separate memory for instructions and data

• Separate data buses to each memory

16

von Neumann

• Architecture that uses a processing unit … and …

– a single separate storage structure to hold both instructions and
data

17

PIC16F684 Memory

• The PIC16F684 uses the Harvard Architecture vice the von
Neumann

18

Program and Data Memory

• Separate Memory For …

– Program Memory

– Variable Memory (data)/Register Spaces

– Program Counter

19

Program and Data Memory

• Advantages of separate memories …

– Ability of the processor to fetch new instructions … while …

• Accessing the program memory/registers

– However … bad programs can still execute … but …

• It will not try to execute data as instructions

20

Program and Data Memory

• Disadvantages of separate memories …

– Loss of flexibility in application organization …

• i.e. Changing data or stack segment sizes to accommodate
different applications

21

Program Memory Types

• Microchip offers three program memory types

• The memory type is designated in the part number by the first
letter(s) after the family affiliation designators

– C, as in PIC16CXXX.
– These devices have EPROM type memory

– CR, as in PIC16CRXXX
– These devices have ROM type memory

– F, as in PIC16FXXX
– These devices have Flash type memory

22

Program Memory Map and Stack for the PIC16F684

23

Registers/Variable Memory

• Registers … also known as Special Function Registers (SFR)

• Variable Memory … also known as File Registers

24

Special Function Registers (SFR)

• SFR functions/purpose:

– Monitors the status of program execution

– Provides an interface to hardware peripheral functions

• SFR can be classified into two sets:

– Core and peripheral

25

26

27

Core

• The core pertains to the basic features that are required to make the device
operate … which are …

• Device Oscillator

• Reset logic

• CPU (Central Processing Unit) operation

• ALU (Arithmetic Logical Unit) operation

• Device memory map organization

• Interrupt operation

• Instruction set

28

Peripherals

• Peripherals are the features that add a differentiation from a
microprocessor/microcontroller

• These ease in interfacing to the external world … such as …

– General purpose I/O
– A/D inputs
– PWM outputs

• And internal tasks … such as …

– Keeping different time bases (such as timers)

29

Peripherals

• General purpose I/O

• Timer0

• Timer1

• Capture, Compare, and PWM (CCP)

• Voltage References

• Comparators

• 10-bit Analog to Digital (A/D)

30

Development

• We will explore the features of the PIC16F684 microcontroller as we
encounter them

• Same will be true for introducing the languages

• C

• Assembly

31

Microcontroller Hardware Interface

With LEDs …

32

How does the hardware work?

• Lets understand what we want to do …

– Before we try to write a program to make it work

33

PIC16F684 Pin Diagram

34

PICkit 1 Evaluation Socket

35

PICkit 1 LED Layout

36

37

So …

• In order to light D0 …

– We need a high on …

• RA4

– And a low on …

• RA5

38

Now … Lets examine the software …

• Let see what we need to do in order to light D0 via software

• First we will need to understand the basic structure of a …

– “C” program

39

40

Programming

• Commands/instructions that we will encounter tonight

• C commands

• PIC16F684 control

41

C commands

• C program structure

• Comments

• # include

• Integer variables

• for

• while

• NOP()

• functions

42

The Structure of a Typical C Program

• The first line …. main()
– Informs the system that the name of the program is main
– () specify that main is a function
– () being empty indicates that the function main takes no

arguments

• { … start of program statements for the routine
• } … end of program statements for the routine

main()

{

}

43

The “Main” Function

• Main is a special function

– Contains the main program blocks

• Within which all lower-level functions are contained

44

Functions

• We have Functions other than the main() function within the
program

• These functions perform certain tasks that can be called from within
the main() function

• Up to now … calling Functions always appear in the code following
the functions they call

• They have been appearing prior to the main() Function

45

Function Prototypes

• You can place other functions after the main() Function … if …

– You place function prototypes in your program that describe a
function’s return and parameter types (to be discussed in a
future lecture)

• Then the Function will appear after the main() Function

void function_name(int x, int y, int z);

46

Function Prototypes
/**
* Function: PORT_init
*
* Description: Initializes PORTA to a known condition
*
* Notes: None
*
* Returns: None
*
**/
void PORTA_init(void)
{

