MICROPROCESSORS A (17.383)
Fall 2010

Lecture Outline

Class # 09
November 09, 2010

Dohn Bowden

Today’s Lecture

Syllabus review

Microcontroller Hardware and/or Interface
e LCD interface

Programming/Software
e LCD interface

e Assembly Language Basics

Lab
e Work on Lab #4

Homework

Administrative

e Admin for tonight ...
— Course Project
e Submit your Project topic NLT Monday November 15t (next week)
e Any questions?
— Syllabus Highlights
e Lab report for Lab # 3 is due tonight
e For planning purposes ...

— Exam #2 is November 30t ... 3 weeks from today

Syllabus Review

Week Date Topics Lab Lab Report Due
“I—09/07710—tmtro;Course & tab-Overview, Microtortrotter Basics T
22— 09/ 10— T PICT6F684 Overview ard-Gerera-imput/Output ot
83— 09/21/10—Switches 2
~4——09728/10—SeverrSegmenttEDs 2-corrt T
5 16705740 Exarmmimatiom
7a 16/42/1+0—T NoClass—vionday-Schedute
61 —16/19/10—Anatog-toDigitat-Conversion 3 2
i 10/26/10—| Analog-to-Digital-Conversion-con't 3 con't
8 +H02/40—tab-Weork-(Fnish-tab-#3-and-starttab-#4) 34
P 9 11/09/10 | LCD Interface and Assembly Language 4 con’t 3
10 11/16/10 | Comparators, Timers, Pulse Width Modulation (PWM) 5
11 11/23/10 | Mixed C & Assembly Programming/Course Project Project 4
12 11/30/10 | Examination 2
13 12/07/10 | Course Project Project 5
14 12/14/10 | Final Exam/Course Project Brief and Demonstration Demo

Microcontrollier
Hardware
and / or
Iinterfaces

LCD Interface ...

PIC16F684/LCD Display Interface

e Many microcontroller applications require display of ...

e Messages
e Data Values

e Typical types of displays:

— LEDs (previously discussed)

— 7-segment LED Displays (previously discussed)

— LCD Displays

— Video Displays (requires complex interfaces & are costly)
— Touch Screens

PIC16F684/LCD Display Interface

e LCD Display Advantages ...

e Low cost

e Low power consumption ... therefore ideal for:
— Low power
— Battery operated portable applications

e Alphanumeric

e Some LCDs are 40 characters wide

LCDs can be single or multiple rows

e Some can display graphic images

e Serial

e Parallel

Types of LCDs

10

Serial LCDs

Connected to the PIC using one data line

e Only one wire from the microcontroller
— Saves 1/0 pins

Data is transferred to the LCD via the standard RS232 asynchronous
data communication protocols

Cost more than parallel

e Cost of serial interface hardware

Can be challenging to program (timing and the RS232 protocol)

11

Parallel LCDs

Programming requires an understand of the internal operation of
the LCD module, including timing

Many parallel LCD modules are HD44780 types

Line lengths come in ...

e 8, 16, 20, 24, 32, and 40 characters

Depending on the model ...

e 1, 2, or 4 display rows can be selected

12

Parallel LCDs

The display has either a 14 or 16 pin connector for interfacing to the
microcontroller

e 14 pin for non-back lighted displays

e 16 pin for back lighted displays

13

Parallel LCDs Pin Assignments

Pin Number Svymbol

14

Parallel LCDs Pin Assignments

Signal name No. of Input/Output Connected Function
Lines to

DB4 ~ DB7 4 Input/Output MPU 4 lines of high order data bus. Bi-directional transfer of data
between MPU and module 1s done through these lines. Also DB;
can be used as a busy flag. These lines are used as data in 4 bit
operation.

DBO0 ~ DB3 4 Input/Output MPU 4 lines of low order data bus. Bi-directional transfer of data
between MPU and module is done through these lines. In 4 bt
operation, these are not used and should be grounded.

E 1 Input MPU Enable - Operation start signal for data read/write.

R/W 1 [nput MPU Signal to select Read or Write
“07: Write
“1”: Read

RS | [nput MPU Register Select
“0”: Instruction register (Write)

Busy flag; Address counter (Read)
“1”: Data register (Write, Read)
Vee | Power Terminal for LCD drive power source.
Supply
Vee | Power +5V
Supply
Vss 1 Power 0V (GND)
Supply

15

Pins (1 —4)

Pin 1 — V4 is O volts or ground
Pin 2 -V, IS positive voltage supply
Pin 3 — V¢ Is contrast control pin.
— Tie to a variable voltage source
Pin 4 — Register Select (RS)

— When low ... data transferred to the display

— When high ... character data can be transferred to/from
the display

16

Pin (5)

Pin 5 — Read/Write (R/W)

— Low to write commands or data to the LCD

— When High, character data or status information can be
transferred

- NOTE:

— Pin 5 is usually connected to ground ... LCD in write
mode only

17

Pins (6 — 14)

e Pin 6 — Enable (E) pin

— Used to initiate the transfer of commands or data
between the LCD and the microcontroller

— When writing to the display ... data is transferred only on
the High to Low transition of this pin

e Pins 7 to 14 — Data bus lines (DO to D7)
— Data can be transferred either in 4 or 8 bit interface

— In 4 bit interface, only D4 to D7 are used

18

Pins (15 -16)

Pin 15 — LED+ (Backlighting), if available

o VCC

Pin 16 — LED- (Backlighting), if available

— Gnd

19

Connecting the LCD to the PIC16F684

Circuit connections (see below and diagram on next slide) ...

