MICROPROCESSORS A (17.383)
Fall 2010

Lecture Outline

Class # 11
November 23, 2010

Dohn Bowden

Today’s Lecture

Syllabus review

Microcontroller Hardware and/or Interface
e Last week’s lecture (worked on Labs the entire class)
— Comparators
— Timers
— Watchdog Timer
— Pulse Width Modulation (PWM)

Programming/Software
e Mixed C and Assembly Programming

Lab
e Finish Lab #5 (Optional Lab ... however, recommend looking at)
e Course Project

Homework

Administrative

e Admin for tonight ...
— Syllabus Highlights

e Lab #4 is due tonight (November 23rd)
e Exam #2 next week (November 30th)

— Project ...
e Any questions?
— Lab #3 reports have been graded ...

e Hard copy submittals will be passed back
e Electronic submittals have been emailed

Syllabus Review

Week Date Topics Lab Lab Report Due
~t—705/67/10—Intro; Course- & tab-Overview; Microcontrotter Basics T
22— 1 09/14/ 16— PIC€16F684 Overview and-General-Input/Output oot
—3—1—09/21/10—Switches 2
4 09/28/10—SeverrSegmenttEDs 2-con't 1
5 16/05 10— Exarmmation &
7a 16/42/1+0—T NoClass—vionday-Schedute
6 16/19/16—AnatogtoDigital-Conversion 3 2
7 10/26/10— Analog-to-Digital Conversion-con't 3 con’t
8 11H02H40—tab-Werk{Finish-tab—#3and-starttab#4) 34
1 11/09/10— T ChTrterfaceardAssembly targuage #Comt 3
10— 11/716/10 1 Comparators, Timers, Pulse Width Madulation (DWM) 5

/11 11/23/10 | Mixed C & Assembly Programming/Course Project Project 4
12 11/30/10 Examination 2
13 12/07/10 | Course Project Project)5\
14 12/14/10 | Final Exam/Course Project Brief and Demonstration Demo

Microcontrollier
Hardware
and / or
Iinterfaces

We shall begin with last week’s
lecture ...

Comparators ...

PIC16F684 Hardware

e Another analog interface peripheral of the PIC16F684 ...

— Comparators

Comparator Fundamentals

Compares the voltage level of two analog signals ... and ...

— Identifies which signal is the largest

10

Why would we need such a device?

Switching on lights and heaters

Detecting when a level in a circuit exceeds some particular
threshold

Switching power supplies
Generating square waves from triangle waves

And so on ...

11

Comparator Fundamentals

Building block of the comparator is the Operational Amplifier (Op-
Amp)

12

Op-Amp Fundamentals

Anopampisa ...
— Differential input, ...
— Single-ended output ...

— Amplifier

In other words ... an Op Amp processes small input signals ...
developing a single-ended output

13

Op-Amp

Op Amp has a minimum of 5 terminals
— " Inverting input

— 47 Non-Inverting input
— Output

— Positive Supply

— Negative Supply

Positive Supply

Inverting Input

Non-Inverting Input

Negative Supply

Output

14

Comparators

The output goes positive when the non-inverting input is more
positive than the inverting input

The output goes negative when the inverting input is more positive
than the non-inverting input

Therefore ...

IF V- < V+ ... output is positive
IF V+ < V- ... output is negative

IF V- = V+ ... output is zero

15

Comparator Example

Example: ... we have a positive supply voltage of +5

and a negative supply voltage of -5

What is Vgt for the values indicated in the table?

+5v

-5v

Vout

V. v, Vour
+1 -1 -5
+1 +2 +5
+2 +1 -5
0 0 0
-1 +1 +5
0 -1 -5
0 +1 +5
+3 +3 0

16

Comparator Example

Example 2 .. we have a positive supply voltage of +5
and a negative supply voltage set to ground.

What is V7 for the values indicated in the table?

V. Vs Vour
+5v
+2 -1 0
+1 +2 +5
+2 -2 0
V_
0 -1 0
Vout 2 2 0
0 +1 +5
Vi

GND

The PIC16F684 Comparator Module

Dual comparators

Multiple comparator configurations

Comparator outputs are available internally/externally
Programmable output polarity

Interrupt-on-change

Wake-up from Sleep

Timerl gate (count enable) — ONLY C2 CAN BE LINKED TO TIMER1
Output synchronization to Timerl clock input

Programmable voltage reference

18

PIC16F684 Comparators

VIN+ +

Output

VIN- =

e When the analog voltage at VIN+ is < the analog voltage at VIN- ...

e The output of the comparator is a digital low level

e When the analog voltage at VIN+ is > the analog voltage at VIN- ...

e The output of the comparator is a digital high level

19

PIC16F684 Comparator Configuration

There are eight modes of operation for the comparator

1.

N A WN

Comparators Reset

Three Inputs Multiplexed to Two Comparators

Four Inputs Multiplexed to Two Comparators

Two Common Reference Comparators

Two Independent Comparators

One Independent Comparator

Two Common Reference Comparators with Outputs
Comparators Off

The CM<2:0> bits of the CMCONO register are used to select these

modes

I/0 lines change as a function of the mode

20

Comparator Module Control (CMCONO) Register

e The CMCONO register (Register 8-1) provides access to the following
comparator features:

e Mode selection (Selects one of eight modes)
e Qutput state
e QOutput polarity

e Input switch

21

PIC16F684 Comparator Modes of Operation
(CMCONO) Register

Comparators Reset —
CM<2:0> = 000

. Three Inputs Multiplexed to Two Comparators —

CM<2:0> = 001
Four Inputs Multiplexed to Two Comparators —
CM<2:0> = 010

. Two Common Reference Comparators —

CM<2:0> = 011

. Two Independent Comparators —

CM<2:0> = 100
One Independent Comparator —
CM<2:0> = 101

. Two Common Reference Comparators with Outputs —

CM<2:0> = 110
Comparators Off —
CM<2:0> = 111

22

PIC16F684 Comparator Modes of Operation
Comparators Reset - CM<2:0> = 000

Comparators Reset (POR Default Value)

CM<2:0> =000

RATANT A VIN-| 7
C1 Off (Read as ‘0’

RAO/AND A VN, (Read as)

RC1/ANS A VIN-|
C2 Off (Read as ‘0’

RCO/AN4 A VINH (Readas o)

