
1

MICROPROCESSORS A (17.383)

Fall 2010

Lecture Outline

Class # 09

November 09, 2010

Dohn Bowden

2

Today’s Lecture

• Syllabus review

• Microcontroller Hardware and/or Interface
• LCD interface

• Programming/Software
• LCD interface

• Assembly Language Basics

• Lab
• Work on Lab #4

• Homework

3

4

Administrative

• Admin for tonight …

– Course Project

• Submit your Project topic NLT Monday November 15th (next week)

• Any questions?

– Syllabus Highlights

• Lab report for Lab # 3 is due tonight

• For planning purposes …

– Exam #2 is November 30th … 3 weeks from today

5

Syllabus Review

23Analog to Digital Conversion 10/19/106

DemoFinal Exam/Course Project Brief and Demonstration 12/14/1014

5ProjectCourse Project 12/07/1013

Examination 211/30/1012

4ProjectMixed C & Assembly Programming/Course Project11/23/1011

5Comparators, Timers, Pulse Width Modulation (PWM)11/16/1010

34 con’tLCD Interface and Assembly Language11/09/109

3, 4Lab Work (Finish Lab #3 and start Lab #4)11/02/108

1Intro, Course & Lab Overview, Microcontroller Basics09/07/101

1 con’tPIC16F684 Overview and General Input/Output 09/14/102

2Switches 09/21/103

12 con’tSeven Segment LEDs 09/28/104

Examination 110/05/105

No Class – Monday Schedule10/12/10X

3 con’tAnalog to Digital Conversion con’t10/26/107

Lab Report DueLabTopicsDateWeek

6

7

LCD Interface …

8

PIC16F684/LCD Display Interface

• Many microcontroller applications require display of …

• Messages
• Data Values

• Typical types of displays:

– LEDs (previously discussed)
– 7-segment LED Displays (previously discussed)
– LCD Displays
– Video Displays (requires complex interfaces & are costly)
– Touch Screens

9

PIC16F684/LCD Display Interface

• LCD Display Advantages …

• Low cost
• Low power consumption … therefore ideal for:

– Low power
– Battery operated portable applications

• Alphanumeric
• Some LCDs are 40 characters wide
• LCDs can be single or multiple rows
• Some can display graphic images

10

Types of LCDs

• Serial

• Parallel

11

Serial LCDs

• Connected to the PIC using one data line

• Only one wire from the microcontroller
– Saves I/O pins

• Data is transferred to the LCD via the standard RS232 asynchronous
data communication protocols

• Cost more than parallel

• Cost of serial interface hardware

• Can be challenging to program (timing and the RS232 protocol)

12

Parallel LCDs

• Programming requires an understand of the internal operation of
the LCD module, including timing

• Many parallel LCD modules are HD44780 types

• Line lengths come in …

• 8, 16, 20, 24, 32, and 40 characters

• Depending on the model …

• 1, 2, or 4 display rows can be selected

13

Parallel LCDs

• The display has either a 14 or 16 pin connector for interfacing to the
microcontroller

• 14 pin for non-back lighted displays

• 16 pin for back lighted displays

14

Parallel LCDs Pin Assignments

15

Parallel LCDs Pin Assignments

16

Pins (1 – 4)

• Pin 1 – VSS is 0 volts or ground

• Pin 2 – VDD is positive voltage supply

• Pin 3 – VEE is contrast control pin.

– Tie to a variable voltage source

• Pin 4 – Register Select (RS)

– When low … data transferred to the display
– When high … character data can be transferred to/from

the display

17

Pin (5)

• Pin 5 – Read/Write (R/W)

– Low to write commands or data to the LCD
– When High, character data or status information can be

transferred

– NOTE:
– Pin 5 is usually connected to ground … LCD in write

mode only

18

Pins (6 – 14)

• Pin 6 – Enable (E) pin

– Used to initiate the transfer of commands or data
between the LCD and the microcontroller

– When writing to the display … data is transferred only on
the High to Low transition of this pin

• Pins 7 to 14 – Data bus lines (D0 to D7)

– Data can be transferred either in 4 or 8 bit interface

– In 4 bit interface, only D4 to D7 are used

19

Pins (15 -16)

• Pin 15 – LED+ (Backlighting), if available

– VCC

• Pin 16 – LED- (Backlighting), if available

– Gnd

20

Connecting the LCD to the PIC16F684

Circuit connections (see below and diagram on next slide) …

Circuit PIC LCD

Gnd Pin 1
VCC Pin 2
10k pot wiper Pin 3
Gnd Pin 5

RC5 (5) Pin 4
RC4 (6) Pin 6
RC0 (10) Pin 11
RC1 (9) Pin 12
RC2 (8) Pin 13
RC3 (7) Pin 14

21

Connecting the LCD to the PIC16F684

F
a
l
l

2
0
1
0

1
7
.
3
8
3

22

Programming – LCD/PIC Interface

• Each character display can be operated in either 4 or 8 bit mode

• When operating in 4 bit mode, data is transferred in two 4 bit operations
using data bits DB4 - DB7 …

– DB0 - DB3 are not used and should be tied low.

