
1

MICROPROCESSORS A (17.383)

Fall 2010

Lecture Outline

Class # 11

November 23, 2010

Dohn Bowden

2

Today’s Lecture

• Syllabus review

• Microcontroller Hardware and/or Interface
• Last week’s lecture (worked on Labs the entire class)

– Comparators
– Timers
– Watchdog Timer
– Pulse Width Modulation (PWM)

• Programming/Software
• Mixed C and Assembly Programming

• Lab
• Finish Lab #5 (Optional Lab … however, recommend looking at)
• Course Project

• Homework

3

4

Administrative

• Admin for tonight …

– Syllabus Highlights

• Lab #4 is due tonight (November 23rd)
• Exam #2 next week (November 30th)

– Project …

• Any questions?

– Lab #3 reports have been graded …

• Hard copy submittals will be passed back
• Electronic submittals have been emailed

5

Syllabus Review

23Analog to Digital Conversion 10/19/106

DemoFinal Exam/Course Project Brief and Demonstration 12/14/1014

5ProjectCourse Project 12/07/1013

Examination 211/30/1012

4ProjectMixed C & Assembly Programming/Course Project11/23/1011

5Comparators, Timers, Pulse Width Modulation (PWM)11/16/1010

34 con’tLCD Interface and Assembly Language11/09/109

3, 4Lab Work (Finish Lab #3 and start Lab #4)11/02/108

1Intro, Course & Lab Overview, Microcontroller Basics09/07/101

1 con’tPIC16F684 Overview and General Input/Output 09/14/102

2Switches 09/21/103

12 con’tSeven Segment LEDs 09/28/104

Examination 110/05/105

No Class – Monday Schedule10/12/10X

3 con’tAnalog to Digital Conversion con’t10/26/107

Lab Report DueLabTopicsDateWeek

6

7

We shall begin with last week’s
lecture …

8

Comparators …

9

PIC16F684 Hardware

• Another analog interface peripheral of the PIC16F684 …

– Comparators

10

Comparator Fundamentals

• Compares the voltage level of two analog signals … and …

– Identifies which signal is the largest

11

Why would we need such a device?

• Switching on lights and heaters

• Detecting when a level in a circuit exceeds some particular
threshold

• Switching power supplies

• Generating square waves from triangle waves

• And so on …

12

Comparator Fundamentals

• Building block of the comparator is the Operational Amplifier (Op-
Amp)

13

Op-Amp Fundamentals

• An op amp is a …

– Differential input, …

– Single-ended output …

– Amplifier

• In other words … an Op Amp processes small input signals …
developing a single-ended output

14

Op-Amp

• Op Amp has a minimum of 5 terminals

– “-“ Inverting input
– “+” Non-Inverting input
– Output
– Positive Supply
– Negative Supply

Inverting Input

Non-Inverting Input

Positive Supply

Negative Supply

Output

15

Comparators

• The output goes positive when the non-inverting input is more
positive than the inverting input

• The output goes negative when the inverting input is more positive
than the non-inverting input

• Therefore …

IF V- < V+ … output is positive

IF V+ < V- … output is negative

IF V- = V+ … output is zero

16

Comparator Example

Example: … we have a positive supply voltage of +5
and a negative supply voltage of -5

What is VOUT for the values indicated in the table?

0+3+3

+5+10

-5-10

+5+1-1

000

-5+1+2

+5+2+1

-5-1+1

VOUTV+V-

V-

V+

+5v

-5v

VOUT

17

Comparator Example

Example 2 … we have a positive supply voltage of +5
and a negative supply voltage set to ground.

What is VOUT for the values indicated in the table?

+5+10

0-2-2

0-10

0-2+2

+5+2+1

0-1+2

VOUTV+V-

V-

V+

+5v

GND

VOUT

18

The PIC16F684 Comparator Module

• Dual comparators

• Multiple comparator configurations

• Comparator outputs are available internally/externally

• Programmable output polarity

• Interrupt-on-change

• Wake-up from Sleep

• Timer1 gate (count enable) – ONLY C2 CAN BE LINKED TO TIMER1

• Output synchronization to Timer1 clock input

• Programmable voltage reference

19

PIC16F684 Comparators

• When the analog voltage at VIN+ is < the analog voltage at VIN- …
• The output of the comparator is a digital low level

• When the analog voltage at VIN+ is > the analog voltage at VIN- …
• The output of the comparator is a digital high level

20

PIC16F684 Comparator Configuration

• There are eight modes of operation for the comparator
1. Comparators Reset
2. Three Inputs Multiplexed to Two Comparators
3. Four Inputs Multiplexed to Two Comparators
4. Two Common Reference Comparators
5. Two Independent Comparators
6. One Independent Comparator
7. Two Common Reference Comparators with Outputs
8. Comparators Off