PORTA = 0; // All PORTA Pins are low
CMCON0 = 7; // Turn off Comparators
ANSEL = 0; // Turn off ADC
TRISA = 0b001111; // RA4 and 5 are outputs; RA0,1,2, and 3 are input

return;

}
/******** END OF PORTA_init ****************************/

47

Function Prototypes

• If the following command is placed prior to the main() function

• Then the Function will can be placed after the main() Function

• Now the main() function is at the beginning of the listing vice at the
end

void PORTA_init(void);

48

Comments (Within Your Programs)

• Comment statements in a program are used to …

– Document … and …
– Enhance its readability

• The use of comments are extremely important …

– Enhances the routine or code
– Can be used during the debugging phase

• Enter comments as you write the code

– While the code is fresh in your mind

49

Comments (Within Your Programs)

• There are two ways to insert comments … FIRST …

– Initiate the comment by the two characters / and *
• This marks the beginning of the comment

– Terminate the comment by the two characters * and /
• This marks the end of the comment

– All characters included between the opening /* and the closing
*/ are …
• Treated as part of the comment … and …
• Are ignored by the C compiler

– This is used when comments span several lines of the program

50

Comments (Within Your Programs)

• The second way to insert comments … is by …

– Is by using two consecutive slash characters //

• Any characters that follow these slashes up to the end of
the line are ignored by the compiler

51

Comments (Within Your Programs)

// This entire line contains comments, next line not included

/* Comments go between the slashes and asterisk */

/* First line of a comment which runs multiple lines …
This is a comment, line two
This is a comment, line three
.
.
Etc

The next line is the last line of a comment
*/

• Examples …

52

The #include Statement

• The # include statement causes …
– … the entire contents of a specified source file to be processed

as if those contents had appeared in place of the # include
command

– Useful for items that are frequently used in most applications
• Saves time retyping into the program

• These files normally end in .h and are referred to as header or
include files

53

The # include Statement

include <pic.h>

• Example …

• You can review the contents of the pic.h header file …

C:\Program Files\HI-TECH Software\PICC\9.70\include\pic.h

• Take note of all the other header files available in the include
directory

54

The pic.h Header File

#ifndef _PIC_H_
#define _PIC_H_

#ifndef _HTC_H_
#include <htc.h>
#endif

#if defined(_10F200) || defined(_10F202) ||\
defined(_10F204) || defined(_10F206)

#include <pic10f20x.h>
#endif
#if defined(_10F220) || defined(_10F222)

#include <pic10f22x.h>
#endif
#if defined(_12C508) || defined(_12C509) ||\

defined(_12F508) || defined(_12F509) ||\
defined(_12C508A) || defined(_12C509A) ||\
defined(_12CE518) || defined(_12CE519) ||\
defined(_12C509AG) || defined(_12C509AF) ||\
defined(_12CR509A) || defined(_RF509AG) ||\
defined(_RF509AF)

#include <pic125xx.h>
#endif
#if defined(_12F510)

#include <pic12f510.h>
THE FILE CONTINUES …

55

Working with Variables

• C programming allows you to assign symbolic names, known as
variable names, for computations and results

• Variable declaration format:

data_type Variable_Name = initial_value;

• More than one variable can be declared at once using the following
format:

data_type Name = initial_value, Name = initial_value, ... ;

56

Variables --- data_type

• Data types are summarized in Table 3.1 (PICC Pro Manual)

57

Variables --- Variable_Name

• Rules for forming variable names (Variable_Name) …

• Can start with any upper or lower case letter or the
underscore character

• After the starting character … any letter, number, or
underscore character can be used. NO BLANKS

58

Variables --- initial_value

• Assignment of initial value is optional

• Signed integer (16 bits) range as follows …

-32,768 to 32,767

59

Working with Variables

int i;
int j;

• Examples …

int i, j;

int i = 1; j = 5;

60

The for Statement

• The general format for declaring the for statement is as follows:

for (expression_1; expression_2; expression_3)

program_statement

• expression_1 is evaluated once the loop begins

• Next … expression_2 is evaluated
– If the value is nonzero, program_statement is executed and then

expression_3 is evaluated

• Execution of program_statement continues as long as the value of
expression_2 is nonzero

