Microprocessors B (17.384)
Spring 2011

Lecture Outline
Class #04
February 15, 2011

Dohn Bowden

Today’s Lecture

Administrative

Microcontroller Hardware and/or Interface
Programming/Software

Lab

Homework

Course Admin

Administrative

e Admin for tonight ...
— Syllabus Highlights

 Lab #1 is due next Tuesday (February 22"9) ... Changed

— We shall finish Lab #1 this week and, time permitting we will start
Lab #2

— NOlecture ... Lab only

Syllabus Review

Week Date Topics Lab Lab Report Due

2 oM —Gereral-putpose O LEB switch oS %

a4 02/15/11 Interrupts, Timers, interrupt-driven 10 2

g 02/22/11 | Lab 2 con't 1
6 03/01/11 Asynchronous and Synchronous Serial 10 (UART, I2C, 3 / 5

SPI)

7 03/08/11 Examination 1
X 03/15/11 No Class — Spring Break
8 03/22/11 Lab 3 con't
o | oveen | g EErrOM pmater, G, 00 mareanis, |, |
10 04/05/11 Lab 4 con't
11 04/12/11 Advanced Hardware Topics Project 4
12 04/19/11 Examination 2
13 04/26/11 Work on Course Project Project
14 05/03/11 Final Exam/Course Project Brief and Demonstration Demo

Chat Page

e Still looking into what is available through the school

— More to follow as it develops

Microcontroller
Hardware
and / or
Interfaces

Chapter 9 ...

Timers...

Timers

A Timeris...

— Just a counter

The Timer2/3 feature has ...

— 32-bit timers that can also be configured as ...

 Two independent 16-bit timers with selectable
operating modes

10

Timers

As a 32-bit timer, the Timer2/3 feature permits operation in
three modes ...

— Two Independent 16-bit timers (Timer2 and Timer3) with all

16-bit operating modes (except Asynchronous Counter
mode)

— Single 32-bit timer (Timer2/3)

— Single 32-bit synchronous counter (Timer2/3)

11

Timers

The Timer2/3 feature also supports ...

— Timer gate operation

— Selectable Prescaler Settings

— Timer operation during ldle and Sleep modes
— Interrupt on a 32-bit Period Register Match

— Time Base for Input Capture and Output Compare Modules
(Timer2 and Timer3 only)

— ADC1 Event Trigger (Timer2/3 only)

12

Timers

Time can be converted from elapsed Timer Ticks (Ticks) by ...

— Multiplying by the clock period (Ttmr) of the timer ...

Time =Ticks x Ttmr

13

Timers

If atimer is a 16-bit timer... and ...

— ltis clocked at the FCY =40 MHz ... then ...

It will count from 0x0000 to OxFFFF (65536 ticks) in ...

Time = 65536 x (1/40 MHz)

= 65536 x 25 ns =1638400 ns =1638.4 us = 1.6384 ms

14

Timer2 Block Diagram

[~ TON

_ Gate

Sync

Falling Edge

Detect '_

2

1x

01

TCKPS<1:0=

,4"2

00

TCy

Reset

TGATE

Prescaler
1, 8, 64, 256

— TMR2

Figure redrawn by author
from Fig 11-2 found in the
PIC24H32GP202

datasheet (DSTO289B),
Microchip Technology, Inc.

—

T

‘\ The Timer 3 block

Equal

Comparator

it}

PR2

diagram is the same,

with TMR3, PR3 used

A for these registers and

T3IF for the interrupt flag.

15

T2IF Period

The T2IF flag is set at the following period (T,;) ...
Tz = (PR2+1) x PRE x Tey = (PR2+1) x PRE/Fcy

Observe that because Timer2 is a 16-bit timer, if PR2 is its
maximum value of OxFFFF (65535), and the prescaler is ‘1’,
this is just:

T = 65536 x 1/Fcy
We typically want to solve for T,,;;, given a PRE value ...

