
1

MICROPROCESSORS A (17.383)

Fall 2010

Lecture Outline

Class # 07

October 26, 2010

Dohn Bowden

2

Today’s Lecture

• Syllabus review

• Microcontroller Hardware and/or Interface
• Finish Analog to Digital Conversion

• Programming/Software
• Code used to perform Analog to Digital Conversions

• Lab
• Lab #3 – 7 Segment LED Interface

• Homework

3

4

Administrative

• Admin for tonight …

– Course Project

• Requirements will be passed out next week

– Syllabus Highlights

• Lab report for Lab # 3 is due on November 9th

• For planning purposes …

– Exam #2 is November 30th … 5 weeks from today

5

Syllabus Review

23Analog to Digital Conversion 10/19/106

DemoFinal Exam/Course Project Brief and Demonstration 12/14/1014

5ProjectCourse Project 12/07/1013

Examination 211/30/1012

4ProjectMixed C & Assembly Programming/Course Project11/23/1011

5Timers and Pulse Width Modulation (PWM)11/16/1010

34 con’tComparators11/09/109

4LCD Interface and Assembly Language11/02/108

1Intro, Course & Lab Overview, Microcontroller Basics09/07/101

1 con’tPIC16F684 Overview and General Input/Output 09/14/102

2Switches 09/21/103

12 con’tSeven Segment LEDs 09/28/104

Examination 110/05/105

No Class – Monday Schedule10/12/10X

3 con’tAnalog to Digital Conversion con’t10/26/107

Lab Report DueLabTopicsDateWeek

6

7

ADC Review from the last
Lecture …

A Quick Review!

8

Analog To Digital Conversion Overview

9

PIC16F684 Hardware

• We turned our attention to the analog features

– Analog to Digital Conversion (ADC or A/D conversion)

10

Last Lecture …

• We went through the basics of Analog To Digital Conversion

• Any Questions?

11

Analog Signals

• We stated that … Real world signals are analog

– For example … sensors

• We need to be able to take these signals and convert them to digital
in order to be able to process them using the microcontroller

• The PIC16F684 is capable of performing the required conversion
with it’s built in analog to digital converter

12

Analog to Digital Converter

• What is an Analog-to-Digital converter?

– An Analog-to-Digital converter (ADC) is an electronic circuit
that changes or converts a continuous analog signal into a
digital signal without altering its critical content

13

Representation of an Analog Signal as a Digital Value

• The ADC represents an analog signal as a digital string of 1's and 0's
with finite resolution

• The ADC outputs a finite number of digital values …

– equal to 2N

(where N is the number of bits of the ADC)

14

Resolution

• Resolution … Is a measure of the smallest change in analog input
that can be discriminated by an A/D Converter

– The more binary digits of output that are available …

– The more resolution that is possible, and …

– The more precision we can encode the analog signal

• The resolution of an ‘N’ bit A/D converter with a voltage range of
“0 – X” volts is …

X - 0
2N

15

The PIC16F684 Analog-to-Digital Converter

• Contains a Successive-approximation-register (SAR) type Analog to
Digital converters

• 10-bit resolution

• 8 channels

16

ADC Output

• LEDs (Digital) representation of Analog voltage …

MSB LSB
9 8 7 6 5 4 3 2 1 0

2 D 5

(###h)*(Vmax/2N) = voltage 2D5h = 72510

(2D5h)*(5/210) = 3.54 volts

17

ADC Output – another method

• LEDs (Digital) representation of Analog voltage …

MSB LSB
9 8 7 6 5 4 3 2 1 0

2 D 5

(0bxxx)*(Vmax/2N) = voltage (20)*1 = 1 (25)*0 = 0
(21)*0 = 0 (26)*1 = 64

(72510)*(5/210) = 3.54 volts (22)*1 = 4 (27)*1 = 128
(23)*0 = 0 (28)*0 = 0
(24)*1 = 16 (29)*1 = 512

725

18

The
PIC16F684

Analog-To-Digital
Converter

Module
Specifics

19

ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

• The PIC16F684 Analog-to-Digital converter (A/D) allows

• Conversion of an analog input signal to a 10-bit binary
representation of that signal

• The PIC16F684 has eight analog inputs,

– Multiplexed into one sample and hold circuit

• The output of the sample and hold is connected to the input of the
converter

20

ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE (con’t)

• The converter generates a binary result via successive approximation … and
…

– Stores the 10 bit result in 2 eight bit registers

• The voltage reference used in the conversion is software selectable to
either …

– VDD (internal to the PIC) … typically 5.0 volts

or

– A voltage applied by the VREF pin (external source)

