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A locally finite point set (such as the set Zn of integral points) gives rise to a lat-
tice of polytopes in Euclidean space taking vertices from the given point set. We
develop the combinatorial structure of this polytope lattice and derive Euler-type
relations for valuations on polytopes using the language of Mo� bius inversion. In
this context a new family of inversion relations is obtained, thereby generalizing
classical relations of Euler, Dehn�Sommerville, and Macdonald. � 1999 Academic Press
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The essential link between convex geometry and combinatorial theory is
the lattice structure of the collection of polyconvex sets; that is, the collec-
tion of all finite unions of compact convex sets in Rn (also known as the
convex ring). The present paper is inspired by the role of valuation theory
in these two related contexts.

Specifically, we consider the lattice of polytopes (ordered by inclusion)
taking all vertices from a prescribed locally finite collection of points in
Euclidean space. Much attention has been given to the specific example of
integral polytopes, the set of polytopes having vertices in the set Zn of
integer points in Rn. In the more general context we also obtain a locally
finite lattice of polytopes in Rn to which both combinatorial and convex-
geometric theories simultaneously apply.

A notion common to both geometric and combinatorial settings is that
of valuation. Let C denote a collection of sets closed under finite intersec-
tions, and containing the empty set < as an element. A function .: C � R
is called a valuation on C if .(<)=0, where < is the empty set, and

.(K _ L)=.(K)+.(L)&.(K & L), (1)

for all K, L # C such that K _ L # C as well.
The notion of valuation serves as both a generalization and a com-

binatorial analogue of the measures of classical analysis. They include
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important functionals, such as volume, surface area, and the Euler charac-
teristic, appearing in such fields as convex geometry, integral geometry,
algebraic geometry, and combinatorial lattice theory. A survey of the role
of valuations in geometry can be found in [15, 20, 27, 28]. For a com-
binatorial perspective, see, for example, [17, 22, 32, 33].

The main result of this paper is a general family of Mo� bius inversion
identities that characterize all valuations on polytopes. This result,
Theorem 4.2, generalizes classical relations of Euler, Dehn�Sommerville,
and Macdonald, for functionals on convex polytopes. (See for example [2,
21, 23, 43]). Specifically, the inversion identity of Theorem 4.2 will be seen
to generalize the following theorem of Macdonald [23, 39] when applied
to convex polytopes.

Theorem 0.1 (Macdonald's Relation). Let T be a finite simplicial com-
plex whose geometric realization is a convex polytope P with boundary �P.
Denote by �T the subcomplex that triangulates �P. Let � be a valuation on
the lattice of subcomplexes of T. Then

(&1)dim(P) (�(T)&�(�T))= :
Q # T

(&1)dim(Q) �(Q) (2)

where the sum in (2) is taken over all simplices Q of the complex T, includ-
ing the empty simplex <.

In particular, it will be seen that Theorem 4.2 also implies the classical
Dehn�Sommerville equations for convex polytopes.

Some of the results of this article were discovered independently by
Ahrens, Gordon, and McMahon [1] and by Edelman and Reiner [9]. The
author is grateful to Paul Edelman and Vic Reiner for their helpful com-
ments on an earlier version of this article.

1. LOCALLY FINITE LATTICES OF POLYTOPES

A collection of points A/Rn is said to be locally finite if, for all closed
Euclidean balls B in Rn, the set A & B is finite. Throughout this article we
denote by A a given locally finite subset of Rn.

Denote by I(A) the set of all compact convex polytopes having vertices
in A. The set I(A) is partially ordered by inclusion of sets. Under this par-
tial ordering I(A) becomes a lattice, in which the meet P 7Q of two
polytopes P and Q is given by the convex hull of the intersection
P & Q & A, while the join P 6 Q is given by the convex hull of the union
P _ Q. Note that I(A) is not a distributive lattice, nor is it modular. It is,
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however, a graded, atomic, lower-semimodular lattice. (See [40] for the
definitions of these terms.)

The Mo� bius function of I(A) is fairly easy to describe. The following
proposition is a special case of a theorem of Edelman and Jamison [8].

Proposition 1.1. Let P, Q # I(A) with <�Q�P. If P&Q contains
exactly k points of A, all of which are vertices of P, then

+(Q, P)=(&1)k,

otherwise +(Q, P)=0.

In particular, if any positive dimensional face of P contains a point of A
in its relative interior, then +(<, P)=0.

Proof of Proposition 1.1. Let Q # I(A), and suppose that P is a convex
integral polytope such that Q�P and P&Q contains exactly k points of
A, all of which are vertices of P. In this case the interval [P, Q] in the par-
tial ordering of I(A) is isomorphic to the Boolean algebra Bk of subsets
of a k-element set. This isomorphism is defined by identifying Bk with the
subsets of lattice points in P&Q.

The Mo� bius function of Bk is given by +(S, T )=(&1) |T |&|S| when-
ever S, T # Bk with S � T (see, for example, [40]). It follows that
+(Q, P)=(&1)k.

Next, suppose P&Q contains a point x # A that is not a vertex of P. In
this case, R6 (Q 6 [x])=R6 [x]<P in I(A) for all Q�R<P.

Recall from Weisner's Theorem [22, 31, 40] that if L is a finite lattice
with Mo� bius function +, and if a # L with a>0L , then

:
x 6a=1L

+(0L , x)=0. (3)

On applying (3) to the interval [Q, P] in I we obtain

:

R 6 [x]=P
R # [Q, P]

+(Q, R)= :

R 6 (Q 6 [x])=P
R # [Q, P]

+(Q, R)=0,

where Q 6 [x] plays the role of a in (3). Since R 6 [x]=P only if R=P,
it follows that +(Q, P)=0. K

Proposition 1.1 motivates the following definition, also due to Edelman
and Jamison [8]. A polytope P # I(A) is said to be free if P & A consists
only of the vertices (extreme points) of P.
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We define another (geometric) simplicial complex Vis(P) of which P is
an orthogonal projection. Let v1 , ..., vs denote all of the points of P & A.
For each i=1, ..., s, let yi # Rn+s be the point

yi=(vi , ei), (4)

where ei denotes the ith standard basis vector for Rs.
Define a (geometric) simplicial complex Vis(P) in Rn+s as follows. Let

y1 , ..., ys be the vertices of Vis(P). For each distinct pair vi , vj such that the
line segment vivj is free in P, let yi yj be an edge in Vis(P). Similarly, for
k=1, ..., s, let the convex hull of the points [ yi1

, ..., yik
] be a (k&1)-dimen-

sional simplex in Vis(P) if and only if the convex hull of the points
[vi1

, ..., vik
] is a free polytope (with respect to A) inside P.