– When using 4 bit mode, data is transferred twice before the instruction
cycle is complete

• First the high order nibble is transferred then the low order nibble

• When operating in 8 bit mode, data is transferred using the full 8 bit bus
DB0 - DB7

23

Initializing the LCD Module

• Software Initialization

– Although software initialization is not mandatory …

• Software initialization is recommended

• The next three slides describe the software initialization

– NOTE: BF is Busy Flag

24

Software Initialization (Slide 1 of 3)

Continued … next slide

25

Software Initialization (Slide 2 of 3)

Continued … next slide

Continued from previous slide

26

Software Initialization (Slide 3 of 3)

Continued from previous slide

27

Reference Material

• On the Course Web Page …

– OPTREX CORPORATION …

DOT MATRIX CHARACTER LCD MODULE USER’S MANUAL

• An excellent reference source

28

Sample PIC16F684/LCD Code

• The course Web Page contains LCD_4_Bit.c file

– A good starter for basic interface

– Uses the pin-out previously identified

– Can format the output using C sprintf formatting

29

Sample PIC16F684/LCD Code

• LCD_4_Bit.c code requires the stdio.h header

– Therefore … use the INCLUDE command

• This file inclusion is required for the sprintf command

– Stdio.h uses large amount of the 684 memory

30

Available Hardware

• We have 2x16 parallel LCD modules available (JHD 162A)

• They must be turned in at the end of the semester

31

32

Programming

• Commands/instructions that we will encounter tonight

• C commands - No new C commands tonight

• Assembly Language – Fundamentals

• PIC16F684 control – LCD interface

33

LCD_4_Bit.c

Review of the software

34

LCD_4_Bit.c

• Recommend …

1. Review the … OPTREX CORPORATION

“DOT MATRIX CHARACTER LCD MODULE USER’S MANUAL“

2. Exam the schematic (next slide)

3. Study the LCD_4_Bit.c code provided on the course web page

• An excellent starting point for applications requiring the use of a
LCD display

35

Connecting the LCD to the PIC16F684

F
a
l
l

2
0
1
0

1
7
.
3
8
3

36

Assembly Language …

37

Introduction to Assembly Language

• Assembly Language

• Resources

– MPASM Users Guide

– PIC16F684 Data Sheet

– Easy Microcontrol’n by David Benson

38

Assembly Language

• Will approach assembly language as we did with C

– We will learn it as we encounter instructions and formats

• Tonight …

– I will throw a lot at you …

– It is an intro, digest the information …

• We can go over it again next week if you have any question

39

Introduction to PIC MCU Assembly Language Programming

• Assembler … the program that converts an assembly language
program into a .hex file

• The assembler is analogous to the compiler that converts C into a
.hex file

• The assembler we will use is the MPASM

– Which is built into the MPLAB IDE

– HI-TECH ANSI C compiler … what we used for C programs …
• Was not built into MPLAB IDE

40

Introduction to PIC MCU Assembly Language Programming

• Assembly language is no more difficult than C

– It is ‘just’ different

• The differences is in the statements used to write the code

– Assembly code tends to be longer …

• Assembly language does smaller tasks

• C commands does many steps at one time

– Both accomplish the same result … only assembly takes smaller steps to
get to the same end point

41

Introduction to PIC MCU Assembly Language Programming

• Poorly written code will be no more efficient in assembly than
written in a higher level language

• The program needs to be easily read

• The program needs to be efficient

• Use comments

– Makes debugging easier

42

MPASM Assembler

• The MPASM assembler is a full-featured, universal macro assembler
for all PICmicro MCUs

• The MPASM assembler features include:

– Integration into MPLAB IDE project

– User defined macros to streamline assembly code

– Conditional assembly for multi-purpose source files

– Directives that allow complete control over the assembly process

43

Source Code For the Assembler

• Code can be created with MPLAB Text Editor

• Assembly Language Features are as follows …

44

Assembly Instruction Fundamentals

• Instructions may be unfamiliar to you … the following fundamentals
will help understand most instructions …

– The letter f in an instruction … refers to a file register

– A w means the working register, also known as the W register

– A b represents a bit

– A l indicates literal (usually the number that follows)

45

A Sample Assembly Instruction

• The above is just a sample of what a typical instruction would look
like

– BSF … is what you are doing, the instruction
– PORTA is the file register
– 0 is bit zero of that register
– The ; indicates that a comment follows

• We will get into more details of how to construct an actual program

BSF PORTA, 0 ;sets bit 0 of file register - PORTA

46

Need to Understand File Registers

• Assembly requires knowledge of the File Register locations

• Need to be aware of which Bank the individual registers are located
in

• The next two slides contains the Registers

• Bank 0

• Bank 1

47

Map of the File Registers for the PIC16F684
Bank 0

48

Map of the File Registers for the PIC16F684
Bank 1

49

Directives

• Directives …

– Commands to the assembler that are used to control the
assembly of the program

– They appear in the source code but are not usually translated
directly into opcodes

– They are used to control the assembler …

• Its input
• Output …and …
• Data allocation

50

Directives By Type

• There are six basic types of directives provided by the assembler …

– Control Directives (#include, equ, org)

– Conditional Assembly Directives (if, else)

– Data Directives (__config)

– Listing Directives (title, list)

– Macro Directives

– Object File Directives

51

title Directive

• title – SPECIFY PROGRAM TITLE

• Syntax

– title "title_text" NOTE … there is a space before title

• Description and Usage

– title_text is a printable ASCII string enclosed in double quotes
– It must be 60 characters or less
– Establishes the text to be used in the top line of each page in the listing

file

• Example

title "operational code, rev 5.0"

52

list – LISTING OPTIONS

• Syntax

– list [list_option, ..., list_option]

• Description

– Occurs on a line by itself
– Has the effect of turning listing output on … if it had been

previously turned off
– Otherwise, one of a list of options can be supplied to control the

assembly process or format the listing file

53

list – LISTING OPTIONS

• Usage

– Options that may be used with the list directive are specified in
the following table (next slide)

54

list – LISTING OPTIONS

55

list – LISTING OPTIONS
set radix

• Example:

list r=dec ;set default to decimal

• Radix forms for constants are:
• Hexadecimal, decimal, octal, binary, and ASCII

• The default radix is hexadecimal

– The default radix determines what value will be assigned to
constants in the object file when a radix is not explicitly specified
by a base descriptor

56

list – LISTING OPTIONS
Set Processor Type

• Processor type is set in MPLAB IDE

• Configure>Device

• Therefore, we will not need to set the type within the code

• If using another IDE … you may see the following:

list p=16f684

57

__config – SET PROCESSOR CONFIGURATION BITS

• Syntax (NOTE: there are two underscore characters)

__config expr

• Sets the processor's configuration bits

• Before this directive is used …

– the processor must be declared through
• Configure>Select Device if using MPLAB IDE … or … one of

the following …
» the command line
» the list directive
» the processor directive

58

__config – SET PROCESSOR CONFIGURATION BITS

• Place configuration bit assignments at the beginning of your code

• Use the configuration options (names) in the standard include
(*.inc) file

• These names can be bitwise ANDed together (&) to declare
multiple configuration bits

• For the PIC16F684 … we have the following:

INCLUDE "p16f684.inc"

__CONFIG _FCMEN_OFF & _IESO_OFF & _BOD_OFF & _CPD_OFF & _CP_OFF
& _MCLRE_OFF & _PWRTE_ON & _WDT_OFF & _INTOSCIO

59

60

Source Code Guidelines …

61

Source Code Guidelines

• Your source code should conform to the following basic guidelines …

– Each line of the source file may contain up to four types of
information …

• Labels

• Mnemonics, Directives and Macros

• Operands

• Comments

62

Source Code Guidelines

• Labels …

– Used to represent a line or group of code, or a constant value

– It is needed for branching instructions

63

Source Code Guidelines

• Mnemonics …

– Tell the assembler what machine instructions to assemble

• For example …
– addition (add), branches (goto) or moves (movwf)

• Unlike labels that you create yourself …

– Mnemonics are provided by the assembly language

– Mnemonics are not case sensitive

64

Source Code Guidelines

• Directives …

– Are assembler commands that appear in the source code but are
not usually translated directly into opcodes

