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Abstract

We introduce the notion of free polygons as combinatorial building blocks for convex integral
polygons; that is, polygons with vertices having integer coordinates. In this context, an Euler-type
formula is derived for the number of integer points in the interior of an integral polygon. This
leads in turn to a formula for the area of an integral polygon P via the enumeration of free
integral triangles and parallelograms contained inside P. c© 2000 Elsevier Science B.V. All rights
reserved.

MSC: 52B20; 52A38; 52B05; 52B45; 05E19

It is well known that if a convex polygon P in the Euclidean plane is triangulated
using f0 vertices, f1 edges, and f2 triangles, then Euler’s formula

f0 − f1 + f2 = 1 (1)

holds independently of which triangulation we chose for P. When applied to integral
polygons (polygons with integer point vertices), variations on Euler’s formula lead
to a formula for the number of vertices contained in the interior of a polygon. For
integral polygons one also obtains Pick’s theorem, a formula for the area of an integral
polygon �rst proved at least 100 years ago [15] and since generalized by Reeve [16,17],
Macdonald [11], Ehrhart [2], Hadwiger and Wills [6], and many others [3–5].
While formula (1) holds independently of which triangulation we chose for P, the

input data for each instance of (1) does depend on some initial triangulation; that is,
expression of the Euler formula (1) requires the numbers f0; f1; f2 for some choice
of triangulation of P.
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Fig. 1. A free edge, a free triangle, and a non-free triangle (from left to right).

In the present work we consider the entire family of edges, triangles, and closed
convex integral polygons Q contained inside an integral polygon P, such that each
convex polygon Q is free. This means that the vertices (extreme points) of Q must
also be integral points, while Q should contain no integral points that are not extreme
points. See Fig. 1. These free polygons are the building blocks of any convex cell
decomposition of P in which the 0-cells are precisely the family of integer points
P ∩Z2. We are, in some sense, considering every triangulation of P at once with the
single restriction that we use the points P ∩ Z2 as vertices. It turns out that analogues
of many classical Euler-type formulas hold in this context.
In forthcoming articles [7,8] the author will present a general Euler-type relation for

valuations on a locally �nite family of polytopes in Euclidean space of arbitrary �nite
dimension, working in the context of free polytope enumeration. While the general
theorem requires substantial machinery to prove, the case of valuations on polygons
can be dealt with using a straightforward combinatorial approach. These examples
provide insight into some of the most fundamental polygon functionals from an
enumerative perspective not previously considered.
In the present self-contained note we consider this new perspective on Euler’s

classical formula using purely combinatorial techniques. Instead of considering a �xed
triangulation of P, and then counting the edges, faces, etc., we will count the number
of free integral polygons Q of each free type contained inside P, independently of
any particular convex cell decomposition. These parameters will be found to satisfy an
analogue of Euler’s classical formula (Proposition 2.2), leading in turn to a formula
for the number of integer points in the interior of an integral polygon (Theorem 3.1).
In analogy to Pick’s theorem (Theorem 4.1), we also derive a formula for the area of
an integral polygon P via the enumeration of free integral triangles and parallelograms
contained inside P (Theorem 4.2).

1. Preliminaries

A convex polygon is a bounded intersection of a �nite collection of half-planes in
R2 (or, alternatively, the convex hull of a �nite set of points in R2).
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Fig. 2. An integral polygon and the free polygons contained inside it.

Let Z2 denote the set of all points in R2 having integer coordinates. A convex
polygon P is an integral polygon if all of the vertices (extreme points) of P are points
of Z2. Denote by I2 the set of all convex integral polygons.
A polygon P ∈I2 is said to be free if P ∩ Z2 consists only of the extreme points

of P. In other words, P is free if no integral point of P lies in the convex hull of any
of the others. For example, a free edge and a free triangle are exhibited in Fig. 1. The
triangle at the right of Fig. 1 is not free, since its vertical edge contains an integer
point that is not an extreme point of the triangle. The pentagonal region in Fig. 2 also
is not free. Note that P ∈I2 is free if and only if every Q∈I2 contained in P is also
free. The following proposition classi�es all free integral polygons.