Note once again that a distinct pair vi , vj # P & A corresponds to an edge
yiyj in Vis(P), if and only if vi vj is free in P; that is, if and only if the points
vi and vj can ``see'' each other without any obstructions from points of A
(or ``holes'' in P) in between. Similarly, the points [ yi1

, ..., yik
] span a sim-

plex Q� in Vis(P) if and only if all of the corresponding integral points
[vi1

, ..., vik
] can ``see'' a free convex polytope Q that they span inside P. For

this reason we will refer to the simplicial complex Vis(P) as the visibility
complex of the polytope P. For example, if P is a free polytope (with
respect to A) having k+1 vertices, then Vis(P) is a k-dimensional simplex.

For all positive integers i, define

:i (P)=the number of free polytopes Q�P

such that Q has i vertices.

In other words, the numbers :i (P) give the face numbers of the visibility
complex Vis(P) (with indexing shifted forward by one).

Note that the visibility complex of a convex polytope P in I(A), is not, in
general, a topological manifold (with or without boundary), or even a homol-
ogy manifold. Complications can occur even when P is a convex polygon. In
Fig. 1 the set A is a collection of 9 points in the plane. Let P denote the planar
polygon indicated in the left part of the figure. In this example the visibility
complex Vis(P), shown in the right part of Fig. 1, can be expressed as a union
of 3 tetrahedra, along with a 2-dimensional triangular flap. In other words,
Vis(P) is not even a pseudomanifold in this elementary example.

For the polygon illustrated in Fig. 1, we have :1 (P)=6, :2 (P)=13,
:3 (P)=11, and :4 (P)=3, while :k (P)=0 for k�5. Notice that, in this
example,

:1 (P)&:2 (P)+:3 (P)&:4 (P)=1.

We will see that an analogous relation holds for all convex polytopes.
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FIG. 1. A planar polygon and its visibility complex.

Let ?: Rn+s � Rn be the orthogonal projection of Rn+s onto the first n
coordinates. Evidently ?(Vis(P))=P. Moreover, the projection ? maps the
k-dimensional faces of Vis(P) onto the free polytopes Q�P having k+1
vertices. That is, ?(Q� )=Q.

Recall from Proposition 1.1 that for all P # I(A) we have

+(<, P)={(&1):1(P)

0
if P is free
otherwise

It follows from the defining properties of the Mo� bius function [31] that

/(P)=& :
<<Q�P

+(<, Q)=:
i

(&1) i :i (P)=1 (5)

where / represents both the ``Characteristic'' of the lattice I(A) (see, for
example, [31, 32]) and the topological Euler characteristic of a convex
polytope P [29].

An even more general construction will also be of use in the sections
following. For P # I(A), denote by 2(P) the abstract simplex whose ver-
tices are in one-to-one correspondence with the points of P & A. In other
words, 2(P) can be realized geometrically as the simplex whose vertices are
the affinely independent points y1 , ..., ys of (4); namely, the convex hull of
Vis(P) in Rn+s. Evidently the visibility complex Vis(P) is a subcomplex of
2(P), with Vis(P)=2(P) if and only if P is free with respect to A. Once
again the projection map ?: Rn+s � Rn maps 2(P) onto P.

2. ORDER IDEALS AND INDUCED VALUATIONS

Let B(A) denote the lattice of all finite sets of polytopes in I(A); that
is, the collection of finite subsets of I(A). The set B(A) is a locally finite
distributive lattice, with meet and join given respectively by intersection
and union of finite subsets of I(A).

A subset A�I(A) is called an order ideal if, for all P # A and Q�P, we
also have Q # A. An order ideal A # B(A) is called a principal ideal if A has
exactly one maximal element. In this case we may denote A=P� , where
P # I(A) is the unique maximum of A.
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More generally, for (possibly non-convex) P # P(A) denote

P� =[Q # I(A) | Q�P],

that is, the collection of all convex Q�P with vertices in A. Note that,
with the present terminology, the ideal P� is not principal unless P is con-
vex. The finiteness condition on B(A) guarantees that every ideal A # B(A)
is of the form A=P� 1 _ } } } _ P� m for some finite collection of convex
P1 , ..., Pm # I(A).

A function g: B(A) � R is called a valuation on B(A) if g(<� )=0, and

g(A _ B)= g(A)+ g(B)& g(A & B), (6)

for all A, B # B(A).
Given any function f: I(A) � R, one can define an induced valuation f�

on the collection B(A) as follows. To begin, set f� (<)=0. For principal
ideals P� , define

f� (P� )= f (P).

Then for each P # I(A) define f� on the singleton [P] by

f� ([P])= f� (P� )& :

Q{P
Q # P�

f� ([Q]).

It is well-known [20, 32] (and easy to prove by induction on the size of
P & A) that f� is a well-defined valuation on B(A). Moreover, for all
P # I(A) we have

f (P)= f� (P� )= :
Q # P�

f� ([Q]),

so that

f� ([P])= :
Q # P�

+(Q, P) f� (Q� )= :
Q # P�

+(Q, P) f (Q), (7)

by the Mo� bius inversion formula for partially ordered sets [31, 40].

