MICROPROCESSORS A (17.383)

Fall 2010

Lecture Outline

Class # 03

September 21, 2010

Dohn Bowden

Today's Lecture

- Syllabus review
- Microcontroller Hardware and/or Interface
- Programming/Software
- Lab
- Homework
- Finish Lab # 1
- Start Lab # 2

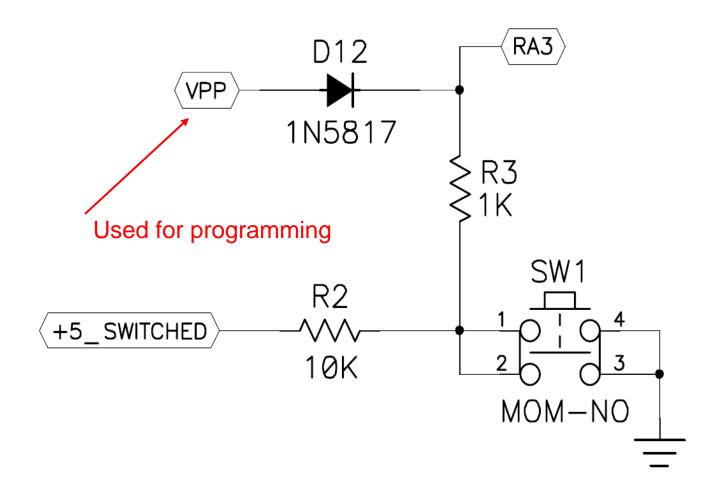
Course Admin

Administrative

- Admin for tonight ...
 - Lectures 1 and 2 are available on the web site
 - Syllabus Review
 - No changes
 - Lab Report for Lab #1 is next week (September 28, 2010)
 - Exam #1 in 2 weeks (October 05, 2010)

Syllabus Review

Week	Date	Topics	Lab	Lab Report Due
1	09/07/10	Intro, Course & Lab Overview, Microcontroller Basics	1	
2	09/14/10	PIC16F684 Overview and General Input/Output	1 con't	
3	09/21/10	Switches	2	
4	09/28/10	Seven Segment LEDs		1
5	10/05/10	Examination 1	2 con't	
X	10/12/10	No Class - Monday Schedule		
6	10/19/10	Analog to Digital Conversion	3	2
7	10/26/10	Analog to Digital Conversion con't	3 con't	
8	11/02/10	LCD Interface and Assembly Language	4	
9	11/09/10	Comparators	4 con't	3
10	11/16/10	Timers and Pulse Width Modulation (PWM)	5	
11	11/23/10	Mixed C & Assembly Programming/Course Project	Project	4
12	11/30/10	Examination 2		
13	12/07/10	Course Project	Project	5
14	12/14/10	Final Exam/Course Project Brief and Demonstration	Demo	


Microcontroller Hardware and / or Interfaces

PIC16F684 Interfacing

- Switches
- LEDs

Switches ...

PICkit 1 Starter Kit - Switch (SW1) Schematic

PIC16F684 Pin Diagram

14-pin PDIP, SOIC, TSSOP

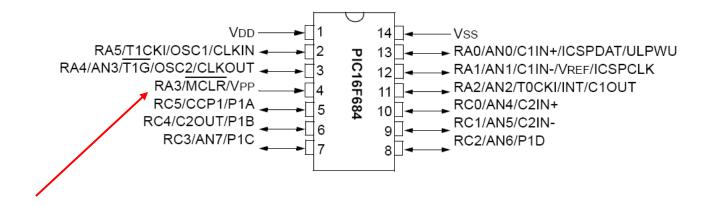
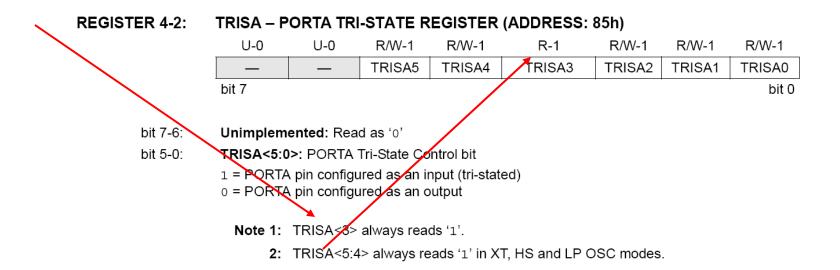


