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0. Introduction and background

Denote n-dimensional Euclidean space by R
n , and let K be a compact convex subset of R

n . Given
a unit vector u, view K as a family of line segments parallel to u. Slide these segments along u so
that each is symmetrically balanced around the hyperplane u⊥ . By Cavalieri’s principle, the volume
of K is unchanged by this rearrangement. The new set, called the Steiner symmetrization of K in
the direction of u, will be denoted by su K . It is not difficult to show that su K is also convex, and
that su K ⊆ su L whenever K ⊆ L. A little more work verifies the following intuitive assertion: if you
iterate Steiner symmetrizations of K through a suitable sequence of unit directions, the successive
Steiner symmetrals of K will approach a Euclidean ball in the Hausdorff topology on compact (convex)
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subsets of R
n . A detailed proof of this assertion can be found in any of [8, p. 98], [14, p. 172], or

[29, p. 313], as well as in Section 2 below.
Questions remain surrounding the following issue: Given a convex body K , under what more spe-

cific conditions on the sequence of directions ui does the sequence of Steiner symmetrals

sui · · · su1 K (1)

converge to a ball? For example, Mani [21] has shown that, given a sequence of unit directions ui
chosen uniformly at random, the sequence (1) converges to a ball almost surely; that is, with unit
probability. An explicit algorithm for rounding out a convex body with a periodic sequence of Steiner
symmetrizations is described by Eggleston [8, p. 98].

For over 150 years Steiner symmetrization has been a fundamental tool for attacking problems re-
garding isoperimetry and related geometric inequalities [11,12,25,26]. Steiner symmetrization appears
in the titles of dozens of papers (see e.g. [2–7,9,10,17–19,21,22,24]) and plays a key role in recent
work such as [15,20,27,28]. In spite of the ubiquity of Steiner symmetrization throughout geometric
analysis, many elementary questions about this construction remain unanswered. The authors of a
recent paper [20] required a sequence of Steiner symmetrizations that rounded out a given convex
body, using only directions drawn from a restricted dense set of directions in the unit sphere. Is any
dense set of directions sufficient?

While this more subtle fact may be derived from known results of a more highly technical nature
(such as recent work of Van Schaftingen [27,28]), it is not explicitly stated in the literature. We give a
very simple proof that is a variation of known proofs of the standard Steiner symmetrization conver-
gence theorem (such as that given in [29]). Along the way, we also address the related open question:
If a given countable dense set of directions can be used to round out a body K , will this set always
work, regardless of its ordering when arranged in a sequence?

More precisely, suppose we are given a set of directions Ω that is dense in the unit sphere. Is it
always possible to choose directions ui from this restricted set Ω so that the sequence (1) converges
to a ball? The short answer is Yes, provided the directions are chosen (and ordered) carefully. On
the other hand, it turns out that an arbitrary countable dense sequence of directions may fail to
accomplish this; that is, the ordering of the directions could make a difference. In Section 1 we show
by explicit example that, for certain orderings of the directions ui , the limit of the sequence (1) may
fail to exist. Then, in Section 2, we give an elementary proof that, given a convex body K and a suitably
ordered choice of directions ui from a dense set Ω , the sequence (1) converges to a ball.

1. Not every choice works

In this section we construct a dense sequence of directions in the unit circle whose correspond-
ing sequence of Steiner symmetrizations fails to converge on a substantial family of convex bodies.
While the example is given in dimension 2, it can be easily generalized to arbitrary finite dimension.
The example that follows demonstrates the need for care when iterating Steiner symmetrization as
an infinite process.

Let {p1, p2, . . .} denote the sequence of positive prime integers. Recall that the sum

∞∑
i=1

1

pi
(2)

diverges [1, p. 18]. For m � 1, let um denote the unit vector in R
2 having counter-clockwise angle

θm =
m∑ √

2

pi
i=1
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with the horizontal axis, measured in radians. Since θm → ∞, while each successive incremental angle√
2

pm
→ 0, the unit vectors um form a countable dense subset of the unit circle.
Meanwhile, observe that

∞∏
i=1

cos

(√
2

pi

)
�

∞∏
i=1

(
1 − 1

p2
i

)
.

Applying the Euler product formula [16, p. 246], we obtain

( ∞∏
i=1

cos

(√
2

pi

))−1

�
∞∏

i=1

(
1

1 − 1
p2

i

)
=
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i=1

(
1 + 1

p2
i

+ 1

p4
i

+ · · ·
)

=
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k=1

1

k2
= π2

6
,

so that

∞∏
i=1

cos

(√
2

pi

)
� 6

π2
. (3)

Let � be a vertical line segment, centered at the origin, of length 1. Apply the sequence of Steiner
symmetrizations sum to �. Each symmetrization has the effect of projecting the previous line segment
onto the line perpendicular to um , thereby multiplying the previous length by the next incremental

cosine, cos(
√

2
pm

). Since the limiting value of the product (3) is strictly positive (greater than 1/2, in
fact), while the angles θm cycle around the circle forever, the iterated Steiner symmetrals of � also
spin in circles forever, while approaching a limiting positive length.