Legend: A = Analog Input, ports always read ‘0’ CIS (CMCONO<3>) is the Comparator Input Switch
D = Digital Input

23

PIC16F684 Comparator Modes of Operation
Three Inputs Multiplexed to Two Comparators — CM<2:0> = 001

Three Inputs Multiplexed to Two Comparators

CM<2:0> =001

RATANT = ci5=g vin-

ALCIS=1 -
RAQO/ANO —o VIN+ N C1 C10UT
RC1/AN5 —2 VIN-| 2

C20UT
RCO/AN4 A o VINH €2
Legend: A = Analog Input, ports always read ‘0’ CIS (CMCONO<3>) is the Comparator Input Switch

D = Digital Input

24

PIC16F684 Comparator Modes of Operation
Four Inputs Multiplexed to Two Comparators — CM<2:0> =

010
Four Inputs Multiplexed to Two Comparators
CM<2:0> =010
RA1/AN1 A CIS=0 VIN-
A~ CIS= B
RAO/AND A o CIS=1 Ving, Ct c10UT
RC1/AN5 —2—o
IS=0] VIN-|™
RCOAN4 2o CIS=1] | o) 20UT
|+
From CVREF Module
Legend: A = Analog Input, ports always read ‘0’ CIS (CMCONO<3>) is the Comparator Input Switch
D = Digital Input

25

PIC16F684 Comparator Modes of Operation
Two Common Reference Comparators — CM<2:0> = 011

Two Common Reference Comparators
CM<2:0> =011

RAT/ANT A VIN-
c10UT
RAO/ANO —2 VIN+
RC1/ANG A | VIN-| ™
C2 C20UT
RCO/AN4 A § VINH |

Legend: A = Analog Input, ports always read ‘0’

CIS (CMCONO<3>) is the Comparator Input Switch
D = Digital Input

26

PIC16F684 Comparator Modes of Operation
Two Independent Comparators — CM<2:0> = 100

Two Independent Comparators

CM<2:0> =100
RAT/ANT A VIN-| 2
C1 C10UT
RAO/AND A VIN#
RC1/ANS A VIN-{ =
C20UT
RCO/AN4 _A__ VINH, €2
Legend: A = Analog Input, ports always read ‘0’ CIS (CMCONO<3>) is the Comparator Input Switch
D = Digital Input

27

PIC16F684 Comparator Modes of Operation
One Independent Comparator — CM<2:0> = 101

One Independent Comparator
CM<2:0>=101

RAT/ANT —2- VIN-

RAQ/ANO —2 iv”‘“

Off (Read as ‘0’)

RC1/ANG A VIN-I ™
C20UT
RCO/AN4 —A VINH | C2

Legend: A = Analog Input, ports always read ‘0’

CIS (CMCONO<3>) is the Comparator Input Switch
D = Digital Input

28

PIC16F684 Comparator Modes of Operation
Two Common Reference Comparators with Outputs — CM<2:0> = 110

Two Common Reference Comparators with Outputs

CM<2:0> = 110
RATANT A VIN-/ ©
C1 C10UT
RA2/C10UT -2 VIN#
RC1ANS A | VIN-/ ™
C20UT
RCO/AN4 _A ¢ VINH C2
RC4/C20UT

Legend: A = Analog Input, ports always read ‘0’

D = Digital Input

CIS (CMCONO<3>) is the Comparator Input Switch

29

PIC16F684 Comparator Modes of Operation
Comparators Off —CM<2:0> = 111

Comparators Off (Lowest Power)

CM<2:0> =111

RATANT 2 VIN-1 ™
C1 Off (Read as ‘0’

RAQ/AND _D_ ¢VINH (Read as ‘0’)

RCA/ANS 2 gVIN-1.=
Cc2 Off (Read as ‘0’

RCO/AN4 -2 iV'N++ { }

Legend: A = Analog Input, ports always read ‘0’ CIS (CMCONO<3>) is the Comparator Input Switch

D = Digital Input

30

PIC16F684 Comparator Output State

e Each comparator state can always be read internally via the
associated CxOUT bit of the CMCONO register

e The comparator outputs are directed to the CxOUT pins when
CM<2:0> = 110 (Two Common Reference Comparators with

Outputs)
e C10UT is Pin 11
e C20UT is Pin 6

— When this mode is selected, the TRIS bits for the associated
CxOUT pins must be cleared (0) to enable the output drivers

31

PIC16F684 Comparator Output Polarity

The polarity of the comparator output can be inverted by setting the
CxINV bits for the associated comparator (CMCONO<5:4>)

Clearing CxINV results in a non-inverted output

The following table shows the output state versus input conditions
and the polarity bit

Input Conditions CINV CxOuUT
VIN- > VIN+ 0 0
VIN- < VIN+ 0 1
VIN- > VIN+ 1 1
VIN- < VIN+ 1 0 2

REGISTER 8-1: CMCONO - COMPARATOR CONFIGURATION REGISTER (ADDRESS: 19h)

RO R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
C20UT | C10UT | C2INV | C1INV cs | cm2 | cwm1 | cmo |
bit 7 bit O
bit 7 C20UT: Comparator 2 Output bit

When C2INV = 0
1 =C2VIN+ > C2 VIN-
0 =C2 VIN+ < C2 VIN-
When C2INV = 1;
1 =C2 VIN+ < C2 VIN-
0 = C2 VIN+ > C2 VIN-
bit 6 C10UT. Comparator 1 Qutput bit
When C1INV = 0
1=C1VIN+ > C1 VIN-
0 =C1VINt < C1 VIN-
When CTINV = 1;
1=C1VIN+ < C1 VIN-
0=C1VINt > C1 VIN-
bit 5 C2INV: Comparator 2 Qutput Inversion bit
1 = C2 output inverted
0 = C2 output not inverted
bit 4 C1INV: Comparator 1 Qutput Inversion bit
1 = C1 Qutput inverted
0 = C1 Output not inverted
bit 3 CIS: Comparator Input Switch bit
When CM<2:0> = 010;
1 = C1 VIN- connects to RAG/ANO
C2 VIN- connects to RCO/AN4
0 = C1 VIN- connects to RA1/AN1
C2 VIN- connects to RC1/ANS
When CM<2:0> = 001
1 = C1 VIN- connects to RAG/ANO
0 = C1 VIN- connects to RAT/ANT
bit 2-0 CM<2:0>: Comparator Mode bits
Figure 8-3 shows the Comparator modes and CM<2:0> bit settings