Circuit PIC LCD
Gnd Pin 1
VCC Pin 2
10k pot wiper Pin 3
Gnd Pin 5
RC5 (5) Pin 4
RC4 (6) Pin 6
RCO (10) Pin 11
RC1 (9) Pin 12
RC2 (8) Pin 13

RC3 (7) Pin 14

Connecting the LCD to the PIC16F684

PIC16F684 |

o S R - R S

S]
e e g

JUOUOOOOOUOOUD

H H
s e B

Programming — LCD/PIC Interface

Each character display can be operated in either 4 or 8 bit mode

When operating in 4 bit mode, data is transferred in two 4 bit operations
using data bits DB4 - DB7 ...

— DBO - DB3 are not used and should be tied low.

— When using 4 bit mode, data is transferred twice before the instruction
cycle is complete

e First the high order nibble is transferred then the low order nibble

When operating in 8 bit mode, data is transferred using the full 8 bit bus
DBO - DB7

22

Initializing the LCD Module

Software Initialization

— Although software initialization is not mandatory ...
e Software initialization /s recommenaded

The next three slides describe the software initialization

— NOTE: BF is Busy Flag

23

Software Initialization (Slide 1 of 3)

4 - Bit Initialization:

Wait more than 15ms after Vec =4.5V

No data should be transferred to or from the
display during this time.

RS R'W DB, DBs; DB; DB,

0 0 0 0 1) Function Set Command: (8-Bit interface)

No data should be transferred to or from the

Wait more than 4.1ms display during this time.

Continued .. next slide

24

Software Initialization (Slide 2 of 3)

Continued from previous slide

RS R/W DB, ‘DBG DBs DB,
0 0 0 0 1 1

Wait more than 100pus

RS R/W DB; DBs DBs DB,
0 0 0 0 | |

RS R/W DB; DBs; DBs DB,
0 0 0 0 1 0

Continued .. next slide

Function Set Command: (8-Bit interface)

No data should be transferred to or from the
display during this time.

Function Set Command: (8-Bit interface)
After this command 1s written, BF can be checked.

Function Set: Sets interface to 4 -bit

25

Continued fromlprevious slide

Software Initialization (Slide 3 of 3)

0 0 0 0 1 0
0 0 N F X X
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 1 I'D S
0 0 0 0 0 0

0 0 1 1 C B

Initialization Complete,
Display Ready.

Function Set (Interface =4 -bit, Set N and F
for number of lines and character font)

Display OFF

Clear Display

Entry Mode Set:

Display ON (Set C and B for cursor/Blink
options.)

Note: BF should be checked before each
of the instructions starting with
Display OFF.

26

Reference Material

On the Course Web Page ...

— OPTREX CORPORATION ...

DOT MATRIX CHARACTER LCD MODULE USER'S MANUAL

An excellent reference source

27

Sample PIC16F684/LCD Code

The course Web Page contains LCD 4 _Bit.c file
— A good starter for basic interface
— Uses the pin-out previously identified

— Can format the output using C sprintf formatting

28

Sample PIC16F684/LCD Code

LCD_4 Bit.c code requires the stdio.h header
— Therefore ... use the INCLUDE command
This file inclusion is required for the sprintf command

— Stdio.h uses large amount of the 684 memory

29

Available Hardware

We have 2x16 parallel LCD modules available (JHD 162A)

e They must be turned in at the end of the semester

30

Programming

Commands/instructions that we will encounter tonight
e C commands - No new C commands tonight
e Assembly Language — Fundamentals

e PIC16F684 control — LCD interface

32

LCD 4 Bit.c

Review ofF the software

LCD 4 Bit.c

Recommend ...
1. Review the ... OPTREX CORPORATION
“DOT MATRIX CHARACTER LCD MODULE USER’S MANUAL"
2. Exam the schematic (next slide)
3. Study the LCD_4 Bit.c code provided on the course web page

An excellent starting point for applications requiring the use of a
LCD display

34

Connecting the LCD to the PIC16F684

PIC16F684 |

o S R - R S

S]
e e g

JUOUOOOOOUOOUD

H H
s e B

Assembly Language ...

36

Introduction to Assembly Language

Assembly Language
Resources

— MPASM Users Guide

— PIC16F684 Data Sheet

— Easy Microcontrol’'n by David Benson

37

Assembly Language

Will approach assembly language as we did with C

— We will learn it as we encounter instructions and formats
Tonight ...

— 1 will throw a lot at you ...

— It is an intro, digest the information ...

e \WWe can go over it again next week if you have any question

38

Introduction to PIC MCU Assembly Language Programming

Assembler ... the program that converts an assembly language
program into a .hex file

The assembler is analogous to the compiler that converts C into a
.hex file

The assembler we will use is the MPASM
— Which is built into the MPLAB IDE

— HI-TECH ANSI C compiler ... what we used for C programs ...
e \Was not built into MPLAB IDE

39

Introduction to PIC MCU Assembly Language Programming

Assembly language is no more difficult than C
— It is ‘just’ different
e The differences is in the statements used to write the code
— Assembly code tends to be longer ...
e Assembly language does smaller tasks
e C commands does many steps at one time

— Both accomplish the same result ... only assembly takes smaller steps to
get to the same end point

40

Introduction to PIC MCU Assembly Language Programming

Poorly written code will be no more efficient in assembly than
written in a higher level language

The program needs to be easily read
The program needs to be efficient
Use comments

— Makes debugging easier

41

MPASM Assembler

The MPASM assembler is a full-featured, universal macro assembler
for all PICmicro MCUs

The MPASM assembler features include:

— Integration into MPLAB IDE project

— User defined macros to streamline assembly code

— Conditional assembly for multi-purpose source files

— Directives that allow complete control over the assembly process

42

Source Code For the Assembler

Code can be created with MPLAB Text Editor

Assembly Language Features are as follows ...