– They are used to control the assembler …

• Its input …

• Its output …and …

• Data allocation

– Directives are not case sensitive

65

Source Code Guidelines

• Macros …

– Are user defined sets of instructions and directives that …

• Will be evaluated in-line with the assembler source code
whenever the macro is invoked

66

Source Code Guidelines

• Operands …

– Provide information to the instruction on the data that should be
used …and …

– The storage location for the instruction

• Operands must be separated from mnemonics by one or more
spaces, or tabs

• Multiple operands must be separated by commas

67

Source Code Guidelines

• Comments …

– Comments are text explaining the operation of a line or lines of
code

– The MPASM assembler treats anything after a semicolon as a
comment

• All characters following the semicolon are ignored through
the end of the line

– String constants containing a semicolon are allowed and are not
confused with comments

68

Source Code Guidelines

• The order and position of the information is important

– Labels start in column one

– Mnemonics start in column two or beyond

– Operands follow the mnemonic

– Comments may follow the operands, mnemonics or labels, and
can start in any column

• The maximum column width is 255 characters

69

Source Code Guidelines

• White space or a colon must separate the label and the mnemonic

– White space is one or more spaces or tabs

– White space should be used to make your code easier for people to
read

– Unless within character constants, any white space means the same as
exactly one space.

• White space must separate the mnemonic and the operand(s)

– Multiple operands must be separated by commas

• White space is used to separate pieces of a source line

70

Source Code Guidelines

71

Labels …

72

Labels

• Rules for defining labels …

• Place in the label column (start at the 1st position)

• Must begin with alpha character or underscore bar

• Labels may be up to 31 characters long

• Labels are case sensitive

• The underscore (_) is a useful means of separating words as …

• Spaces are not allowed

73

Labels

• A label is used to represent a line or group of code, or a constant
value

• It is needed for branching instructions

• Labels should start in column 1

• They may be followed by a colon (:), space, tab or the end of line

74

Labels

• Labels must …
– Begin with an alpha character or an under bar (_)
– They may contain alphanumeric characters, the under bar and

the question mark

• Labels must not …
– Begin with two leading underscores, e.g., __config
– Begin with a leading underscore and number, e.g.,

_2NDLOOP

– Be an assembler reserved word
– Labels may be up to 32 characters long

– By default they are case sensitive

75

Equate …

76

Equate

• Equate is used to assign the value of expr to the label

– label equ expr

77

Equates

• Example

four equ 4 ; assigned the numeric value of 4 to label four

Decimal 4

Tells the assemble … this
is an equate

Label

78

Literals …

79

Literals

• Literals are constants or numbers

– Usually hexadecimal numbers

80

Origin …

81

Origin (ORG)

Column 1 Column 2 Column 3
This Is An Hex Address

ORG
not used	org	

82

org – SET PROGRAM ORIGIN

• Syntax

[label] org expr

• Set the program origin for subsequent code at the address defined
in expr

• If label is specified, it will be given the value of the expr

• If no org is specified, code generation will begin at address zero

83

org – SET PROGRAM ORIGIN

• org usages …

– Defines the address where program code starts

– Establish the location of a table

– Establish the start of an interrupt service routine

• Example:

org 0x000

84

Program …

85

Program

Column 1 Column 2 Column 3
Label Instruction Literal

Or Label

86

Program

• The code …

– Main portion of the program

87

End …

88

End

Column 1 Column 2 Column 3
This Is
End

	end	

89

end – END PROGRAM BLOCK

• Syntax

end

• Indicates the end of the program

• You will need at least one end directive in any assembly program to
indicate the end of a build

• In a single assembly file program, one and only one end must be
used

90

end – END PROGRAM BLOCK

• Example:

#include p18f684.inc
: ; executable code
: ;
end ; end of instructions

91

Include …

92

#include – INCLUDE ADDITIONAL SOURCE FILE

• The specified file is read in as source code

– The effect is the same as if the entire text of the included file
were inserted into the file at the location of the include
statement

• Upon end-of-file, source code assembly will resume from the
original source file

– Up to 5 levels of nesting are permitted

– Up to 255 include files are allowed

93

#include – INCLUDE ADDITIONAL SOURCE FILE

• Syntax

– Preferred:

#include include_file

#include "include_file"

