
1

MICROPROCESSORS A (17.383)

Fall 2010

Lecture Outline

Class # 08

November 02, 2010

Dohn Bowden

2

Today’s Lecture

• Syllabus review

• Programming/Software

– Useful information

• Lab

– Discussion on your progress/techniques

– Continue/complete Lab #3 (Seven Segment LCDs)

– Start Lab #4

• Homework

3

4

Administrative

• Admin for tonight …

– Course Project

• Requirements will be passed out tonight

– Syllabus Highlights

• Modified Syllabus … provided time for Labs tonight

• Lab report for Lab # 3 is due on November 9th

• For planning purposes …

– Exam #2 is November 30th … 5 weeks from today

5

Syllabus Review

23Analog to Digital Conversion 10/19/106

DemoFinal Exam/Course Project Brief and Demonstration 12/14/1014

5ProjectCourse Project 12/07/1013

Examination 211/30/1012

4ProjectMixed C & Assembly Programming/Course Project11/23/1011

5Comparators, Timers, Pulse Width Modulation (PWM)11/16/1010

34 con’tLCD Interface and Assembly Language11/09/109

3, 4Lab Work (Finish Lab #3 and start Lab #4)11/02/108

1Intro, Course & Lab Overview, Microcontroller Basics09/07/101

1 con’tPIC16F684 Overview and General Input/Output 09/14/102

2Switches 09/21/103

12 con’tSeven Segment LEDs 09/28/104

Examination 110/05/105

No Class – Monday Schedule10/12/10X

3 con’tAnalog to Digital Conversion con’t10/26/107

Lab Report DueLabTopicsDateWeek

6

7

Hardware/Interface

• No hardware discussion

8

9

Programming/Software

• Programming/Software

– Useful information/techniques

10

Useful Techniques …

11

Programming Techniques …

• How do I make the results of the ADC into one variable?

• How can I display data on the 7 segment LED display?

• Both of these questions will be answered …

12

Creating One Variable From
Two Registers …

13

Variable From Multiple Registers

• PIC16F684 has two ADC associated registers containing the last
conversion data …

• ADRESH

• ADRESL

• How would we make one variable from the two registers?

14

“C” to Combine Two Registers

int Total_Data;

ADCON0 = 0b10000001; // Bit 7 - Right Justified Sample
// Bit 6 - Use VDD
// Bit 5 - Not Used
// Bit 4:2 - Channel 0 (AN0)
// Bit 1 - Do not Start the conversion
// Bit 0 - Turn on ADC

Total_Data=(ADRESH<<8) + ADRESL;

15

A Closer Look at … “int Total_Data” ?

• Data Type “int” means …

• 16 bits

• Signed integer

• Representing integral values ranging from …

-32,768 … to … +32,767

• So … int Total_Data would look like this in binary …

• 0b0000000000000000 (16 bits)

16

Recall … Right Justified Sample – (ADFM=1)
ADRESH and ADRESL

17

How would we make one variable from the two registers?

• Total_Data=(ADRESH<<8) + ADRESL;

• What is it doing?

1. First … set Total_Data to equal ADRESH

2. Then … shift Total_Data left eight bits

3. Next … add ADRESL to Total_Data (the result of the shift)

4. Resulting in one variable representing the entire ADC results

18

Example …

• For Left justified ADC Results (maximum possible result) …

– If … ADRESH = 0b00000011

– And … ADRESL = 0b11111111

Total_Data = (ADRESH << 8) + ADRESL

Total_Data = 0b0000000000000011 << 8 =

Total_Data = 0b0000001100000000 + 0b11111111 =

Total_Data = 0b0000001111111111 = 102310

19

Obtaining separate digits for
7 - Segment Displays …

20

The Problem …

• We have a variable that we want to display on multiple 7 segment
displays.

– How do we break up the variable to display the …

» One’s
» Tenth’s
» Hundredth’s
» Thousandth’s
» Ten thousandth’s
» One hundred thousandth’s
» etc?

21

“C” to Break up a Variable into its Components …

int data;

data = 641077;

hundred_thousand = data/100000;
data = data % 100000;
ten_thousand = data/10000;
data = data % 10000;
thousand = data / 1000;
data = data % 1000;
hundred = data / 100;
data = data % 100;
tenth = data / 10;
data = data % 10;
ones= data;

22

A Closer Look at what the Code is doing …

• Our variable that we want to display is 641077

• First … divide 641077 by 100000
» Equals 6

• Why 6 and not 6.41077?

– Because this is integer division and not floating point

» Hence hundred_thousand = 6

23

Next …

data = data % 100000;

• The % is the modulus operator …

– The modulus operator % is to give the remainder of the first
number divided by the second

• So …

hundred_thousand = data/100000;
data = data % 100000;

• We have the remainder of data equal to 641077 divided by 100000
which is 41077

24

To get the ten_thousandth’s digit …

• Our variable is now 41077

• We now divide 41077 by 10000
» Equals 4, therefore ten_thousand = 4

• data = data % 10000;
» Equals 1077

25

To get the thousandth’s digit …

• Our variable is now 1077

• We now divide 1077 by 1000
» Equals 1, therefore thousand = 1

• data = data % 1000;
» Equals 77

26

The remaining digits …

• Are found the same way …

• Now we can display each digit!

27

If you need ASCII

• To display ASCII data …

– We obtain each digit … then …

• Apply an offset of 0x30 to each digit of the input data

28

29

Peer Code Review …

30

Peer Code Review

• For Lab #3 …

– How did you approach counting from 0x00 to 0xff?

– How did you approach integrating the switches to …

• Count by one?

• Reset?

• How are you making out?

– Problems?

31

Labs Tonight …

32

Lab

• Continue/finish Lab #3

• Start Lab #4

33

34

Next Class Topics

• The class of 11/09/10 …

• LCD Interface

• Assembly Language

35

36

Homework

1. Complete and submit Lab Report #3 ...

• Due NLT November 09, 2010

2. Work on Lab #4 ...

• Report is due NLT November 23, 2010

37

38

References

1. PIC16F684 Data Sheet 41202F