TABLE 1-1: PIC16F684 PINOUT DESCRIPTION

Name	Function	Input Type	Output Type	Description
RA0/AN0/C1IN+/ICSPDAT/ULPWU	RA0	TTL	CMOS	PORTA I/O w/programmable pull-up and interrupt-on-change
	AN0	AN	_	A/D Channel 0 input
	C1IN+	AN	_	Comparator 1 input
	ICSPDAT	TTL	CMOS	Serial Programming Data I/O
	ULPWU	AN	_	Ultra Low-power Wake-up input
RA1/AN1/C1IN-/VREF/ICSPCLK	RA1	TTL	CMOS	PORTA I/O w/programmable pull-up and interrupt-on-change
	AN1	AN	_	A/D Channel 1 input
	C1IN-	AN	_	Comparator 1 input
	VREF	AN		External Voltage Reference for A/D
	ICSPCLK	ST	_	Serial Programming Clock
RA2/AN2/T0CKI/INT/C1OUT	RA2	ST	CMOS	PORTA I/O w/programmable pull-up and interrupt-on-change
	AN2	AN	_	A/D Channel 2 input
	T0CKI	ST	_	Timer0 clock input
	INT	ST	_	External Interrupt
	C1OUT	_	CMOS	Comparator 1 output
RA3/MCLR/VPP	RA3	TTL	_	PORTA input with interrupt-on-change
	MCLR	ST	_	Master Clear w/internal pull-up
	VPP	HV	_	Programming voltage
RA4/AN3/T1G/OSC2/CLKOUT	RA4	TTL	CMOS	PORTA I/O w/programmable pull-up and interrupt-on-change
	AN3	AN	_	A/D Channel 3 input
	T1G	ST		Timer1 gate
	OSC2		XTAL	Crystal/Resonator
	CLKOUT		CMOS	Fosc/4 output
RA5/T/CKI/OSC1/CLKIN	RA5	TTL	CMOS	PORTA I/O w/programmable pull-up and interrupt-on-change
CAS/ PICK//CGC I/CEKIIV	T1CKI	ST	-	Timer1 clock
	OSC1	XTAL		Crystal/Resonator
	CLKIN	ST		External clock input/RC oscillator connection
RC0/AN4/C2IN+	RC0	TTL	CMOS	PORTC I/O
(00)/(144/02)14	AN4	AN	-	A/D Channel 4 input
	C2IN+	AN	_	Comparator 2 input
RC1/AN5/C2IN-	RC1	TTL	CMOS	PORTC I/O
17/110/02/11	AN5	AN	-	A/D Channel 5 input
	C2IN-	AN		Comparator 2 input
RC2/AN6/P1D	RC2	TTL	CMOS	PORTC I/O
KOZIANO/F ID	AN6	AN		A/D Channel 6 input
	P1D	_	CMOS	PWM output
RC3/AN7/P1C	RC3	TTL	CMOS	PORTC I/O
NOS/ANT/FTC	AN7	AN		A/D Channel 7 input
	P1C		CMOS	PWM output
		TTL	CMOS	PORTC I/O
PC4/C2OLIT/P1B	PC4	IIL		
RC4/C2OUT/P1B	RC4		CMOS	Comparator 2 output
RC4/C2OUT/P1B	C2OUT	_	CMOS	Comparator 2 output
	C2OUT P1B	_	смоѕ	PWM output
RC4/C2OUT/P1B	C2OUT P1B RC5	— TTL	CMOS	PWM output PORTC I/O
	C2OUT P1B RC5 CCP1	TTL ST	CMOS CMOS CMOS	PWM output PORTC I/O Capture input/Compare output
	C2OUT P1B RC5	— TTL	CMOS	PWM output PORTC I/O