• The CM<2:0> bits of the CMCON0 register are used to select these
modes

• I/O lines change as a function of the mode

21

Comparator Module Control (CMCON0) Register

• The CMCON0 register (Register 8-1) provides access to the following
comparator features:

• Mode selection (Selects one of eight modes)

• Output state

• Output polarity

• Input switch

22

PIC16F684 Comparator Modes of Operation
(CMCON0) Register

1. Comparators Reset –
CM<2:0> = 000

2. Three Inputs Multiplexed to Two Comparators –
CM<2:0> = 001

3. Four Inputs Multiplexed to Two Comparators –
CM<2:0> = 010

4. Two Common Reference Comparators –
CM<2:0> = 011

5. Two Independent Comparators –
CM<2:0> = 100

6. One Independent Comparator –
CM<2:0> = 101

7. Two Common Reference Comparators with Outputs –
CM<2:0> = 110

8. Comparators Off –
CM<2:0> = 111

23

PIC16F684 Comparator Modes of Operation
Comparators Reset - CM<2:0> = 000

24

PIC16F684 Comparator Modes of Operation
Three Inputs Multiplexed to Two Comparators – CM<2:0> = 001

25

PIC16F684 Comparator Modes of Operation
Four Inputs Multiplexed to Two Comparators – CM<2:0> =

010

26

PIC16F684 Comparator Modes of Operation
Two Common Reference Comparators – CM<2:0> = 011

27

PIC16F684 Comparator Modes of Operation
Two Independent Comparators – CM<2:0> = 100

28

PIC16F684 Comparator Modes of Operation
One Independent Comparator – CM<2:0> = 101

29

PIC16F684 Comparator Modes of Operation
Two Common Reference Comparators with Outputs – CM<2:0> = 110

30

PIC16F684 Comparator Modes of Operation
Comparators Off – CM<2:0> = 111

31

PIC16F684 Comparator Output State

• Each comparator state can always be read internally via the
associated CxOUT bit of the CMCON0 register

• The comparator outputs are directed to the CxOUT pins when
CM<2:0> = 110 (Two Common Reference Comparators with
Outputs)

• C1OUT is Pin 11

• C2OUT is Pin 6

– When this mode is selected, the TRIS bits for the associated
CxOUT pins must be cleared (0) to enable the output drivers

32

PIC16F684 Comparator Output Polarity

• The polarity of the comparator output can be inverted by setting the
CxINV bits for the associated comparator (CMCON0<5:4>)

• Clearing CxINV results in a non-inverted output

• The following table shows the output state versus input conditions
and the polarity bit

33

34

Comparator Outputs

• The comparator outputs are read through the CMCON0 register

• These bits are read-only

• The comparator outputs may also be directly output to the RA2 and
RC4 I/O pins

• When enabled, multiplexers in the output path of the RA2 and RC4
pins will switch and the output of each pin will be the
unsynchronized output of the comparator

35

Comparator Outputs

• The TRIS bits will still function as an output enable/disable for the
RA2 and RC4 pins while in this mode

• The polarity of the comparator outputs can be changed using the
C1INV and C2INV bits (CMCON0<5:4>)

36

Comparator Interrupts

• The comparator interrupt flags are set whenever there is a change
in the output value of its respective comparator

• Software will need to maintain information about the status of the
output bits, as read from CMCON0<7:6> to determine the actual
change that has occurred

37

Comparator Reference

• The comparator module also allows the selection of an internally
generated voltage reference for one of the comparator inputs

• The VRCON register (Register 8-3) controls the voltage reference
module

38

CONFIGURING THE VOLTAGE REFERENCE

• The voltage reference can output 32 distinct voltage levels

– 16 in a high range … and …
– 16 in a low range

• The following equation determines the output voltages:

39

Comparator Voltage References
VDD = 5 volts

VRCON, 5 = 1 (low) VRCON, 5 = 0 (high)

VCON 3:0 CVref VCON 3:0 CVref
0000 0.00 0000 1.25
0001 0.21 0001 1.41
0010 0.42 0010 1.56
0011 0.63 0011 1.72
0100 0.83 0100 1.88
0101 1.04 0101 2.03
0110 1.25 0110 2.19
0111 1.46 0111 2.34
1000 1.67 1000 2.50
1001 1.88 1001 2.66
1010 2.08 1010 2.81
1011 2.29 1011 2.97
1100 2.50 1100 3.13
1101 2.71 1101 3.28
1110 2.92 1110 3.44
1111 3.13 1111 3.59

40

41

REGISTERS ASSOCIATED WITH COMPARATOR MODULE

42

Timers and Counters …

43

Timers/Counters

• Why do we need timers (or counters)?