#include <include_file>

– Supported:

include include_file

include "include_file"

include <include_file>

94

#include – INCLUDE ADDITIONAL SOURCE FILE

• If include_file contains any spaces

– It must be enclosed in quotes or angle brackets

• If a fully qualified path is specified …only that path will be searched

– Otherwise, the search order is:

• current working directory
• source file directory
• MPASM assembler executable directory

95

#include – INCLUDE ADDITIONAL SOURCE FILE

• You should use the include directive once to include that standard
header file for your selected processor

• This file contains defined register, bit and other names for a specific
processor, so there is no need for you to define all of these in your
code

• Example:

#include “p16f684.inc”

96

cblock …

97

cblock – DEFINE A BLOCK OF CONSTANTS

• Defines a list of named sequential symbols

• Use this directive in place of or in addition to the equ directive

• The purpose of this directive is to assign address offsets to many
labels

• The list of names ends when an endc directive is encountered

• expr indicates the starting value for the first name in the block
– If no expression is found, the first name will receive a value one

higher than the final name in the previous cblock
– If the first cblock in the source file has no expr, assigned values

start with zero

98

cblock – DEFINE A BLOCK OF CONSTANTS

• If increment is specified, then the next label is assigned the value of
increment higher than the previous label

• Multiple names may be given on a line, separated by commas

• cblock is useful for defining constants in program and data memory
for absolute code generation.

• Syntax

cblock [expr]

label[:increment][,label[:increment]]

endc

99

Output files …

100

Files Created by the Assembler

• .LST and .HEX files

• The .LST file ..

• Provides a mapping of source code to object code
• It also provides a list of symbol values, memory usage information

and the number of errors, warnings and messages generated
• This file may be viewed in MPLAB IDE by:

1. Selecting File>Open to launch the Open dialog
2. Selecting “List files (*.lst)” from the “Files of type” drop-

down list
3. Locating the desired list file
4. Clicking on the list file name
5. Clicking Open

101

Files Created by the Assembler

• The .HEX file …

– Hexadecimal object code which will be used by the programmer
to program the PIC chip

102

Instruction Set …

103

PIC16F684 Instruction Set Summary

• There are 35 instructions …

• Plus two obsolete instructions that we will still use

• OPTION and TRIS instructions

*** We will get a message stating that they are obsolete ***

• To maintain upward compatibility with future products
these two instruction will need to be modified

104

PIC16F684 Instruction Set Summary

• The PIC16F684 instruction is comprised of three basic categories:
• Byte-oriented operations
• Bit-oriented operations
• Literal and control operations

• Each PIC16 instruction is a 14-bit word divided into …
• An opcode

– which specifies the instruction type
• And one or more operands

– which further specify the operation of the instruction

105

106

107

108

109

Commands that we shall use today

• comments … semicolon (;)
• MOVLW

• MOVWF

• CLRF

• BCF

• BSF

• DECFSZ

• CALL

• GOTO

• END

110

Semicolon

• Semicolon (;)

– Used for comments
– Ignore everything following the semicolon on the line

111

MOVLW

112

MOVWF

113

CLRF

114

BCF

115

BSF

116

DECFSZ

117

CALL

118

GOTO

119

END

120

Assembly Language Code …

121

Developing Code Using Assembly Language

• First program in assembly will be to flash D0 on the PICkit 1 Starter
Kit … just as we did with our first lab using the PICkit

• Will light DO … 2 times per second

122

Flash_D0.asm – An “Eye Chart”
title “Flash_D0.asm – Flash D0 LED”

; ----------------------------------
; Flash_D0.asm
;
; Microprocessors B 17.384
;
; xxxxxxxx - Put in Semester (i.e. Spring 2008) here
;
; xxxxxxxx - Put in your name here
;
; xx/xx/xx - Put date here
;
; ----------------------------------

list r=dec

#include "p16f684.inc"

__CONFIG _FCMEN_OFF & _IESO_OFF & _BOD_OFF & _CPD_OFF & _CP_OFF & _MCLRE_OFF & _PWRTE_ON & _WDT_OFF & _INTOSCIO

; ----------------------------------
; Defining constants or variables in data memory space

Cblock 0x20 ; start of GPR

count ;

endc ; This directive must be
; supplied to terminate the
; cblock list

;
; ----- main program --------------

org 0x000 ; Hex address 0x000, the first
; program memory location

;
start BCF STATUS,RP0 ; Select Bank 0
;

CLRF PORTA ; Initialize PORTA (to all zeros)
;

MOVLW 7 ; Load w with 7
MOVWF CMCON0 ; Load CMCON0 with 7

; Turns off comparators
;