61

The for Statement

• To summarize … the for statement is as follows:

for (initialization; Loop test expression; Loop increment)

program_statement

Loop increment:
variable = variable + 1 Adds one to the variable

variable ++ Adds one to the variable

variable = variable -1 Subtracts one to variable

variable -- Subtracts one to variable

for(;;) Loop forever

62

The for Statement

int i, j;

for (i = 0; i < 255; i++)
for (j = 0; j < 255; j++);

• Example …

• The loop test expression is evaluated as follows:

i < 255 has the value 1 if i is less than 255, and 0 otherwise

63

The while Statement

• The while loop allows you to repeatedly execute a set of
instructions while a test expression is true

• The general format for declaring the while statement is as follows:

while (expression)

program_statement

• program_statement is executed as long as the value of expression is
nonzero

• Note that, because expression is evaluated each time before the
execution of program_statement, program_statement may never be
executed

64

The while Statement

while(1 == 1) // Loop Forever
{

delay_routine();

RA4 = 1; // D0 LED On by making RA4 high

delay_routine();

RA4 = 0; // D0 LED Off by making RA4 low

} // *** END OF While (1 == 1) LOOP

• Example …

65

NOP() Statement

• The NOP(); statement

– No operation

• Can be used as a breakpoint without affecting the operation of the
C program

• You cannot set a breakpoint on a line without code!

66

General Purpose Input Output Associated Registers

• PORTA

• TRISA

• PORTC

• TRISC

67

PORTA Register

• PORTA register make up six of the twelve general purpose
Input/Output (I/O) pins available

• PORTA is a 6-bit wide, bidirectional port

– Active PORTA Register bits are 0 through 5

• Individual Register bits are called RA0, RA1, RA2, … RA5

– PORTA Register bits 6 and 7 are not used/unimplemented

• PORTA corresponding data direction register is the TRISA Register

68

PORTA Register (continued)

69

TRISA Register

• The TRISA Register controls the data direction of the six general
purpose Input/Output pins of PORTA

• Meaning, the state of each TRISA bit will set the data direction for
each corresponding PORTA pin

• Setting an individual TRISA bit (= 1)
– will make the corresponding PORTA pin an input

• Clearing an individual TRISA bit (= 0)
– will make the corresponding PORTA pin an output

• The exception is RA3, which is input only … and …
• its TRIS bit will always read as ‘1’, meaning input only

70

TRISA Register

71

TRISA Register

• When the chip is powered up … TRISA bits …

• Default to “1”, meaning input

• Therefore, we do not need to initialize for input, only output

• Why?
• If the pin is incorrectly wired, it could be easily damaged if it

was set to an output … why?
– If the pin is accidentally grounded … and …
– Driven to a high state

» The short circuit would likely damage the output
circuit

» If set to an input, no damage would be done

72

TRISA Register

• When used as analog inputs (will discuss in more detail in a future
lecture) …

– The TRISA register controls the direction of the PORTA pins,
even when they are being used as analog inputs

– We must ensure the bits in the TRISA register are maintained
set when using them as analog inputs

– I/O pins configured as analog input always read ‘0’

73

TRIS – Explained

• Three-State logic, also known as TRI-STATE logic

• The name is misleading … it is not digital logic with 3 voltage levels

• It is just ordinary logic

– High (1)
– Low (0)

• With a third output state …

– Open circuit (disconnected)

• Therefore … The three states (TRI-STATE) are …

• HIGH
• LOW
• Disconnected (open circuit)

74

TRIS – Explained

• A separate “enable” input determines whether the output …

– Behaves like ordinary logic (high/low) … or …

– The “third” (open) state

• In the “open” state … which …

– Cuts off the logic states

75

Software Control Of Registers

• The HI-TECH PICC compilers contains header files that equate
variables to Special Function Registers

– pic16f684.h is the header file used for the 684

– Variable names are usually the same as the Register name

– Variable names are also assigned to individual bits

• Assess to each register is via reading or writing from/to a particular
variable

– Can either be the entire register or an individual bit

76

PIC16F684 PICC STD Variables

• Today we shall explore a few variables used in Lab
#1

PORTA

RA4

TRISA

CMCON0

ANSEL

__config

77

PORTA Register PICC Pro C Variables

• PORTA

• R&#

– Where
& represents the port (either A or C)
represents the port’s pin (0 – 5)