16

Example T2IF Periods

PR2/PRE Values for T,,.;= 15 ms. Fcy =40 MHz
PRE=1 PRE=8 PRE=64 PRE=256
PR2 600000 75000 9375 2344
(invalid) (invalid)

The PR2 for PRE=1. PRE=8 are invalid because they are greater
than 65535 (PR2 1s a 16-bit register).

Configuring Timer?2 to mterrupt every T,,.; period 1s called a
PERIODIC INTERRUPT.

17

32-Bit Timer Configuration ...

To configure Timer2 ... 32-Bit Operation

 To configure the Timer2 feature for 32-bit operation ...

1.
2.

3.

Set the corresponding T32 control bit

Select the prescaler ratio for Timer2 using the
TCKPS<1:0> bits.

Set the Clock and Gating modes using the corresponding
TCS and TGATE bits

Load the timer period value. PR3 contains the most
significant word of the value, while PR2 contains the least
significant word

Set the interrupt enable bit T3IE, if interrupts are
required. Use the priority bits T3IP<2:0> to set the
interrupt priority. While Timer2 controls the timer, the
interrupt appears as a Timer3 interrupt.

Set the corresponding TON bit

19

1.

To configure Timer2 ... 32-Bit Operation

Therefore ...

Set the corresponding T32 control bit ...
T3CONDbits.TON = 0; // Stop any 16-bit Timer3 operation
T2CONDbits.TON = 0; // Stop any 16/32-bit Timer3 operation

T2CONDbits.T32 = 1; // Enable 32-bit Timer mode

20

To configure Timer2 ... 32-Bit Operation

2. Select the prescaler ratio for Timer2 using the TCKPS<1:0>
bits ...

T2CONDbits. TCKPS = 0b00// Select 1:1 Prescaler

17
.

21

<Unknown User>
Pencil

To configure Timer2 ... 32-Bit Operation

3. Set the Clock and Gating modes using the corresponding TCS
and TGATE bits ...

T2CONDbits.TCS = 0; // Select internal instruction cycle clock

T2CONDbits.TGATE = 0; // Disable Gated Timer mode

22

To configure Timer2 ... 32-Bit Operation

4. Load the timer period value. PR3 contains the most significant
word of the value, while PR2 contains the least significant
word ...

PR3 =0x0002; // Load 32-bit period value (msw)

P@F 0x0000; // Load 32-bit period value (Isw)

7

23

<Unknown User>
Pencil

To configure Timer2 ... 32-Bit Operation

5. Set the interrupt enable bit T3IE, if interrupts are required. Use
the priority bits T3IP<2:0> to set the interrupt priority. While
Timer2 controls the timer, the interrupt appears as a Timer3
interrupt ...

IPC2bits.T3IP = 0x01; // Set Timer3 Interrupt Priority Level
IFS2bits.T3IF = 0; // Clear Timer3 Interrupt Flag

IECObits.T3IE = 1; /[Enable Timer3 interrupt

24

To configure Timer2 ... 32-Bit Operation

6. Set the corresponding TON bit ...

T2CONDbits.TON = 1; /| Start 32-bit Timer

25

In Summary ...
To configure Timer2 in 32-Bit Operation

T3CONDbits.TON = 0; // Stop any 16-bit Timer3 operation
T2CONDbits. TON = 0; /I Stop any 16/32-bit Timer3 operation
T2CONDbits.T32 = 1; // Enable 32-bit Timer mode
T2CONDbits.TCS = 0; // Select internal i uction cycle clock
T2CONDbits. TGATE = 0; // Di ated Timer mode
T2CONDbits. TCKPS = 0b0Q///Select 1:1 Prescaler

TMR3 = 0x00; // Clear 32-bit Timer (msw)

TMR2 = 0x00; // Clear 32-bit Timer (Isw)

PR3 =0x0002; // Load 32-bit period value (msw)

P 0x0000; // Load 32-bit period value (Isw)

IPC2bits.T3IP = 0x01; // Set Timer3 Interrupt Priority Level

Continued next page

. .