Legend: TTL = TTL input buffer, ST = Schmitt Trigger input buffer, AN = Analog input

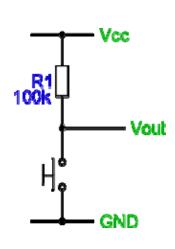
PIC16F684 PIN 4 - RA3

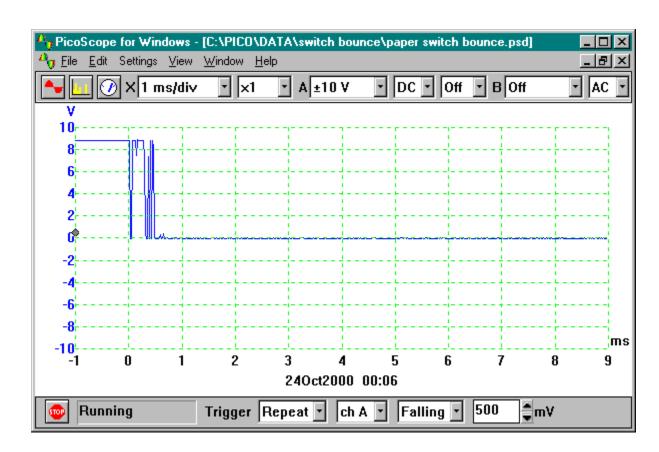

RA3/MCLR/VPP	RA3	TTL	_	PORTA input with interrupt-on-change
	MCLR	ST	_	Master Clear w/internal pull-up
	VPP	HV	_	Programming voltage

Setting RA3 for Input

PORTA = 0

TRISA3 is ALWAYS an input ... it can never be an output


Therefore ... you do not need to set TRISA3 = 1



Mechanical Switches

- The switch is connected across a +5 volt supply to the data input pin of the microcontroller via a resister
- An issue arises with mechanical switches ...
 - They do not cleanly open and close
- They can produce spikes which can be interpreted as false switch actions
 - This is referred to as Switch Bouncing

Switch Bouncing

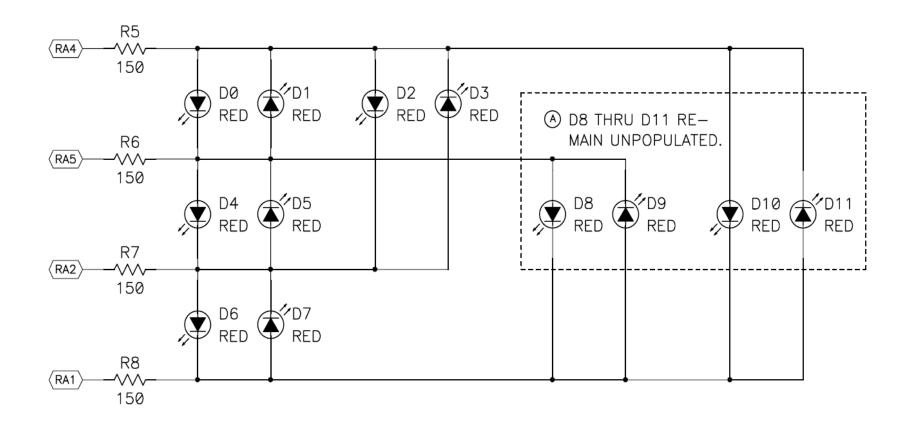
Switch Debouncing – Elimination of ...

- There are a variety of methods to eliminate switch bouncing
 - One method is the addition of a capacitor across the switch
 - Another method is a software approach
 - Code which can be incorporated into your application which will eliminate switch bouncing

Code to Eliminate Switch Bouncing

- Delays
 - Delays of around 20 msec
- The microcontroller will not look for switch action until the delay is over
 - Thus ... the switch has settled
 - False indications have been eliminated

LEDs ...