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1" = Bit is set ‘0" = Bit is cleared % = Bit is unknown

Comparator Outputs

The comparator outputs are read through the CMCONO register

These bits are read-only

The comparator outputs may also be directly output to the RA2 and
RC4 1/0 pins

When enabled, multiplexers in the output path of the RA2 and RC4
pins will switch and the output of each pin will be the
unsynchronized output of the comparator

34

Comparator Outputs

e The TRIS bits will still function as an output enable/disable for the
RA2 and RC4 pins while in this mode

e The polarity of the comparator outputs can be changed using the
C1INV and C2INV bits (CMCONO<5:4>)

35

Comparator Interrupts

e The comparator interrupt flags are set whenever there is a change
in the output value of its respective comparator

o Software will need to maintain information about the status of the
output bits, as read from CMCONO<7 : 6> to determine the actual
change that has occurred

36

Comparator Reference

e The comparator module also allows the selection of an internally
generated voltage reference for one of the comparator inputs

e The VRCON register (Register 8-3) controls the voltage reference
module

37

CONFIGURING THE VOLTAGE REFERENCE

e The voltage reference can output 32 distinct voltage levels

— 16 in a high range ... and ...
— 16 in a low range

e The following equation determines the output voltages:

VRR =1 (low range): CVREF = (VR3:VR0/24) X VDD
VRR =0 (high range):
CVREF = (VDD/4) + (VR3:VRO X VDD/32)

38

VDD =

Comparator Voltage References

5 volts

VRCON, 5 = 1 (low)

VCON 3:0 CVref
0000 0.00
0001 0.21
0010 0.42
0011 0.63
0100 0.83
0101 1.04
0110 1.25
0111 1.46
1000 1.67
1001 1.88
1010 2.08
1011 2.29
1100 2.50
1101 2.71
1110 2.92
1111 3.13

VRCON, 5 = 0 (high)

VCON 3:0

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

CVref

1.
41
.06
.72
.88
.03
.19
.34
.90
.66
.81
.97
.13
.28
.44
.99

WWWWNDNNDNNNNRERPRPREERE

25

39

REGISTER 8-3: VRCON - VOLTAGE REFERENCE CONTROL REGISTER (ADDRESS: 99h)

R/W-0 L-0 R/AWV-0 R/W-0 RW-0 RAW-0 R/W-0 RW-0
VREN — VRR — VR3 VR2 VR1 VRO
bit 7 bit O
bit 7 VREN: CVREF Enable bit

1 = CVREF circuit powered on
0 = CVREF circuit powered down, no IDD drain and CVREF = Va5

hit & Unimplemented: Read as ‘o
bit & VRR: CVREF Range Selection bit
1 = Low range
0 = High range
bit 4 Unimplemented: Read as o
bit 3-0 VR<3:0>: CVREF Value Selection 0 = VR=3:.0=< 15

When VRR = 1: CVREF = (VR<3:0=/24) * VDD
When VRR = 0: CVREF = VDD/4 + (VR=3:0=/32) * VDD

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as "0
-n = Value at POR “1" = Bit is set ‘0" = Bit is cleared ¥ = Bit is unknown

REGISTERS ASSOCIATED WITH COMPARATOR MODULE

Value on Value on
Address Name Bit7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 POR, BOD all other
Resets
0Bh/8Bh INTCON GIE PEIE TOIE INTE RAIE TOIF INTF RAIF 0000 0000 0000 0000
0Ch PIR1 EEIF ADIF CCP1IF C2IF C1IF OSFIF TMR2IF | TMR1IF 0000 0000 0000 0000
19h CMCONO C20UT | C10UT | C2INV C1INV CIS CM2 CM1 CMo 0000 0000 | 0000 0000
1Ah CMCON1 — — — — — — T1GSS [C2SYNC | ---- -- 10 | ---- -- 10
85h TRISA — — TRISAS | TRISA4 | TRISA3 | TRISAZ | TRISA1 [TRISAQ --11 1111 --11 1111
87h TRISC — — TRISC5 | TRISC4 | TRISC3 | TRISC2 | TRISC1 | TRISCO | --11 1111 | --11 1111
8Ch PIE1 EEIE ADIE CCP1IE C2IE C1IE OSFIE TMR2IE | TMR1IE 0000 0000 0000 0000
99h VRCON VREN — VRR — VR3 VR2 VR1 VRO 0-0- 0000 0-0- 0000
Legend: x = unknown, u = unchanged, — = unimplemented, read as ‘0’. Shaded cells are not used by the Capture, Compare or

Timer1 module.

41

Timers and Counters ...

42

Timers/Counters

Why do we need timers (or counters)?

— For accurate event timing and counting which is often needed in
microcontroller applications

e For example

— A sensor on a motor shaft which gives one pulse per
revolution of the shaft

» The number of pulses per second will give shaft
speed

43

Timers/Counters

e Instead of using loops for delays ... we can use hardware timers

e Advantages ...

— Processor is free to handle other tasks rather than sitting in a
loop for timing and doing nothing

— Timer is more accurate for measuring a loop than using the
stopwatch function

— You can calculate the exact time instead of using trial and error

44

How Timers/Counters Work

A timer is a peripheral that measures elapsed time ...
— Typically by counting processor cycles or clocks
A counter measures elapsed time ...
— Using external events
A timer is setup by programming a register with a specific value
— Some processors count up ...
— Others count down

e An interrupt is generated when a certain point is met

45

How Timers/Counters Work

Timer counts cycles from either ...
— The main clock ... or ...
— An external clock fed from an external source

Many processors include multiple internal clock that can be used to
drive the timers

Many processors have multiple timers

46

Timer/Counter

Digital output waveforms are easy to generate by writing ones and
zeros to a port line

Delays between pulses create the output frequency
Changing delays between pulses will change the output frequency

PIC16F684 timer/counter can be used to generate repetitive
waveforms pulses

o Allows the microcontroller to perform other tasks while
generating these repetitive waveforms

47

Timing with the Microcontroller

All microcontrollers have timer circuits
— Some have multiple
The timers are ...
— Hardware binary counters
o Allow time interval measurement ... or ...
e Count

— To be carried out separately from program execution

48

PIC16F684 Timers ...