<Unknown User>
Pencil

<Unknown User>
Pencil

In Summary ...
To configure Timer2 in 32-Bit Operation

IFS2bits.T3IF = 0; // Clear Timer3 Interrupt Flag
IECObits.T3IE = 1; /| Enable Timer3 interrupt
T2CONDbits.TON = 1; /| Start 32-bit Timer

I* Example code for Timer3 ISR*/
void __attribute_ ((__interrupt__, _ shadow__)) _T3Interrupt(void)

{
I* Interrupt Service Routine code goes here */
IFSObits.T3IF = 0; //Clear Timer3 interrupt flag
}

27

In Summary ...
To configure Timer2 in 32-Bit Operation

The timer value at any point is stored in ...
— The register pair TMR3:TMR2
TMR3 always contains the ...
— Most significant word (msw) of the count

— TMR2 contains the least significant word (Isw)

28

16-Bit Timer Configuration ...

To configure Timer2 ... 16-Bit Operation

To configure any of the timers for ...
— Individual 16-bit operation ...
 The process is similar
— Refer to the Family reference manual for timers

» Section 11

30

Where do we head from here?

Interrupts

To utilize the interrupt feature of the ...

— Timers and other module ...

« We need to have an understanding of ...

— Interrupts ... and ...

— How they work!

32

Interrupt Basics

Polled Input / Output

Polled Input / Output (10) ...

— Processor continually checks 10 device to see if itis ready
for data transfer

* Inefficient, processor wastes time checking for ready
condition

e Either checks too often or not often enough

34

PIC24 uC Interrupt Operation

The normal program flow ... main ... is referred to as ...
— The foreground code
The interrupt service routine (ISR) is referred to as ...

— The background code

35

PIC24 uC Interrupt Operation

Code that executes when the interrupt occursiis ...
— The interrupt service routine (ISR)

The ISR ...

— Responds to whatever event triggered the interrupt

36

PIC24 uC Interrupt Operation

During normal program execution ...

— If we have an interrupt ... the following will occur ...

Normal Program
flow

main() |

instrl
instr2

instr3d

(1) Status (lower byte), CPU priority
level, and return address saved
on stack.

Interrupt Service Routine (ISR)

(2) CPU priority level set to priority . » ISR interruptName() {

of pending interrupt. thus masking
interrupts of same or lower priority,
(3) PC set to interrupt vector.

instrN [nterrupt occurs at insteN (which completes)

instrN+l --——

Status (lower byte). CPU priority
level, and return address are restored

ISR responsihilities:

(a) save processor contexi
(b) service interrupt

(c) restore processor context

Return from
—-+—(retfie
Interrupt

instri+2 . . i e
from :jlack. l,h.us rcturning to samc statc } instruction
as belore the mterrupt.
} o ISR called by interrupt generation logic: main () code daes not call ISR explictly.

37

Interrupt Driven Input / Output

Interrupt Driven Input / Output (10) ...

~—

— 10 device interrupts processor when it is ready for data
transfer

 Processor can be doing other tasks while waiting for
last data transfer to complete - very efficient

 All 10 in modern computers is interrupt driven

38

<Unknown User>
Pencil

Vector Tables

Vector Tables

Vector Tables ...

— Contains the starting address of the ISR for each interrupt
source

Interrupt Vector Table (IVT) ...

— Group of program memory locations

Alternate Interrupt Vector Table (AIVT) ...

— Group of program memory locations

40

Decreasing Natural Order Priority

Reset - gete Instruction
Reset - gote Address
Reserved
Oscillator Fail Trap Vector
Address Error Trap Vector
Stack Error Trap Vector
Math Error Trap Vecior
DMAC Error Trap Vector
Reserved
Reserved
Interrupt Vector 0
[nterrupt Vector 1

[nterrupt Vector 116

Interrupt Vector 117

e ———————————
Reserved

Reserved

Reserved
Oscillator Fail Trap Vector
Address Error Trap Vector
Stack Error Trap Vector
Math Error Trap Vector
DMAC Error Trap Vecior