• The negative voltage reference is always connected to the ground reference

21

A/D BLOCK DIAGRAM

22

Configuring The PIC16F684 A/D Module

• To use the ADC feature of the PIC16F684 we will need to configure
the device

• To configure the PIC16F684 … three registers need to be setup

– ANSEL (Analog Select Register)

– ADCON1 (A/D Control Register 1)

– ADCON0 (A/D Control Register 0)

23

ANSEL (Analog Select)

• The ANSEL register is …

– Used to configure the Input mode of an I/O pin to analog

• Setting the appropriate ANSEL bit high will …

– Cause all digital reads on the pin to be read as ‘0’ … and …

– Allow analog functions on the pin to operate correctly

24

ANSEL (Analog Select)

• The state of the ANSEL bits …

– Has no affect on digital output functions

• A pin with …

– TRIS clear … and …

– ANSEL set … will …

• Still operate as a digital output … but …

– The Input mode will be analog

» This can cause unexpected behavior when executing read-
modify-write instructions on the affected port

25

ANSEL (Analog Select)

26

REGISTER 9-1: ANSEL – ANALOG SELECT REGISTER
(ADDRESS: 91h)

27

ADCON1 (A/D Control Register 1)

• Bit 6-4 Conversion clock select bits

– An accurate conversion requires a time of 1.6 μs or greater
• There is no point making this longer

– The internal oscillator provides a conversion time of
approximately 4 μs, although this can vary between 2 and 6μs

• We are using the internal oscillator, therefore we will use the
A/D RC option (111)

• No other bits are used in this register

28

REGISTER 9-3: ADCON1 – A/D CONTROL REGISTER 1
(ADDRESS: 9Fh)

29

ADC Timing

30

Definitions

• TAD … In the A/D Converter, the time for a single bit of the analog voltage
to be converted to a digital value

• Tosc … The time for the device oscillator to do a single period

• Four external clocks (Tosc) make one instruction cycle (TCY)

• INTRC … Internal Resistor-Capacitor (RC) Oscillator. The PIC16F684 has an
Internal 4 MHz Resistor/Capacitor oscillator

• Fosc … Frequency of the device oscillator

• TCY … The time for an instruction to complete. This time is equal to Fosc/4
and is divided into four Q-cycles

• Q-cycles … This is the same as a device oscillator cycle. There are 4 Q-
cycles for each instruction cycle

31

A/D Conversion Sequence

32

10-Bit A/D Conversion Timing Waveforms

33

A/D CONVERSION TAD CYCLES

A/D conversion time per bit is defined as TAD

34

Calculating Conversion Times (TAD) - Example

• For example … if we use a processor running at 4 MHz

• Clock period = 1/4,000,000 = .000000250 = 250 nSec

• So … if we use 8 TOSC, we would have …

Clock Period * TAD Operation = 250 nSec * 8 = 2 μSec

• The internal RC clock … has a typical TAD time of 4 μsec

• Although this can vary between 2 and 6μs

35

TAD VS. DEVICE OPERATING FREQUENCIES

36

VOLTAGE REFERENCE

• There are two options for the voltage reference to the A/D
converter … either …

– VDD is used … or …

– An analog voltage applied to VREF

• The VCFG bit (ADCON0<6>) controls the voltage reference
selection

– If VCFG is set … then the voltage on the VREF pin is the
reference

– otherwise, VDD is the reference

37

Reference Voltage

• VREF (Reference voltage)

• Minimum 3.0V

• Maximum VDD + 0.3 V

• VDD Supply Voltage

• 2.0 min

• 5.5V Max

38

ADCON0 (A/D Control Register 0)

• Bit 0
– Turns on or off the A/D converter

• 1 = On
• 0 = Off

• Bit 4-2
– Selects the channel to use (AN0 – AN7)

• Bit 6
– Selects where the reference voltage is from

• Bit 7
– Results format (right or left justified)

39

REGISTER 9-2: ADCON0 – A/D CONTROL REGISTER
(ADDRESS: 1Fh)

40

CONVERSION OUTPUT

• The A/D conversion can be supplied in two formats …

– Left …

– or right shifted

• The ADFM bit (ADCON0<7>) controls the output format

• The next slide shows the output formats

41

10-BIT A/D RESULT FORMAT

42

SUMMARY OF A/D REGISTERS

43

STARTING A CONVERSION

• The A/D conversion is initiated by setting the GO/DONE bit
(ADCON0<1>)

• When the conversion is complete, the A/D module …

• Clears the GO/DONE bit
• Sets the ADIF flag (PIR1<6>)
• Generates an interrupt (if enabled)

