MICROPROCESSORS A (17.383)
Fall 2010

Lecture Outline

Class # 03
September 21, 2010

Dohn Bowden

Today’s Lecture

Syllabus review

Microcontroller Hardware and/or Interface
Programming/Software

Lab

Homework

Finish Lab # 1

Start Lab # 2

Administrative

e Admin for tonight ...

— Lectures 1 and 2 are available on the web site

— Syllabus Review

e No changes

e Lab Report for Lab #1 is next week (September 28, 2010)

e Exam #1 in 2 weeks (October 05, 2010)

Syllabus Review

/

Week Date Topics Lab Lab Report Due

~F—09767710—mtro;, Course & tatrOverview, Microcortrolter Basics T
—-— 09744110 PIC16F684-Overviewand-SemeraHmnput/Output $-Cort
3 09/21/10 | Switches 2

g 4 09/28/10 | Seven Segment LEDs 1
5 10/05/10 | Examination 1 2 con't
X 10/12/10 | No Class — Monday Schedule
6 10/19/10 | Analog to Digital Conversion 3 2
7 10/26/10 | Analog to Digital Conversion con’t 3 con’t
8 11/02/10 | LCD Interface and Assembly Language 4
9 11/09/10 | Comparators 4 con’t 3
10 11/16/10 | Timers and Pulse Width Modulation (PWM) 5
11 11/23/10 | Mixed C & Assembly Programming/Course Project Project 4
12 11/30/10 | Examination 2
13 12/07/10 | Course Project Project 5
14 12/14/10 | Final Exam/Course Project Brief and Demonstration Demo

5

Microcontrollier
Hardware
and / or
Iinterfaces

PIC16F684 Interfacing

e Switches

e LEDs

Switches ...

PICKit 1 Starter Kit - Switch (SW1) Schematic

D12
(veP) —P '

TNo8 17/
R3
K

Used for programming
R9 SW1
L1
(+5_SWITCHED) A\~ 0, g*
10K 2 0>

PIC16F684 Pin Diagram

14-pin PDIP, SOIC, TSSOP

O
VDD ——] |1 14|]|«—Vss
RAS5/T1CKI/OSC1/CLKIN -] |2 T 13| |«— RAO/ANO/C1IN+/ICSPDAT/ULPWU
RA4/AN3/T1G/OSC2/CLKOUT o =13 Q 12] RA1/AN1/C1IN-/VREF/ICSPCLK

RA3/MCLR/VPP - |4 % 1[] RA2/ANZ2/TOCKI/INT/C1QUT
RC5/CCP1/P1A [5 Eﬁ' 10[] RCO/AN4/C2IN+

RC4/C20UT/P1B e o] RC1/AN5/C2IN-

RC3/AN7/P1C [7 8] RC2/AN6/P1D

10

TABLE 1-1:

PIC16F684 PINOUT DESCRIPTION

Name Function Input | Output Description
Type | Type
RAOANO/C1IN+ICSPDAT/ULPWU RAD TTL CMOS | PORTA IO wiprogrammable pull-up and interrupt-on-change
AMND AN —_ A/D Channel 0 input
C1IN+ AN — Comparator 1 input
ICSPDAT TTL CMOS | Serial Programming Data I'C
uLPwWuU AN —_ Ultra Low-power Wake-up input
RAT/ANT/C1IN-VREF/ICSPCLK RA1 TTL CMOS | PORTA IO w/programmable pull-up and interrupt-on-change
AN1 AN —_ AJD Channel 1 input
C1IM- AN —_ Comparator 1 input
VREF AN — External Voltage Reference for A/D
ICSPCLK 5T — Serial Programming Clock
RA2IAN2ITOCKIINT/C10OUT RA2 ST CMOS | PORTA IO wiprogrammable pull-up and interrupt-on-change
AN2 AN —_ AJD Channel 2 input
TOCKI ST —_ Timer(clock input
INT ST —_ External Interrupt
c1ouT — CMOS | Comparator 1 output
RA3MCLR/VFP RA3 TTL — | PORTA input with interrupt-on-change
MCLR ST —_ Master Clear wiinternal pull-up
VPP HV —_ Programming voltage
RA4/AN3TIGIOSC2/CLKAUT RA4 TTL CMOS | PORTA I/O w/pregrammable pull-up and interrupt-on-change
AMN3 AN — A/D Channel 3 input
TG ST —_ Timeri gate
Qs5C2 —_ XTAL |Crystal/Resonator
CLKOUT — CMOS | Fosc/4 output
RA KI/OSCA/CLKIN RAS TTL CMOS | PORTA IO wiprogrammahle pull-up and interrupt-on-change
Ti1CKI ST — Timer1 clock
Q5C1 XTAL —_ Crystal/Resonator
CLKIN ST —_ External clock input/RC oscillator connection
RCO/AN4/C2IN+ RCO TTL | CMOS |PORTC 11O
AN4 AN —_ AJD Channel 4 input
C2IN+ AN —_ Comparator 2 input
RC1/ANS/C2IN- RC1 TTL | CMOS |PORTC l/O
AMNS AN —_ A/D Channel 5 input
C2IN- AN —_ Comparator 2 input
RC2/ANE/P1D RC2 TTL | CMOS |PORTC IO
ANE AN —_ AJD Channel & input
P1D — CMOS | PWM output
RC3I/ANTIPIC RC3 TTL | CMOS |PORTC I/O
AMNT AN —_ A/D Channel 7 input
P1C —_ CMOS | PWM output
RC4/C20UT/P1B RC4 TTL | CMOS |PORTC IO
C20oUT —_ CMOS | Comparator 2 output
Fi1B — CMOS | PWM output
RCS/CCP1/P1A RC5 TTL | CMOS |PORTC l/O
CCP1 ST CMOS | Capture input/Compare output
P1A —_ CMOS | PWM output
Vss Vss Power —_ Ground reference
Voo Voo Power —_ Positive supply

Legend: TTL = TTL input buffer, ST = Schmitt Trigger input buffer, AN = Analog input

1

PIC16F684 PIN 4 — RA3

RA3/MCLR/\VPP

RA3 TTL PORTA input with interrupt-on-change
MCLR ST Master Clear w/internal pull-up
VPP HV Programming voltage

12

Setting RA3 for Input

PORTA =0
TRISA3 is ALWAYS an input ... it can never be an output

Therefore ... you do not need to set TRISA3 =1

REGISTER 4-2: TRISA — PORTA TRI-STATE REGISTER (ADDRESS: 85h)

U-0 U0 RW-1 RW-1 R-1 RW-1 RW-1 RW-1
— — | TRisAs | TRISA4 | TRISA3 | TRISA2 | TRISAT | TRISAO
bit 7 bit 0

Unimplemented: Read as ‘0’
ISA<5:0>: PORTA Tri-State

1= RTA pin configured as/an input (tri-stated)
0=PO pin configure

bit 5-0:

Note 1: TRISA<$8> always reads ‘1'.
2: TRISA<5:4> always reads ‘1’ in XT, HS and LP OSC modes.

13

Mechanical Switches

The switch is connected across a +5 volt supply to the data input
pin of the microcontroller via a resister

An issue arises with mechanical switches ...

— They do not cleanly open and close

They can produce spikes which can be interpreted as false switch
actions

— This is referred to as Switch Bouncing

14

Swi
It
ch Bounci
ng

=10) x|

o
=
=
=1
1
2]
=
=
2
-~
=
E
i
.
[T
=1
L]
2
[
1]
=
=
2
=
£
3
2
-1
—
-1
=
=
2
=
m_
1
L]
3
<
W
—
£
)
=1
[=]
X
4r]
[=]
=
o