– For accurate event timing and counting which is often needed in
microcontroller applications

• For example

– A sensor on a motor shaft which gives one pulse per
revolution of the shaft

» The number of pulses per second will give shaft
speed

44

Timers/Counters

• Instead of using loops for delays … we can use hardware timers

• Advantages …

– Processor is free to handle other tasks rather than sitting in a
loop for timing and doing nothing

– Timer is more accurate for measuring a loop than using the
stopwatch function

– You can calculate the exact time instead of using trial and error

45

How Timers/Counters Work

• A timer is a peripheral that measures elapsed time …

– Typically by counting processor cycles or clocks

• A counter measures elapsed time …

– Using external events

• A timer is setup by programming a register with a specific value

– Some processors count up …

– Others count down

• An interrupt is generated when a certain point is met

46

How Timers/Counters Work

• Timer counts cycles from either …

– The main clock … or …

– An external clock fed from an external source

• Many processors include multiple internal clock that can be used to
drive the timers

• Many processors have multiple timers

47

Timer/Counter

• Digital output waveforms are easy to generate by writing ones and
zeros to a port line

• Delays between pulses create the output frequency

• Changing delays between pulses will change the output frequency

• PIC16F684 timer/counter can be used to generate repetitive
waveforms pulses

• Allows the microcontroller to perform other tasks while
generating these repetitive waveforms

48

Timing with the Microcontroller

• All microcontrollers have timer circuits

– Some have multiple

• The timers are …

– Hardware binary counters

• Allow time interval measurement … or …

• Count

– To be carried out separately from program execution

49

PIC16F684 Timers …

50

Timing with the Microcontroller

• Watchdog Timer

• Timer0 …

– 8-bit register that can count pulses up to 0xFF (255)
– 8-bit programmable prescaler

• Timer1 ….

– 16-bit register that can count up to 0xFFFF (65, 535)
– Timer/counter with prescaler

51

Timing with the Microcontroller

• Timer 2 …

– 8-bit register
– Timer/counter with 8-bit period register, prescaler and postscaler
– The values of TMR2 and PR2 are constantly compared to determine

when they match.
• TMR2 will increment from 00h until it matches the value in PR2

– When a match occurs … two things happen …

» TMR2 is reset to 00h on the next increment cycle
» Postscaler is incremented

– The match output of the Timer2/PR2 comparator is fed into the
Timer2 postscaler

– The output of postscaler is used to set the interrupt flag bit

52

Timing with the Microcontroller

• Timing is achieved by counting the clock pulses

• The OPTION Register allows us to slow down the these pulses
(using what is called a “Prescaler”) by a factor of …

– 2, 4, 8, 16, 32, 64, 128, or 256

53

Timer0 …

54

The Timer0 Module Register (TMR0)

• The Timer0 module is an 8-bit timer/counter with the following
features:

• 8-bit timer/counter register (TMR0)

• 8-bit prescaler (shared with Watchdog Timer)

• Programmable internal or external clock source

• Programmable external clock edge selection

• Interrupt on overflow

55

Timer0 Operation

• When used as a timer …

– The Timer0 module can be used as either an …

8-bit timer … or …

an 8-bit counter

56

Timer0 --- 8-BIT TIMER MODE

• When used as a timer, the Timer0 module will …

– Increment every instruction cycle (without prescaler)

• Timer mode is selected by clearing the T0CS bit of the OPTION
register

• Set (OPTION_REG<5>) to ‘0’

• When TMR0 is written, the increment is inhibited for two instruction
cycles immediately following the write

• The TMR0 register can be adjusted, in order to account for
the two instruction cycle delay when TMR0 is written

57

Timer0 --- 8-BIT COUNTER MODE

• When used as a counter … the Timer0 module will …

– Increment on every rising or falling edge of the T0CKI pin

• The incrementing edge is determined by the T0SE bit of the
OPTION register (OPTION_REG<4>)

“1” = Increment on high-to-low transition on T0CKI pin
“0” = Increment on low-to-high transition on T0CKI pin

• Counter mode is selected by setting the T0CS bit of the OPTION
register to ‘1’ (OPTION_REG<5>)

58

Timer 0 (TMR0) Interrupt

• A Timer0 interrupt is generated when the TMR0 register
timer/counter overflows from FFh to 00h

• This overflow sets the T0IF bit (INTCON<2>)

• The interrupt can be masked by clearing the T0IE bit (INTCON<5>)

• The T0IF bit must be cleared in software by the Timer0 module
Interrupt Service Routine before re-enabling this interrupt