49

Timing with the Microcontroller

e Watchdog Timer
e Timer0 ...

— 8-bit register that can count pulses up to OxFF (255)
— 8-bit programmable prescaler

e Timerl

— 16-bit register that can count up to OxFFFF (65, 535)
— Timer/counter with prescaler

50

Timing with the Microcontroller

Timer 2 ...

— 8-bit register
— Timer/counter with 8-bit period register, prescaler and postscaler
— The values of TMR2 and PR2 are constantly compared to determine

when they match.
e TMR2 will increment from 00h until it matches the value in PR2

— When a match occurs ... two things happen ...

» TMR2 is reset to 00h on the next increment cycle
» Postscaler is incremented

— The match output of the Timer2/PR2 comparator is fed into the
Timer2 postscaler

— The output of postscaler is used to set the interrupt flag bit

51

Timing with the Microcontroller

e Timing is achieved by counting the clock pulses

e The OPTION Register allows us to slow down the these pulses
(using what is called a “Prescaler”) by a factor of ...

- 2,4, 8, 16, 32, 64, 128, or 256

52

TimerO ...

53

The TimerO Module Register (TMRO)

e The Timer0 module is an 8-bit timer/counter with the following
features:

e 8-bit timer/counter register (TMRO)

8-bit prescaler (shared with Watchdog Timer)
e Programmable internal or external clock source
e Programmable external clock edge selection

e Interrupt on overflow

54

TimerO Operation

When used as a timer ...

— The Timer0 module can be used as either an ...

8-bit timer ... or ...

an 8-bit counter

55

TimerO --- 8-BIT TIMER MODE

When used as a timer, the Timer0 module will ...
— Increment every instruction cycle (without prescaler)

Timer mode is selected by clearing the TOCS bit of the OPTION
register

e Set (OPTION_REG<5>) to ‘0’

When TMRO is written, the increment is inhibited for two instruction
cycles immediately following the write

e The TMRO register can be adjusted, in order to account for
the two instruction cycle delay when TMRO is written

56

TimerQO --- 8-BIT COUNTER MODE

When used as a counter ... the Timer0 module will ...
— Increment on every rising or falling edge of the TOCKI pin

e The incrementing edge is determined by the TOSE bit of the
OPTION register (OPTION_REG<4>)

“1" = Increment on high-to-low transition on TOCKI pin
"0" = Increment on low-to-high transition on TOCKI pin

Counter mode is selected by setting the TOCS bit of the OPTION
register to ‘1" (OPTION_REG<5>)

57

Timer O (TMRO) Interrupt

A Timer0 interrupt is generated when the TMRO register
timer/counter overflows from FFh to 00h

This overflow sets the TOIF bit (INTCON<2>)
The interrupt can be masked by clearing the TOIE bit (INTCON<5>)

The TOIF bit must be cleared in software by the Timer0 module
Interrupt Service Routine before re-enabling this interrupt

The Timer0 interrupt cannot wake the processor from Sleep since
the timer is shut off during Sleep

58

TimerO --- Prescaler

An 8-bit counter is available as a prescaler for the Timer0 module

The prescaler assignment is controlled in software by the control bit PSA
(OPTION_REG<3>)

Clearing the PSA bit will assign the prescaler to Timer0

Prescale values are selectable via the PS<2 - 0> bits
(OPTION_REG<2:0>)

The prescaler is not readable or writable

When assigned to the Timer0 module, all instructions writing to the TMRO

register (e.g., CLRF 1, MOVWF 1, BSF 1, x....etc.) will clear the
prescaler

59

TMRO

When used as a counter ...
— the register is incremented
— each time a clock pulse is applied to pin TOCK1

When used as a timer ...
— the register increments at a rate determined by
— the system clock frequency ... and ...
— a prescaler

— Prescalers rate vary from ...
- 1:2...to ... 1:256

— Prescalers are selected from the OPTION_REG

60

TMRO — Timer Mode

e Microcontroller oscillator = . = 4 MHz

e The 1nternal oscillator frequency seen at
TOCS 1S ..

f .. divided by 4 = f__ /4

O0SsC

e Oscillator period = Ty = 1/ = 0.25
microseconds

61

An Example

... = 4 MHZz

Timer speed = % f . = 1 MHz

To turn an LED on for 1 sec we would need to count
1,000,000 pulses .. a lot of pulses!

Prescaler can slow down the pulses .. for example ..
1,000,000/256 = 3906.25 or 3906 pulses

So to turn the LED on for 1 sec we need 3906 pulses,
for 0.5 sec we need 1953 pulses.

62

Overflow

TimerO will generate an interrupt when the TMRO register overflows
from FFh to 00h

The TOIF interrupt flag bit of the INTCON register is set every time
the TMRO register overflows, regardless of whether or not the
TimerO0 interrupt is enabled

The TOIF bit must be cleared in software
The TimerO interrupt enable is the TOIE bit of the INTCON register

Overflow time is the time it will take until TMRO register overflows

63

Overflow Time

Overflow time = 4 X Ty, X Prescaler x (256 — TMRO)

e Where ...
e QOverflow time is in microseconds
e 4 is as a result of fosc being divided by 4
e Tosc is the oscillator period in microseconds
e Prescaler is the prescaler value chosen using OPTION_REG
e TMRO is the value loaded into TMRO register

64

Example — Overflow Time

Assume 4 MHz microcontroller oscillator
Prescaler chosen as 1:8 (PS2:PSO0 to "010")
Assume TMRO is decimal 100

4 MHz clock has a period T=1/f = 1/4MHz = 0.25 psec

Using the formula ...

Overflow time = 4 x 0.25 x 8 x (256 — 100) =

Overflow time = 1248 psec = 1.248 msec

65

Determining TMRO Value

We normally need to know the value to load into TMRO for the
required overflow time

Modifying the prior equation ... we obtain ...

TMRO = 256 — (Overflow time)/(4 x T, X Prescaler)

Where ...
e QOverflow time is in microseconds
o 4 is as a result of fosc being divided by 4
* Tosc is the oscillator period in microseconds

Prescaler is the prescaler value chosen using OPTION_REG
TMRO is the value loaded into TMRO register

66

Example — TMRO Value Determination

Assume 4 MHz microcontroller oscillator
Prescaler chosen as 1:8 (PS2:PSO0 to "010")
Interrupt to be generated after 500 psec

4 MHz clock has a period T=1/f = 1/4MHz = 0.25 psec

Using the formula ...