43

Assembly Instruction Fundamentals

Instructions may be unfamiliar to you ... the following fundamentals
will help understand most instructions ...

— The letter T in an instruction ... refers to a file register
— A w means the working register, also known as the W register
— A b represents a bit

— A I indicates literal (usually the number that follows)

44

A Sample Assembly Instruction

BSF PORTA, O ;sets bit O of file register - PORTA

« The above is just a sample of what a typical instruction would look
like
— BSF ... is what you are doing, the instruction
— PORTA is the file register
— 0 is bit zero of that register
— The ; indicates that a comment follows

« We will get into more details of how to construct an actual program

45

Need to Understand File Registers

Assembly requires knowledge of the File Register locations

Need to be aware of which Bank the individual registers are located
in

The next two slides contains the Registers
e Bank O

e Bank 1

46

Map of the File Registers for the PIC16F684

Bank O
File
Address CCP1CON 15h
PWM1CON 16h
Indirect Addr." | oon ECCPAS 17h
TMRO 01h WDTCON 18h
PCL 02h CMCONOD 19h
STATUS 03h CMCONT 1Ah
FSR 04h 1Bh
PORTA 05h ich
06h 1Dh
PORTC 07h ADRESH 1Eh
08h ADCONO 1Fh
0sh 20h
PCLATH 0Ah
INTCON 0Bh General
PIR1 0Ch Purpose
0Dh REQIStEFS
TMRIL 0Eh 96 Bytes
TMR1H OFh
T1CON 10h
TMR2 11h
T2CON 12h
CCPRI1L 13h
CCPR1H 14h
7Fh

BANK O

Map of the File Registers for the PIC16F684

Bank 1
File WPUA 95h
Address
IOCA 96h
Indirect Addr!" | 8on 97h
OPTION REG 81h 98h
PCL 82h VRCON 99h
STATUS 83h EEDAT 9Ah
FSR 84h EEADR 9Bh
TRISA 85h EECONI 9Ch
86h eeconz!! SDh
TRISC 87h ADRESL 9Eh
a8h ADCON 9Fh
PCLATH 8Ah Registers
INTCON 8Bh 32 Bytes BFh
PIE" 8Ch
| 8Dh
PCON 8Eh
0SCCON 8Fh
OSCTUNE 90h
ANSEL 91h
PR2 92h
93h
94n ACCESSES 70n-7Fh | -
FFh

BANK 1

Directives

Directives ...

— Commands to the assembler that are used to control the
assembly of the program

— They appear in the source code but are not usually translated
directly into opcodes

— They are used to control the assembler ...
e Its input

e Output ...and ...
e Data allocation

49

Directives By Type

There are six basic types of directives provided by the assembler ...
— Control Directives (#include, equ, org)

— Conditional Assembly Directives (if, else)

— Data Directives (___config)

— Listing Directives (title, list)

— Macro Directives

— Object File Directives

50

t/tle Directive

title — SPECIFY PROGRAM TITLE

Syntax

— title "title _text' NOTE ... there is a space before title

Description and Usage

— ttle _textis a printable ASCII string enclosed in double quotes
— It must be 60 characters or less

—]I:Z_lstablishes the text to be used in the top line of each page in the listing
ile
Example

title "operational code, rev 5.0"

51

Fist — LISTING OPTIONS

Syntax

— list [11st option, ..., 11st optron]

Description

— QOccurs on a line by itself

— Has the effect of turning listing output on ... if it had been
previously turned off

— Otherwise, one of a list of options can be supplied to control the
assembly process or format the listing file

52

Fist — LISTING OPTIONS

Usage

— Options that may be used with the list directive are specified in
the following table (next slide)

53

/

Fist — LISTING OPTIONS

Option Default Description

b=nnn 8 Set tab spaces.

c=nnn 132 Set column width.

f=format INHX8M Set the hex file output. format can be INHX32,
INHX8M or INHX8S.)
Note: Hex file format is set in MPLAB® IDE
(Build Options dialog).

free FIXED Use free-format parser. Provided for backward
compatibility.

fixed FIXED Use fixed-format parser.

mm={ ON | OFF } On Print memory map in list file.

n=nnn 60 Set lines per page.

p=type None Set processor type; for example, PIC16F54. See
also processor.
Note: Processor type is set in MPLAB IDE
(Configure>Device).

pe=type None Set processor type and enable extended
instruction set; for example, LIST
pe=PIC18F4620
Only valid with processors which support the
extended instruction set and the generic
processor PIC18XXX. Is overridden by
command-line option /y- (disable extended
instruction set).
Note: Processor type is set in MPLAB IDE
(Configure>Device).

r=radix hex Set radix: hex, dec, oct. See also radix.

st={ON|OFF} On Print symbol table in list file.

t={ON|OFF} Off Truncate lines of listing (otherwise wrap).

w={0]1]|2} 0 Set the message level. See also errorlevel.

| x={oN|oFF} |On | Turn macro expansion on or off.