Proposition 1.1. Suppose P ∈I2 is non-empty. If P is free then P is either a point;
a line segment; a free triangle of area 1

2 ; or a free parallelogram of area 1.

In particular, free convex polygons have area 0; 12 , or 1, and any free convex polygon
has an a�ne unimodular image inside the unit square.

Proof. From the tiling properties of parallelograms (and some elementary linear
algebra) it follows that a parallelogram in I2 is free if and only if it is the image
of a translate of the unit square under a unimodular transformation. In other words,
a parallelogram is free if and only if it has unit area. Since any free triangle forms
a free parallelogram when pasted to its reection through the center of an edge, an
integral triangle is free if and only if has area 1

2 .
Let P be an arbitrary free convex polygon with at least four vertices. Any three

vertices of P span a free triangle inside P. Let x1; x2; x3 denote three adjacent vertices
of P such that x1x2 and x2x3 are boundary edges of P. There exist a translation and a
unimodular transformation mapping these vertices x1; x2; x3 to the points y1 = (1; 0);
y2 = (0; 0), and y3 = (0; 1), respectively. Let Q denote the image of P under this
transformation. Note that Q is also free, and that the edges y1y2 and y2y3 are boundary
edges of Q. Since Q is convex and free, all remaining vertices of Q must have
positive (integer) coordinates.
Let (a; b) be a fourth vertex of Q. If a¿ 1, then the triangle with vertices (0; 0); (0; 1),

and (a; b) has area greater than 1
2 , and is consequently not free. This contradicts the
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assumption that Q is free. Therefore a61. Similarly, b61, and Q must be the unit
square. It follows that P must be a free parallelogram.

Let �1(P)= |P ∩Z2|; that is, �1(P) gives the number of integral points contained in
P. Similarly, de�ne

�2(P) = the number of free line segments contained inside P;

�3(P) = the number of free triangles contained inside P;

�4(P) = the number of free parallelograms contained inside P:

Consider, for example, the integral polygon P in the left part of Fig. 2. The right part
of the �gure shows all free edges, triangles, and parallelograms contained in P. In this
case, we have �1(P) = 6; �2(P) = 13; �3(P) = 11, and �4(P) = 3. Note that

�1(P)− �2(P) + �3(P)− �4(P) = 1:
In the next section we will show that this relation holds for arbitrary convex integral
polygons.

2. Euler relations

The free polygon enumerators �i satisfy many of the Euler relations that hold in the
well-known context of simplicial triangulations.
For P ∈I2 let �P denote the collection of polygons

�P = {Q∈I2 |Q is free and Q⊆P}:
For M ⊂ �P, de�ne

�(M) = �1(M)− �2(M) + �3(M)− �4(M): (2)

For integral polygons Q we will abuse notation by de�ning �(Q) = �( �Q).
For P ∈I2, denote by int(P) the interior of P. When a polygon P ∈I2 has non-empty

interior, denote by @P the boundary of P. For x∈P, also de�ne
Px = {Q⊆P |Q is free and x∈Q}= {Q∈ �P | x∈Q}:

For A⊆R2, denote by c(A) the convex hull of the set A.

Proposition 2.1. Suppose P ∈I2 has non-empty interior. For all x∈P ∩ Z2

�(Px) =
{
1 if x∈ int(P);
0 if x∈ @P:

Proof. To begin, suppose that x∈ int(P) ∩ Z2. Let e1; : : : ; em denote the free edges in
Px, listed in clockwise order. The terms clockwise and counterclockwise are applied
from a point of view ‘above’ the plane R2 (embedded in R3) with x as the center of
rotation. See, for example, Fig. 3.
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Fig. 3. The triangles in Px having e1 as counterclockwise edge.

Let t1 denote the (free) triangle in Px having edges e1; e2. The triangle t1 must be
free, since e2 is the �rst edge of Px to appear clockwise from e1. Let t2 be the next
free triangle one can form using edges e1 and ei with i¿ 2. Since the triangle t2, if it
exists, is the next triangle (in clockwise order) having counterclockwise edge e1, the
convex hull c(e1 ∪ e2 ∪ ei) must be a free polygon with four vertices, a parallelogram
(by Proposition 1.1), with e2 as the diagonal through x. Call this parallelogram p2.
Continuing, let t3 be the next free triangle one can form with edges e1 and ej

with j¿ i. Similarly, the existence of such a triangle t3, implies that the convex hull
c(e1∪ei∪ej) must be a free parallelogram, with ei as the diagonal through x. Call this
parallelogram p3, and continue this procedure until every free triangle in Px having
counterclockwise edge e1 is accounted for.