BSF STATUS,RP0 ; Select Bank 1
;

CLRF ANSEL ; Shut off ADC (digital I/O)
;

MOVLW b'001111' ; Load w – RA4 and RA5 outputs
MOVWF TRISA ; copy w to TRIS PORTA

;
BCF STATUS,RP0 ; Select Bank 0

;
Loop BSF PORTA,4 ; Make RA4 high -- D0 ON
;

CALL Delay ; Goto the delay routine
;

BCF PORTA,4 ; Make RA4 low -- D0 OFF
;

CALL Delay ; Goto the delay routine
;

GOTO Loop ; Do it again
;
;
Delay MOVLW 10 ; Decimal 10

MOVWF count ; Initialize counter to 10
Repeat DECFSZ count,f ; Decrement counter

GOTO Repeat ; If counter <> 0
RETURN ; If counter = 0 (end delay)

;
end

123

Flash_D0.asm (Slide 1 of 9)

• Identify the title (do not start in position1 _):

title “Flash_D0.asm – Flash D0 LED”

124

Flash_D0.asm (Slide 2 of 9)

• Add our required class header information

; ----------------------------------
; Flash_D0.asm
;
; Microprocessors B 17.384
;
; xxxxxxxx - Put in Semester (i.e. Spring 2009) here
;
; xxxxxxxx - Put in your name here
;
; xx/xx/xx - Put date here
;
; ----------------------------------

125

Flash_D0.asm (Slide 3 of 9)

• Set radix to decimal, vice hexadecimal
• Include the PIC16F684 file
• Add the configuration word

list r=dec

#include "p16f684.inc"

__CONFIG _FCMEN_OFF & _IESO_OFF & _BOD_OFF & _CPD_OFF & _CP_OFF
& _MCLRE_OFF & _PWRTE_ON & _WDT_OFF & _INTOSCIO

126

Flash_D0.asm (Slide 4 of 9)

• Make provisions for constants or variables in data memory space

; ----------------------------------
; Defining constants or variables in data memory space

Cblock 0x20 ; start of GPR

count ;

endc ; This directive must be
; supplied to terminate the
; cblock list

;

127

Flash_D0.asm (Slide 5 of 9)

• Define the address where the program code starts

; ----- main program --------------

org 0x000 ; Hex address 0x000, the first
; program memory location

;

128

Flash_D0.asm (Slide 6 of 9)

• Establish initial conditions

start BCF STATUS,RP0 ; Select Bank 0
;

CLRF PORTA ; Initialize PORTA (to all zeros)
;

MOVLW 7 ; Load w with 7
MOVWF CMCON0 ; Load CMCON0 with 7

; Turns off comparators
;

BSF STATUS,RP0 ; Select Bank 1
;

CLRF ANSEL ; Shut off ADC (digital I/O)
;

MOVLW b'001111' ; Load w – RA4 and RA5 outputs
MOVWF TRISA ; copy w to TRIS PORTA

;
BCF STATUS,RP0 ; Select Bank 0

;

129

Flash_D0.asm (Slide 7 of 9)

• Loop

Loop BSF PORTA,4 ; Make RA4 high -- D0 ON
;

CALL Delay ; Goto the delay routine
;

BCF PORTA,4 ; Make RA4 low -- D0 OFF
;

CALL Delay ; Goto the delay routine
;

GOTO Loop ; Do it again
;

130

Flash_D0.asm (Slide 8 of 9)

• Create a Delay Routine

;
Delay MOVLW 10 ; Decimal 10

MOVWF count ; Initialize counter to 10
Repeat DECFSZ count,f ; Decrement counter

GOTO Repeat ; If counter <> 0
RETURN ; If counter = 0 (end delay)

;

131

Flash_D0.asm (Slide 9 of 9)

• Ending the program

;
end

132

133

Lab

• Finish Lab # 4

• Lab # 5 … is optional … will be available next week… however …

» It is recommended that you do the lab

– There is no report for Lab #5

134

135

Next Class Topics

• Comparators, Timers, and Pulse Width Modulation

136

137

Homework

1. Lab # 4 Report … due November 23, 2010

2. Read the material from Today’s class …

• MPASM Users Guide

3. Start preparing for Exam #2 … Scheduled for November 30th

138

139

References

1. PIC16F684 Data Sheet 41202F

2. OPTREX CORPORATION

“DOT MATRIX CHARACTER LCD MODULE USER’S MANUAL“

3. MPASM Users Guide