LEDs

- LEDs can be used for a multitude of applications
 - Indications
 - Power available
 - Indicates switch activation
 - By lighting once a switch has been depressed or changed

LEDs

- The PICkit 1 has an array of LEDs for multiple uses ...
 - Indications ... as we have seen in Lab #1
 - Switch actions ... as we shall see in Lab #2
 - Analog to Digital conversion results ... we shall see later in the course

PICkit 1 LED Layout

Programming / Software

Programming

- Commands/instructions that we will encounter tonight
 - C commands
 - PIC16F684 control

C commands - Last Week

- C program structure
- Comments
- # include
- Integer variables
- for
- while
- NOPO
- functions

NEW C Commands

- *if* conditional
- else
- else if
- switch
- **Constant** Declaration
- **Bitwise** Operators

The if Statement

- Testing a condition with ... the if statement
 - When the condition is True, or a value equal to 1, then C executes the statement that immediately follows, otherwise it is skipped
 - The if statement's format is as follows:

```
if (condition)
Program_Statement;
```

The if Statement (Tests)

- a == b Tests for equality
 (has the value 1 [true] if a is equal to b, and 0 [false] otherwise)
- a != b Test for inequality

 (has the value 1 [true] if a is not equal to b, and 0 [false] otherwise
- a > b Greater than (has the value 1 [true] if a is greater than b, and 0 [false] otherwise)
- a < b Less than
 (has the value 1 [true] if a is less than b, and 0 [false] otherwise)
- a <= b Less than or equal to
 (has the value 1 [true] if a is less than or equal to b, and 0 [false]
 otherwise)</pre>

The if Statement (continued)

• Example ...

```
if (x == 1)
do what is on this line;
```

• If the result of evaluating the condition is nonzero [True] (x is equal to 1), then C executes the statement that immediately follows, otherwise the line is skipped

else Statement

Another general format for declaring an if statement is as follows:

```
if (condition)
    Program_Statement1;
else
    Program_Statement2;
```

- If the condition is nonzero [True], Program_Statement1 is executed
- Otherwise, if condition is zero [False], Program_Statement2 is executed
- The else statement provides a way to execute one block of code if a condition is true, another if it is false

else Statement

• Example ...

```
main()
{
    int number = 75;
    int mark;

    if (mark >= number)
        {
             Do something;
        }
    else
        {
             Do something else;
        }
}
```

The if - else if Statement

- If Program_Statement2 is another if statement, an else if chain is affected
- We use this when additional statements are being evaluated
- General format for declaring an if else if statement is as follows:

```
if (condition)
    Program_Statement1;
else if (condition)
    Program_Statement2;
else
    Program_Statement3;
```

The if - else if Statement

• Example ...

```
mai n()
    int number = 75;
    int mark;
    if (mark >= number)
          Do this line if true;
    else if (mark >= 65)
          Do this line if true;
     el se
          If other conditions are false, then, do this line;
```

The *switch* Statement

- The switch statement is a multi-way decision statement
- Unlike the multiple decision statement that can be created using ifelse ...
- The switch statement evaluates the conditional expression and tests it against numerous constant values
- The branch corresponding to the value that the expression matches is taken during execution
- The value of the expressions in a switch statement must be an ordinal type i.e. integer, char, short, long, etc
 - Float and double are not allowed

The switch Statement

- The *switch* statement's format is as follows:

```
swi tch (expressi on)
    case constant_1:
      Program_Statement;
      Program_Statement;
      break;
    case constant_2:
      Program_Statement;
      Program_Statement;
      break;
    default:
      Program_Statement;
      Program_Statement;
      break;
```

The *switch* Statement

- No two cases can have the same value
- Omitting the *break* statement from a particular case ...
 - Causes execution to continue into the next case
- If no case value matches the expression ...
 - The *default* case (if included) is executed
 - If the *default* case is not included ...
 - No statements contained in the switch are executed

The *switch* Statement - Example

```
int i = 4;
int Direction;
main()
    switch (i)
                               // Go South if Index == 4
        case 4:
            Direction = 180;
                               // Leave Switch Statement
            break;
        case 5:
                               // Go North if Index at 5
            Direction = 0;
            break;
        case 7:
                               // Go East if Index at 7
            Direction = 90;
            break;
        defaul t:
                               // Go West for Everything Else
            Direction = 270;
    while(1 == 1);
```