TMRO = 256 — 500/(4 x 0.25 x 8) = 193.5

The nearest number we can load 1nto TMRO

1S 193

67

Required TMRO Values for Different Overflow Times
(4 MHz Oscillator)

Time to overflow (us) PRESCALER

2 4 8 16 32 64 128 256
100 206 231 243 250 253 254 - -
200 156 206 231 243 250 253 254 -
300 106 181 218 237 246 251 253 255
400 56 156 206 231 243 250 253 254
500 6 131 193 224 240 248 252 254
600 - 106 181 218 237 16 251 253
700 - 81 168 212 234 245 250 253
800 - 56 156 206 231 243 250 253
1,000 - 6 131 193 225 240 248 252
5,000 - - - - 100 178 77 236
10,000 - - - - - 100 178 217
20,000 - - - - - - 100 178
30,000 - - - - - - - 139
40,000 - - - - - - - 100
50,000 - - - - - - - 60
60,000 - - - - - - - 21

68

TABLE 5-1: REGISTERS ASSOCIATED WITH TIMERO

Val Value on
Address Name Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 aie on | ail other

POR, BOD

Resets
01h TMRO Timer0 Module register XXXX XXXX |Uuuuu uuuu
0Bh/8Bh |INTCON GIE PEIE TOIE INTE RAIE TOIF INTF RAIF | 0000 0000|0000 0000
81h OPTION_REG | RAPU | INTEDG | TOCS TOSE PSA PS2 PS1 PSO |1111 1111|1111 1111
85h TRISA — — TRISA5 | TRISA4 | TRISA3 | TRISA2 | TRISA1 | TRISAO | --11 1111 |--11 1111
Legend: — = Unimplemented locations, read as ‘0’, u = unchanged, x = unknown. Shaded cells are not used by the Timer0
module.

69

REGISTER 2-3:

bit 7

bit 6

bit 5

bit 4

bit 3

bit 2

bit 1

bit 0

INTCON - INTERRUPT CONTROL REGISTER (ADDRESS: 0Bh OR 8Bh)

R/W-0 R/MW-0 RAW-0 R/W-0

R/W-0 RAW-0

R/W-0 RAW-0

GIE PEIE TOIE INTE |

RAIE | TOIF

INTF | RAIF

bit 7

GIE: Global Interrupt Enable bit

1 = Enables all unmasked interrupts

0 = Disables all interrupts

PEIE: Peripheral Interrupt Enable bit

1 = Enables all unmasked peripheral interrupts
0 = Disables all peripheral interrupts

TOIE: TMRO Overflow Interrupt Enable bit

1 = Enables the TMRO interrupt

0 = Disables the TMRO interrupt

INTE: RAZ/INT External Interrupt Enable bit
1 = Enables the RAZ/INT external interrupt

0 = Disables the RAZ/INT external interrupt
RAIE: PORTA Change Interrupt Enable bitl"
1 = Enables the PORTA change interrupt

0 = Disables the PORTA change interrupt

TOIF: TMRO Overflow Interrupt Flag bit(2)

1 = TMRO register has overflowed (must be cleared in software)

0 = TMRO register did not overflow
INTF: RAZ/INT External Interrupt Flag bit

bit 0

1 = The RAZ/INT external interrupt occurred (must be cleared in software)

0 = The RAZ/INT external interrupt did not occur

RAIF: PORTA Change Interrupt Flag bit

1 = When at least one of the PORTA <5:0> pins changed state (must be cleared in software)
0 = None of the PORTA <5:0> pins have changed state

Note 1: |OCA register must also be enabled.

2: TOIF bit is set when TimerQ rolls over. Timer0 is unchanged on Reset and should

be initialized before clearing TOIF bit.

Legend:
R = Readable bit W = Writable bit
-n = Value at POR ‘1" = Bit is set

U = Unimplemented bit, read as ‘0’

‘0" = Biti1s cleared

% = Bit iIs unknown

70

REGISTER 2-2:

bit 7

bit &

bit &

bit 4

bit 3

bit 2-0

OPTION_REG - OPTION REGISTER (ADDRESS: 81h)

RW-1 RW-1 RWI1 RW1 RW1 RW1 RWIT RWI
RAPU | INTEDG | Tocs | ToSE | Psa | Ps2 | Psi PS0
bit 7 bit 0

RAPU: PORTA Full-up Enable bit

1 = PORTA pull-ups are disabled

0 = PORTA pull-ups are enabled by individual port latch values
INTEDG: Interrupt Edge Select bit

1 = Interrupt on rising edge of RAZ/INT pin

0 = Interrupt on falling edge of RAZ/INT pin

TOCS: TMRO Clock Source Select bit

1 = Transition on RA2/TOCKI pin

0 = Internal instruction cycle clock (CLKOUT)

TOSE: TMRO Source Edge Select bit

1 = Increment on high-to-low transition on RA2/TOCKI pin
0 = Increment on low-to-high transition on RAZ/TOCKI pin
PSA: Prescaler Assignment bit

1 = Prescaler is assigned to the WDT

0 = Prescaler is assigned to the Timer0 module

PS<2:0>: Prescaler Rate Select bits

BIT VALUE TMRORATE WDT RATE

000 1:2 -1
001 1:4 1:2
010 1:8 1:4
011 1:16 1-8
100 1:32 1:16
101 1: 64 1:32
110 1:128 1:64
1M 1:256 1:128
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR "= Bit is set ‘0" = Bit is cleared X = Bit is unknown

71

Commands for TMRO

e |Lab # 5 uses TMRO ...

; ——— New Delay Routine using TMRO
Delay CLRF TMRO

CLRF INTCON

BSF STATUS, RPO

MOVLW OxC7
MOVWF OPTION_REG

BCF STATUS, RPO
BSF INTCON, TOIE
again btfss INTCON, 2
goto again
return
; ——— End of new Delay routine -----

; Clear TimerO register, start counting
; Disable interrupts and clear TOIF

; Bankl

; PortB pull-ups are disabled,

Interrupt on rising edge of RBO

; TimerO increment from internal clock
; with a prescaler of 1:126.

