
= T f (xg(k)) + T f (xg(∞)) (since T f is linear)

= (x f (g(k)) + x f (∞)) + (x f (g(∞)) + x f (∞))

= x f (g(k)) + x f (g(∞)) (since u + u = 0 for all u ∈ F8)

= T f ◦g(xk).

3. Proof that T is a homomorphism mapping into GL(F8). We have seen that each
element of SLF(7) can be written as a product of the generators r , t , and δ

(using only positive powers, in fact). Since T (r), T (t), and T (δ) are known to
lie in GL(F8), repeated application of the lemma shows that T (h) lies in GL(F8)

for all h ∈ SLF(7). Having drawn this conclusion, the lemma now shows that T
is a group homomorphism.

4. Proof that T is a bijection. So far, we know that T is a group homomorphism
mapping SLF(7) into GL(F8). T is actually onto, since the image of T contains
〈T (r), T (t), T (δ)〉, which is the whole group GL(F8). Since SLF(7) and GL(F8)

both have 168 elements, T must also be one-to-one.

Our proof that PSL(2, 7) ∼= GL(3, 2) is now complete. We leave it as a challenge
for the reader to find an explicit description of the inverse bijection T −1 : GL(F8) →
SLF(7).
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Angles as Probabilities

David V. Feldman and Daniel A. Klain

Almost everyone knows that the inner angles of a triangle sum to 180◦. But if you
ask the typical mathematician how to sum the solid inner angles over the vertices of a
tetrahedron, you are likely to receive a blank stare or a mystified shrug. In some cases
you may be directed to the Gram-Euler relations for higher-dimensional polytopes [4,
5, 7, 8], a 19th-century result unjustly consigned to relative obscurity. But the answer
is really much simpler than that, and here it is:

The sum of the solid inner vertex angles of a tetrahedron T , divided by 2π ,
gives the probability that the orthogonal projection of T onto a random 2-plane
is a triangle.

doi:10.4169/193009709X460868
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How simple is that? We will prove a more general theorem (Theorem 1) for sim-
plices in R

n , but first consider the analogous assertion in R
2. The sum in radians of

the angles of a triangle (2-simplex) T , when divided by the length π of the unit semi-
circle, gives the probability that the orthogonal projection of T onto a random line is
a convex segment (1-simplex). Since this is always the case, the probability is equal
to 1, and the inner angle sum for every triangle is the same. By contrast, a higher-
dimensional n-simplex may project one dimension down either to an (n − 1)-simplex
or to a lower-dimensional convex polytope having n + 1 vertices. The inner angle sum
gives a measure of how often each of these possibilities occurs.

Let us make the notion of “inner angle” more precise. Denote by S
n−1 the unit

sphere in R
n centered at the origin. Recall that S

n−1 has (n − 1)-dimensional volume
(i.e., surface area) nωn, where ωn = πn/2/�(1 + n/2) is the Euclidean volume of the
unit ball in R

n .
Suppose that P is a convex polytope in R

n , and let v be any point of P . The solid
inner angle aP(v) of P at v is given by

aP(v) = {u ∈ S
n−1 | v + εu ∈ P for some ε > 0}.

Let αP(v) denote the measure of the solid angle aP(v) ⊆ S
n−1, given by the usual sur-

face area measure on subsets of the sphere. For the moment we are primarily concerned
with values of αP(v) when v is a vertex of P .

If u is a unit vector, then denote by Pu the orthogonal projection of P onto the
subspace u⊥ in R

n . Let v be a vertex of P . The projection vu lies in the relative interior
of Pu if and only if there exists ε ∈ (−1, 1) such that v + εu lies in the interior of P .
This holds if and only if u lies in the interior of ±aP(v). If u is a random unit vector
in S

n−1, then

Probability[vu ∈ relative interior(Pu)] = 2αP(v)

nωn
. (1)

This gives the probability that vu is no longer a vertex of Pu .
For simplices we now obtain the following theorem.

Theorem 1 (Simplicial Angle Sums). Let � be an n-simplex in R
n, and let u be a

random unit vector. Denote by p� the probability that the orthogonal projection �u is
an (n − 1)-simplex. Then

p� = 2

nωn

∑
v

α�(v), (2)

where the sum is taken over all vertices of the simplex �.

Proof. Since � is an n-simplex, � has n + 1 vertices, and a projection �u has either
n or n + 1 vertices. (Since �u spans an affine space of dimension n − 1, it cannot
have fewer than n vertices.) In other words, either exactly 1 vertex of � projects to the
relative interior of �u , so that �u is an (n − 1)-simplex, or none of them do. By the
law of alternatives, the probability p� is now given by the sum of the probabilities (1),
taken over all vertices of the simplex �.