• The Timer0 interrupt cannot wake the processor from Sleep since
the timer is shut off during Sleep

59

Timer0 --- Prescaler

• An 8-bit counter is available as a prescaler for the Timer0 module

• The prescaler assignment is controlled in software by the control bit PSA
(OPTION_REG<3>)

• Clearing the PSA bit will assign the prescaler to Timer0

• Prescale values are selectable via the PS<2:0> bits
(OPTION_REG<2:0>)

• The prescaler is not readable or writable

• When assigned to the Timer0 module, all instructions writing to the TMR0
register (e.g., CLRF 1, MOVWF 1, BSF 1, x....etc.) will clear the
prescaler

60

TMR0

• When used as a counter …
– the register is incremented

– each time a clock pulse is applied to pin TOCK1

• When used as a timer …
– the register increments at a rate determined by

– the system clock frequency … and …
– a prescaler

– Prescalers rate vary from …
– 1:2 … to … 1:256

– Prescalers are selected from the OPTION_REG

61

TMR0 – Timer Mode

• Microcontroller oscillator = fosc = 4 MHz

• The internal oscillator frequency seen at
TOCS is …

fosc divided by 4 = fosc /4

• Oscillator period = TOSC = 1/fosc= 0.25
microseconds

62

An Example

fosc = 4 MHz

Timer speed = ¼ fosc = 1 MHz

To turn an LED on for 1 sec we would need to count
1,000,000 pulses … a lot of pulses!

Prescaler can slow down the pulses … for example …

1,000,000/256 = 3906.25 or 3906 pulses

So to turn the LED on for 1 sec we need 3906 pulses,
for 0.5 sec we need 1953 pulses.

63

Overflow

• Timer0 will generate an interrupt when the TMR0 register overflows
from FFh to 00h

• The T0IF interrupt flag bit of the INTCON register is set every time
the TMR0 register overflows, regardless of whether or not the
Timer0 interrupt is enabled

• The T0IF bit must be cleared in software

• The Timer0 interrupt enable is the T0IE bit of the INTCON register

• Overflow time is the time it will take until TMR0 register overflows

64

Overflow Time

Overflow time = 4 x TOSC x Prescaler x (256 – TMR0)

• Where …
• Overflow time is in microseconds
• 4 is as a result of fosc being divided by 4
• TOSC is the oscillator period in microseconds
• Prescaler is the prescaler value chosen using OPTION_REG
• TMR0 is the value loaded into TMR0 register

65

Example – Overflow Time

• Assume 4 MHz microcontroller oscillator
• Prescaler chosen as 1:8 (PS2:PS0 to “010”)
• Assume TMR0 is decimal 100

4 MHz clock has a period T=1/f = 1/4MHz = 0.25 μsec

Using the formula …

Overflow time = 4 x 0.25 x 8 x (256 – 100) =

Overflow time = 1248 μsec = 1.248 msec

66

Determining TMR0 Value

• We normally need to know the value to load into TMR0 for the
required overflow time

• Modifying the prior equation … we obtain …

TMR0 = 256 – (Overflow time)/(4 x TOSC x Prescaler)

• Where …
• Overflow time is in microseconds
• 4 is as a result of fosc being divided by 4
• TOSC is the oscillator period in microseconds
• Prescaler is the prescaler value chosen using OPTION_REG
• TMR0 is the value loaded into TMR0 register

67

Example – TMR0 Value Determination

• Assume 4 MHz microcontroller oscillator
• Prescaler chosen as 1:8 (PS2:PS0 to “010”)
• Interrupt to be generated after 500 μsec

4 MHz clock has a period T=1/f = 1/4MHz = 0.25 μsec

Using the formula …

TMR0 = 256 – 500/(4 x 0.25 x 8) = 193.5

The nearest number we can load into TMR0 is 193

68

Required TMRO Values for Different Overflow Times
(4 MHz Oscillator)

21-------60,000

60-------50,000

100-------40,000

139-------30,000

178100------20,000

217178100-----10,000

23677178100----5,000

2522482402251931316-1,000

25325024323120615656-800

25325024523421216881-700

25325116237218181106-600

2542522482402241931316500

25425325024323120615656400

255253251246237218181106300

-254253250243231206156200

--254253250243231206100

256128643216842

PRESCALERTime to overflow (μs)

69

70

71

72

Commands for TMR0

• Lab # 5 uses TMR0 …

; --- New Delay Routine using TMR0 ---------------------------

Delay CLRF TMR0 ; Clear Timer0 register, start counting

CLRF INTCON ; Disable interrupts and clear T0IF

BSF STATUS, RP0 ; Bank1

MOVLW 0xC7 ; PortB pull-ups are disabled,

MOVWF OPTION_REG ; Interrupt on rising edge of RB0

; Timer0 increment from internal clock

; with a prescaler of 1:126.