Type Modifier – *const* (constant)

- The keyword const can be placed before a type declaration to tell the compiler that a value cannot be modified
- For example ...

```
const int xConstant = 47;
```

- Declares xConstant to be a constant integer
 - That is, it will not be set to anything else during the program execution

Type Modifier – *const* (constant)

- The keyword const converts the declared variable from a variable to a constant
- From our previous example, anytime the label xConstant is encountered, the compiler replaces it with the value 47
- You can no longer write to it ... for example, once the above is declared, you cannot do the following:

```
xConstant = 48;
```

Bit Manipulation

- The C language bitwise operators can be used to manipulate the contents of registers using Boolean arithmetic
- Bitwise operators can be used to perform the following on individual bits ...
 - Test
 - Set
 - Clear
 - Toggle

Bitwise Operators

- These operators allow you to easily process bit information
 - & bitwise AND ... set if both bits are set
 - bitwise (inclusive) OR ... set if either bit is set
 - bitwise XOR ... set if only one of the two parameter bits are set
 - bitwise negation ... invert each bit

Bit Manipulation – *Testing Bits*

Test to see if bit 3 is set

• Bit 3 was set, therefore the result has bit 3 set, because ...

& will set if both bits are set

• If we used an *if* statement ... result would be true

Bit Manipulation – *Setting Bits*

• To set bit 4

• We set Bit 4 because ...

Inclusive OR (|) will set if either bit is set

Bit Manipulation – *Toggling Bits*

To toggle bit 7 (when bit 7 was clear)

- We toggled Bit 7 because ...
 - ^ will set if only one of the two parameter bits are set

Bit Manipulation – *Toggling Bits*

To toggle bit 7 (when bit 7 was set)

- We toggled Bit 7 because ...
 - ^ will set if only one of the two parameter bits are set

Bitwise Operators - Example

RA5 = RA5 ^ 1;

Recall that ...

bitwise XOR ... set if only one of the two parameter bits are set

When RA5 = 0 ... RA5 would be changed to 1 because RA5 is zero and the constant is one (only one of the two bits are set)

When RA5 = 1 ... RA5 would be changed to 0 because RA5 is one and the constant is also one (both bits are set, therefore the bit is cleared)

So we effectively "toggle" the value of RA5

Information Coding

- Methods of representing information within microcontroller systems
- Data storage and program coding using numbering systems
 - Decimal
 - Hexadecimal
 - Binary
- Programming and data information will use these various numbering systems

Numbering Systems

- Decimal
 - Base 10
- Binary
 - Base 2
- Hexadecimal
 - Base 16

Numbering Formats

<u>System</u>	<u>Format</u>	<u>Example</u>
Decimal	##	0
Hexadecimal	0x##	0x3F
Binary	0b########	0b00111111