=

[iF]
ol

=
=
=
=

=
[
=g

“

(=]
£
n
[dy]
ﬂ
L
A
[

_|&] x|

e IIIIIIIIImI
— =]
| R s R B w\ - =
= -
==
-L -
B = =
e —_——_—q-—-4—-=-F - - - — -
- —
T Jrp———
- - + - 4- -t . =
= e [_
J—
_-— - 1]
= | R e Ry B RNV F Y E—— —_—
T P T}
r==1r=-"a--T--r B Sl el B N =
= . [&]
- ==
e [o
|— ——— = B]
— | R s R B
Y S|
- - =
-1
- =L
B =Y | =
— 1 -
x 1 I =
| =
|
| =
H -
| o
L - |
=

Vout

Vee
GhD

15

Switch Debouncing — Elimination of ...

There are a variety of methods to eliminate switch bouncing
— One method is the addition of a capacitor across the switch
— Another method is a software approach

e Code which can be incorporated into your application which
will eliminate switch bouncing

16

Code to Eliminate Switch Bouncing

Delays
— Delays of around 20 msec

The microcontroller will not look for switch action until the delay is
over

— Thus ... the switch has settled

— False indications have been eliminated

17

LEDs ...

18

LEDs

LEDs can be used for a multitude of applications

— Indications

e Power available

— Indicates switch activation

e By lighting once a switch has been depressed or changed

19

LEDs

The PICkit 1 has an array of LEDs for multiple uses ...

— Indications ... as we have seen in Lab #1

— Switch actions ... as we shall see in Lab #2

— Analog to Digital conversion results ... we shall see later in the
course

20

PICKit 1 LED Layout

(® D8 THRU D11 RE—

MAIN UNPOPULATED.

D8 %Dg D1Q D11
RED RED /,® RED ®RED

R5
RA4 '
150 %
DO D1
/,@D RED RED
R6
RAS ANN—
150
D4 D5
/,C!D RED RED
R7
(RA2)——AAA—
150
D6 D7
L RED RED
R8
RA1
150

21

Programming

Commands/instructions that we will encounter tonight
e C commands

e PIC16F684 control

23

C commands — Last Week

C program structure

Comments

Include
Integer variables
for

while

NOP()

functions

24

NEW C Commands

/f conditional

else

else If

switch

Constant Declaration

Bitwise Operators

25

The /f Statement

Testing a condition with ... the /f statement

— When the condition is True, or a value equal to 1, then C
executes the statement that immediately follows, otherwise it is
skipped

— The /fstatement’s format is as follows:

iIT (condition)
Program_Statement;

26

The /f Statement (Tests)

a == Db Tests for equality
(has the value 1 [true] if a is equal to b, and 0 [false] otherwise)

al=Db Test for inequality
(has the value 1 [true] if a is not equal to b, and 0 [false] otherwise

a>Db Greater than
(has the value 1 [true] if a is greater than b, and 0 [false] otherwise)

a<b Lessthan
(has the value 1 [true] if a is less than b, and 0 [false] otherwise)

a >= Db Greater than or equal to

(has the value 1 [true] if a is greater than or equal to b, and 0 [false]
otherwise)

a <=Db Less than or equal to

(has the value 1 [true] if a is less than or equal to b, and 0 [false]
otherwise)

27

The /f Statement (continued)

Example ...

1T (x == 1)
do what 1s on this line;

If the result of evaluating the condition is nonzero [True] (x is equal

to 1), then C executes the statement that immediately follows,
otherwise the line is skipped

28

e/lse Statement

Another general format for declaring an /f statement is as follows:
1T (condition)
Program_Statementl;

else
Program_Statement2;

— If the condition is nonzero [True], Program_Statementl is
executed

— Otherwise, if condition is zero [False], Program_Statement2 is
executed

The e/se statement provides a way to execute one block of code if
a condition is true, another if it is false

29

e/lse Statement

Example ...

main()

{

Int number = 75;
int mark;

1T (mark >= number)