BCF STATUS, RP0 ; Bank0

BSF INTCON, T0IE ; Enable TMR0 interrupt

again btfss INTCON,2 ; Bit 2 set?

goto again ; No, bit is clear, goto again

return

; --- End of new Delay routine --------------------------------

73

Timers1…

74

Timer1 Module

• Similar to TMR0

• Timer1 Features
– 16-bit timer/counter register pair (TMR1H:TMR1L)
– Programmable internal or external clock source
– 3-bit prescaler
– Optional LP oscillator
– Synchronous or asynchronous operation
– Timer1 gate (count enable) via comparator or T1G pin
– Interrupt on overflow
– Wake-up on overflow (external clock, Asynchronous mode only)
– Time base for the Capture/Compare function
– Special Event Trigger (with ECCP)
– Comparator output synchronization to Timer1 clock

• See PIC16F684 Datasheet for related information

75

Timers2 …

76

Timer2 Module

• Similar to TMR0

• Timer2 Features
– 8-bit timer register (TMR2)
– 8-bit period register (PR2)
– Interrupt on TMR2 match with PR2
– Software programmable prescaler (1:1, 1:4, 1:16)
– Software programmable postscaler (1:1 to 1:16)

• See PIC16F684 Datasheet for related information

77

Watchdog Timer …

78

Watchdog Timer

• A watchdog timer is a special hardware fail-safe mechanism

– Intervenes if the software stops functioning properly

• The watchdog timer is periodically reset by software

• If the software crashes or hangs

– The watchdog timer soon expires

• Causing the entire system to be reset automatically

79

Watchdog Timer

• The inclusion and use of a watchdog timer is a common way to deal
with unexpected software hangs or crashes that may occur after the
system is deployed

• For example … systems deployed in space

– If the software hangs or crashes … you cannot reset it manually

– Instead you need to build in an automatic recovery mechanism
into the system

80

Watchdog Timer

• Always implement the code that handles resetting the watchdog
timer in the main processor loop

• Never implement the watchdog timer reset in an ISR (Interrupt
Service Routine)

– Reason …

• The main processing loop can hang while the interrupts and
ISR continue to function

– Meaning the watchdog timer would never be able to
reset the system

81

PIC16F684 Watchdog Timer (WDT)

• The WDT has the following features:

– Operates from the LFINTOSC (31 kHz)

– Contains a 16-bit prescaler

– Shares an 8-bit prescaler with Timer0

– Time-out period is from 1 ms to 268 seconds

– Configuration bit and software controlled

82

WDT CONTROL

• The WDTE bit is located in the Configuration Word register

– When set, the WDT runs continuously

• When the WDTE bit in the Configuration Word register is set,
the SWDTEN bit of the WDTCON register has no effect

• If WDTE is clear, then the SWDTEN bit can be used to enable
and disable the WDT

– Setting the bit will enable it and clearing the bit will
disable it

83

PWM
Pulse Width Modulation …

84

PWM – Pulse Width Modulation

• PWM Basics

– Involves outputting a train of pulses at a fixed frequency

– The Duty Cycle is varied to change the average output voltage

85

PWM

• Why use PWM?

– PWM is a powerful technique for controlling analog circuits with
a processor’s digital outputs

• PWM is employed in a wide variety of applications:

– Measurements
– Communications
– Power control
– Conversions

86

Duty Cycle --- Logic High as a percentage of PWM period

Pulse
Width

Period

Duty Cycle = Pulse Width x 100%
Period

87

Duty Cycle

• At the end of the duty cycle …

– The output goes low

• At the end of the period …

– The output goes high … except …

• For special cases where the duty cycle is 100% or 0%

88

Analog Circuits

• An analog signal has a continuously varying value in both time and
magnitude

• Digital signals take values from a finite set of predetermined
possibilities

• Analog voltages and currents can be used to control things directly

• Volume of a car radio
– Knob is connected to a variable resistor

• Analog circuits are hard to keep tunes … the drift over time

89

Digital Control

• Controlling analog circuits digitally can drastically reduce system
costs and power consumption

• PWM is a way of digitally encoding analog signal levels

– Use high-resolution counters

– The duty cycle of a square wave is modulated to encode a
specific analog signal level

• Many microcontrollers already contain PWM controllers

90

Digital Control

• PWM is still digital because at any instance in time …

– The full DC supply is either …

– Fully on … or …

– Fully off

• Given a sufficiently small period of the PWM signal

– Any analog value can be encoded with PWM

91

PWM Signals of Varying Duty Cycles

92

PWM Signals of Varying Duty Cycles

• The top signal shows a PWM output at a 10% duty cycle

– That is, the signal is on for 10% of the period and off the other
90%

• The middle and lower signals show PWM outputs at 50% and 90%
duty cycles, respectively

