
Microprocessors B (17.384)

Spring 2011

Lecture Outline

Class # 04

February 15, 2011

Dohn Bowden

1

Today’s Lecture

• Administrative

• Microcontroller Hardware and/or Interface

• Programming/Software

• Lab

• Homework

2

Course Admin

3

Administrative

• Admin for tonight …

– Syllabus Highlights

• Lab #1 is due next Tuesday (February 22nd) … Changed

– We shall finish Lab #1 this week and, time permitting we will start
Lab #2

– NO lecture … Lab only

4

Syllabus Review
Week Date Topics Lab Lab Report Due

1 01/25/11 PIC pin out, C programming, Watchdog Timer, Sleep

2 02/01/11 General-purpose IO, LED/switch IO, FSM 1

3 02/08/11 Lab 1 con’t

4 02/15/11 Interrupts, Timers, interrupt-driven IO 2

5 02/22/11 Lab 2 con’t 1

6 03/01/11 Asynchronous and Synchronous Serial IO (UART, I2C,
SPI)

3 2SPI)

7 03/08/11 Examination 1

X 03/15/11 No Class – Spring Break

8 03/22/11 Lab 3 con’t8 03/22/11 Lab 3 con’t

9 03/29/11 Serial EEPROM operation, DAC, DC motor control,
Servos, Stepper motor control 4 3

10 04/05/11 Lab 4 con’t

11 04/12/11 Advanced Hardware Topics Project 4

12 04/19/11 Examination 2

13 04/26/11 Work on Course Project Project

5

14 05/03/11 Final Exam/Course Project Brief and Demonstration Demo

Chat Page

• Still looking into what is available through the school

– More to follow as it develops

6

Microcontroller
Hardware
and / or

Interfaces

7

Chapter 9 …

8

Timers…

9

Timers

• A Timer is …

– Just a counter

• The Timer2/3 feature has …

– 32-bit timers that can also be configured as …

• Two independent 16-bit timers with selectable
operating modesoperating modes

10

Timers

• As a 32-bit timer, the Timer2/3 feature permits operation in
three modes …three modes …

– Two Independent 16-bit timers (Timer2 and Timer3) with all
16-bit operating modes (except Asynchronous Counter 16-bit operating modes (except Asynchronous Counter
mode)

Single 32 bit timer (Timer2/3)– Single 32-bit timer (Timer2/3)

– Single 32-bit synchronous counter (Timer2/3)

11

Timers

• The Timer2/3 feature also supports …

– Timer gate operation
– Selectable Prescaler Settings
– Timer operation during Idle and Sleep modes
– Interrupt on a 32-bit Period Register Match
– Time Base for Input Capture and Output Compare Modules

(Timer2 and Timer3 only)
– ADC1 Event Trigger (Timer2/3 only)

12

Timers

• Time can be converted from elapsed Timer Ticks (Ticks) by …

– Multiplying by the clock period (Ttmr) of the timer …

Time = Ticks x Ttmr

13

Timers

• If a timer is a 16-bit timer … and …

– It is clocked at the FCY = 40 MHz … then …

• It will count from 0x0000 to 0xFFFF (65536 ticks) in …

Time = 65536 x (1/40 MHz)

= 65536 x 25 ns = 1638400 ns = 1638.4 us = 1.6384 ms

14

Timer2 Block Diagram

15

T2IF Period

• The T2IF flag is set at the following period (Tt2if) …

Tt2if = (PR2+1) x PRE x Tcy = (PR2+1) x PRE/Fcy

• Observe that because Timer2 is a 16-bit timer, if PR2 is its
maximum value of 0xFFFF (65535), and the prescaler is ‘1’,
this is just:

Tt2if = 65536 x 1/Fcy

• We typically want to solve for Tt2if, given a PRE value …

PR2 = (Tt2if x Fcy /PRE) − 1PR2 = (Tt2if x Fcy /PRE) 1

16

Example T2IF Periods

17

32-Bit Timer Configuration …

18

To configure Timer2 … 32-Bit Operation

• To configure the Timer2 feature for 32-bit operation …
1 Set the corresponding T32 control bit1. Set the corresponding T32 control bit
2. Select the prescaler ratio for Timer2 using the

TCKPS<1:0> bits.
3 Set the Clock and Gating modes using the corresponding 3. Set the Clock and Gating modes using the corresponding

TCS and TGATE bits
4. Load the timer period value. PR3 contains the most

significant word of the value while PR2 contains the least significant word of the value, while PR2 contains the least
significant word

5. Set the interrupt enable bit T3IE, if interrupts are
required Use the priority bits T3IP<2:0> to set the required. Use the priority bits T3IP<2:0> to set the
interrupt priority. While Timer2 controls the timer, the
interrupt appears as a Timer3 interrupt.