{
Do something;
+
else
{
Do something else;
+

30

The /f- else /f Statement

If Program_Statement2 is another if statement, an e/se /fchain is

affected
We use this when additional statements are being evaluated

General format for declaring an /f— else if statement is as follows:
1T (condition)
Program Statementl;
else 1T (condition)
Program Statement2;

else
Program_Statement3;

31

The /f- else /f Statement

Example ...

main()

{

Int number = 75;
int mark;

1T (mark >= number)

{

Do this line 1f true;

()

else 1t (mark >= 65)

Do this line 1f true;

IT other conditions are false, then, do this line;

®
v Mm%

32

The switch Statement

The switch statement is a multi-way decision statement

Unlike the multiple decision statement that can be created using if-
else ...

The switch statement evaluates the conditional expression and tests
It against numerous constant values

The branch corresponding to the value that the expression matches
Is taken during execution

The value of the expressions in a switch statement must be an
ordinal type I.e. integer, char, short, long, etc

— Float and double are not allowed

33

The switch Statement

— The switch statement’s format is as follows:

switch (expression)
{
case constant_1:
Program_ Statement;
Program_ Statement;

break;

case constant_2:
Program Statement;
Program_Statement;

break;

default:
Program_Statement;
Program_Statement;

break;

34

The switch Statement

No two cases can have the same value

Omitting the break statement from a particular case ...
— Causes execution to continue into the next case

If no case value matches the expression ...

— The default case (if included) is executed

— If the default case is not included ...

e NO statements contained in the swritch are executed

35

The switch Statement - Example

Iint 1 = 4;
int Direction;

main()

{

switch (1)
{
case 4:
Direction
break;
case b5:
Direction
break;
case 7:
Direction
break;
default:
Direction

}

while(1l == 1);

180;

90;

270;

//

//

//

//

//

Go South 1f Index ==
Leave Switch Statement
Go North 1f Index at 5

Go East 1f Index at 7

Go West for Everything Else

36

Type Modifier — const (constant)

The keyword const can be placed before a type declaration to tell
the compiler that a value cannot be modified

For example ...

const Int xConstant = 47;

Declares xConstant to be a constant integer

— That is, it will not be set to anything else during the program
execution

37

Type Modifier — const (constant)

The keyword const converts the declared variable from a variable to
a constant

From our previous example, anytime the label xConstant is
encountered, the compiler replaces it with the value 47

You can no longer write to it ... for example, once the above is
declared, you cannot do the following:

xConstant = 48;

38

Bit Manipulation

The C language bitwise operators can be used to manipulate the
contents of registers using Boolean arithmetic

Bitwise operators can be used to perform the following on individual
bits ...

— Test
— Set

— Clear
— Toggle

39

Bitwise Operators

e These operators allow you to easily process bit information

&

bitwise AND ... set if both bits are set

bitwise (inclusive) OR ... set if either bit is set

bitwise XOR ... set if only one of the two parameter
bits are set

bitwise negation ... invert each bit

40

Bit Manipulation — 7esting Bits

e Test to see if bit 3 is set

01001100
AND (&)
00001000

00001000

e Bit 3 was set, therefore the result has bit 3 set, because ...
& will set if both bits are set

e |If we used an /fstatement ... result would be true

41

Bit Manipulation — Setting Bits

To set bit 4

01001100

OR (D

00010000

01011100

We set Bit 4 because ...

Inclusive OR (|) will set if either bit is set

42

Bit Manipulation — 7oggling Bits

To toggle bit 7 (when bit 7 was clear)

01001000

XOR (M)

1 00000O0OC

11011000

We toggled Bit 7 because ...

N will set if only one of the two parameter
bits are set

43

Bit Manipulation — 7oggling Bits

To toggle bit 7 (when bit 7 was set)

11001000

XOR (M)

1 00000O0OC

01011000

We toggled Bit 7 because ...