• These three PWM outputs encode three different analog signal
values, at 10%, 50%, and 90% of the full strength

– If, for example, the supply is 9V and the duty cycle is 10%, a
0.9V analog signal results

93

A Simple PWM Circuit

94

A Simple PWM Circuit

• The previous slide shows a simple circuit that could be driven using
PWM

• A 9 V battery powers an incandescent light bulb

– If we closed the switch connecting the battery and lamp for 50
ms, the bulb would receive 9 V during that interval

– If we then opened the switch for the next 50 ms, the bulb would
receive 0 V

– If we repeat this cycle 10 times a second, the bulb will be lit as
though it were connected to a 4.5 V battery (50% of 9 V)

• We say that the duty cycle is 50% and the modulating frequency is
10 Hz

95

A Simple PWM Circuit

• Most loads, inductive and capacitive alike, require a much higher
modulating frequency than 10 Hz

• If the lamp was switched …
– On for five seconds … then …
– Off for five seconds … then …
– On again

• The duty cycle be 50%, but the bulb would appear brightly lit for
the first five seconds and off for the next

• In order for the bulb to see a voltage of 4.5 volts, the cycle period
must be short relative to the load's response time to a change in the
switch state

96

A Simple PWM Circuit

• To achieve the desired effect of a dimmer (but always lit) lamp

– It is necessary to increase the modulating frequency

• The same is true in other applications of PWM

• Common modulating frequencies range from 1 kHz to 200
kHz

97

Advantages of PWM

• The signal remains digital all the way from the processor to the
controlled system …

– No digital-to-analog conversion is necessary

• By keeping the signal digital …

– Noise effects are minimized

• Noise can only affect a digital signal if it is strong enough to
change a logic-1 to a logic-0, or vice versa

98

PWM Application - PWM-controlled brake

• To put it simply, a brake is a device that clamps down hard on
something

• In many brakes, the amount of clamping pressure (or stopping
power) is controlled with an analog input signal

• The more voltage or current that's applied to the brake, the more
pressure the brake will exert

99

PWM Application - PWM-controlled brake

• The output of a PWM controller could be connected to a switch
between the supply and the brake

• To produce more stopping power, the software need only increase
the duty cycle of the PWM output

• If a specific amount of braking pressure is desired …
• Measurements would need to be taken to determine the

mathematical relationship between duty cycle and pressure
– And the resulting formulae or lookup tables would be

tweaked for operating temperature, surface wear, and so
on

100

PWM Application - PWM-controlled brake

• To set the pressure on the brake to, say, 100 psi

– The software would do a reverse lookup to determine the duty
cycle that should produce that amount of force

– It would then set the PWM duty cycle to the new value and the
brake would respond accordingly

– If a sensor is available in the system

• The duty cycle can be tweaked, under closed – loop control,
until the desired pressure is precisely achieved

101

PWM Controllers

• The duty cycle is the ratio of the on-time to the period

• The modulating frequency is the inverse of the period

• To start PWM operation:

– Set the period in the on-chip timer/counter that provides the
modulating square wave

– Set the on-time in the PWM control register
– Set the direction of the PWM output of the general-purpose I/O

pin
– Start the timer
– Enable the PWM controller

102

PIC16F684
Capture/Compare/PWM

Module …

103

PIC16F684

• Capture/Compare/PWM module …

– Capture Mode …

• Timer register starts counting when a signal is detected
• When next signal is detected … count is saved
• The count will correspond to the period of the input signal

– Compare Mode …

• A register is preloaded with a value
• Continuously compared to Timer1 count
• When count matches … an interrupt is generated

104

PIC16F684 PWM Mode

• The PWM mode generates a Pulse-Width Modulated signal on the
CCP1 pin

• The duty cycle, period and resolution are determined by the
following registers:

• PR2

• T2CON

• CCPR1L

• CCP1CON

105

PIC16F684 PWM Mode

• In Pulse-Width Modulation (PWM) mode …

– The CCP (Capture/Compare/PWM) module produces up to a 10-
bit resolution PWM output on the CCP1 pin

• Since the CCP1 pin is multiplexed with the PORT data latch
…

– The TRIS for that pin must be cleared to enable the
CCP1 pin output driver

106

PIC16F684 PWM Period

• The PWM period is specified by the PR2 register of Timer2

• The PWM period can be calculated using the following Equation:

PWM Period =[(PR2)+ 1]•4•TOSC•(TMR2 Prescale Value)