54

List — LISTING OPTIONS
set radix

Example:

list r=dec :;set default to decimal

Radix forms for constants are:
e Hexadecimal, decimal, octal, binary, and ASCII

The default radix is hexadecimal

— The default radix determines what value will be assigned to
constants in the object file when a radix is not explicitly specified
by a base descriptor

55

1ist — LISTING OPTIONS
Set Processor Type

Processor type is set in MPLAB IDE

e Configure=>Device

Therefore, we will not need to set the type within the code

If using another IDE ... you may see the following:

list p=16¥684

56

__config— SET PROCESSOR CONFIGURATION BITS

Syntax (NOTE: there are two underscore characters)
__config expr

Sets the processor's configuration bits

Before this directive is used ...

— the processor must be declared through

e Configure>Select Device if using MPLAB IDE ... or ... one of
the following ...

» the command line
» the list directive
» the processor directive

57

__config— SET PROCESSOR CONFIGURATION BITS

Place configuration bit assignments at the beginning of your code

Use the configuration options (names) in the standard include
(*.inc) file

e These names can be bitwise ANDed together (&) to declare
multiple configuration bits

For the PIC16F684 ... we have the following:

INCLUDE "'pl6f684.i1nc"

__CONFIG _FCMEN_OFF & _IESO OFF & BOD OFF & _CPD _OFF & _CP_OFF
& MCLRE_OFF & _PWRTE ON & WDT OFF & _INTOSCIO

58

REGISTER 12-1: CONFIG - CONFIGURATION WORD (ADDRESS: 2007h)

| — | — [FcMEN| IESO |BODEN1|BODENO| CPD | CP | MCLRE | PWRTE | WDTE | FOSC2 | FOSC1 | FOSCO |
bit 13 bit 0

bit 13-12 Unimplemented: Read as ‘1’

bit 11 FCMEN: Fail-Safe Clock Monitor Enabled bit
1 = Fail-Safe Clock Monitor is enabled
o = Fail-Safe Clock Monitor is disabled

bit 10 IESO: Internal External Switchover bit
1 = Internal External Switchover mode is enabled
o = Internal External Switchover mode is disabled

bit 9-8 BODEN<1:0>: Brown-out Detect Selection bits
11 = BOD enabled
10 = BOD enabled during operation and disabled in Sleep
01 = BOD controlled by SBODEN bit (PCON<4=)
0o = BOD disabled
bit 7 CPD: Data Code Protection bit/?
1 = Data memory code protection is disabled
0 = Data memory code protection is enabled
bit 6 CP: Code Protection bit?!
1 = Program memory code protection is disabled
0 = Program memory code protection is enabled
bit 5 MCLRE: RA3/MCLR pin function select bit%

1 = RA3/MCLR pin function is MCLR

0 = RA3/MCLR pin function is digital input, MCLR internally tied to VDD
bit 4 PWRTE: Fower-up Timer Enable bit

1 = PWRT disabled

0 = PWRT enabled

bit 3 WDTE: Watchdog Timer Enable bit
1 =WDT enabled
o = WDT disabled and can be enabled by SWDTEN bit (WDTCON<=0=)
bit 2-0 FOSC<2:0>: Oscillator Selection bits
111 = RC oscillator: CLKOUT function on RA4/OSC2/CLKOUT pin, RC on RAS/OSC1/CLKIN
110 = RCIO oscillator: I/O function on RA4/OSC2/CLKOUT pin, RC on RAS/OSC1/CLKIN
101 = INTOSC oscillator: CLKOUT function on RA4/OSC2/CLKOUT pin, I/O function on RAS/OSC1/CLKIN
100 = INTOSCIO oscillator: /O function on RA4/OSC2/CLKOQUT pin, IO function on RAS/OSC1/CLKIN
011 = EC: /O function on RA4/OSC2/CLKOUT pin, CLKIN on RAS/OSC1/CLKIN
o010 = HS oscillator: High-speed crystal/resonator on RA4/OSC2/CLKOUT and RAS/OSC1/CLKIN
o001 = XT oscillator: Crystal/resonator on RA4/0OSC2/CLKOUT and RA5/OSC1/CLKIN
000 = LP oscillator: Low-power crystal on RA4/0OSC2/CLKOUT and RAS/OSC1/CLKIN

Source Code Guidelines ...

Source Code Guidelines

Your source code should conform to the following basic guidelines ...

— Each line of the source file may contain up to four types of
information ...

e [abels
e Mnemonics, Directives and Macros
e Operands

e Comments

61

Source Code Guidelines

Labeéls ...

— Used to represent a line or group of code, or a constant value

— It is needed for branching instructions

62

Source Code Guidelines

Mnemonics ...

— Tell the assembler what machine instructions to assemble

e For example ...
— addition (add), branches (goto) or moves (movwf)

e Unlike labels that you create yourself ...

— Mnemonics are provided by the assembly language

— Mnemonics are not case sensitive

63

Source Code Guidelines

Directives ...

— Are assembler commands that appear in the source code but are
not usually translated directly into opcodes

— They are used to control the assembler ...
e Its input ...
e |ts output ...and ...
e Data allocation

— Directives are not case sensitive

64

Source Code Guidelines

Macros ...

— Are user defined sets of instructions and directives that ...

e Will be evaluated in-line with the assembler source code
whenever the macro is invoked

65

Source Code Guidelines

Operands ...

— Provide information to the instruction on the data that should be
used ...and ...

— The storage location for the instruction

Operands must be separated from mnemonics by one or more
spaces, or tabs

Multiple operands must be separated by commas

66

Source Code Guidelines

Comments ...