3. POLYTOPE VALUATIONS

We now consider a different (but related) family of valuations. Denote
by In the collection of convex polytopes in Rn, and let Pn denote the
collection of all (possibly non-convex) polytopes in Rn; that is, the lattice
of all finite unions of convex polytopes.
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A function .: In � R is called a valuation on In (or a valuation on
polytopes) if .(<� )=0, and

.(P _ Q)=.(P)+.(Q)&.(P & Q), (8)

for all P, Q # In such that P _ Q # In as well. Groemer [14] has shown
that every valuation on In has a unique extension to a valuation on all of
Pn. This extension is given by (8) for unions of pairs of convex polytopes,
and by iterations of (8) for arbitrary finite unions of convex polytopes (see
also [20]).

It is important to distinguish between the valuations on B(A) and valua-
tions on In (or Pn). While any function f on polytopes in I(A) induces
a valuation f� on B(A) (as explained in the previous section), the original
function f need not have been a valuation on the polytopes themselves (in
the sense of (8)).

On the other hand, a valuation on polytopes . also induces a valuation
.~ on B(A). In this case, for all P # I(A), we have .~ (P� )=.(P).

This motivates a more simplified notation. For the remainder of this
section, we use . to denote both . and .~ . In other words, we use (7)
to extend the valuation . to all finite subsets of I(A) by setting
.([P])=.~ ([P]) and

.(P)= :
Q # P�

.([Q])

for all P # I(A).
Polytope valuations differ from measures in that a valuation need not

satisfy countable additivity; that is, additivity over countable unions (con-
sider, for example, surface area, or the Euler characteristic). However,
every valuation on Pn satisfies all finite inclusion-exclusion identities, and,
like a measure, defines an integral (linear functional) on the space of simple
functions on Pn.

More specifically, for P # Pn define the indicator function 1P : Rn � R by

1P(x)={1
0

if x # P
if x � P

A simple function f: Rn � R on Pn is a finite linear combination of indicator
functions of polytopes in Pn. Recall that, for all P, Q # Pn, we have the
inclusion�exclusion identity

1P+1Q=1P _ Q+1P & Q .
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It follows that any linear functional on simple functions gives rise to a
valuation on polytopes (by evaluating the function at indicator functions of
polytopes).

The converse is also true. Given a valuation . and a simple function
f =a11P1

+ } } } +am1Pm
on Pn, define the integral of f with respect to . by

| f d.= :
m

i=1

ai.(P i). (9)

The integral (9) is just a linear functional on the vector space generated
by indicator functions of polytopes. Although a given simple function f
may have many different expressions as linear combinations of indicator
functions, Groemer [14] has shown that the integral expression (9) is
well-defined (see also [20, p. 9]).

For a convex polytope P in Rn denote by ri P the relative interior of P
(relative to its affine hull). Note that if P # Pn is a topological manifold
with boundary, then the boundary �P # Pn as well, being the finite union
of the facets of P. For any function f: Pn � R the value f (ri P) refers to the
difference f (P)& f (�P).

Suppose that P # Pn. For x # P define the local Euler characteristic
/(P, x) of P at x by

/(P, x)= lim
= � 0

/(P & B= (x)),

where B= (x) denotes the open Euclidean ball of radius = and centered at x.
Note that if P is a convex polytope, then

/(P, x)={(&1)dim(P)

0
if x # ri P
otherwise

(10)

since the Euler Characteristic of a relatively open n-ball is /(B=)=(&1)n.
If we fix x # Rn, the functional P [ /(P, x) becomes a valuation in the

parameter P, and we also have (from the definition of /(P, x))

/(ri P, x)={(&1)dim(P)

0
if x # P
otherwise

(11)

for all compact convex polytopes P.
For a valuation .: Pn � R define the dual functional .*: Pn � R by

.*(P)=| /(P, x) d.. (12)
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Note that if P # Pn is convex, then

.*(P)=(&1)dim(P) .(ri P),

by (10).
This value of this construction is demonstrated by the following theorem,

due to Sallee [35].

Theorem 3.1. For all valuations .: Pn � R,

1. The functional .* is also a valuation.

2. .**=..

Note. The mapping . [ .* on valuations is also treated in the works
of Sallee [35] and Macdonald [23] and corresponds to the mapping
[P] [ [P]* on the polytope algebra of McMullen [26]. See also [27, 28]
for a discussion of this and related operators on the space of valuations.

Proof of Theorem 3.1. Since /(P, x) is a valuation in the parameter P,
and the integral with respect to . in the expression (12) is additive, it
follows that .* is a valuation.

When P is a compact convex potytope,

.**(P)=(&1)dim(P) .*(ri P)=(&1)dim(P) | /(ri P, x) d..

From (11) we then have

.**(P)=(&1)dim(P) | (&1)dim(P) 1P(x) d.=.(P),

when P is a convex polytope. Since . and .** are both valuations, it now
follows from inclusion-exclusion arguments that .=.**. K

A valuation . on Pn is said to be simple if .(P)=0 whenever
dim(P)<n. Examples of simple valuations include Euclidean volume and
all measures on Rn that are absolutely continuous with respect to volume.
Evidently when . is a simple valuation on Pn we have .*(P)=(&1)n .(P)
for all P.

4. A FREE POLYTOPE INVERSION IDENTITY

The following theorem characterizes polytope valuations in terms of the
Euler-type relations.
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Theorem 4.1 (Inversion Theorem). Let .: In � R be a function on con-
vex polytopes. The function . extends to a valuation on Pn if and only if, for
all locally finite sets A/Rn and all P # I(A), we have

.([P])=(&1)dim(P)+1 +(<, P) .(ri P)

={(&1)dim(P)+:1(P)+1 .(ri P)
0

if P is free with respect to A

otherwise

where [P] and + are defined with respect to I(A) in each case.

The proof Theorem 4.1 is deferred to Section 5.
Using the language of the previous section, Theorem 4.1 can be rewritten:

.([P])=&+(<, P) .*(P). (13)

We can now state the main theorem of this article.