; BankO

; Enable TMRO interrupt

Bit 2 set?

; No, bit i1s clear, goto again

72

Timersl...

73

Timerl Module

e Similar to TMRO

e Timerl Features
— 16-bit timer/counter register pair (TMR1H: TMR1L)
— Programmable internal or external clock source
— 3-bit prescaler
— Optional LP oscillator
— Synchronous or asynchronous operation
— Timerl gate (count enable) via comparator or T1G pin
— Interrupt on overflow
— Wake-up on overflow (external clock, Asynchronous mode only)
— Time base for the Capture/Compare function
— Special Event Trigger (with ECCP)
— Comparator output synchronization to Timer1 clock

e See PIC16F684 Datasheet for related information

Timers2 ...

75

Timer2 Module

Similar to TMRO

Timer2 Features
— 8-bit timer register (TMR2)
— 8-bit period register (PR2)
— Interrupt on TMR2 match with PR2
— Software programmable prescaler (1:1, 1:4, 1:16)
— Software programmable postscaler (1:1 to 1:16)

See PIC16F684 Datasheet for related information

76

Watchdog Timer ...

77

Watchdog Timer

e A watchdog timer is a special hardware fail-safe mechanism
— Intervenes if the software stops functioning properly

e The watchdog timer is periodically reset by software

o If the software crashes or hangs
— The watchdog timer soon expires

e Causing the entire system to be reset automatically

78

Watchdog Timer

The inclusion and use of a watchdog timer is a common way to deal

with unexpected software hangs or crashes that may occur after the
system is deployed

For example ... systems deployed in space
— If the software hangs or crashes ... you cannot reset it manually

— Instead you need to build in an automatic recovery mechanism
into the system

79

Watchdog Timer

e Always implement the code that handles resetting the watchdog
timer in the main processor loop

e Never implement the watchdog timer reset in an ISR (Interrupt
Service Routine)

— Reason ...

e The main processing loop can hang while the interrupts and
ISR continue to function

— Meaning the watchdog timer would never be able to
reset the system

80

PIC16F684 Watchdog Timer (WDT)

e The WDT has the following features:
— Operates from the LFINTOSC (31 kHz)
— Contains a 16-bit prescaler
— Shares an 8-bit prescaler with Timer0
— Time-out period is from 1 ms to 268 seconds

— Configuration bit and software controlled

81

WDT CONTROL

The WDTE bit is located in the Configuration Word register

— When set, the WDT runs continuously

e When the WDTE bit in the Configuration Word register is set,

the SWDTEN bit of the WDTCON register has no effect

o If WDTE is clear, then the SWDTEN bit can be used to enable
and disable the WDT

— Setting the bit will enable it and clearing the bit will
disable it

82

PWWM
Pulse Width Modulation ...

83

PWM — Pulse Width Modulation

PWM Basics
— Involves outputting a train of pulses at a fixed frequency

— The Duty Cycle is varied to change the average output voltage

84

PWM

e Why use PWM?

— PWM is a powerful technique for controlling analog circuits with
a processor’s digital outputs

e PWM is employed in a wide variety of applications:

— Measurements
— Communications
— Power control

— Conversions

85

Duty Cycle --- Logic High as a percentage of PWM period

Pulse
“— Width —™

e Period R

Duty Cycle = Pulse Width x 100%
Period

Duty Cycle

e At the end of the duty cycle ...
— The output goes low
e At the end of the period ...
— The output goes high ... except ...

e For special cases where the duty cycle is 100% or 0%

87

Analog Circuits

An analog signal has a continuously varying value in both time and
magnitude

Digital signals take values from a finite set of predetermined
possibilities

Analog voltages and currents can be used to control things directly

e \Volume of a car radio
— Knob is connected to a variable resistor

Analog circuits are hard to keep tunes ... the drift over time

88

Digital Control

Controlling analog circuits digitally can drastically reduce system
costs and power consumption

PWM is a way of digitally encoding analog signal levels
— Use high-resolution counters

— The duty cycle of a square wave is modulated to encode a
specific analog signal level

Many microcontrollers already contain PWM controllers

89

Digital Control

PWM is still digital because at any instance in time ...

— The full DC supply is either ...
— Fully on ... or ...
— Fully off
Given a sufficiently small period of the PWM signal

— Any analog value can be encoded with PWM

90

PWM Signals of Varying Duty Cycles

91

PWM Signals of Varying Duty Cycles

The top signal shows a PWM output at a 10% duty cycle

— That is, the signal is on for 10% of the period and off the other
90%

The middle and lower signals show PWM outputs at 50% and 90%
duty cycles, respectively

These three PWM outputs encode three different analog signal
values, at 10%, 50%, and 90% of the full strength

— If, for example, the supply is 9V and the duty cycle is 10%, a
0.9V analog signal results

92

A Simple PWM Circuit

-

o @
Switch
Battery (2 volt)

93

A Simple PWM Circuit

e The previous slide shows a simple circuit that could be driven using
PWM

e A9V battery powers an incandescent light bulb

— If we closed the switch connecting the battery and lamp for 50
ms, the bulb would receive 9 V during that interval

— If we then opened the switch for the next 50 ms, the bulb would
receive 0 V

— If we repeat this cycle 10 times a second, the bulb will be lit as
though it were connected to a 4.5 V battery (50% of 9 V)

o We say that the duty cycle is 50% and the modulating frequency is
10 Hz

94

A Simple PWM Circuit

Most loads, inductive and capacitive alike, require a much higher
modulating frequency than 10 Hz

If the lamp was switched ...

— On for five seconds ... then ...
— Off for five seconds ... then ...
— On again

The duty cycle be 50%, but the bulb would appear brightly lit for
the first five seconds and off for the next

In order for the bulb to see a voltage of 4.5 volts, the cycle period
must be short relative to the load's response time to a change in the
switch state

95

A Simple PWM Circuit

To achieve the desired effect of a dimmer (but always lit) lamp
— It is necessary to increase the modulating frequency
The same is true in other applications of PWM

Common modulating frequencies range from 1 kHz to 200
kHz

96

Advantages of PWM

e The signal remains digital all the way from the processor to the
controlled system ...