N will set if only one of the two parameter
bits are set

44

Bitwise Operators - Example

RAS5 = RA5 " 1;

Recall that ...

bitwise XOR ... set if only one of the two parameter bits are set

When RA5 = 0 ... RA5 would be changed to 1 because RA5 is zero
and the constant is one (only one of the two bits are set)

When RA5 = 1 ... RA5 would be changed to 0 because RA5 is one and
the constant is also one (both bits are set, therefore the bit is
cleared)

So we effectively “toggle” the value of RA5

45

Information Coding

Methods of representing information within microcontroller systems
Data storage and program coding using numbering systems

— Decimal

— Hexadecimal

— Binary

Programming and data information will use these various numbering
systems

46

Decimal

— Base 10

Binary

— Base 2

Hexadecimal

— Base 16

Numbering Systems

47

System

Decimal

Hexadecimal

Binary

Numbering Formats

Format Example
Hit 0

Ox## Ox3F
Ob#HHHAHAHHHH O0b00111111

48

PIC16F684 Commands

The following formats will set all bits in PORTA high

PORTA = 63;
PORTA = Ox3F;
PORTA = 0Ob111111;

What are the advantages of the different formats?

— Situation dependant ... one format may be easier to interpret
based on what the program is doing

49

Lab Demonstrations

Digital Input

Debouncing switches via code development

Digital Input and Output control

Numbering Systems

51

Design Parameters — Step 1

Using the PICKkit switch and LEDs
— When the switch is off, all of the LEDs will be off
— When the switch is on, D5 LED will be on

— When the switch is release, D5 LED will go out

52

PICKit 1 Starter Kit - Switch (SW1) Schematic

D12
(veP) —P '

TNo8 17/
R3
K

Used for programming
R9 SW1
L1
(+5_SWITCHED) A\~ 0, g*
10K 2 0>

53

Understand the Hardware

R5
(RA4)— AN
150
DO AXD1 @ D B e
4+ RED \P/ RED) RED P RED | (® D8 THRU D11 RE—
R6 | MAIN UNPOPULATED. |
(RAS ANN— . . |
150 | | |
D4 D5 | D8 "D D1@ D11 !
¥ RED @ RED | /,® RED @ RED /,® RED @ RED |
R7 | |
(RA2 AAN— . R T B e e .
150
D6 D7
,F RED @ RED
R8
(RAT AN~

150

PIC16F684 Pin Diagram

14-pin PDIP, SOIC, TSSOP

A
Voo ——=]1 14[Ja—Vsas
RASMICKIOSCAUCLKIN —] |2 v 13[]=— RANAND/ICAIN+ICSPDAT/ULPWLU
RA#ANITIGIOSCZCLKOUT «——[J3 G 12[]e— RATVANUCTIN-VREFICSPCLK