• TRIS&#

– Same convention as above

78

Input/Output Commands on PORTA

PORTA = 0; // Initializes PORTA. All pins are set to zero

RA4 = 0; // Makes RA4 low (0 volts)

RA4 = 1; // Makes RA4 high (5 volts)

TRISA = 0; // Makes all PORTA pins outputs

TRISA4 = 0; // Makes RA4 an Output

TRISA5 = 1; // Makes RA5 an Input

RA5 = 0; // Makes RA5 low (0 volts)

RA5 = 1; // Makes RA5 high (5 volts)

• Examples …

79

PORTA Pins are Multipurpose

• From the Pin-out diagram … pins 2, 3, 4, 11, 12, and 13

80

PORTA Pins are Multipurpose (con’t)

• We see that the pins are multipurpose

– Input/Output

– Analog to digital converter

– Comparator

• To use PORTA for the I/O function

• We need to turn off the other functions

81

PORTA Pins are Multipurpose (con’t)

CMCON0 = 7; // Turns off the comparators

ANSEL = 0; // Turns off the Analog to Digital Converter

• To turn off the other functions we use the following commands

• We will discuss the above commands in more details when we are
using the associated peripheral features

82

Configuration Bits

• Configuration bits can select various device configurations (shown in
Register 12-1)

• Bits are “programmed”
– Read as ‘0’

• Or … “unprogrammed” …
– Read as ‘1’

• These bits are mapped in program memory location 2007h
• Note: Address 2007h is beyond the user program memory

space. It belongs to the special configuration memory space
(2000h-3FFFh), which can be accessed only during
programming

83

Configuration Word

• Together … all the configuration bits make up the configuration
word

• Operating configuration parameters which are set on power up

• These parameters are specified by writing to a special word in
memory

• This word is called the Configuration Word

Note … __ are two underscore characters

__CONFIG (xxx & yyy & etc);

84

85

pic16f684.h Configuration Word Definitions
// Configuration Mask Definitions
#define CONFIG_ADDR 0x2007
// Fail-Safe clock monitor
#define FCMEN 0x3FFF
#define FCMDIS 0x37FF
// Internal External Switch Over
#define IESOEN 0x3FFF
#define IESODIS 0x3BFF
// Brown-out detect modes
#define BOREN 0x3FFF
#define BOREN_XSLP 0x3EFF
#define SBOREN 0x3DFF
#define BORDIS 0x3CFF
// Protection of data block
#define UNPROTECT 0x3FFF
#define CPD 0x3F7F
// Protection of program code
#define UNPROTECT 0x3FFF
#define PROTECT 0x3FBF
// Master clear reset pin function
#define MCLREN 0x3FFF
#define MCLRDIS 0x3FDF
// Power up timer enable
#define PWRTDIS 0x3FFF
#define PWRTEN 0x3FEF
// Watchdog timer enable
#define WDTEN 0x3FFF
#define WDTDIS 0x3FF7
// Oscillator configurations
#define RCCLK 0x3FFF
#define RCIO 0x3FFE
#define INTCLK 0x3FFD
#define INTIO 0x3FFC
#define EC 0x3FFB
#define HS 0x3FFA
#define XT 0x3FF9
#define LP 0x3FF8

86

Configuration Word (con’t)

• We will talk more about the Configuration Word in future lectures

• In the meantime … use the following

Note … __ are two underscore characters

• From Register 12-1 and the pic16f684.h file we can see that we
have set the following conditions:

__CONFIG(INTIO & WDTDIS & PWRTEN & MCLRDIS & UNPROTECT & BORDIS & IESODIS & FCMDIS);

87

Configuration Word (con’t)

• PICC Labels as defined in … pic16f684.h

– Internal oscillator
– Disable Watchdog timer
– 70 ms Power Up Delay Timer Enabled
– _MCLR Pin Function Inactive/Pin is Input RA3
– Program Memory Protect Enabled
– Brownout Detect/Reset Disabled
– Internal/External Switchover Mode Disabled
– Fail-Safe Clock Disabled