— Comments are text explaining the operation of a line or lines of
code

— The MPASM assembler treats anything after a semicolon as a
comment

e All characters following the semicolon are ignored through
the end of the line

— String constants containing a semicolon are allowed and are not
confused with comments

67

Source Code Guidelines

The order and position of the information is important

— Labels start in column one

— Mnemonics start in column two or beyond

— Operands follow the mnemonic

— Comments may follow the operands, mnemonics or labels, and
can start in any column

The maximum column width is 255 characters

68

Source Code Guidelines

White space or a colon must separate the label and the mnemonic
— White space is one or more spaces or tabs

— White space should be used to make your code easier for people to
read

— Unless within character constants, any white space means the same as
exactly one space.

White space must separate the mnemonic and the operand(s)
— Multiple operands must be separated by commas

White space is used to separate pieces of a source line

69

Source Code Guidelines

Mnemonics
Directives
Labels Macros Operands Comments
) l l l
list p=18f452

#include pl8f452.inc

Dest equ 0x0B ;Define constant
org 0x0000 ;Reset wvector
goto Start
org 0x0020 ;Begin program
Start
movlw 0x0A
movwt Dest
bcf Dest, 3 ;This line uses 2 operands
goto Start
end

70

Labels ...

Labels

Rules for defining labels ...
e Place in the label column (start at the 15t position)
e Must begin with alpha character or underscore bar
e Labels may be up to 31 characters long
e Labels are case sensitive
The underscore () is a useful means of separating words as ...

e Spaces are not allowed

72

Labels

A label is used to represent a line or group of code, or a constant
value

It is needed for branching instructions

Labels should start in column 1

They may be followed by a colon (:), space, tab or the end of line

73

Labels

Labels must ...
— Begin with an alpha character or an under bar ()

— They may contain alphanumeric characters, the under bar and
the question mark

Labels must not ...
— Begin with two leading underscores, e.g., __ config

— Begin with a leading underscore and number, e.g.,
__2NDLOOP

— Be an assembler reserved word
— Labels may be up to 32 characters long
— By default they are case sensitive

74

Equate ...

75

Equate

Equate is used to assign the value of expr to the /abe/

— labelequ expr

76

Equates

Example

four equ 4 ; assigned the numeric value of 4 to label four

Decimal 4

Tells the assemble .. this
IS an equate

Label

77

Literals ...

78

Literals

Literals are constants or numbers

— Usually hexadecimal numbers

79

Origin ...

Column 1

not used

Origin (ORG)

Column 2

org

Column 3

81

org — SET PROGRAM ORIGIN

Syntax
[Jabel]l org expr

Set the program origin for subsequent code at the address defined
In expr

If /abelis specified, it will be given the value of the expr

If no org is specified, code generation will begin at address zero

82

org— SET PROGRAM ORIGIN

e 0rgusages ...
— Defines the address where program code starts
— Establish the location of a table
— Establish the start of an interrupt service routine

e Example:

org 0x000

Program ...

84

Column 1

Program

Column 2

Column 3

85

Program

The code ...

— Main portion of the program

86

End ...

Column 1

Column 2

end

End

Column 3

88

end — END PROGRAM BLOCK

Syntax

end

Indicates the end of the program

You will need at least one end directive in any assembly program to
indicate the end of a build

In a single assembly file program, one and only one end must be
used

89

end — END PROGRAM BLOCK

Example:

#include pl1l8f684.1nc
- executable code

end ; end of 1nstructions

90

Include ...

91

#include — INCLUDE ADDITIONAL SOURCE FILE

The specified file is read in as source code

— The effect is the same as if the entire text of the included file
were inserted into the file at the location of the include
statement

Upon end-of-file, source code assembly will resume from the
original source file

— Up to 5 levels of nesting are permitted

— Up to 255 include files are allowed

92

#include — INCLUDE ADDITIONAL SOURCE FILE

Syntax

— Preferred:

#include rnclude frle

#include "“rnclude frle"

#include <rnclude frle>
— Supported:

include rnclude frle
include "“rnclude frle"
include <rnclude frle>

93

#include — INCLUDE ADDITIONAL SOURCE FILE

If /nclude_file contains any spaces
— It must be enclosed in quotes or angle brackets
If a fully qualified path is specified ...only that path will be searched
— Otherwise, the search order is:
e current working directory

e source file directory
e MPASM assembler executable directory

94

#include — INCLUDE ADDITIONAL SOURCE FILE

You should use the include directive once to include that standard
header file for your selected processor

This file contains defined register, bit and other names for a specific

processor, so there is no need for you to define all of these in your
code

Example:

#include “pl16f684.1Inc”

95

cblock ...

cblock— DEFINE A BLOCK OF CONSTANTS

Defines a list of named sequential symbols
Use this directive in place of or in addition to the equ directive

The purpose of this directive is to assign address offsets to many
labels

The list of names ends when an endc directive is encountered

expr indicates the starting value for the first name in the block

— If no expression is found, the first name will receive a value one
higher than the final name in the previous cblock

— If the first cblock in the source file has no expr, assigned values
start with zero

97

cblock— DEFINE A BLOCK OF CONSTANTS

If /ncrement is specified, then the next /abelis assigned the value of
/ncrement higher than the previous /abe/

Multiple names may be given on a line, separated by commas

cblock is useful for defining constants in program and data memory
for absolute code generation.

Syntax

cblock [expr]
label| : increment]| , Iabel| - 1ncrement]]

endc

98

Output files ...

Files Created by the Assembler

e LST and .HEX files

e The .LST file ..