Theorem 4.2 (Free Polytope Inversion Identity). Let . be a valuation
on Pn. For all P # I(A), we have

.(P)=& :
Q�P

+(<, Q) .*(Q). (14)

Proof. From the definition of .([Q]) we have

.(P)= :
Q�P

.([Q])=& :
Q�P

+(<, Q) .*(Q),

where the final identity follows from (13). K

Theorem 4.2 is equivalent to the following reciprocal pair of inversion
formulas for valuations on polytopes.

Corollary 4.3. Let . be a valuation on Pn. For all P # I(A), we have

.(P)= :
Q�P

(&1)dim(Q)+1 +(<, Q) .(ri Q) (15)

(&1)dim(P)+1 .(ri P)= :
Q�P

+(<, Q) .(Q) (16)

where the sums in (15) and (16) are taken over all Q�P such that
Q # I(A).

Proof. To prove (15), note once again that

.(P)= :
Q�P

.([Q])= :
Q�P

(&1)dim(Q)+1 +(<, Q) .(ri Q),
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by Theorem 4.1. The identity (16) is then derived by applying (15) to the
dual valuation .*. K

Recall that when . is a simple valuation, .(P)=0 whenever dim(P)<n.
In this case, we have .(P)=.(ri P) for all P. The two identities of
Corollary 4.3 then coincide, taking the form:

(&1)dim(P)+1 .(P)= :
Q�P

+(<, Q) .(Q).

Important examples of simple valuations on polytopes include volume
(Lebesgue measure), the Dehn invariant (used to solve Hilbert's 3rd
Problem, see [34]), and restrictions of measures on Rn that are absolutely
continuous with respect to Lebesgue measure. Some important families of
simple valuations on compact convex sets in Rn are characterized in [16,
24, 25, 37] (see also [15, 20, 27]).

In analogy to the star of a point x in a polytope P # I(A) we define the
star of a polytope M�P (relative to A) as follows:

StPM=[Q # I(A) | Q free and M�Q�P].

By iterating the inversion formulas of Theorem 4.2 we obtain the following.

Corollary 4.4. Let . be a valuation on Pn. For all P # I(A), we have

.(P)=& :
Q�P

+(<, Q) .(Q) /(StPQ),

where we denote

/(StPQ)= :
�

i=1

(&1) i :i (StP Q)

Proof. On iterating Theorem 4.2 we obtain

.(P)=& :
Q�P

+(<, Q) .*(Q)

= :
Q�P

+(<, Q) :
M�Q

+(<, M) .(M)

= :
M�P

+(<, M) .(M) :
M�Q�P

+(<, Q)

=& :
M�P

+(<, M) .(M) /(StPM),
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since

/(StPM)= :

Q free
M�Q�P

(&1):1(Q)+1=& :
M�Q�P

+(<, Q). K

Theorem 4.2 can be generalized to some examples of non-convex
P # P(A). Suppose that a polytope P # P(A) can be decomposed into a
union

P=Q1 _ } } } _ Qm ,

where the intersection Qi1
& } } } & Qik

# I(A) for every subfamily
[Qij

]�[Qi], and such that for every free polytope M�P, we have M�Qi

for some i. In this case we call the collection [Qi] a visible decomposition
of P. For example, the facets of a convex polytope P # I(A) give a visible
decomposition of the boundary �P.

Theorem 4.5. Let . be a valuation on Pn. Suppose P # P(A) has a
visible decomposition. Then

.(P)= :
M�P

.([M])=& :
M�P

+(<, M) .*(M).

where the sum is taken over all M�P such that M # I(A).

Theorem 4.5 implies that the identities (15) and (16) hold for all
P # P(A) having a visible decomposition. Note that P need not be convex
in Theorem 4.5, although the polytopes M in the sum are always convex.

Proof. Suppose that P=Q1 _ } } } _ Qm is a visible decomposition of P.
For each I�[1, 2, ..., m], denote

QI=,
i # I

Qi .

Recall that we denote Q� I=[M # I(A) | M�QI]. From Theorem 4.1 we
have .([M])=0 when M is not free. Since the collection [Qi] gives a
visible decomposition of P, we have

:
M�P

.([M])= :
M # Q� 1 _ } } } _ Q� m

.([M])=:
I

(&1) |I |+1 :
M # Q� I

.([M]),
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by inclusion-exclusion. Since each QI # I(A), we have .(QI)=
�M # Q� I

.([M]) for each I. It follows that

:
M�P

.([M])=:
I

(&1) |I | +1 .(QI). (17)

Since . is a valuation on polytopes, we apply inclusion-exclusion to the
right hand side of (17) to obtain

:
M�P

.([M])=. \.
m

i=0

Qi+=.(P).

Hence,

.(P)= :
M�P

.([M])=& :
M�P

+(<, M) .*(M),

by Theorem 4.1. K

A (possibly non-convex) polytope P # P(A) is said to be non-singular if
P is also a topological manifold with (possibly empty) boundary �P. In this
case we denote by ri P the relative interior of P, that is, ri P=P&�P.
Evidently every convex polytope is non-singular, and the boundary �P of
any non-singular P is itself non-singular (with empty boundary).

Suppose P # P(A) is non-singular and has a visible decomposition.
Theorem 4.5 then implies that the identities (15) and (16) hold for the
polytope P. From this point of view Theorems 4.2 and 4.5 describe free
polytope analogues of Macdonald's relation for functionals on polytopes
(which in turn generalize the Dehn�Sommerville equations) [23].

For example, consider the case where P # I(A). The boundary �P is a
topological sphere with empty boundary, �(�P)=<, so that ri �P=�P
and dim(�P)+1=dim(P). Moreover, the facets Qi of P give a visible
decomposition of �P. Theorem 4.5 (in the formulation of (16)) then implies
that

(&1)dim(P) .(�P)= :
Q��P

+(<, Q) .(Q) (18)

When P is a simplicial polytope, we can take A to be the vertices (extreme
points) of P, so that the face enumerators fi=:i+1 become valuations (on
the face lattice of �P). On applying (18) to the case .= fi we obtain the
classical Dehn�Sommerville equations for the boundary of a convex
polytope, namely,

(&1)dim(P) fi (�P)= :
dim(P)&1

k=i

(&1)k+1 \k+1
i+1 + fk (�P),
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for i=0, ..., dim(P)&1. Similar considerations also yield a proof of Mac-
donald's more general Theorem 0.1.