Reserved

Reserved
Interrupt Vector 0
Interrupt Vector 1

—

[nterrupt Vector 116
Interrupt Vector 117
Start of Code

Ox 000000
0000002
Ox000004
Ox 000006
Ox 000008
OxO0000A
Ox00000C
Ox00000E

Ox000014
Ox 000016

Ox0000FC
Ox0000FE

0x 000100
Ox000102
Ox 0007104
0x000106
Ox000108
0x000104A
Ox00010C
Ox00010E

Ox000114
Ox0001 16

Ox0OOTFC
Ox000TFE
Ox000200

> Interrupt Vector Table (IVT)

|

Alternate Interrupt

Vector Table (AIVT)

Vector
Table

41

Interrupt Sources

42

PIC24HJ32GP202 - Interrupt Sources

Interrupt sources depends on ...
— On-chip peripherals
The following slide gives the sources for our processor

— NOTE ... Vector Num column gives the value for the lower
seven bits of the following special function register ...

INTTREG (INTTREG<6:0>)

INTTREG (INTTREG<11:8>) contains the interrupt priority

43

IvT Vector | PIC24 Compiler Vector
Address Num Name Funetion

0x000006 | [_©scillatorFail Oscillator Failure

0x000008 2 | _AddressErrox Address Error Interrupt

Ux 00000 3 | _StackError stack Error S ources

0x00000C 4 | MathError Math Error

Ox000014 § | _INTOInterrupt INTO — External Interrupt

Ox000016 9 | _IClInterrupt IC1 — Input Capture 1

Ox000018 10 | _OClInterrupt OC1 = Output Compare 1

Ox00001 A 11 | _TlInterrupt T1 — Timer] Expired

0xO0001E 13 | _IC2Interrupt IC2 — Input Capture 2

0x000020 14 | _OC2Interrupt OC2 - Output Compare 2

0x000022 15 | _T2Interrupt T2 — Timer2 Expired

0x000024 16 | _T3Interrupt T3 — Timer3 Expired

(x000026 17 | _SPlErrInterrupt | SpP|I1E — SPII Error

0x000028 18 | _SPlInterrupt SPI1 — SPI1 transfer done

0x00002A 19 | _ViRXKInterzupt UIRX — UART1 Receiver Serial data
0x00002C 20 | _UlTXInterrupt UITX — UART]1 Transmitter i
0x00002F 21 | _ADClInterrupt ADCI — ADC 1 convert done has arrived
0x000034 24 | _SI2ClInterrupt SI2C1 - 12C1 Slave Events

0x000036 25 | _MIZ2CInterrupt MI2C1 — I2C1 Master Events :
0x00003A 57 [_CNInterzupt Change Notification Interrupt CNx Pin has
0x00003C 28 | _INTlInterrupt INT1 — External Interrupt ChElIlEed state
0x000040 30 | _ICTInterrupt IC7 — Input Capture 7 -
Ox000042 31 | _IC8Intarzrupt IC8 — Input Capture 8

Ox00004E 37 | _INTZInterrupt INT2 — External Interrupt

0x000096 73 | _UlErrinterrupt UlE — UARTI Error

LSty o e = e - i R I (R e Y- T

44

Interrupt Priorities

Interrupt Priorities

An interrupt can be assigned a priority from 0 to 7
— Normal instruction execution is priority 0

An interrupt MUST have a higher priority than 0 to interrupt
normal execution

Assigning a priority of 0 to an interrupt masks (disables) than
interrupt

An interrupt with a higher priority can interrupt a currently
executing ISR with a lower priority

46

Interrupt Priorities

If simultaneous interrupts of the SAME priority occur ...
— Then the interrupt with the ...

 LOWER VECTOR NUMBER ... isfirst in the interrupt
vector table ... has the higher natural priority

— For example ...

» The INTO interrupt has a higher natural priority
than INT1

47

Enabling an Interrupt

Each interrupt source generally has ...
— FLAG bit
— PRIORITY bits ... and ...
— An ENBLE bit
The flag bit is set whenever the flag condition is true ...

— Which varies by the interrupt

The priority bits set the interrupt priority

48

Enabling an Interrupt

The enable bit must be ‘1’ for the ISR to be executed ...