= Provides a mapping of source code to object code

e It also provides a list of symbol values, memory usage information
and the number of errors, warnings and messages generated

e This file may be viewed in MPLAB IDE by:
1. Selecting Fi/le=0Open to launch the Open dialog

2. Selecting “List files (*.Ist)” from the “Files of type” drop-
down list

3. Locating the desired list file
4. Clicking on the list file name
5. Clicking Open

100

Files Created by the Assembler

e The .HEX file ...

— Hexadecimal object code which will be used by the programmer
to program the PIC chip

101

Instruction Set ...

102

PIC16F684 Instruction Set Summary

e There are 35 instructions ...
e Plus two obsolete instructions that we will still use
e OPTION and TRIS instructions
*** We will get a message stating that they are obsolete ***

e To maintain upward compatibility with future products
these two instruction will need to be modified

103

PIC16F684 Instruction Set Summary

e The PIC16F684 instruction is comprised of three basic categories:
e Byte-oriented operations
e Bit-oriented operations
e Literal and control operations

e Each PIC16 instruction is a 14-bit word divided into ...
e« An opcode
— which specifies the instruction type
e And one or more operands
— which further specify the operation of the instruction

104

TABLE 13-2: PIC16F684 INSTRUCTION SET

Mnemonic, i 14-Bit Opcode Status
Description Cycles Notes
Operands MSb Lsp | Affected
BYTE-ORIENTED FILE REGISTER OPERATIONS
ADDWF T d Add W and f 1 0o 0111 dfff ffff | C,DC Z 1,2
ANDWF f d AND W with f 1 00 010l dfff ffff Z 1,2
CLRF f Clearf 1 00 o000l 1fff ffff Z 2
CLRW - Clear W 1 00 0001 0 XXX Z
COMF f d Complement f 1 00 1loo0l dfff ffff Z 1,2
DECF T d Decrement 1 1 00 0011 dfff ffff z 1,2
DECFSZ f d Decrement f, Skip if o 1(2) 00 101l dfff ffff 1,2, 3
INCF . d Increment f 1 00 1o0l0 dfff ffff z 1,2
INCFSZ T d Increment f, Skip if 0 1(2) 00 1111 dfff ffff 1,2, 3
IORWF f d Inclusive OR W with f 1 00 0lo0 dfff ffff Z 1,2
MOVE . d Move f 1 00 1000 dfff ffff z 1,2
MOVWE f Move Wio f 1 00 o0oo00 1fff ffff
NOP — No Operation 1 00 0000 O0xxQ 0000
RELF T d Rotate Left f through Carry 1 00 1101 dfff ffff C 1,2
RRF f d Rotate Right f through Carry 1 o0 1100 dfff ffff C 1,2
SUBWF f d Subtract W from f 1 o0 oolo dfff f£fff| C,DC,7Z 1,2
SWAPF T d Swap nibbles in t 1 00 1110 dfff ffff 1,2
XORWEF f d Exclusive OR W with f 1 00 0llo dfff ffff z 1,2

Note 1: When an I/O register is modified as a function of itself (e.g., MovF gp10, 1), the value used will be that value present
on the pins themselves. For example, if the data latch is "1’ for a pin configured as input and is driven low by an external
device, the data will be written back with a “o".
2: If this instruction is executed on the TMRO register (and where applicable, d = 1), the prescaler will be cleared if
assigned to the Timer0) module.
3: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second
cycle is executed as a HOE.

105

TABLE 13-2: PIC16F684 INSTRUCTION SET

Mnemonic, - 14-Bit Opcode Status
Description Cycles Notes
Operands MSb Lsp | Affected
BIT-ORIENTED FILE REGISTER OPERATIONS
BCF f.b Bit Clear f 1 01 o00kk bEfff ffff 1,2
BSF f. b Bit Set f 1 01 0l1bbh bfff f£ffff 1,2
BTFSC f.b Bit Test f, Skip if Clear 1(2) 01 10bb bfff ffff 3
BTFSS f,b Bit Test f, Skip if Set 1(2) 01 11bkb bfff ffff 3
Note 1: When an I/O register is modified as a function of itself (e.g_, MovF gP10, 1), the value used will be that value present

on the pins themselves. For example, if the data latch is "1" for a pin configured as input and is driven low by an external
device, the data will be written back with a "o

If this instruction is executed on the TMREO register (and where applicable, d = 1), the prescaler will be cleared if
assigned to the Timer0 module.

If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second
cycle is executed as a NOE.

106

TABLE 13-2: PIC16F684 INSTRUCTION SET

Mnemonic - 14-Bit Opcode Status
’ Description Cycles Notes
Operands MSb Lsp | Affected
LITERAL AND CONTROL OPERATIONS
ADDLW k Add literal and W 1 11 111x kkkk kkkk| C DC, Z
ANDLW k AND literal with W 1 11 1001 kkkk kkkk Z
CALL k Call Subroutine 2 10 okkk kkkk kkkk|
CLRWDT - Clear Watchdog Timer 1 o0 0000 0110 o100 | TO,PD
GOTO k Go to address 2 10 1kkk kkkk kkkik
IORLW k Inclusive OR literal with W 1 11 1000 kkkk kkkk Z
MOWLW k Move literal to W 1 11 ooxx kkkk kkkik
RETFIE - Return from interrupt 2 00 0000 0000 1001
RETLW k Return with literal in W 2 11 01xx kkkk kkkk
RETURN - Return from Subroutine 2 00 0000 0000 1000
SLEEP - Go into Standby mode 1 00 0000 0110 o011 | TO, PD
suBLwW k Subtract W from literal 1 11 110x kkkk kkkk| C,DC, Z
XORLW k Exclusive OR literal with W 1 11 1010 kkkk kkkk Z

Note 1: When an I/O register is modified as a function of itself (e.g_, MovF gP10, 1), the value used will be that value present
on the pins themselves. For example, if the data latch is "1" for a pin configured as input and is driven low by an external
device, the data will be written back with a "o
2: If this instruction is executed on the TMRO register (and where applicable, d = 1), the prescaler will be cleared if
assigned to the Timer0 module.
3. If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second
cycle is executed as a NOE.