107

PIC16F684 PWM Duty Cycle

• The PWM duty cycle is specified by writing a 10-bit value to multiple
registers:

– CCPR1L register … and …

– CCP1<1:0> bits of the CCP1CON register

• To calculate the PWM pulse width use the following:

Pulse Width =(CCPR1L:CCP1CON<5:4>) •TOSC • (TMR2 Prescale Value)

108

PIC16F684 SETUP FOR PWM OPERATION

1. Disable the PWM pin (CCP1) output driver by setting the associated
TRIS bit

2. Set the PWM period by loading the PR2 register

3. Configure the CCP module for the PWM mode by loading the
CCP1CON register with the appropriate values

4. Set the PWM duty cycle by loading the CCPR1L register and CCP1
bits of the CCP1CON register

109

PIC16F684 SETUP FOR PWM OPERATION

5. Configure and start Timer2:

– Clear the TMR2IF interrupt flag bit of the PIR1 register
– Set the Timer2 prescale value by loading the T2CKPS bits of

the T2CON register
– Enable Timer2 by setting the TMR2ON bit of the T2CON register

6. Enable PWM output after a new PWM cycle has started:

– Wait until Timer2 overflows (TMR2IF bit of the PIR1 register is
set)

– Enable the CCP1 pin output driver by clearing the associated
TRIS bit

110

PIC16F684 - PWM (Enhanced Mode)

• The Enhanced PWM Mode can generate a PWM signal on up to four
different output pins with up to 10-bits of resolution

• It can do this through four different PWM output modes:

• Single PWM
• Half-Bridge PWM
• Full-Bridge PWM, Forward mode
• Full-Bridge PWM, Reverse mode

• To select an Enhanced PWM mode, the P1M bits of the CCP1CON
register must be set appropriately

111

PWM Initialization

CLRF CCP1CON ; CCP Module is off
CLRF TMR2 ; Clear Timer2
MOVLW 0x7F ;
MOVWF PR2 ;
MOVLW 0x1F ;
MOVWF CCPR1L ; Duty Cycle is 25% of PWM Period
CLRF INTCON ; Disable interrupts and clear T0IF
BSF STATUS, RP0; Bank1
BCF TRISC, PWM1; Make pin output
CLRF PIE1 ; Disable peripheral interrupts
BCF STATUS, RP0; Bank0
CLRF PIR1 ; Clear peripheral interrupts Flags
MOVLW 0x2C ; PWM mode, 2 LSbs of Duty cycle = 10
MOVWF CCP1CON ;
BSF T2CON, TMR2ON ; Timer2 starts to increment

;
; The CCP1 interrupt is disabled,
; do polling on the TMR2 Interrupt flag bit
;
PWM_Period_Match

BTFSS PIR1, TMR2IF
GOTO PWM_Period_Match

;
; Update this PWM period and the following PWM Duty cycle
;

BCF PIR1, TMR2IF

112

113

Programming

• Commands/instructions that we will encounter tonight

• C commands/Assembly Language –

» Mixed C and Assembly Programming

• PIC16F684 control – None

114

Mixed C and Assembly
Programming …

115

Mixing C and Assembler Code (Mixed Mode)

• First … Mixed Mode is …

• Writing parts of a program in different languages

• Why would we want to write programs in Mixed Mode?

• There are some low-level tasks that either can be better
implemented in assembly, or can only be implemented in assembly
language

• Hand optimize the assembly code in ways that the compiler cannot

• Assembly is also useful for time-critical or real-time processes …

– The timing can be strictly controlled

116

Mixing C and Assembler Code

• Assembly language code can be mixed with C code using two
different techniques …

– Writing assembly code and placing it into a separate assembler
module

– OR … including it as in-line assembler in a C module

117

Mixing C and Assembler Code

• We will center our attention to including it as in-line assembler in a
C module

• When including it as in-line assembler in a C module …

– PIC instructions are directly embedded “in-line” into C code
using the directives

• #asm and #endasm

• OR … the statement asm()

118

The #asm and #endasm

• The #asm and #endasm directives are

– Used to start and end a block of assembly instructions

• The #asm and #endasm construct is not syntactically part of the C
program

119

The asm() statement

• The asm() statement is used to embed a single assembler
instruction

• This form looks and behaves like a C statement …

• However …

– Each instruction must be encapsulated within an asm()
statement

120

Mixing C and Assembler Code

• You should not use a #asm block within any C constructs such as …

– if
– while
– do
– etc

• In these cases, use only the asm("") form …

– Which is a C statement and will correctly interact with all C flow-
of-control structures

121

Local and Global Identifiers

• “Global” implies defined outside a function

• “Local” defined within a function

• For any non-local assembly symbol …

– The GLOBAL directive must be used to link in with the symbol if
it was defined elsewhere