Remark. Note that c(e1 ∪ e2 ∪ ej) is not a free parallelogram, since this would imply
that c(e1 ∪ e2 ∪ ei ∪ ej) is a free pentagonal region, in violation of Proposition 1.1.
If we match e1 with t1 and match each successive tj with the parallelogram pj, then

every triangle in Px with e1 as a counterclockwise edge is matched either with e1 or
with a free parallelogram in Px sharing this edge. As was previously remarked, all free
parallelograms in Px with e1 as counterclockwise edge (relative to x) are accounted
for this way.
Repeating this matching procedure with each edge ei ∈Px, we match every triangle

t ∈Px either with its counterclockwise edge or with a parallelogram p in Px sharing its
counterclockwise edge. Moreover, every edge in Px is matched with its �rst clockwise
triangle and every parallelogram p in Px is matched with the triangular half of p
containing both the point x and the unique diagonal of p not in Px.
It follows that we have a bijective matching between the triangles of Px and the set

of all edges and parallelograms of Px. Hence,

−�2(Px) + �3(Px)− �4(Px) = 0:
Since the only integral point contained in Px is point x, we have �1(Px) = 1, so that

�1(Px)− �2(Px) + �3(Px)− �4(Px) = 1:
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Suppose instead that x∈ @P ∩ Z2. The same argument applies, except that the last
clockwise edge of x (a boundary edge) is never accounted for in the matching, since
that last edge is the counterclockwise edge of no triangle in Px. It follows that there
is an extra −1 appearing in the sum �1(Px)− �2(Px) + �3(Px)− �4(Px), so that

�1(Px)− �2(Px) + �3(Px)− �4(Px) = 0
as desired.

We are now able to prove the free polygon analogue of the classical Euler formula
(1) for a convex polygon.

Proposition 2.2 (Free Polygon Euler Formula). If P ∈I2 is non-empty then

�(P) = �1(P)− �2(P) + �3(P)− �4(P) = 1: (3)

Proof. The proposition is trivial when dim(P)61 (i.e. when P is a point or a line
segment). For the case where dim P=2 the proof is by induction on the size of P∩Z2.
Identity (3) clearly holds when |P ∩ Z2|63. Suppose that P has non-empty interior
and |P ∩ Z2| = n. Suppose also that (3) holds for polygons containing at most n − 1
integral points.
Let x be an extreme point (vertex) of P, and let Q denote the convex hull of the

set (P ∩ Z2) − {x}. Since x is a vertex of P, it follows that P is the convex hull of
Q∪{x}, and that �P= �Q∪Px is a disjoint union. Hence, we have �(P)=�(Q)+�(Px).
Since |Q∩Z2|=n−1, we have �(Q)=1, by the induction assumption. Since x∈ @P,

Proposition 2.1 implies that �(Px)=0. It follows that �(P)=1 as well. Proposition 2.2
now follows by induction.

A generalization of Proposition 2.1 can be used to show that de�nition (2) of � co-
incides with the classical Euler characteristic de�ned by (1) in the introduction, when
extended to non-convex integral polygons. For a detailed treatment of the general case
of Proposition 2.2 (in Rn), see [7]. The classical Euler characteristic in its general form
is derived in [1,9,14,20]. (See also [10,18,19] for a treatment of the Euler characteristic
in combinatorial theory.)

3. Interior point enumeration

For P ∈I2 having non-empty interior, de�ne I(P) = |int(P) ∩ Z2|; that is, I(P)
counts the number of integral points in the interior of P. Denote by B(P) the number
of integral points contained in the boundary @P of P; that is, B(P)=|@P∩Z2|. Evidently
�1(P) = I(P) + B(P). The functionals I(P) and B(P) are related to the free polygon
enumerators by the following theorem.
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Theorem 3.1 (Interior and boundary point enumeration). For all convex polygons
P ∈I2 having non-empty interior;

I(P) = �1(P)− 2�2(P) + 3�3(P)− 4�4(P);
and

B(P) = 2�2(P)− 3�3(P) + 4�4(P):

Consider, for example, the polygon P of Fig. 2, in which case I(P)=1 and B(P)=5.