PIC16F684 Commands

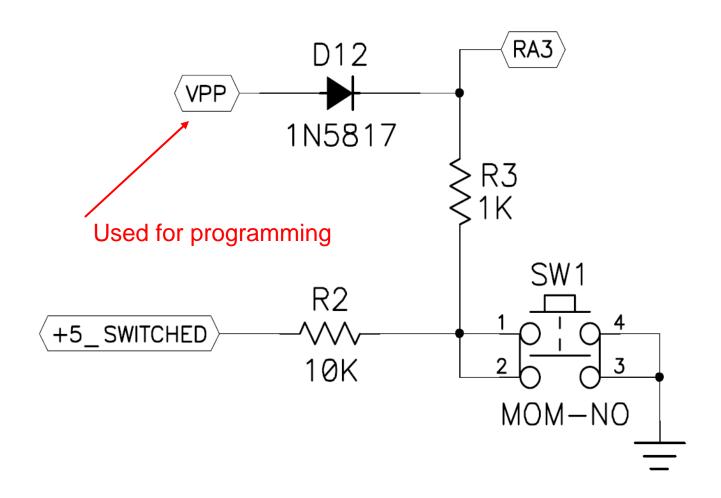
The following formats will set all bits in PORTA high

```
PORTA = 63;

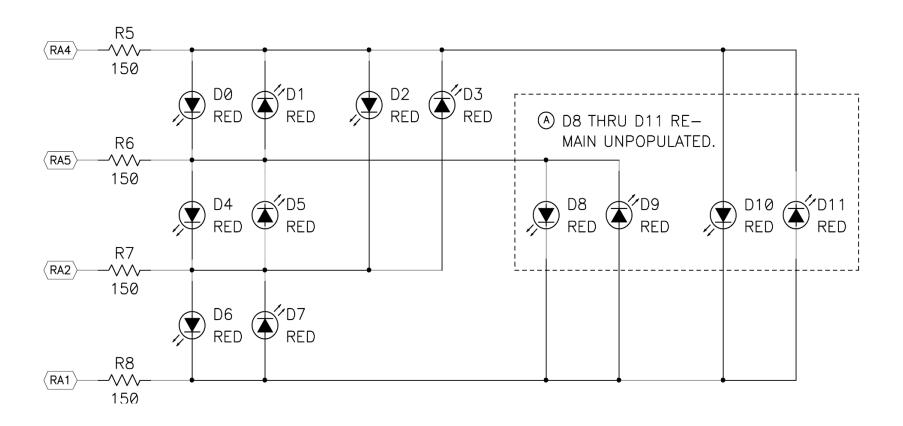
PORTA = 0x3F;

PORTA = 0b111111;
```

- What are the advantages of the different formats?
 - Situation dependant ... one format may be easier to interpret based on what the program is doing


Lab Demonstrations

- Digital Input
- Debouncing switches via code development
- Digital Input and Output control
- Numbering Systems


Design Parameters – Step 1

- Using the PICkit switch and LEDs
 - When the switch is off, all of the LEDs will be off
 - When the switch is on, D5 LED will be on
 - When the switch is release, D5 LED will go out