The probability (2) is always equal to 1 for a 2-dimensional simplex (i.e., any tri-
angle). The regular tetrahedron in R

3 has solid inner angle measure

αT (v) = 3 arccos(1/3) − π
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at each of its 4 vertices, so that (2) yields p� ≈ 0.351. For more general 3-simplices
(tetrahedra) the probability may take any value 0 < p� < 1. To obtain a value of p�

close to 1 for a tetrahedron, consider the convex hull of an equilateral triangle in R
3

with a point outside the triangle, but very close to its center. To obtain p� close to 0,
consider the convex hull of two skew line segments in R

3 whose centers are very close
together (forming a tetrahedron that is almost a parallelogram). Similarly, for n ≥ 3
the solid vertex angle sum of an n-simplex varies within a range

0 <
∑

v

αT (v) <
nωn

2
.

Equality at either end is obtained only if one allows for the degenerate limiting cases.
These bounds were obtained earlier by Gaddum [2, 3] and Barnette [1], using more
complicated methods.

Similar considerations apply to the solid angles at arbitrary faces of convex poly-
topes. Suppose that F is a k-dimensional face of a convex polytope P , for some k with
0 ≤ k ≤ dim P . The solid inner angle measure αP(x) is the same at every point x in
the relative interior of F . Denote this value by αP(F). In analogy to (1), for any x in
the relative interior of F , we have

Probability[xu ∈ relative interior(Pu)] = 2αP(F)

nωn
. (3)

Omitting cases of measures zero, this gives the probability that a proper face F is no
longer a face of Pu . (Note that dim Fu = dim F for all directions u except a set of
measure zero.) Taking complements, we have

Probability[Fu is a proper face of Pu] = 1 − 2αP(F)

nωn
. (4)

For 0 ≤ k ≤ n − 1, denote by fk(P) the number of k-dimensional faces of a poly-
tope P . The sum of the probabilities (4) gives the expected number of k-faces of the
projection of P onto a random hyperplane u⊥; that is,

Exp[ fk(Pu)] =
∑

dim F=k

(
1 − 2αP(F)

nωn

)
= fk(P) − 2

nωn

∑
dim F=k

αP(F), (5)

where the sums are taken over k-faces F of the polytope P .
If P is a convex polygon in R

2, then Pu is always a line segment with exactly 2
vertices, that is, f0(Pu) = 2. In this case the expectation identity (5) yields the familiar

∑
v

αP(v) = π( f0(P) − 2).

If P is a convex polytope in R
3, then Pu is a convex polygon, which always has ex-

actly as many vertices as edges; that is, f0(Pu) = f1(Pu). Therefore Exp[ f0(Pu)] =
Exp[ f1(Pu)], and the expectation identities (5) imply that

1

2π

∑
vertices v

αP(v) − 1

2π

∑
edges e

αP(e) = f0(P) − f1(P) = 2 − f2(P),

where the second equality follows from the classical Euler formula f0 − f1 + f2 = 2
for convex polyhedra in R

3.
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These arguments were generalized by Perles and Shephard [7] (see also [1], [4,
p. 315a], [9]) to give a simple proof of the classical Gram-Euler identity for convex
polytopes: ∑

F⊆∂ P

(−1)dim FαP(F) = (−1)n−1nωn, (6)

where the sum is taken over all proper faces F of an n-dimensional convex polytope
P . In the general case one applies the additivity of expectation to alternating sums
over k of the identities (5), obtaining identities that relate the Euler numbers of the
boundaries of P and Pu . Since the boundary of P is a piecewise-linear (n − 1)-sphere,
while the boundary of Pu is a piecewise-linear (n − 2)-sphere, these Euler numbers
are easily computed, and (6) follows.

The Gram-Euler identity (6) can be viewed as a discrete analogue of the Gauss-
Bonnet theorem, and has been generalized to Euler-type identities for angle sums over
polytopes in spherical and hyperbolic spaces [4, 5, 8], as well as for mixed volumes
and other valuations on polytopes [6].
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Jump Home and Shift:
An Acyclic Operation on Permutations

Villő Csiszár

Let n ≥ 1 be fixed, and denote by Sn the set of all permutations of [n] = {1, . . . , n}.
We write a permutation π as a vector π = (π(1), π(2), . . . , π(n)), and we say that
the element π(i) is in the i th position. We call the element π(i) of the permutation a
fixed element if π(i) = i . Moreover, let the home position of an element k be position
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