__CONFIG(INTIO & WDTDIS & PWRTEN & MCLRDIS & UNPROTECT & BORDIS & IESODIS & FCMDIS);

88

89

Design Parameters

• Flash D0 of the PICkit 1 Starter Kit on and off

• Write the Code in C

• No other actions required

90

Understand the Hardware

91

PIC16F684 Pin Diagram

92

93

Circuit Evaluation

• LED “DO” is connected between RA5 and RA4

• Pin 2 … RA5

• Pin 3 … RA4

• A high on RA4 and a low on RA5 will energize the LED

• We are using PORTA as our I/O Port … in this case as an output

94

Lab_1A.c Evaluation (sheet 1 of 5)

#include <pic.h>

/**
*
* Program Title: Flash D0
*
* Program File Name: Lab_1A.c
*
* Microprocessors A 17.383
*
* xxxxxxxx - Put in Semester (i.e. Fall 2010) here
*
* xxxxxxxx - Put in your name here
*
* xx/xx/xx - Put date here
*
**/

95

Lab_1A.c Evaluation (sheet 2 of 5)

/**
* Function: PORT_init
*
* Description: Initializes PORTA to a known condition
*
* Notes: None
*
* Returns: None
*
**/
void PORTA_init(void)
{

PORTA = 0; // All PORTA Pins are low
CMCON0 = 7; // Turn off Comparators
ANSEL = 0; // Turn off ADC
TRISA = 0b001111; // RA4 & 5 are outputs; RA0,1,2, and 3 are input

return;

}
/******** END OF PORTA_init ****************************/

96

Lab_1A.c Evaluation (sheet 3 of 5)

/**
* Function: delay_routine
*
* Description: Causes a delay in program execution
*
* Notes:
*
* Delay was determined through trial and error
*
* Returns: None
*
**/
void delay_routine(void)
{

int i, j;

for (i = 0; i < 255; i++)
for (j = 0; j < 255; j++);

return;

}
/******** END OF delay_routine *************************/

97

Lab_1A.c Evaluation (sheet 4 of 5)

/**
* Function: main
*
* Description: D0 on PICkit 1 will Flash on and off
*
* Notes:
*
* RA4 - Positive LED Connection for D0
* RA5 - Negative LED Connection for D0
*
* Returns: This routine contains an infinite loop
*
**/

/* Configuration Word */

__CONFIG(INTIO & WDTDIS & PWRTEN & MCLRDIS & UNPROTECT \
& UNPROTECT & BORDIS & IESODIS & FCMDIS);

98

Lab_1A.c Evaluation (sheet 5 of 5)

main()
{

PORTA_init();

while(1 == 1) // Loop Forever
{

delay_routine();

RA4 = 1; // D0 LED On by making RA4 high

delay_routine();

RA4 = 0; // D0 LED Off by making RA4 low

} // *** END OF While (1 == 1) LOOP

return;

}

/******** END OF main ROUTINE ***************************/

99

PICkit 1 LEDs

D7

D6

D5

D4

D3

D2

D1

10D0

RA0RA1RA2RA3RA4RA5

To Light LED Dx, RAx values

PICkit 1 LEDs

100

PICkit 1 LEDs

D7

D6

D5

D4

D3

D2

D1

0x100b01000010D0

PORTA (HEX)PORTA (binary)RA0RA1RA2RA3RA4RA5

PORT
A

101

PICkit 1 LEDs

D7

D6

D5

D4

D3

D2

D1

0x0f0b001111111100D0

TRISA (HEX)TRISA (binary)TRISA0TRISA1TRISA2TRISA3TRISA4TRISA5

TRISAx - 0 is an output; 1 is an input;

102

103

Next Class Topics

• Switches

• C commands

• Number systems

• Start Lab #2

104

105

Homework

1. Send an email with your email address or addresses (for class
distribution list), if not already sent

2. Optional - Read the C commands discussed in today’s lecture found
in any Programming in C text

3. Read the PIC16F684 data manual sections for the areas
encountered tonight

4. Finish Lab #1 and prepare for Lab #2, which will be on the web site

5. Work on Lab #1 Report … due in two weeks (September 28, 2010)

106

107

References

1. PIC16F684 Data Sheet 41202F
a) Pages 7 – 18 (memory organization)