5. THE PROOF OF THE INVERSION THEOREM

We now prove Theorem 4.1.
Given a regular cell complex K and a subset M of the geometric realiza-

tion of K, denote by NbK (M) the set of all closed cells of K that intersect
M. (Here ``Nb'' is for ``neighborhood.'') In other words,

NbK (M)=[_ # K | _ & M{<].

When the context is clear, we may write ``Nb'' for ``NbK .''
The following lemmas treat important special cases of Theorem 4.1, lead-

ing in turn to its proof in the general case.

Lemma 5.1. Suppose that 2n is an n-dimensional simplex in Rn, and let
!k denote a k-dimensional flat in Rn, then

/(Nb2n
(!k & 2n))=(&1)n&k

if !k & int(2n){< and /(Nb2n
(!k & 2n))=0 otherwise.

Proof. Suppose that !k & int(2n){<. Let Z denote the subcomplex of
2n consisting of all faces of 2n that are disjoint from !k . Evidently,

/(Nb2n
(!k & 2n))=/(2n)&/(Z)=1&/(Z).

Refine the facial decomposition of 2n to form a new cell complex C in
which the convex set 2n & !k is a k-cell. The set Z of cells disjoint from !k

remains the same as in the original complex 2n . That is,

/(NbC (!k & 2n))=1&/(Z),

where NbC denotes the neighborhood with respect to the cell complex C.
Hence, /(Nb2n

(!k & 2n))=/(NbC (!k & 2n)). But Z=LkC (!k & 2n), the
link in 2n with respect to C. Since !k & 2n is an interior k-cell of the homol-
ogy manifold (with boundary) C, it is well-known (see, for example, [29])
that /(Z)=1&(&1)n&k. Therefore,

/(Nb2n
(!k & 2n))=/(NbC (!k & 2n))=1&/(Z)=(&1)n&k.

A similar argument applies to the boundary case. K
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The following lemma deals with the free case of Theorem 4.1. The argu-
ment used to prove this lemma will anticipate the one to be used in the
more general case.

Lemma 5.2. Suppose . is a valuation on Pn, and suppose that P # I(A).
If P is free, then

.([P])=(&1)dim(P)+1 +(<, P) .(ri P).

Proof. From the Mo� bius inversion formula we have

.([P])= :
Q�P

+(Q, P) .(Q)= :
Q�P

+(Q, P) |
Rn

1Q (x) d.=|
Rn

fP(x) d.,

where

fP(x)= :
Q�P

+(Q, P) 1Q (x)= :
[x]�Q�P

+(Q, P).

Since P is free, each Q�P in I(A) is also free. It then follows from
Proposition 1.1 that +(Q, P)=(&1):1(P)&:1(Q)=+(<, P)(&1):1(Q).

Since P is a free polytope having :1 (P) vertices, the visibility complex
Vis(P) is a simplex of dimension :(P)&1. Let ?: Vis(P) � P denote the
projection of Vis(P) onto P mapping faces of Vis(P) onto free polytopes
inside P.

For x # P, the pre-image ?&1 (x) in Vis(P) is of the form
?&1 (x)=Vis(P) & !, where ! is a flat of dimension :1 (P) in Rn+:1(P).
Moreover, ! meets the interior of Vis(P) if and only if x # ri P.

Free polytopes Q on i vertices inside P such that x # Q are in one-to-one
correspondence with (i&1)-dimensional faces of Vis(P) that meet the flat
!. Suppose x # ri P. While ! is a flat of dimension :1 (P) in Rn+:1(P), the flat
! meets the affine hull of Vis(P) (and, therefore, ri(Vis(P))) in dimension
:1 (P)&dim(P)&1. We then have

/(NbVis(P) (! & P))=(&1)dim(Vis(P))&dim(! & Aff(Vis(P)))

=(&1) (:1(P)&1)&(:1(P)&dim(P)&1)

=(&1)dim(P)

by Lemma 5.1. A similar argument in the boundary case implies that

/(NbVis(P) (! & P))=0

when x # �P.
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We then have

fP(x)=+(<, P) :
[x]�Q�P

(&1):1(Q)

=&+(<, P) /(NbVis(P) (! & P))

=+(<, P)(&1)dim(P)+1,

if x # ri P, while fP(x)=0 otherwise. Hence,

.([P])=(&1)dim(P)+1 +(<, P) .(ri P). K

Suppose P # I(A) is not free. Let Ext(P) denote the set of extreme
points of P (all of which are points of A). Since P is not free, the set
P & (A&Ext(P)){<. Let P0 be the convex hull of P & (A&Ext(P)), that
is, of the points of P & A that are not extreme in P.

Lemma 5.3. Suppose . is a valuation on Pn, suppose that P # I(A). If
P is not free, then .([P])=0.

Proof. Since P is not free, we have P0 {<. Recall from Proposition 1.1
that +(Q, P)=0 unless P0 �Q. From the Mo� bius inversion formula we
have

.([P])= :
Q�P

+(Q, P) .(Q)= :
P0�Q�P

+(Q, P) |
Rn

1Q (x) d.=|
Rn

gP(x) d.,

where

gP(x)= :
P0�Q�P

+(Q, P) 1Q (x)= :

x # Q
P0�Q�P

+(Q, P).

We now show that gP(x)=0 for all x # P.
Recall that, for P # I(A), we denote by 2(P), or just 2, the simplex of

dimension :1 (P)&1 consisting of all subsets of P & A. For all faces S�2
denote by St S (resp. St S) the open (resp. closed) star of S in 2. Similar,
let Lk S denote the link of S in 2.