• If it is a local symbol, then it may be used immediately

122

Header File Symbols

• If writing assembler code from within a C module …

– SPECIAL FUNCTION REGISTERS (SFRs) …

• Recall … SPRs are … PORTA, PORTC, TRISA, TRISC, etc

• SPRs may be accessed by referring to the symbols defined by the chip-
specific C header files

– Whenever you include <htc.h> into a C module, all the available SFRs
are defined as absolute C variables

• As the contents of this file is C code, it cannot be included into an
assembler module, but assembler code can use these definitions

123

Header File Symbols

• To use a SFR in in-line assembler code from within the same C
module that includes <htc.h> …

– Simply use the symbol with an underscore character prepended
to the name

• For example:
#include <htc.h>
void main(void)
{

PORTA = 0x55;
asm("movlw #0xAA");
asm("movwf _PORTA");

124

Problems Encountered When
Implementing …

125

Problems Encountered When Implementing

• Must use the underscore character “_” in front of SPR names

• Bit names did not work … therefore …

– Use the actual bit number vice the name … for example …

• Instead of … asm(" BSF _PORTA, _RA4")

• Use … asm(" BSF _PORTA, 4")

• Need a space (□) between the Register and the bit _PORTA,□4

• Place a // after the ; for example …
BCF _STATUS, 5 ; //Select Bank 0

126

Problems Encountered When Implementing

• Binary format …

001111B vice b'001111‘

• See the require Hi-Tech number formats below …

» These differ from the MPLAB assembler!

127

An Example …

128

An Example …

• Lets look at our original C program …

– Flashing LED D0 …

• We wrote a delay function in C …

• Then wrote it again when we used assembly language

• We will use the C program and “Mix” in the assembly

• Delay code
• Initialization routine

• Programs called Lecture_11A.c and Lecture_11B.c

129

An Example … (WAS)

void PORTA_init(void)
{

// WAS the following
//PORTA = 0; // All PORTA Pins are low
//CMCON0 = 7; // Turn off Comparators
//ANSEL = 0; // Turn off ADC
//TRISA = 0b001111; // RA4 and 5 are outputs; RA0,1,2, and 3 are input

130

An Example … (MIXED)
void PORTA_init(void)

{
// New code is the following ...

#asm
BCF _STATUS, 5 ; //Select Bank 0

;
CLRF _PORTA ; //Initialize PORTA (to all zeros)

;
MOVLW 7 ; //Load w with 7
MOVWF _CMCON0 ; //Load CMCON0 with 7

; //Turns off comparators
;

BSF _STATUS, 5 ; //Select Bank 1
;

CLRF _ANSEL ; //Shut off ADC (digital I/O)
;

MOVLW 001111B ; //Load w – RA4 and RA5 outputs
MOVWF _TRISA ; //copy w to TRIS PORTA

;
BCF _STATUS, 5 ; //Select Bank 0

#endasm

return;
}
/******** END OF PORTA_init ****************************/

131

An Example … (Delay)

void delay_routine(void)
{

// WAS the following
// int i, j;

// for (i = 0; i < 255; i++)
// for (j = 0; j < 255; j++);

// New code is the following ...

asm(" MOVLW 255") ; //Decimal 255
asm(" MOVWF _count") ; //Initialize counter to 10
asm("Repeat DECFSZ _count,f") ; //Decrement counter
asm(" GOTO Repeat") ; //If counter <> 0

return;

}
/******** END OF delay_routine *************************/

132

An Example … (Final Thoughts)

• Need to adjust the Delay Routine to have the LED flash on and off
slower …

• Two files are on the Webpage …

– Lecture_11A.c the original Flash_Do.c file

– Lecture_11B.c the mixed mode file

133

134

Lab

• Finish Lab # 5 … the report is optional, however, you need to run
through the lab

• Work on your Course Project

135

136

Next Class Topics

• Exam #2 …

– Covers material since the last exam … however …

• Earlier material is the building blocks for follow-on material

137

138

Homework

1. Perform Lab #5 (optional)

2. Read the material from Today’s class which is found in the …

• PIC16F684 Data Sheet
• PICmicro Mid-Range MCU Family Reference Manual
• HI-TECH C Tools for the PIC10/12/16 MCU Family – Hi-

Tech Software Manual, section 3.9

3. Prepare for Exam #2, next week … November 30th

139

140

References

1. PIC16F684 Data Sheet 41202F

2. PICmicro Mid-Range MCU Family Reference Manual

3. HI-TECH C Tools for the PIC10/12/16 MCU Family – Hi-Tech Software
Manual, section 3.9