— NOTE. ... the enable bit does nothave to be a ‘1’ for ...

 The flag bit to be set

One of the things that must be done by the ISR is to ...

— Clear the flag bit ... or else ...

 The ISR will get stuck in an infinite loop

49

Enabling an Interrupt

By default ...
— All priority bits and enable bits are ‘0’ ... so ...

* Interrupt ISRs are disabled from execution

50

Traps vs. Interrupts

Traps vs. Interrupts

A Trap is a special type of interrupt, is non-maskable, has

higher priority than normal interrupts. Traps are always
enabled!

Hard trap ...

— CPU stops after instruction at which trap occurs

Soft trap ...

— CPU continues executing instructions as trap is sampled
and acknowledged

52

Traps vs. Interrupts

Trap Category Priority Flag(s)

Oscillator Failure Hard 14 _OSCFAIL (oscillator fail, INTCON1<1>),
_CF (clock fail, OSSCON<3>)
Address Error Hard 13 _ADDRERR (address error, INTCON1<3>)
Stack Error Soft 12 _STKERR (stack error. INTCON1<2>)
Math Error Soft 11 _MATHERR (math error, INTCON1<4>)
DMAC Error Soft 10 _ DMACERR (DMA conflict write, INTCON1<5=)

53

GOLDEN RULE ...

An ISR should ...

- @its work as quickly as possible
DaEd

When an ISR is executing ...

— It is keeping other ISRs of equal priority and lower from
executing ... as well as ... the main code

54

<Unknown User>
Pencil

INTX External Interrupts

INTx External Interrupts

INTx interrupt inputs are another source for interrupts
INTO is assigned to pin 16
INT1 and INT2 are not assigned ...
— Therefore ... they must be mapped to an external pin
* RPn

— Remappable pins

56

INTx External Interrupts

They can be configured to be ...
— Rising edge triggered ... or ...
— Falling-edge triggered ... by ...
* Using an associated INTxEP bit
- ‘1’ is falling edge

— ‘0’ is rising edge

57

Remappable Inputs

Input Name Function Example Assignment
Name mapping inputs to RPn

External Interrupt I INTI _INTIR = n:

External Interrupt 2 INT2 _INT2R = n:

Timer2 Ext. Clock T2CK _T2CKR = n;

Timer3 Ext. Clock T3CK _T3CKR = n:

Input Capture 1 IC1 ICIR =n:

Input Capture 2 IC2 IC2R =n:

UARTI1 Receive UIRX _UIRXR = n:

UARTI1 CIr To Send UICTS _UICTSR = n:

SPII Data Input SDII _SDIIR = n:

SPI1 Clock Input SCK1 _SCKIR =n;

SPI1 Slave Sel. Input SS1 _SSIR =n:

58

Remappable Inputs continued

Output Name Function
Name
Default Port Pin NULL
UART1 Transmuit UITX
UART1 Rdy. To Send UIRTS
SPII Data Output SDOI1
SPI1 Clock Output SCKIOUT
SPI1 Slave Sel. Out. SS1OUT
Output Compare 1 OC1
Output Compare 2 OC2

Mapping outputs to RPx pins.

RPnR<4:0> Example
Value Assignment
0 ~RPnR=0:
3 _RPnR =3
4 _RPnR =4
7 RPnR =7
8 _RPnR =38:
9 RPnR=09:
18 RPnR = 18;
19 RPnR =19:

59

Interrupt Service Routines ...

Specifying Attributes of Functions

In the compiler, you declare certain things about functions
called in your program which help the compiler optimize
function calls and check your code more carefully

The keyword __attribute__ allows you to ...
— Specify special attributes when making a declaration

This keyword is followed by an attribute specification inside
double parentheses

61

Specifying Attributes of Functions

The following attribute is currently supported for functions ...

interrupt [([save(list)] [, irq(irgid)] [,
altirq(altirgid)] [, preprologue(asm)])]

Use this option to indicate that the specified function is an
interrupt handler

The compiler will generate function prologue and epilogue
sequences suitable for use in an interrupt handler when this
attribute is present

62

INTERRUPT SERVICE ROUTINE CONTEXT SAVING

Interrupts ... by their very nature ... can occur at
unpredictable times ...