Let ! denote the pre-image of the point x under the projection map
?: 2(P) � P. Then we have
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gP(x)= :
x # Q�P

+(Q, P)

= :

x # Q
P0�Q�P

(&1):1(P)&:1(Q)

= :

! & Q{<
Q # St P0

(&1):1(P)&:1(Q)

=(&1):1(P) \ :

! & Q{<
Q # 2

:1 (Q)& :

! & Q{<
Q # 2&St P0

:1 (Q)+
=(&1):1(P)+1 (/(Nb2 !)&/(NbLk P0 V �P0

!)).

Recall from Lemma 5.1 that

/(Nb2 !)={(&1)dim(2)&dim(! & Aff(2))=(&1)dim(P)

0
if ! & ri(2){<
otherwise

Meanwhile, denote by u1 , ..., um the points of P0 & A, and let _i denote
the facet of 2 consisting of

_i=P� 6 u1 6 } } } ui&1 6 u i+1 6 } } } 6 um ,

where P� denotes the face of 2 spanned by the extreme points of P, and
where 6 denotes convex hull inside 2. We then have

Lk P0 V �P0= .
m

i=1

_i .

Denote [m]=[1, 2, ..., m]. For I�[m] let

_I=,
i # I

_i=P� 6 �
j � I

ui .

For each I we have

(NbLkP0 V �P0
!) & _I=Nb_I

!.

Since / is a valuation on subcomplexes of 2, the inclusion-exclusion
identity (1), applied to the union

NbLkP0 V �P0
!= .

m

i=1

Nb_i
!,
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implies that

/(NbLkP0 V �P0
!)= :

m

i=1

/((NbLkP0 V �P0
!) & _ i)

& :
i< j

/((NbLkP0 V �P0
!) & _ i & _ j)+ } } }

+(&1)m /((NbLkP0 V �P0
!) & _1 & } } } & _m)

= :
<{I�[m]

(&1) |I | +1 /(Nb_I
!). (19)

If x # �P then ! & _I ��_I for all I, since ! & ri(P� )=<. Therefore, all terms
of (19) are zero, by Lemma 5.1.

If x # ri P, then ! & _I meets ri _I for all I, so that each term of (19) is
(&1)dim P. In this case we have

/(NbLkP0 V �P0
!)= :

<{I�[m]

(&1) |I |+1 (&1)dim P

=(&1)dim P :
m

i=1 \
m
i + (&1) i+1=(&1)dim P.

Hence,

gP(x)=(&1):1(P)+1 (/(Nb2 !)&/(NbLkP0 V �P0
!))

={(&1):1(P)+1 (0&0)=0
(&1):1(P)+1 ((&1)dim P&(&1)dim P)=0

if x # �P
if x # ri P==0.

This completes the proof of Lemma 5.3. K

We have now done most of the work needed to proof the Inversion
Theorem 4.1.

Proof of Theorem 4.1. Suppose that .: Pn � R is a valuation. If
P # I(A) is free, then

.([P])=(&1)dim(P)+1 +(<, P) .(ri P),

by Lemma 5.2. If P # I(A) is not free then +(<, P)=0. The theorem then
follows from Lemma 5.3.
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Next suppose that .: In � R is a function, and suppose also that, for all
locally finite sets A/Rn we have

.([P])=(&1)dim(P)+1 +(<, P) .(ri P), (20)

where [P] and + are defined with respect to I(A) for each A. We show
that . extends to a unique valuation on Pn.

To begin, recall once again the theorem of Groemer [14] (see also [20])
that a function f on In has a unique extension to a valuation on Pn if and
only if

f (P1 _ P2)+ f (P1 & P2)= f (P1)+ f (P2), (21)

whenever P1 , P2 , and P1 _ P2 are convex polytopes. We show that the
identity (21) holds for the function ..

Suppose P1 , P2 # In and suppose that P1 _ P2 is also convex. Let A$
denote the collection of all extreme points of P1 and of P2 . If P1 & P2 {<
fill P1 & P2 with a finite collection points A" so that every edge, triangle,
and simplex of any dimension having extreme points in both P1 and P2 will
contain a relative interior point in A". If P1 & P2=< let A"=<. In either
case, let A=A$ _ A".

It follows that P1 , P2 , P1 _ P2 , P1 & P2 # I(A). Moreover, if Q�
P1 _ P2 is free with respect to A, then either Q�P1 or Q�P2 or both.
From (20) we then have

.(P1 _ P2)= :
Q�P1 _ P2

.([Q])

= :

Q free
Q�P1 _ P2

.([Q])

= :

Q free
Q�P1

.([Q])+ :

Q free
Q�P2

.([Q])& :

Q free
Q�P1 & P2

.([Q])

=.(P1)+.(P2)&.(P1 & P2),

so that . is a valuation on polytopes. K

6. SOME EXAMPLES AND APPLICATIONS

We now apply the identities of Section 4 to some important examples of
valuations on polytopes.
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6.1. Measures and Volume

A common family of examples arises from the case in which .=*, where
* is a (signed) measure on Rn. We then have *(P)&*(�P)=*(ri P), for all
convex polytopes P # I(A). Theorem 4.2 then implies that

*(ri P)=(&1)dim(P)+1 :

Q free
Q�P

(&1):1(Q) *(Q).

If * is absolutely continuous with respect to Lebesgue measure, then
*(�P)=0 for all P, and *(ri P)=*(P), so that

*(P)=(&1)n+1 :

Q free
Q�P

(&1):1(Q) *(Q),

as in the more general case of simple valuations.
An important special case is when *=Vn , the Euclidean volume on Rn.

In this case Theorem 4.5 takes the following appealing form.

Proposition 6.1 (Volume Formula). Let A be a locally finite subset of
Rn. For all P # P(A) having a visible decomposition,

Vn (P)=(&1)n+1 :

Q free
Q�P

(&1):1(Q) Vn (Q)

This formula simplifies even further in the special case of area for
polygons having vertices in A=Z2. See Section 7 and also [19].