Proof. By Proposition 2.1,

I(P) =
∑

x∈ P∩Z2
�(Px) =

∑
x∈ P∩Z2

(�1(Px)− �2(Px) + �3(Px)− �4(Px)): (4)

The sum on the right-hand side of (4) counts each free Q⊆P once for x∈Q ∩ Z2.
That is, each free Q⊆P is counted �1(Q) times. Hence,∑

x∈ P∩Z2
(�1(Px)− �2(Px) + �3(Px)− �4(Px)) =

∑
Q⊆ P
Q free

(−1)�1(Q)+1�1(Q)

=
4∑
i=1

(−1)i+1i�i(P):

The formula for B(P) then follows from the fact that �1 = I + B.

Remark. By adjusting the sign of I(P), Theorem 3.1 can be extended to include all
convex integral polygons (even with empty interior). Similarly, the boundary point
formula of Theorem 3.1 can be extended to a formula for the relative perimeter of any
(possibly non-convex) integral polygon. For details of the more general theory, see [7].

Evidently, the values �3(P) and �4(P) take some considerable e�ort to compute,
even assuming knowledge of which integral points lie inside and on the boundary of
P. Some of this e�ort is saved if we invert the relations of Theorem 3.1 and the Free
Polygon Euler Formula 2:2 to obtain the following.

Corollary 3.2. For all convex polygons P ∈I2 having non-empty interior;

�3(P) =−3�1(P) + 2�2(P)− I(P) + 4
and

�4(P) =−2�1(P) + �2(P)− I(P) + 3:

Consider, for example, the polygon in Fig. 4. Here we have �1 = 14, �2 = 68, and
I = 8. If follows that �3 = 90 and �4 = 35, as can also be seen (with some e�ort) by
counting free polygons in Fig. 4.
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Fig. 4. A free triangulation of a convex integral polygon.

4. The area of an integral polygon

Let Area(P) denote the area of a polygon P. For integral polygons P, the area of
P is given by the following well-known theorem of Pick [15].

Theorem 4.1 (Pick’s theorem). Suppose that P is a convex integral polygon with
vertices in Z2. If P has non-empty interior; then

Area(P) = I(P) + (1=2)B(P)− 1:

For example, in Fig. 4 we have I = 8; B= 6, and Area = 10.
In the interest of completeness we give an elementary (though hardly original) proof

of Pick’s theorem. For an extensive bibliography, see [3–5].

Proof of Pick’s theorem. Triangulate the convex polygon P using all points of P∩Z2
as vertices. In particular, the points, edges, and triangles used are all free. See, for
example, Fig. 4. Let f0(P) denote the number of vertices in the triangulation of P,
f1(P) the number of edges, and f2(P) the number of triangles. The area of P is equal
to the sum of the areas of the triangles used in this triangulation of P. Since these
triangles are free integral triangles, each has area 1

2 , by Proposition 1.1. It follows that
Area(P) = (12 )f2(P).
Let N denote the number of edge-triangle pairs (e; t) in the given triangulation such

that e⊂ t. Since each triangle t has three edges, we have N=3f2(P). Meanwhile, each
edge e belongs to one triangle if e⊆ @P; otherwise e belongs to two triangles. (See
Fig. 4.) Therefore, we have

3f2(P) = N = f1(@P) + 2(f1(P)− f1(@P)) = 2f1(P)− f1(@P):
Since P is convex with non-empty interior, the number of boundary edges of P is equal
to the number of boundary vertices; that is, f1(@P))=B(P). Hence, B(P)= 2f1(P)−
3f2(P). From f0(P)=I(P)+B(P) it now follows that I(P)=f0(P)−2f1(P)+3f2(P).
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After dropping the unsightly ‘(P)’, we have

I + (12)B− 1 = (f0 − 2f1 + 3f2) + (12 )(2f1 − 3f2)− 1
=f0 − f1 + f2 + (12 )f2 − 1
= (12 )f2

= Area(P);

where the third equality follows from Euler’s classical formula (1).