— No digital-to-analog conversion is necessary
e By keeping the signal digital ...
— Noise effects are minimized

e Noise can only affect a digital signal if it is strong enough to
change a logic-1 to a logic-0, or vice versa

97

PWM Application - PWM-controlled brake

e To put it simply, a brake is a device that clamps down hard on
something

e In many brakes, the amount of clamping pressure (or stopping
power) is controlled with an analog input signal

e The more voltage or current that's applied to the brake, the more
pressure the brake will exert

98

PWM Application - PWM-controlled brake

The output of a PWM controller could be connected to a switch
between the supply and the brake

To produce more stopping power, the software need only increase
the duty cycle of the PWM output

If a specific amount of braking pressure is desired ...

e Measurements would need to be taken to determine the
mathematical relationship between duty cycle and pressure

— And the resulting formulae or lookup tables would be

tweaked for operating temperature, surface wear, and so
on

99

PWM Application - PWM-controlled brake

e To set the pressure on the brake to, say, 100 psi

— The software would do a reverse lookup to determine the duty
cycle that should produce that amount of force

— It would then set the PWM duty cycle to the new value and the
brake would respond accordingly

— If a sensor is available in the system

e The duty cycle can be tweaked, under closed — loop control,
until the desired pressure is precisely achieved

100

PWM Controllers

e The duty cycle is the ratio of the on-time to the period
e The modulating frequency is the inverse of the period
e To start PWM operation:

— Set the period in the on-chip timer/counter that provides the
modulating square wave

— Set the on-time in the PWM control register

— Set the direction of the PWM output of the general-purpose 1/0
pin

— Start the timer

— Enable the PWM controller

101

PIC16F684
Capture/Compare/PWM
Module ...

102

PIC16F684

o Capture/Compare/PWM module ...
— Capture Mode ...
e Timer register starts counting when a signal is detected
e When next signal is detected ... count is saved
e The count will correspond to the period of the input signal
— Compare Mode ...
e A register is preloaded with a value

e Continuously compared to Timerl count
e When count matches ... an interrupt is generated

103

PIC16F684 PWM Mode

e The PWM mode generates a Pulse-Width Modulated signal on the
CCP1 pin

e The duty cycle, period and resolution are determined by the
following registers:

e PR2

e T2CON

e CCPR1L
e CCP1CON

104

PIC16F684 PWM Mode

e In Pulse-Width Modulation (PWM) mode ...

— The CCP (Capture/Compare/PWM) module produces up to a 10-
bit resolution PWM output on the CCP1 pin

e Since the CCP1 pin is multiplexed with the PORT data latch

— The TRIS for that pin must be cleared to enable the
CCP1 pin output driver

105

PIC16F684 PWM Period

e The PWM period is specified by the PR2 register of Timer2
e The PWM period can be calculated using the following Equation:

PWM Period =[(PR2)+ 1]=4TOSCe(TMR2 Prescale Value)

106

PIC16F684 PWM Duty Cycle

e The PWM duty cycle is specified by writing a 10-bit value to multiple
registers:

— CCPRL1L register ... and ...
— CCP1<1:0> bits of the CCP1CON register

e To calculate the PWM pulse width use the following:

Pulse Width =(CCPR1L:CCP1CON<5:4>) «TOSC = (TMR2 Prescale Value)

107

PIC16F684 SETUP FOR PWM OPERATION

. Disable the PWM pin (CCP1) output driver by setting the associated
TRIS bit

. Set the PWM period by loading the PR2 register

. Configure the CCP module for the PWM mode by loading the
CCP1CON register with the appropriate values

. Set the PWM duty cycle by loading the CCPR1L register and CCP1
bits of the CCP1CON register

108

PIC16F684 SETUP FOR PWM OPERATION

5. Configure and start Timer?2:

— Clear the TMR2IF interrupt flag bit of the PIR1 register

— Set the Timer2 prescale value by loading the T2CKPS bits of
the T2CON register

— Enable Timer2 by setting the TMR20N bit of the T2CON register

6. Enable PWM output after a new PWM cycle has started:

— Wait until Timer2 overflows (TMR2IF bit of the PIR1 register is
set)

— Enable the CCP1 pin output driver by clearing the associated
TRIS bit

109

PIC16F684 - PWM (Enhanced Mode)

The Enhanced PWM Mode can generate a PWM signal on up to four
different output pins with up to 10-bits of resolution

It can do this through four different PWM output modes:

Single PWM

Half-Bridge PWM

Full-Bridge PWM, Forward mode
Full-Bridge PWM, Reverse mode

To select an Enhanced PWM mode, the P1M bits of the CCP1CON
register must be set appropriately

110

PWM Initialization

CLRF CCP1CON ;

CLRF TMR2 ;
MOVLW Ox7F ;
MOVWF PR2 ;
MOVLW Ox1F ;
MOVWF CCPR1L ;
CLRF INTCON ;

BSF STATUS, RPO;
BCF TRISC, PWM1;

CLRF PIE1 ;
BCF STATUS, RPO;
CLRF PIR1

MOVLW 0x2C ;
MOVWF CCP1CON ;
BSF T2CON, TMR20ON

CCP Module 1i1s off
Clear Timer2

Duty Cycle is 25% of PWM Period
Disable interrupts and clear TOIF
Bank1

Make pin output

Disable peripheral interrupts

BankO

Clear peripheral interrupts Flags
PWM mode, 2 LSbs of Duty cycle = 10

: Timer2 starts to increment

; The CCP1 interrupt is disabled,
; do polling on the TMR2 Interrupt flag bit

PWM_Period_Match
BTFSS PIR1, TMR2IF

GOTO PWM_Period Match

; Update this PWM period and the following PWM Duty cycle

BCF PIR1, TMR2IF

111

Programming

e Commands/instructions that we will encounter tonight
e C commands/Assembly Language —
» Mixed C and Assembly Programming

e PIC16F684 control — None

113

Mixed C and Assembly
Programming ...

114

Mixing C and Assembler Code (Mixed Mode)

e First ... Mixed Mode is ...
o Writing parts of a program in different languages
e Why would we want to write programs in Mixed Mode?

e There are some low-level tasks that either can be better

implemented in assembly, or can only be implemented in assembly
language

o Hand optimize the assembly code in ways that the compiler cannot

o Assembly is also useful for time-critical or real-time processes ...