6.2. Surface Area

Recall that every convex polytope in Rn has a well-defined surface area,
denoted S(P). If we set S(P)=2Vn&1 (P) for polytopes of dimension n&1
in Rn, then S extends to a valuation on all of Pn. For convex polytopes
P of dimension n, the boundary �P has dimension n&1, so that
S(�P)=2Vn&1 (�P)=2S(P). It follows that

S(P)&S(�P)=S(P)&2S(P)=&S(P).

Theorem 4.2 then implies that

S(P)=(&1)n :

Q free
Q�P

(&1):1(Q) S(Q), (22)

for all convex polytopes in I(A) having non-empty interior in Rn.
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Remark. If A=Zn, the set of integral points of Rn, then the previous
formula can be restated with ordinary surface area replaced by the relative
surface area for integral polytopes.

6.3. The Euler Characteristic

It is well-known that the Euler characteristic /(P) of a (possibly non-
convex) polytope gives the unique valuation on Pn taking the value 1 on
all non-empty compact convex polytopes. See, for example, [20] for a
detailed construction. Recall also that if Q is a non-empty compact convex
polytope, then /(ri Q) = (&1)dim Q, so that /* = /. On applying
Theorem 4.5 to the Euler characteristic we now obtain the following result.

Proposition 6.2 (Free Polytope Euler Formula). For all P # P(A)
having a visible decomposition,

/(P)=& :
<{Q�P

+(<, Q)= :
�

i=1

(&1) i+1 :i (P). (23)

Note that the sums in (23) are always finite, since every P # P(A) contains
a finite number of polytopes Q # I(A). The identity (23) is comparable to
the classical Euler formula, which gives the Euler characteristic of P as the
alternating sum of the face numbers of a specific cell decomposition of a
polytope [20, 29, 43].

While it is tempting to conjecture that (23) holds for all polytopes
P # P(A), this turns out to be false. Let 23 denote a 3-dimensional regular
tetrahedron. Choose a pair of disjoint edges of 23 , and attach a triangular
fin to each edge from this pair, to form a (non-convex) polytope M. Adjust
the fins so that the line segment connecting the outer tip of each fin lies
inside M. Now let A denote the vertices of 23 along with the outer tips of
each of the two added fins, a total of 6 points. Clearly M # P(A) and M
is contractible, so that /(M)=1. However, we also have :1 (M)=6,
:2 (M)=11, :3 (M)=6, :4 (M)=1, while : i (M)=0 for i�5. Hence,

:
�

i=1

(&1) i+1 :i (M)=0{/(M).

This counterexample to the universality of (23) is due to Edelman and
Reiner [10].

6.4. Interior Points

The functional :1 , which counts the points of A contained inside a
polytope P, is a valuation on Pn. This follows from the fact that
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:1 (P _ Q)+:1 (P & Q)=|(P _ Q) & A|+ |(P & Q) & A|

=|P & A|+ |Q & A|

=:1 (P)+:1 (Q). (24)

For non-singular polytopes P, define the related functional

I(P)=|ri(P) & A|=:1 (P)&:1 (�P),

which counts the number of points of A contained in the relative interior
of P. Evidently I(P)=(&1)dim(P) :1*(P). Theorem 4.5 therefore yields the
following formula for I(P).

Proposition 6.3. For all non-singular P # P(A) having a visible decom-
position,

I(P)= :
�

i=1

(&1)dim(P)+i+1 i: i (P). (25)

Evidently the sum on the right-hand side of (25) is always finite, since
any given P contains a finite number of free polytopes Q # I(A).

Ahrens, Gordon, and McMahon [1] independently discovered a
2-dimensional version of Proposition 6.3 for convex polygons, and they
posed the n-dimensional version as a conjecture. The generalization of (25)
to Rn for convex polytopes was also proved independently by Edelman and
Reiner [9].

Proof of Proposition 6.3. Since :1 is a valuation on Pn, we apply
Theorem 4.5 to the valuation :1* to obtain

:1*(P)=& :
Q�P

+(<, Q) :1 (Q)=& :

Q free
Q�P

(&1):1(Q) :1 (Q)

= :
�

i=1

(&1) i+1 i: i (P).

Since I(P)=(&1)dim(P) :1*(P), the identity (25) immediately follows. K

Proposition 6.3 is an example of a Dehn�Sommerville equation. While
any particular cell decomposition of a convex polytope satisfies a family of
very general Dehn�Sommerville equations (see, for example, [2, 5, 6, 13,
21, 40, 42, 43]), the visibility complex of a convex polytope is typically too
complicated to admit Dehn�Sommerville equations for the higher dimen-
sional enumerators :i , where i>1. In particular, Vis(P) usually is not an
Eulerian manifold, as defined by Klee [21].
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Moreover, the free polytope enumerators :i typically are not valuations
for i>1, so that Theorem 4.2 does not typically apply to them. For exam-
ple, the identity (24) fails to hold for the free edge enumerator :2 , even for
some of the simplest examples.

7. INTEGRAL POLYTOPES AND A FORMULA FOR AREA

Let Zn denote the set of all points in Rn having integer coordinates.
Denote by In=I(Zn) the set of all convex polytopes having all of their
vertices in Zn. Elements of In will also be referred to as convex integral
polytopes. The results of the preceding sections take especially simple and
elegant forms for the 2-dimensional case, in which A=Z2, as a conse-
quence of the following proposition.

Proposition 7.1. Let P # I2. If P is free then P is either a point, a line
segment, a free triangle of area 1�2, or a free parallelogram of area 1.

In particular, free convex polygons have area 0, 1�2, or 1, and any free
convex polygon has an affine unimodular image inside the unit square.

Proof. From the tiling properties of parallelograms (and some elemen-
tary linear algebra) it follows that a parallelogram in I2 is free if and only
if it is the image of a translate of the unit square under a unimodular trans-
formation. In other words, a parallelogram is free if and only if it has unit
area. Since any free triangle forms a free parallelogram when pasted to its
reflection through the center of an edge, an integral triangle is free if and
only if has area 1�2.