107

TABLE 13-1: OPCODE FIELD

DESCRIPTIONS

FIGURE 13-1: GENERAL FORMAT FOR
INSTRUCTIONS

Field Description

£ | Register file address (0x00 to Ox7F)

W | Working register (accumulator)

b | Bit address within an 8-bit file register

k | Literal field, constant data or label

x | Don't care location (= 0 or 1).
The assembler will generate code with x = 0.
It is the recommended form of use for
compatibility with all Microchip software tools.

4 | Destination select; d = 0: store result in W,
d = 1: store result in file register f.
Defaultisd=1.

pc | Program Counter

TO | Time-out bit

ep | Power-down bit

Byte-oriented file register operations
13 8 7 6 0

OPCODE d f(FILE #)

d = o for destination W
d = 1 for destination f
f = 7-bit file register address

Bit-oriented file register operations
13 10 9 7 6 0

OPCODE b (BIT #) f(FILE #)

b = 3-bit bit address
f = 7-bit file register address

Literal and control operations

General

13 8 7 0
OPCODE K (literal)

k = B-bit immediate value

caLL and @oTo instructions only
13 11 10 0
OPCODE k (literal)

k = 11-bit immediate value

108

Commands that we shall use today

comments ... semicolon (;)
MOVLW

MOVWF

CLRF

BCF

BSF

DECFSZ

CALL

GOTO

END

109

Semicolon

e Semicolon (;)

— Used for comments
— Ignore everything following the semicolon on the line

110

MOVLW

MOVLW Move literal to W
Syntax: [label] MOVLW k
Operands: 0<k<255
Operation: k — (W)

Status Affected: None

Description:

Words:
Cycles:

Example

The eight bit literal 'k’ is loaded into
W register. The don'’t cares will
assemble as ‘0's.

1
1

MOVLW OxEh

After Instruction
W = 0Ox5A

111

MOVWF

MOVWF Move W to f
Syntax: [label] MOVWEF
Operands: 0=f<127
Operation: (W) — (f)
Status Affected: None
Description: Move data from VW register to
register f.
Words: 1
Cycles: 1
Example MOVW OQPTION
F
Before Instruction
OPTION= OxFF
W = 0Ox4F
After Instruction
OPTION= Ox4dF
W = Ox4F

112

CLRF

CLRF Clear f
Syntax: [label] CLRF f
Operands: 0=f<127
Operation: 00h — (f)
1T—=Z
Status Affected: Z
Description: The contents of register 't are

cleared and the Z bit is set.

113

BCF

BCF Bit Clear f
Syntax: [label]BCF b
Operands: O=<f< 127
0=<b=<7
Operation: 0 — (f)
Status Affected: None
Description: Bit ‘b’ in register T is cleared.

114

BSF

BSF Bit Set f
Syntax: [label] BSF fb
Operands: 0<f< 127
D<b<=7
Operation: 1 — (f)
Status Affected: None
Description: Bit ‘b’ in register T is set.

115

DECFSZ

DECFSZ Decrement f, Skip if 0
Syntax: [label] DECFSZ fd
Operands: O0=t=<127
de [0,1]
Operation: (f) - 1 — (destination);
skip if result = 0
Status Affected: None

Description:

The contents of register ' are
decremented. If 'd"is "07, the result
Is placed in the W register. If 'd" is
1’ the result is placed back in
register f.

If the result is "17, the next
instruction 1s executed. If the
result is "0’, then a NOP is
executed instead, making it a
2-cycle instruction.

116

CALL

CALL Call Subroutine

Syntax: [fabel] CALL K

Operands: 0=k=2047

Operation: (PC)+ 1— TOS,
k — PC<10:0>,
(PCLATH<4:3>) — PC<12:11>

Status Affected: None

Description: Call Subroutine. First, return

address (PC + 1) is pushed onto
the stack. The eleven-bit
Immediate address i1s loaded into

PC bits <10:0>. The upper bits of
the PC are loaded from PCLATH.
CALL Is a two-cycle instruction.

117

GOTO

GOTO Unconditional Branch
Syntax: [fabel] GOTO k
Operands: 0=<k=2047
Operation: k — PC<10:0>

Status Affected:

Description:

PCLATH<4:3> — PC<12:11>
None

GOTO 15 an unconditional branch.
The eleven-bit iImmediate value is
loaded into PC bits <10:0>. The
upper bits of PC are loaded from
PCLATH<=4:3>. coTC Is a
two-cycle instruction.

118

END

end — END PROGRAM BLOCK
4221 Syntax

end
4.22.2 Description

Indicates the end of the program.

4.22.3 Usage

This directive is used in the following types of code: absolute or relocatable. For
information on types of code, see Section 1.6 “Assembler Operation”.

You will need at least one end directive in any assembly program to indicate the end
of a build. In a single assembly file program, one and only one end must be used.