44

Steps to Follow for A/D Conversion

1. Configure the A/D module

2. Configure A/D interrupt (if desired)

3. Wait the required acquisition time

4. Start the conversion

5. Wait for A/D conversion to complete

6. Read the A/D Result register pair
• Use/store the result of the conversion

7. Perform the next conversion by going back to step 1 or step 2 as
required

45

Detailed Steps …

46

Step 1
Configure the A/D module

– ANSEL

• Configures the analog/digital Input/Output (I/O) pins

– ADCON0

• Configures the voltage reference
• Select the A/D input channel
• Turns on the A/D module

– ADCON1

• Select the A/D conversion clock

47

Step 1 (continued)
Configure the A/D module (ANSEL)

• ANSEL … select between analog or digital function on pins AN<7:0> (The
Register is shown on the next slide)

– ANSEL Bits are ANS0 through ANS7
Setting the bits … “1” --- Analog

Clearing the bits … “0” --- Digital

• In our example below, we only want pin AN0 as analog. The others can be
digital, therefore set ANS0 to 1, all others are 0

• The analog input channels must have their corresponding TRIS bits selected
as inputs

ANSEL = 1; // Only AN0 is an Analog Input, all others are digital
TRISA0 = 1; // Corresponding TRIS bit is set as input

48

REGISTER 9-1: ANSEL – ANALOG SELECT REGISTER
(ADDRESS: 91h)

49

Step 1 (continued)
Configure the A/D module (ADCON0)

• ADCON0 … (AD Control Register)
• The Register is shown on the next slide

ADCON0 = 0b00000001; // Bit 7 - Left Justified Sample
// Bit 6 - Use VDD
// Bit 5 - Not Used
// Bit 4:2 - Channel 0 (AN0)
// Bit 1 - Do not Start the conversion
// Bit 0 - Turn on ADC

50

REGISTER 9-2: ADCON0 – A/D CONTROL REGISTER
(ADDRESS: 1Fh)

51

10-BIT A/D RESULT FORMAT

52

10-BIT A/D RESULT FORMAT

53

Step 1 (continued)
Configure the A/D module (ADCON1)

• ADCON1 … AD Control Register 1 (The Register is shown on the
next slide)

– Selects the A/D conversion clock

• Recall … that the A/D conversion time per bit is defined as TAD

ADCON1 = 0b00010000; // Select the Clock as Fosc/8

54

REGISTER 9-3: ADCON1 – A/D CONTROL REGISTER 1
(ADDRESS: 9Fh)

55

TAD VS. DEVICE OPERATING FREQUENCIES

56

Step 2
Configure the A/D Interrupt (PIR1, PIE1, INTCON)

• We will not use the interrupt at this time …

• If we were to use the interrupts … we would …

– Clear ADIF bit (PIR1<6>) … A/D Interrupt Flag bit

– Set ADIE bit (PIE1<6>) … ADC Interrupt Enable bit

– Set PEIE and GIE bits (INTCON<7:6>) …
– Peripheral Interrupt Enable bit
– Global Interrupt Enable bit

// Not using interrupts

57

58

59

60

Step 3
Wait the required acquisition time

• After the A/D module has been configured as desired …

– the selected channel must be acquired before the conversion is
started

• The analog input channels must have their corresponding TRIS bits
selected as inputs

• After this sample time has elapsed …

– the A/D conversion can be started

61

Step 4
Start conversion (ADCON0<1>)

• Set GO/DONE bit (ADCON0<1>)

“1” --- Setting this bit starts an A/D conversion cycle
This bit is automatically cleared when complete

“0” --- A/D conversion completed/not in progress

GODONE = 1; // Start the conversion

62

GODONE

• GODONE is defined in pic16f684.h which was called by

• #include pic.h

63

REGISTER 9-2: ADCON0 – A/D CONTROL REGISTER
(ADDRESS: 1Fh)

64

Step 5
Wait for A/D conversion to complete

• By either …

– Polling for the GO/DONE bit to be cleared (with interrupts
disabled) … OR …

– Waiting for the A/D interrupt (if enabled)
• Sets the ADIF flag (PIR1<6>)

• We are not using the interrupt … therefore … our Code looks like
the following …

if (GODONE == 0); // ADC Complete

65

Step 6
Results

• Read A/D Result register pair (ADRESH:ADRESL)

• If interrupts were enabled …

• Clear bit ADIF

ADC_Value = ADRESH; // Save Sample Value in "ADC_Value"

66

Step 7
The Next Conversion

• For the next conversion, go back to step 1 or step 2 as required

• A minimum wait of 2 TAD is required before the next acquisition
starts

67

Aborting
a Conversion

• If the conversion must be aborted, the GO/DONE bit can be cleared
in software

• The ADRESH:ADRESL registers will not be updated with the partially
complete A/D conversion sample …

– Instead, the ADRESH:ADRESL registers will retain the value of the
previous conversion

• After an aborted conversion … a 2 TAD delay is required before
another acquisition can be initiated