PICkit 1 Starter Kit - Switch (SW1) Schematic

Understand the Hardware

PIC16F684 Pin Diagram

14-pin PDIP, SOIC, TSSOP

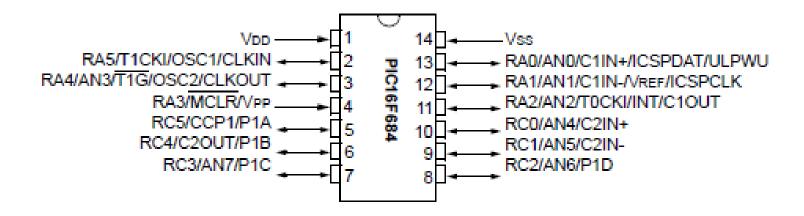


TABLE 1-1: PIC16F684 PINOUT DESCRIPTION

Name	Function	Input Type	Output Type	Description
RA0/AN0/C1IN+/ICSPDAT/ULPWU	RA0	ΠL	CMOS	PORTA I/O w/programmable pull-up and interrupt-on-change
	AN0	AN	_	A/D Channel 0 input
	C1IN+	AN	_	Comparator 1 input
	ICSPDAT	ΠL	CMOS	Serial Programming Data I/O
	ULPWU	AN	_	Ultra Low-power Wake-up input
RA1/AN1/C1IN-/VREF/ICSPCLK	RA1	ΠL	CMOS	PORTA I/O w/programmable pull-up and interrupt-on-change
	AN1	AN	_	A/D Channel 1 input
	C1IN-	AN		Comparator 1 input
	VREF	AN	_	External Voltage Reference for A/D
	ICSPCLK	ST	_	Serial Programming Clock
RA2/AN2/T0CKI/INT/C1OUT	RA2	ST	CMOS	PORTA I/O w/programmable pull-up and interrupt-on-change
	AN2	AN	_	A/D Channel 2 input
	T0CKI	ST	_	Timer0 clock input
	INT	ST	_	External Interrupt
	C10UT	_	CMOS	Comparator 1 output
RA3/MCLR/Vpp	RA3	ΠL	_	PORTA input with interrupt-on-change
	MCLR	ST	_	Master Clear w/internal pull-up
	Vpp	HV	_	Programming voltage
RA4/AN3/T1G/OSC2/CLKOUT	RA4	ΠL	CMOS	PORTA I/O w/programmable pull-up and interrupt-on-change
	AN3	AN	_	A/D Channel 3 input
	T1G	ST	_	Timer1 gate
	OSC2	_	XTAL	Crvstal/Resonator
	CLKOUT	_	CMOS	Fosc/4 output
RA5/T1CKI/OSC1/CLKIN	RA5	ΠL	CMOS	PORTA I/O w/programmable pull-up and interrupt-on-change
	T1CKI	ST	_	Timer1 clock
	OSC1	XTAL		Crystal/Resonator
	CLKIN	ST		External clock input/RC oscillator connection
RC0/AN4/C2IN+	RC0	ΠL	CMOS	PORTC I/O
	AN4	AN	_	A/D Channel 4 input
	C2IN+	AN		Comparator 2 input
RC1/AN5/C2IN-	RC1	ΠL	CMOS	PORTC I/O
	AN5	AN	_	A/D Channel 5 input
	C2IN-	AN		Comparator 2 input
RC2/AN6/P1D	RC2	ΠL	CMOS	PORTC I/O
	AN6	AN	_	A/D Channel 6 input
	P1D	_	CMOS	PWM output
RC3/AN7/P1C	RC3	ΠL		PORTC I/O
	AN7	AN	_	A/D Channel 7 input
	P1C	_	CMOS	•
RC4/C2OUT/P1B	RC4	ΠL	CMOS	PORTC I/O
	C2OUT	-	CMOS	Comparator 2 output
	P1B	-	CMOS	PWM output
RC5/CCP1/P1A	RC5	ΠL	CMOS	PORTC I/O
	CCP1	ST	CMOS	Capture input/Compare output
	P1A	_	CMOS	PWM output
Vss	Vss	Power	CIVIOS	Ground reference
VSS				

Legend: TTL = TTL input buffer, ST = Schmitt Trigger input buffer, AN = Analog input

Design Parameters – Step 2

Add debouncing Code to the previous code written

Debouncing Code Evaluation (sheet 1 of 1)

```
* Function: delay_20ms
* Description: Causes a delay in program execution
* Notes:
* Delay was determined through trial and error
* Returns: None
*******************
void delay_20ms(void)
    const int D20ms = 1150; // Declare a Constant for 20 ms Delay
    int i;
    for (i = 0; i < D20ms; i++);
    return;
/****** END OF delay_20ms ************/
```

Design Parameters – Step 3

- Initial power on/programming, all LEDs are off.
- When the switch is depressed for the first time, LED D0 will come on.
- The LED turned on will stay energized until the switch is depressed a second time.
 - At that time, LED D0 will go out and LED D1 will come on.
- The process above will continue until LED D7 is turned on.
- The next time the switch is depressed, all LEDs will be off and the sequence will start all over.

SUGGESTIONS: Use the *switch* or the *if – if else* statements.

<u>Do not incorporate</u> the switch debouncing code into your file

Design Parameters – Step 3 con't

Next ... incorporate the switch debouncing code into your file

Design Parameters – Step 4

- Rewrite your code using ...
 - Hexadecimal
 - Binary

Next Class

Next Class Topics

- Transition from the PICkit to a development board
- Seven Segment LEDs
- Binary operators
 - Shifting Bits

HomeWork

Homework

- 1. Read, as required, the C commands discussed in today's lecture found in the optional text (Programming in C)
- 2. Read the PIC16F684 data manual sections for the registers encountered tonight
- 3. Work on Lab #2

Time To Start the Lab

References

1. PIC16F684 Data Sheet 41202F