119

Assembly Language Code ...

Developing Code Using Assembly Language

e First program in assembly will be to flash DO on the PICkit 1 Starter
Kit ... just as we did with our first lab using the PICKit

e Will light DO ... 2 times per second

121

Flash _DO.asm — An “Eye Chart”

title “Flash_DO.asm — Flash DO LED”

Flash_DO.asm

Microprocessors B 17.384

XXXXXXXX - Put in Semester (i.e. Spring 2008) here
XXXXXXXX - Put in your name here

Xx/xx/xx - Put date here

list r=dec
#include "p16¥684.inc™

__CONFIG _FCMEN_OFF & _IESO_OFF & _BOD_OFF & _CPD_OFF & _CP_OFF & _MCLRE_OFF & _PWRTE_ON & _WDT_OFF & _INTOSCIO

; Defining constants or variables in data memory space

Cblock 0x20 ;
count
endc

; === main program ---------—--——-—
org 0x000

start BCF STATUS,RPO 3
CLRF PORTA
MOVLW 7
MOVWF CMCONO
BSF STATUS,RPO 8
CLRF ANSEL 8
MOVLW b*001111* 8
MOVWF TRISA
BCF STATUS,RPO 8

Loop BSF PORTA, 4 3
CALL Delay
BCF PORTA, 4 g
CALL Delay
GOTO Loop

Delay MOVLW 10
MOVWF count

Repeat DECFSZ count,f
GOTO Repeat
RETURN

start of GPR

Select Bank 0

Select Bank 1

Shut off ADC (di

This directive must be
supplied to terminate the
cblock list

Hex address 0x000, the first
program memory location

Init

ize PORTA (to all zeros)

Load w with 7
Load CMCONO with 7
Turns off comparators

tal 1/0)

Load w — RA4 and RA5 outputs

Select Bank 0
Make RA4 high -- DO ON

Make RA4 low -- DO OFF

copy w to TRIS PORTA

; Goto the delay routine

Goto the delay routine

; Do it again

Initialize counter to 10
Decrement counter

If counter <> 0

If counter = 0 (end delay)

122

Flash _DO.asm (Slide 1 of 9)

e |dentify the title (do not start in positionl):

title “Flash_DO0O.asm — Flash DO LED”

123

Flash _DO.asm (Slide 2 of 9)

e Add our required class header information

; Flash_DO0.asm

; Microprocessors B 17.384

; XXXXXXXX - Put in Semester (i.e. Spring 2009) here

; XXXXXXXX - Put in your name here

- XX/xX/xx - Put date here

Flash _DO.asm (Slide 3 of 9)

e Set radix to decimal, vice hexadecimal
e |nclude the PIC16F684 file
e Add the configuration word

list r=dec
#include "p16f684.inc"

__CONFIG _FCMEN_OFF & IESO_OFF & BOD _OFF & CPD_OFF & CP_OFF
& MCLRE_OFF& _PWRTE_ON & WDT OFF & INTOSCIO

125

Flash _DO.asm (Slide 4 of 9)

e Make provisions for constants or variables in data memory space

; Defining constants or variables in data memory space

Cblock 0x20 . start of GPR

count :

endc : This directive must be
; supplied to terminate the
: cblock list

126

Flash _DO.asm (Slide 5 of 9)

Define the address where the program code starts

; Hex address 0x000, the first
; program memory location

127

Flash _DO.asm (Slide 6 of 9)

e Establish initial conditions

start

BCF

CLRF

MOVLW

MOVWF

BSF

CLRF

MOVLW
MOVWEF

BCF

STATUS,RPO
PORTA

v

CMCONO
STATUS,RPO
ANSEL

b'001111"
TRISA

STATUS,RPO

: Select Bank 0

; Initialize PORTA (to all zeros)
: Load w with 7

 Load CMCONO with 7

; Turns off comparators

: Select Bank 1

; Shut off ADC (digital 1/0O)

; Load w — RA4 and RA5 outputs
; copy w to TRIS PORTA

- Select Bank O

128

Flash _DO.asm (Slide 7 of 9)

e Loop

Loop BSF PORTA4 ; Make RA4 high -- DO ON
| CALL Delay ; Goto the delay routine

| BCF PORTA4 ; Make RA4 low -- DO OFF
| CALL Delay , Goto the delay routine

| GOTO Loop ; Do it again

129

Flash _DO.asm (Slide 8 of 9)

e (Create a Delay Routine

Delay MOVLW 10 ; Decimal 10

MOVWEF count ; Initialize counter to 10
Repeat DECFSZ count,f ; Decrement counter
GOTO Repeat ; If counter <> 0

RETURN ; If counter = 0 (end delay)

130

Flash _DO.asm (Slide 9 of 9)

e Ending the program

end

131

132

Lab

e Finish Lab # 4

e Lab #5 ... is optional ... will be available next week... however ...

» It Is recommended that you do the lab

— There is no report for Lab #5

133

Next Class Topics

e Comparators, Timers, and Pulse Width Modulation

135

Homework

1. Lab # 4 Report ... due November 23, 2010
2. Read the material from Today'’s class ...
e MPASM Users Guide

3. Start preparing for Exam #2 ... Scheduled for November 30t

137

Time TO ...
Start the Lab ...

References

1. PIC16F684 Data Sheet 41202F
2. OPTREX CORPORATION
“DOT MATRIX CHARACTER LCD MODULE USER’'S MANUAL*

3. MPASM Users Guide

139