– Following the delay, an input acquisition is automatically started
on the selected channel

68

Now … Let’s Walk Through the ADC Process via an Example

• We shall develop the required software needed for Lab 4

• Lab 4 requires …

• Analog to Digital Conversion using the PIC16F684 … and …

• The circuitry of the PICkit 1 Starter Kit

– LEDs will display the result of the ADC operation

– Potentiometer RP1, connected to RA0, will be used to
vary the input voltage to the ADC

69

Let’s Understand the Circuit

• We will use RA0 as the analog input channel

• The analog voltage is the output/wiper of Potentiometer RP1

• LEDs D0 through D7 will be used for the results display

• The next slide contains the analog input circuit …

70

RA0 Analog Input

71

What the Code is doing …

• Set the initial conditions

• Lights corresponding LEDs (represents the binary equivalent of the
analog voltage)

• While in an Endless Loop …
• Checks to see if the A/D Conversion is complete

– If it is … Then …
» Get the new conversion value
» Display the new value
» Start a new conversion

– If still in the conversion
» Display the last result

72

A/D Conversion – “main” Program

main()
{

PORTA_init();

ANSEL = 1; // Just RA0 is an Analog Input
TRISA0 = 1; // Corresponding TRIS bit is set as input

ADCON0 = 0b00000001; // Turn on the ADC
// Bit 7 - Left Justified Sample
// Bit 6 - Use VDD
// Bit 4:2 - Channel 0
// Bit 1 - Do not Start
// Bit 0 - Turn on ADC

ADCON1 = 0b00010000; // Select the Clock as Fosc/8

ADC_Disp();
GODONE = 1; // Start A/D Conversion

while(1 == 1) // Loop Forever
{

if (GODONE == 0) // Is A/D Conversion complete?
{ ADC_Disp(); // Display A/D Conversion Results

ADC_Value = ADRESH; // Get new A/D value
GODONE = 1; // Start the next A/D Conversion
}

else // A/D Conversion still in progress
ADC_Disp();

}
}

73

PORTA_init();

void PORTA_init(void)

{
PORTA = 0; // All PORTA Pins are low
CMCON0 = 7; // Turn off Comparators
ANSEL = 0; // Turn off ADC

return;

}

74

Configure the A/D module

ANSEL = 1; // Just RA0 is an Analog Input
TRISA0 = 1; // Corresponding TRIS bit is set as input

ADCON0 = 0b00000001; // Turn on the ADC
// Bit 7 - Left Justified Sample
// Bit 6 - Use VDD
// Bit 4:2 - Channel 0
// Bit 1 - Do not Start
// Bit 0 - Turn on ADC

ADCON1 = 0b00010000; // Select the Clock as Fosc/8

ADC_Disp();
GODONE = 1; // Start A/D Conversion

75

PORTA and TRISA

const char PORTA_Value[8] = {
0b010000, // D0
0b100000, // D1
0b010000, // D2
0b000100, // D3
0b100000, // D4
0b000100, // D5
0b000100, // D6
0b000010}; // D7

const char TRISA_Value[8] = {
0b001111, // D0
0b001111, // D1
0b101011, // D2
0b101011, // D3
0b011011, // D4
0b011011, // D5
0b111001, // D6
0b111001}; // D7

76

while(1 == 1) // Loop Forever

while(1 == 1) // Loop Forever
{

if (GODONE == 0) // Is A/D Conversion complete?
{

ADC_Disp(); // Display A/D Conversion Results
ADC_Value = ADRESH; // Get new A/D value
GODONE = 1; // Start the next A/D Conversion

}

else // A/D Conversion still in progress
ADC_Disp();

}

77

ADC_Disp();

void ADC_Disp(void)
{

int i;

for (i = 0; i < 8; i++)
{ // Loop through Each of the 8 LEDS

Delay_LED_On(); // Allows time for individual LEDs to light

if ((ADC_Value & (1 << i)) == 0)
PORTA = 0;

else
PORTA = PORTA_Value[i];
TRISA = TRISA_Value[i];

}
return;

}

78

79

Programming

• Commands/instructions that we will encounter tonight

• C commands - No new commands tonight

• PIC16F684 control – See prior section

80

81

Lab

• Finish Lab #3

• How are you making out?

• What is your approach?

82

83

Next Class Topics

• The class of 11/02/10 …

• LCD Display Interface and Assembly Language

84

85

Homework

1. Complete Lab #3

2. Lab #3 Report … due November 09, 2010

3. Read the sections on the PIC16F684 ADC module in both the …

PICmicro Mid-Range MCU Family Reference Manual

PIC16F684 Data Sheet

86

87

References

1. PIC16F684 Data Sheet 41202F