6 Set the corresponding TON bit6. Set the corresponding TON bit

19

To configure Timer2 … 32-Bit Operation

• Therefore …

1. Set the corresponding T32 control bit …

T3CONbits.TON = 0; // Stop any 16-bit Timer3 operation

T2CONbits.TON = 0; // Stop any 16/32-bit Timer3 operation

T2CONbits.T32 = 1; // Enable 32-bit Timer mode

20

To configure Timer2 … 32-Bit Operation

2. Select the prescaler ratio for Timer2 using the TCKPS<1:0>
bits …bits …

T2CONbits.TCKPS = 0b00// Select 1:1 Prescaler

21

<Unknown User>
Pencil

To configure Timer2 … 32-Bit Operation

3. Set the Clock and Gating modes using the corresponding TCS
and TGATE bits …and TGATE bits …

T2CONbits TCS = 0; // Select internal instruction cycle clockT2CONbits.TCS = 0; // Select internal instruction cycle clock

T2CONbits.TGATE = 0; // Disable Gated Timer mode

22

To configure Timer2 … 32-Bit Operation

4. Load the timer period value. PR3 contains the most significant
word of the value, while PR2 contains the least significant word of the value, while PR2 contains the least significant
word …

PR3 = 0x0002; // Load 32-bit period value (msw)

PR3 = 0x0000; // Load 32-bit period value (lsw)

23

<Unknown User>
Pencil

To configure Timer2 … 32-Bit Operation

5. Set the interrupt enable bit T3IE, if interrupts are required. Use
the priority bits T3IP<2:0> to set the interrupt priority. While the priority bits T3IP 2:0 to set the interrupt priority. While
Timer2 controls the timer, the interrupt appears as a Timer3
interrupt …

IPC2bits.T3IP = 0x01; // Set Timer3 Interrupt Priority Level

IFS2bits.T3IF = 0; // Clear Timer3 Interrupt Flag

IEC0bits.T3IE = 1; // Enable Timer3 interrupt

24

To configure Timer2 … 32-Bit Operation

6. Set the corresponding TON bit …

T2CONbits.TON = 1; // Start 32-bit Timer

25

In Summary …
To configure Timer2 in 32-Bit Operation

T3CONbits.TON = 0; // Stop any 16-bit Timer3 operation
T2CONbits TON = 0; // Stop any 16/32-bit Timer3 operationT2CONbits.TON = 0; // Stop any 16/32-bit Timer3 operation
T2CONbits.T32 = 1; // Enable 32-bit Timer mode
T2CONbits.TCS = 0; // Select internal instruction cycle clock
T2CONbits.TGATE = 0; // Disable Gated Timer mode
T2CONbits.TCKPS = 0b00// Select 1:1 Prescaler
TMR3 = 0x00; // Clear 32-bit Timer (msw)
TMR2 = 0x00; // Clear 32-bit Timer (lsw)
PR3 = 0x0002; // Load 32-bit period value (msw)
PR3 = 0x0000; // Load 32-bit period value (lsw)PR3 = 0x0000; // Load 32-bit period value (lsw)
IPC2bits.T3IP = 0x01; // Set Timer3 Interrupt Priority Level

C i d Continued next page ….
26

<Unknown User>
Pencil

<Unknown User>
Pencil

In Summary …
To configure Timer2 in 32-Bit Operation

IFS2bits.T3IF = 0; // Clear Timer3 Interrupt Flag
IEC0bits T3IE = 1; // Enable Timer3 interruptIEC0bits.T3IE = 1; // Enable Timer3 interrupt
T2CONbits.TON = 1; // Start 32-bit Timer

* */* Example code for Timer3 ISR*/
void __attribute__((__interrupt__, __shadow__)) _T3Interrupt(void)
{
/* Interrupt Service Routine code goes here */

IFS0bits T3IF = 0; //Clear Timer3 interrupt flagIFS0bits.T3IF = 0; //Clear Timer3 interrupt flag
}

27

In Summary …
To configure Timer2 in 32-Bit Operation

• The timer value at any point is stored in …

– The register pair TMR3:TMR2

• TMR3 always contains the …

– Most significant word (msw) of the count

– TMR2 contains the least significant word (lsw)

28

16-Bit Timer Configuration …

29

To configure Timer2 … 16-Bit Operation

• To configure any of the timers for …

– Individual 16-bit operation …

• The process is similar

– Refer to the Family reference manual for timers

» Section 11

30

Where do we head from here?

31

Interrupts

• To utilize the interrupt feature of the …

– Timers and other module …

• We need to have an understanding of …

– Interrupts … and …

– How they work!