— Therefore ... the interrupted code must be able to resume
with the same machine state that was present when the
interrupt occurred

To properly handle a return from interrupt ...

— The setup (prologue) code for an ISR function
automatically saves the compiler-managed working and
special function registers on the stack for later restoration
at the end of the ISR

63

INTERRUPT SERVICE ROUTINE CONTEXT SAVING

 You can use the optional save parameter of the interrupt
attribute to specify additional variables and special function
registers to be saved and restored

* In certain applications ... it may be necessary to insert
assembly statements into the interrupt service routine
immediately prior to the compiler-generated function prologue

64

INTERRUPT SERVICE ROUTINE CONTEXT SAVING

For example ... it may be required that a semaphore be
incremented immediately on entry to an interrupt service
routine

A semaphoreis a ...

— Flag set by an ISR to signal foreground task that an 1/O
action has occurred

This can be done as follows ...

void __attribute_ ((__interrupt__(__preprologue__("inc _semaphore™"))))
isrO(void);

65

Specifying Attributes of Functions

The optional parameter save specifies ...

— A list of variables to be saved and restored in the function
prologue and epilogue

The optional parameters irq and altirqg specify ...
— Interrupt vector table ID’s to be used
The optional parameter preprologue specifies ...

— Assembly code that is to be emitted before the compiler-
generated prologue code

66

Specifying Attributes of Functions

Program Space Visibility ... (PSV) ...

— Allocate the variable in program space
When using the interrupt attribute ...

— You should specify either ...

e auto_psv ...or...
* no_auto_psv

— If none is specified a warning will be produced and
auto_psv will be assumed

67

Syntax for Writing ISRs

 The syntax of the interrupt attribute is ...

__attribute__((interrupt [(

)

 save(symbol-list)]

[, irg(irqid)]

, altirq(altirqid)]

, preprologue(asm)]

)]

68

An Example ...

void __attribute__((interrupt, no_auto_psv)) _T1Interrupt(void)

if (flag ==0)
{LATBbits.LATB2 =1;

else

{
LATBbits.LATB2=0;

}
flag =flag * 1; Il Toggle flag

11 1.2 clear the interrupt flag
_T1IF=0;

} [T1interrupt

69

<Unknown User>
Pencil

Interrupt Summary ...

Dividing Work between the ISR and main()

There are usually multiple ways to divide work between the
ISR and main()

The ‘right’ choice is the one that services the I/0 eventin a
timely manner, and there can be more than right choice

Golden Rules:

— The ISR should do its work as fast as possible
— Do not put long software delays into an ISR

— An ISR should never wait for 1/0, the 1/0 event should
trigger the ISR

— An ISR is never called as a subroutine

71

Programming/Software

Flashing LED1...

Flashing LED - Using Timers and Interrupts

Next Lab will be to update current Lab #1 programs such ...
— That we use Timers

— And use Interrupts

74

Summary ...

75

Summary

Timers
Interrupts

Input / Output using the above

76

Lab

Peer Review of Software ...

Peer Review of Software Developed

How did you write your code?
What problems did you encountered?

Any questions that you need resolved?

79

Lab #2 ...

Lab #2

Update current Lab #1 programs such ...

— That we use Timers

— And use Interrupts

81

Next Class

Next Class Topics

Lab #2 Start/continue

83

Homework

Homework

Read ...
— Material covered in today’s lecture (may want to re-read)

e Chapter 9, pages 317 - 362
— Material for lecture in two weeks ...
 Chapter 10, pages 367 -437
Labs ...

— Lab #1 Report
— Code development for Lab #2

85

Time to start
the lab ...

Continue Lab #1, if needed

Start Lab #2

Lab

87

White Board ...

89

90

91

92

93

94

95

96

97

98

References

References

1. None

100