In particular, the sequence of line segments

�m = sum · · · su1�

has no limit.
Now let K be a cigar-shaped convex body of area ε containing � as an axis of symmetry. By the

monotonicity of Steiner symmetrization, each element in the sequence of Steiner symmetrals

Km = sum · · · su1 K

must contain the corresponding symmetral �m , so that the diameter of each Km exceeds 6
π2 . Since

each Km has the same area ε as the original body K , which could be made arbitrarily small before-
hand, it follows that the sequence Km cannot approximate a ball. Indeed, for ε < 9

π3 the sequence Km

has no limit, since the diameter line revolves forever, but does not shrink enough to accommodate
the tiny given area ε.

We have shown that a countable dense sequence of directions does not necessarily lead to a well-
defined limiting Steiner symmetral.

In this specific example we used the divergent series (2) as a starting point for computational
convenience. Gronchi [13] has shown that a more general family of examples can be constructed
starting with any decreasing sequence of incremental angles θi provided that

∑∞
i=1 θ2

i converges and∑∞
i=1 θi diverges. Iterated Steiner symmetrization in the resulting sequence of directions, applied to

a sufficiently eccentric ellipse, results in a sequence of ellipses whose principal axes rotate forever
without converging to a circle.
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2. There is always an order of directions that works

In view of the previous example, it is necessary to show that, given a countable dense set of
directions in R

n , it is indeed possible to construct a sequence of directions from this set so that
successive Steiner symmetrals of a given convex body K converge to a Euclidean ball.

Let Ω be a dense subset of the Euclidean unit sphere S
n−1. If a convex body K in R

n has volume
zero, then K lies in a proper subspace of R

n . Steiner symmetrization of K in any direction outside the
affine hull of K has the same effect as orthogonal projection. One can choose directions close to, but
outside, the affine hull so as to shrink K by any positive factor, along any direction inside the affine
hull. A suitable iteration will shrink the diameter of successive symmetrizations (projections) to zero,
so that symmetrals converge to a point (a Euclidean ball of radius zero).

For a convex body K in R
n of positive volume, let rK = maxx∈K |x|, which is the minimal radius of

balls centered at the origin that contain K . Let r1 be the infimum of all rC , where C is obtained from
finitely many successive Steiner symmetrizations of K in directions that belong to Ω . Then there
is a sequence of such convex bodies Ci so that rCi → r1. Obviously, the sequence {Ci} is bounded,
because each Ci ⊆ rK B , where B is the unit ball. By the Blaschke selection theorem [23,29], there is
a subsequence Cik that converges to a convex body K1, where rK1 = r1. Denote r1 B by B1, so that
K1 ⊆ B1.

We claim that K1 = B1. Assume it is not true. There is a small cap U on ∂ B1 so that U ∩ K1 = ∅.
For any line ξ such that ξ ∩ U �= ∅, either ξ ∩ K1 = ∅ or the line ξ intersects a longer chord in B1
than in K1; that is, |ξ ∩ B1| > |ξ ∩ K1|. After taking a Steiner symmetrization su K1 for some u ∈ Ω , the
symmetral su K1 fails to intersect both U and a new cap U ′ given by the reflection of U with respect to
the hyperplane u⊥ . Since Ω is dense in S

n−1, one can continue to take symmetrizations with respect
to an appropriate finite family of hyperplanes with normals v1, . . . , vs ∈ Ω that generate finitely many
caps covering the whole sphere ∂ B1 and generate a convex body K2 so that |ξ ∩ B1| > |ξ ∩ K2| for
any line such that ξ ∩ ∂ B1 �= ∅. Thus, rK2 < r1.

Denote C̃ik = svs · · · sv1 Cik . Since Cik → K1, while Steiner symmetrization is continuous on convex
bodies with nonempty interior [29, p. 312], we have

C̃ik = svs · · · sv1 Cik → svs · · · sv1 K1 = K2.

Since rC̃ik
→ rK2 , it follows from the definition of r1 that rK2 � r1, a contradiction.

We have shown that for any convex body K of positive volume there are u1, . . . , ui1 ∈ Ω so that
the Hausdorff distance d between sui1

· · · su1 K and the centered ball B1 with the same volume of K
can be arbitrarily small.

Denote by d(K1, K2) the Hausdorff distance between compact convex sets K1, K2 ⊆ R
n . For a se-

quence of positive numbers εk → 0, there are u1, . . . , ui1 ∈ Ω so that d(D1, B1) < ε1, where D1 =
sui1

· · · su1 K . Similarly, there are ui1+1, . . . , ui2 ∈ Ω so that d(D2, B1) < ε2, where D2 = sui2
· · · sui1+1 D1.

In general, there are uik−1+1, . . . , uik ∈ Ω so that d(Dk, B1) < εk , where Dk = suik
· · · suik−1+1 Dk−1. Since

d(su K , B1) � d(K , B1) for any K when d(K , B1) < rB1 , there is a sequence Ki = sui · · · su1 K → B1,
where ui ∈ Ω .

3. Related open questions

In Section 1 we described a convex body K and a sequence of directions ui for which the sequence
of Steiner symmetrals

Ki = sui · · · su1 K

failed to converge in the Hausdorff topology. However, some of the examples described in Section 1
clearly converge in shape: there is a corresponding sequence of isometries ψi such that the sequence
{ψi Ki} converges. Is this always the case? If so, and supposing also that the sequence {ui} is dense in
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the unit sphere S
n−1, is the limit of the convergent sequence {ψi Ki} always an ellipsoid? Moreover,

what happens if K is permitted to be an arbitrary (possibly non-convex) compact set?
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