RAIMCLR N pe 4 2 11[Je—on RAZANZTOCKIINTAC1OUT
RCICCP1P1A _ (15 - 10[]= . RCOFAMAICZIN+

RCAICZOUTIP1B e - a[] RC1ANSICZIN-

RCIANTPIC 07 al] RC2IAMNGP1D

55

TABLE 1-1: PIC16F684 PINOUT DESCRIPTION

Hame Function I.::';:: D.;_':ppem Description
RADFANDICA INSICSPODAT/ULPWU RAD TTL CMOS | PORTA /O wiprogrammable pull-up and intermupt-on-change
AND AN — AD Channel 0 input
C1IN+ AN — Comparator 1 input
ICSPDAT | TTL CMOS | Senial Programming Data /0
ULPwWuU AN — Ultra Low-power Wake-up input
RATANICTIN-NRer/ICSPCLE RA1 TTL CMOS | PORTA IO wiprogrammable pullup and intermupt-on-change
ANT AN — AD Chanmel 1 input
CAIN- AN — Comparator 1 input
VREF AN — External Voltage Reference for AID
ICSPCLK ST — Senal Programming Clock
RAZVAN2ZTOCKINTIC10OUT RAZ ST CMOS | PORTA /O wiprogrammable pull-up and intermupt-on-change
AN2 AN — AD Channel 2 input
TOCKI ST —_ TimerD clock input
INT ST — External Intermupt
C10UT — CMOS | Comparator 1 cutput
RAIMMCLRN =5 RA3 TTL — | PORTA input with interrupt-on-change
MCLR ST — Master Clear wiintemal pull-up
\ep HV — Programming voltage
RAAANITIGOSC2/CLKOUT RA4 TTL CMOS | PORTA /O wipregrammable pullup and intermupt-on-change
AN3Z AN — AD Channel 3 input
TG ST — Timer1 gate
osc2 — XTAL | CrystalResonator
CLKOUT — CMOS |Foscld output
RASITACKINOSC1CLEIM RAS TTL CMOS | PORTA 'O wiprogrammable pull-up and intermupt-on-change
T1CKI ST — Timer1 clock
asc XTAL — Crystal/Resonator
CLEIN ST — External clock inputRC oscillator connection
RCOFANSIC2IN+ RCD TIL | CMOS [PORTC IO
AN4 AN — ASD Channel 4 input
C2IN+ AN — Comparator 2 input
RCATANSIC2IN- RC1 TTL | CMOS [PORTC O
ANS AN — ASD Channel 5 input
C2IN- AN — Comparator 2 input
RCANG/IP1D RC2 TTL | CMOS |PORTC VO
ANE AN —_ AJD Channel & input
P1D — CMOS | PWM output
RCIANTIP1C RC3 TIL | CMOS [PORTC VO
ANT AN — AD Channel 7 input
P1C — CMOS | PWM output
RC4ICZOUTIP1B RC4 TIL | CMOS [PORTC O
C2oUT —_ CMOS | Comparator 2 cutput
P1B — CMOS | PWM output
RCSICCP1P1A RCS TIL | CMOS |[PORTC O
CCP1 ST CMQOS | Capture input/Compare output
P14 — CMOS | PWM output
\iss Vss Power — Ground reference
Voo Voo Power — Positive supply

Legend: TTL = TTL input buffer, ST = Schmitt Trigger input buffer, AN = Analog input

56

Design Parameters — Step 2

Add debouncing Code to the previous code written

57

Debouncing Code Evaluation (sheet 1 of 1)

/ KEKKKKAKAKAKKEEAKAKXKIIKIKIKIKAKAKA AR RARR AR AIRIARRRRRRRRAAAA AR Rk k%k%%

* Function: delay _20ms

*

* Description: Causes a delay in program execution

*

* Notes:

*

* Delay was determined through trial and error

*

* Returns: None
*

**/

void delay 20ms(void)

{
const int D20ms = 1150:; /I Declare a Constant for 20 ms Delay
int I;
for (i =0; 1< D20ms; i++);
return;
}

/******** E N D O F d e I ay 20 ms *************************/

58

Design Parameters — Step 3

Initial power on/programming, all LEDs are off.
When the switch is depressed for the first time, LED DO will come on.

The LED turned on will stay energized until the switch is depressed a second time.
— At that time, LED DO will go out and LED D1 will come on.

The process above will continue until LED D7 is turned on.

The next time the switch is depressed, all LEDs will be off and the sequence will start
all over.

SUGGESTIONS: Use the switch or the /f— /f else statements.

Do not incorporate the switch debouncing code into your file

59

Next ...

Design Parameters — Step 3 con’t

incorporate the switch debouncing code into your file

60

Design Parameters — Step 4

Rewrite your code using ...
— Hexadecimal

— Binary

61

Next Class Topics

Transition from the PICKit to a development board
Seven — Segment LEDs

Binary operators
— Shifting Bits

63

Homework

. Read, as required, the C commands discussed in today’s lecture
found in the optional text (Programming in C)

. Read the PIC16F684 data manual sections for the registers
encountered tonight

. Work on Lab #2

65

Time TO ...
Start the Lab ...

References

1. PIC16F684 Data Sheet 41202F

67