32

Interrupt Basics

33

Polled Input / Output

• Polled Input / Output (IO) …

– Processor continually checks IO device to see if it is ready
for data transfer

• Inefficient, processor wastes time checking for ready
condition

• Either checks too often or not often enough

34

PIC24 μC Interrupt Operation

• The normal program flow … main … is referred to as …

– The foreground code

• The interrupt service routine (ISR) is referred to as …

– The background code

35

PIC24 μC Interrupt Operation

• Code that executes when the interrupt occurs is …

– The interrupt service routine (ISR)

• The ISR …

– Responds to whatever event triggered the interrupt

36

PIC24 μC Interrupt Operation

• During normal program execution …

– If we have an interrupt … the following will occur …

37

Interrupt Driven Input / Output

• Interrupt Driven Input / Output (IO) ...

– IO device interrupts processor when it is ready for data
transfer

• Processor can be doing other tasks while waiting for
last data transfer to complete – very efficient

• All IO in modern computers is interrupt driven

38

<Unknown User>
Pencil

Vector Tables

39

Vector Tables

• Vector Tables …

– Contains the starting address of the ISR for each interrupt
source

• Interrupt Vector Table (IVT) …

– Group of program memory locations

• Alternate Interrupt Vector Table (AIVT) …Alternate Interrupt Vector Table (AIVT) …

– Group of program memory locations

40

41

Interrupt Sources

42

PIC24HJ32GP202 - Interrupt Sources

• Interrupt sources depends on …

– On-chip peripherals

• The following slide gives the sources for our processor

– NOTE … Vector Num column gives the value for the lower
seven bits of the following special function register …

INTTREG (INTTREG<6:0>)INTTREG (INTTREG 6:0)

• INTTREG (INTTREG<11:8>) contains the interrupt priority

43

44

Interrupt Priorities

45

Interrupt Priorities

• An interrupt can be assigned a priority from 0 to 7

– Normal instruction execution is priority 0

• An interrupt MUST have a higher priority than 0 to interrupt
normal execution

• Assigning a priority of 0 to an interrupt masks (disables) than
interrupt

• An interrupt with a higher priority can interrupt a currently
executing ISR with a lower priority

46

Interrupt Priorities

• If simultaneous interrupts of the SAME priority occur …

– Then the interrupt with the …

• LOWER VECTOR NUMBER … is first in the interrupt
vector table … has the higher natural priority

– For example …

» The INT0 interrupt has a higher natural priority The INT0 interrupt has a higher natural priority
than INT1

47

Enabling an Interrupt

• Each interrupt source generally has …

– FLAG bit
– PRIORITY bits … and …
– An ENBLE bit

• The flag bit is set whenever the flag condition is true …

– Which varies by the interrupt

• The priority bits set the interrupt priority

48

Enabling an Interrupt

• The enable bit must be ‘1’ for the ISR to be executed …

– NOTE … the enable bit does not have to be a ‘1’ for …

• The flag bit to be set

• One of the things that must be done by the ISR is to …

– Clear the flag bit … or else …

• The ISR will get stuck in an infinite loop

49

Enabling an Interrupt

• By default …

– All priority bits and enable bits are ‘0’ … so …

• Interrupt ISRs are disabled from execution

50

Traps vs. Interrupts

51

Traps vs. Interrupts

• A Trap is a special type of interrupt, is non-maskable, has
higher priority than normal interrupts. Traps are always higher priority than normal interrupts. Traps are always
enabled!

• Hard trap • Hard trap …

– CPU stops after instruction at which trap occurs

• Soft trap …

– CPU continues executing instructions as trap is sampled
and acknowledged

52

Traps vs. Interrupts

53

GOLDEN RULE …

• An ISR should …

– Do its work as quickly as possible

• When an ISR is executing …

– It is keeping other ISRs of equal priority and lower from – It is keeping other ISRs of equal priority and lower from
executing … as well as … the main code

54

<Unknown User>
Pencil

INTx External Interrupts

55

INTx External Interrupts

• INTx interrupt inputs are another source for interrupts

• INT0 is assigned to pin 16

• INT1 and INT2 are not assigned …

– Therefore … they must be mapped to an external pin

• RPn

– Remappable pins

56

INTx External Interrupts

• They can be configured to be …

– Rising edge triggered … or …

– Falling-edge triggered … by …

• Using an associated INTxEP bit

– ‘1’ is falling edge

– ‘0’ is rising edge

57

Remappable Inputs

58

Remappable Inputs continued

59

Interrupt Service Routines …

60

Specifying Attributes of Functions

• In the compiler, you declare certain things about functions
called in your program which help the compiler optimize called in your program which help the compiler optimize
function calls and check your code more carefully

• The keyword attribute allows you to • The keyword __attribute__ allows you to …

– Specify special attributes when making a declaration

• This keyword is followed by an attribute specification inside
double parentheses