— The timing can be strictly controlled

115

Mixing C and Assembler Code

e Assembly language code can be mixed with C code using two
different techniques ...

— Writing assembly code and placing it into a separate assembler
module

— OR ... including it as in-line assembler in a C module

116

Mixing C and Assembler Code

o We will center our attention to including it as /n-line assembler in a
C moaule

e When including it as in-line assembler in a C module ...

— PIC instructions are directly embedded “in-line” into C code
using the directives

e #asm and #endasm

e OR ... the statement asm()

117

The #Zasm and #Zendasim

e The #asm and #endasm directives are
— Used to start and end a block of assembly instructions

e The #asm and #endasm construct is not syntactically part of the C
program

118

The asm() statement

The asm() statement is used to embed a single assembler
instruction

This form looks and behaves like a C statement ...

However ...

— Each instruction must be encapsulated within an asm()
statement

119

Mixing C and Assembler Code

You should not use a #asm block within any C constructs such as ...

— if

— while
— do

— etc

In these cases, use only the asm("") form ...

— Which is a C statement and will correctly interact with all C flow-
of-control structures

120

Local and Global ldentifiers

“Global' implies defined outside a function
“Local" defined within a function
For any non-local assembly symbol ...

— The GLOBAL directive must be used to link in with the symbol if
it was defined elsewhere

If it is a local symbol, then it may be used immediately

121

Header File Symbols

o If writing assembler code from within a C module ...
— SPECIAL FUNCTION REGISTERS (SFRs) ...
e Recall ... SPRs are ... PORTA, PORTC, TRISA, TRISC, etc

e SPRs may be accessed by referring to the symbols defined by the chip-
specific C header files

— Whenever you include <htc.h> into a C module, all the available SFRs
are defined as absolute C variables

¢ As the contents of this file is C code, it cannot be included into an
assembler module, but assembler code can use these definitions

122

Header File Symbols

e To use a SFR in in-line assembler code from within the same C
module that includes <htc.h> ...

— Simply use the symbol with an underscore character prepended
to the name

e For example:
#include <htc.h>
void main(void)
{
PORTA = 0x55;
asm("moviw #0xAA");
asm("movwf _PORTA");

123

Problems Encountered When
Implementing ...

124

Problems Encountered When Implementing

A\ U /4

Must use the underscore character in front of SPR names

Bit names did not work ... therefore ...

— Use the actual bit number vice the name ... for example ...
e Instead of ... asm(" BSF _PORTA, _RA4")
e Use ... asm(" BSF _PORTA, 4"

Need a space (0) between the Register and the bit _PORTA,4

Place a // after the ; for example ...
BCF _STATUS, 5 » //Select Bank 0

125

Problems Encountered When Implementing

e Binary format ...
001111B vice b'001111°
e See the require Hi-Tech number formats below ...

» These differ from the MPLAB assembler!

Table 4.3: ASPIC numbers and bases

Radix Format
Binary digits 0 and 1 followed by B
Octal digits 0 to 7 followed by O, Q, o or g
Decimal digits 0 to 9 followed by D, d or nothing
Hexadecimal | digits 0 to 9, A to F preceded by Ox or followed by H or h

126

An Example ...

127

An Example ...

e Lets look at our original C program ...
— Flashing LED DO ...
o We wrote a delay function in C ...
e Then wrote it again when we used assembly language
o We will use the C program and “Mix"” in the assembly

e Delay code
e Initialization routine

e Programs called Lecture_11A.c and Lecture_11B.c

128

An Example ... (WAS)

{

void PORTA_init(void)

/[WAS the following
/IPORTA = 0;
//ICMCONO = 7;
I/ANSEL = 0;

/ITRISA = 0b001111;

/I All PORTA Pins are low
/I Turn off Comparators
/I Turn off ADC
/I RA4 and 5 are outputs; RAO,1,2, and 3 are input

129

An Example ... (MIXED)

void PORTA _init(void)

{
/l New code is the following ...
#asm
BCF _STATUS, 5
CLRF _PORTA
MOVLW 7
MOVWF CMCONO
BSF _STATUS, 5
CLRF _ANSEL
MOVLW 001111B
MOVWF _TRISA
BCF _STATUS, 5
#endasm

return;

}

/******** E N D O F PO RTA In It ****************************/

; /ISelect Bank O

; [lInitialize PORTA (to all zeros)
; /lLoad w with 7

; //lLoad CMCONO with 7

; [[Turns off comparators

; /ISelect Bank 1

; //IShut off ADC (digital I/0O)

; /ILoad w — RA4 and RA5 outputs
; /lcopy w to TRIS PORTA

- //Select Bank O

130

An Example ... (Delay)

void delay_routine(void)

{
Il WAS the following

/linti, j;

Il for (i=0; i < 255; i++)
Il for (j = 0; j < 255; j++);

/l New code is the following ...

asm(" MOVLW 255") ; [[Decimal 255

asm(" MOVWF count") ;//Initialize counter to 10
asm("Repeat DECFSZ count,f") ;//Decrement counter
asm(" GOTO Repeat") ;//If counter <> 0

return;

}

/******** END OF delay rOUtlne *************************/

131

An Example ... (Final Thoughts)

* Need to adjust the Delay Routine to have the LED flash on and off
slower ...

e Two files are on the Webpage ...
— Lecture_11A.c the original Flash_Do.c file

— Lecture_11B.c the mixed mode file

132

133

Lab

e Finish Lab # 5 ... the report is optional, however, you need to run
through the lab

e Work on your Course Project

134

Next Class Topics

e Exam #2 ...
— Covers material since the last exam ... however ...

o Earlier material is the building blocks for follow-on material

136

Homework

1. Perform Lab #5 (optional)
2. Read the material from Today’s class which is found in the ...
e PIC16F684 Data Sheet

e PICmicro Mid-Range MCU Family Reference Manual

e HI-TECH C Tools for the PIC10/12/16 MCU Family — Hi-
Tech Software Manual, section 3.9

3. Prepare for Exam #2, next week ... November 30t

138

Time TO ...
Start the Lab ...

References

PIC16F684 Data Sheet 41202F
PICmicro Mid-Range MCU Family Reference Manual

HI-TECH C Tools for the PIC10/12/16 MCU Family — Hi-Tech Software
Manual, section 3.9

140