If we combine Pick’s theorem with the interior and boundary point formulas of
Theorem 3.1 and the Euler formula of Proposition 2.2, we obtain the following area
formula for integral polygons.

Theorem 4.2 (Area formula). For all convex integral polygons P with vertices in Z2;

Area(P) = (12 )�3(P)− �4(P):

For example, consider once again the polygon in Fig. 2, where �3 = 11, �4 = 3, and
Area = 5

2 . In Fig. 4 we have �3 = 90; �4 = 35, and Area = 10.
In a more picturesque notation, denoting 4(P) = �3(P) and (P) = �4(P), we can

rewrite the Area formula as follows:

Area =
4
2

− : (5)

Proof of Theorem 4.2. Once again we drop the ‘(P)’ to simplify the notation. By
Theorem 3.1 and Pick’s Theorem 4.1,

Area(P) + 1 = I + (12)B

= (�1 − 2�2 + 3�3 − 4�4) + (12 )(2�2 − 3�3 + 4�4)
= �1 − �2 + (32 )�3 − 2�4
= (�1 − �2 + �3 − �4) + (12 )�3 − �4
= 1 + (12 )�3 − �4;

where the �nal equality follows from the free polygon Euler formula of
Proposition 2.2.

The preceding results can also be generalized to give geometric inequalities for
arbitrary compact convex sets in R2. For a compact convex set K ⊆R2, denote by
�i(K) the number of free integral polygons having i integer vertices and contained
inside K . A lattice rectangle refers to a rectangle having vertices in Z2 and boundary
edges parallel to the coordinate axes.

Corollary 4.3. Suppose a compact convex set K ⊆R2 has non-empty interior. Then
Area(K)¿( 12 )�3(K)− �4(K)
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with equality if and only if K is an integral polygon. Moreover;

Perimeter(K)¿2�2(K)− 3�3(K) + 4�4(K)
with equality if and only if K is a lattice rectangle.

Compare Corollary 4.3 to Nosarzewska’s inequality [3], for example.

Proof. Suppose that K is a compact convex set in R2 with non-empty interior, and let
P be the convex hull of K∩Z2. We then have Area(K)¿Area(P), while �i(K)=�i(P)
for all i. By Theorem 4.2,

Area(K)¿( 12 )�3(K)− �4(K)
with equality if and only if K = P.
Similarly, Perimeter(K)¿Perimeter(P)¿B(P), since each free boundary edge of P

is at least of unit length. The perimeter inequality then follows from Theorem 3.1. In
this case equality holds if and only if K = P and if each free edge contained in the
boundary of K has unit length. This only occurs when every boundary edge of K is
parallel to a coordinate axis (horizontal or vertical); that is, if and only if K is a lattice
rectangle.

Evidently, the Euler relations and area formulas presented this article continue to
apply if the vertex set Z2 is replaced by a linear image L. Integral points and polygons
are then replaced by lattice points of L and lattice polygons, and the enumerators �i
are rede�ned in terms of the lattice L. The Euler relations continue to hold without
change, while the formulas of Theorems 4.1 and 4.2 compute a renormalization of area
in which the fundamental domain of the lattice L has unit area.
Many aspects of the theory have meaning even if Z2 is replaced by an arbitrary

locally �nite point set. Suppose that A is a subset of R2 (or even Rn) such that A∩B
is a �nite set for any closed Euclidean ball B in R2 (or Rn). Such a set A is called
locally �nite. It can be shown that analogues of the Euler formulas of Section 2 and
the interior point enumeration formula of Section 3 hold when the admissible vertex
set Z2 is replaced with an arbitrary locally �nite set A. Analogues of the Area formula
4:2 can also be derived for volume in Rn as well as all valuations on polytopes. (An
introduction to the theory of valuations in convex geometry can be found in [9]. See
also [12,13] for extensive surveys.) The convexity condition can also be replaced with
a much more liberal condition (triangulated manifolds with boundary). A treatment of
this more general theory will be presented in the forthcoming articles [7,8].
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