61

Specifying Attributes of Functions

• The following attribute is currently supported for functions …

interrupt [([save(list)] [, irq(irqid)] [,
altirq(altirqid)] [, preprologue(asm)])]

• Use this option to indicate that the specified function is an
interrupt handler

• The compiler will generate function prologue and epilogue
sequences suitable for use in an interrupt handler when this

b attribute is present

62

INTERRUPT SERVICE ROUTINE CONTEXT SAVING

• Interrupts … by their very nature … can occur at
unpredictable times …unpredictable times …

– Therefore … the interrupted code must be able to resume
with the same machine state that was present when the with the same machine state that was present when the
interrupt occurred

To properly handle a return from interrupt • To properly handle a return from interrupt …

– The setup (prologue) code for an ISR function
ll h l d k d automatically saves the compiler-managed working and

special function registers on the stack for later restoration
at the end of the ISR

63

INTERRUPT SERVICE ROUTINE CONTEXT SAVING

• You can use the optional save parameter of the interrupt
attribute to specify additional variables and special function attribute to specify additional variables and special function
registers to be saved and restored

• In certain applications it may be necessary to insert • In certain applications … it may be necessary to insert
assembly statements into the interrupt service routine
immediately prior to the compiler-generated function prologue

64

INTERRUPT SERVICE ROUTINE CONTEXT SAVING

• For example … it may be required that a semaphore be
incremented immediately on entry to an interrupt service incremented immediately on entry to an interrupt service
routine

• A semaphore is a • A semaphore is a …

– Flag set by an ISR to signal foreground task that an I/O
action has occurred action has occurred

• This can be done as follows …

void __attribute__((__interrupt__(__preprologue__("inc _semaphore"))))
isr0(void);

65

Specifying Attributes of Functions

• The optional parameter save specifies …

– A list of variables to be saved and restored in the function
prologue and epilogue

• The optional parameters irq and altirq specify …

– Interrupt vector table ID’s to be used

• The optional parameter preprologue specifies …The optional parameter preprologue specifies …

– Assembly code that is to be emitted before the compiler-
generated prologue codegenerated prologue code

66

Specifying Attributes of Functions

• Program Space Visibility … (PSV) …

– Allocate the variable in program space

• When using the interrupt attribute …

– You should specify either …

• auto_psv … or …
• no auto psv• no_auto_psv

– If none is specified a warning will be produced and
auto psv will be assumedauto_psv will be assumed

67

Syntax for Writing ISRs

• The syntax of the interrupt attribute is …

__attribute__((interrupt [(
[save(symbol-list)]
[, irq(irqid)]
[, altirq(altirqid)]
[, preprologue(asm)]
)]

))

68

An Example …

void __attribute__((interrupt, no_auto_psv)) _T1Interrupt(void)

{{

if (flag ==0)
{LATBbits.LATB2 =1;

}
else
{
LATBbits.LATB2=0;

}
flag =flag ^ 1; // Toggle flag

// 1.2 clear the interrupt flag
_T1IF = 0;

} //T1Interrupt

69

<Unknown User>
Pencil

Interrupt Summary …

70

Dividing Work between the ISR and main()

• There are usually multiple ways to divide work between the
ISR and main()ISR and main()

• The ‘right’ choice is the one that services the I/O event in a
timely manner and there can be more than right choicetimely manner, and there can be more than right choice

• Golden Rules:

– The ISR should do its work as fast as possible
– Do not put long software delays into an ISR
– An ISR should never wait for I/O, the I/O event should

trigger the ISR
– An ISR is never called as a subroutineAn ISR is never called as a subroutine

71

Programming/Softwareg g

72

Flashing LED1…

73

Flashing LED - Using Timers and Interrupts

• Next Lab will be to update current Lab #1 programs such …

– That we use Timers

– And use Interrupts

74

Summary …

75

Summary

• Timers

• Interrupts

• Input / Output using the above

76

Lab

77

Peer Review of Software …

78

Peer Review of Software Developed

• How did you write your code?

• What problems did you encountered?

• Any questions that you need resolved?

79

Lab #2 …

80

Lab #2

• Update current Lab #1 programs such …

– That we use Timers

– And use Interrupts

81

Next Class

82

Next Class Topics

• Lab #2 Start/continue

83

Homework

84

Homework

• Read …
– Material covered in today’s lecture (may want to re-read) – Material covered in today s lecture (may want to re-read)

• Chapter 9, pages 317 - 362

– Material for lecture in two weeks …

• Chapter 10, pages 367 - 437

• Labs • Labs …
– Lab #1 Report
– Code development for Lab #2

85

Ti t t tTime to start
the labthe lab …

86

Lab

• Continue Lab #1, if needed

• Start Lab #2

87

White Board …

88

89

90

91

92

93

94

95

96

97

98

References

99

References

1. None

100