Let P be an arbitrary free convex polygon with at least four vertices. Any
three vertices of P span a free triangle inside P. Let x1 , x2 , x3 denote 3
adjacent vertices of P such that x1x2 and x2x3 are boundary edges of P.
There exist a translation and a unimodular transformation mapping these
vertices x1 , x2 , x3 to the points y1=(1, 0), y2=(0, 0), and y3=(0, 1)
respectively. Let Q denote the image of P under this transformation. Note
that Q is also free, and that the edges y1y2 and y2y3 are boundary edges
of Q. Since Q is convex and free, all remaining vertices of Q must have
positive (integer) coordinates.

Let (a, b) be a fourth vertex of Q. If a>1, then the triangle with vertices
(0, 0), (0, 1), and (a, b) has area greater than 1�2, and is consequently not
free. This contradicts the assumption that Q is free. Therefore a�1.
Similarly, b�1, and Q must be the unit square. It follows that P must be
a free parallelogram. K
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It follows from Proposition 7.1 that

:3 (P)=number of free integral triangles inside P,

while

:4 (P)=number of free integral parallelograms inside P,

for all P # P(Z2). Evidently when k�5 we have :k (P)=0 for all P # P(Z2).
Let A(P) denote the area of a polygon P. Theorem 4.2 and its corollaries

now yield the following formula for the area of an integral polygon.

Theorem 7.2 (Area Formula). For all polygons P # P(Z2) having a
visible decomposition,

A(P)=(1�2) :3 (P)&:4 (P).

Proof. Viewing the area A as two-dimensional volume V2 , apply
Proposition 6.1 to obtain

A(P)= :

Q free
Q�P

(&1):1(Q)+1 A(Q)=(1�2) :3 (P)&:4 (P),

where the second equality follows from Proposition 7.1. K

Consider, for example, the polygon (having area 5
2) in Fig. 1 of Section 1.

A more elementary (and purely combinatorial) proof of this area formula
for the case of convex integral polygons can be found in [19].

For 2-dimensional non-singular polygons P # P(Z2), define B(P)=:1 (P)
&I(P), the number of lattice points on the boundary �P of P. On combining
Proposition 6.3 with Proposition 7.1 we obtain the following formulas for
the number of interior and boundary integral points of a polygon (see also
[19]).

Proposition 7.3. For all non-singular polygons P # P(Z2) having a
visible decomposition and non-empty interior,

I(P)=:1 (P)&2:2 (P)+3:3 (P)&4:4 (P). (26)

and

B(P)=2:2 (P)&3:3 (P)+4:4 (P). (27)

Proof. Equation (26) follows immediately from Propositions 7.1 and
6.3. Equation (27) then follows from (26) and the fact that I(P)+
B(P)=:1 (P). K
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Evidently the values :3 (P) and :4 (P) take some considerable effort to
compute, even assuming knowledge of which integral points lie inside and
on the boundary of P. Some of this effort is saved if we invert the relations
above (using elementary linear algebra) to obtain the following.

Corollary 7.4. For all non-singular polygons P # P(Z2) having a
visible decomposition and non-empty interior,

:3 (P)=&3:1 (P)+2:2 (P)&I(P)+4/(P)

:4 (P)=&2:1 (P)+:2 (P)&I(P)+3/(P)

The following well-known result is an immediate consequence of
Theorem 7.2, Proposition 7.3 and the Euler characteristic formula (5) (see
also [12, 13, 30]).

Corollary 7.5 (Pick's Theorem). For all non-singular polygons
P # P(Z2) having a visible decomposition and non-empty interior,

A(P)=I(P)+(1�2) B(P)&/(P).

Although Theorem 4.5 applies (as stated in this article) only to func-
tionals on polytopes having visible decomposition, the results of this
section (for polygons in I(Z2)) can be generalized to all (non-convex)
polygons P # P(Z2) by means of other combinatorial arguments (as found
in [19], for example).

The situation is far more complicated for integral polytopes of dimension
n�3. On the one hand, by considering vertex coordinates modulo 2 one
can show that any free convex integral polytope in Rn has at most 2n

vertices. Unfortunately, Proposition 7.1 has no finite analogue in higher
dimensions; even in dimension 3 there exist free integral simplices (free
polytopes with exactly 4 integral points) of arbitrarily large volume. As a
result, the analogue of Theorem 7.2 for 3-dimensional volume will poten-
tially involve a finite, but arbitrarily large, family of free polytope
enumerators; as might Proposition 6.1 for general vertex sets A.

8. DUAL RELATIONS AND INCLUSION�EXCLUSION
IDENTITIES

On combining Theorem 4.1 with Mo� bius inversion we obtain the follow-
ing relation dual to the inversion identity of Theorem 4.2.
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Theorem 8.1. Let . be a valuation on Pn. For all P # I(A), we have

+(<, P) .*(P)=& :
Q�P

+(Q, P) .(Q) (28)

Note that we require the polytope P to be convex in Theorem 8.1. Since
.**=., we can also exchange the roles of . and .* in (28).

Theorem 8.1 is dual (in yet another sense) to the free polytope inversion
identity of Theorem 4.2, in that Mo� bius functions from minimal elements
+(<, } ) are replaced with Mo� bius functions to maximal elements +( } , P).

Proof. On combining Mo� bius inversion formula (7) and Theorem 4.1,
we obtain

+(<, P) .*(P)=&.([P])=& :
Q�P

+(Q, P) .(Q). K

Theorem 8.1 also has some striking consequences for the case of
polytopes in I(A) that are not free.

Corollary 8.2. If P # I(A) is not free, then

:
Q�P

+(Q, P) .(Q)=0.

Proof. This is an immediate consequence of Theorem 8.1 and the fact
that +(<, P)=0 when P is not free (see Proposition 1.1). K

In particular, suppose P # I(A) is not free, and let x1 , ..., xm denote the
extreme points of P (where xi # A). Since P is not free, P &
(A&[x1 , ..., xm]){<. Let P0 denote the convex hull of P & (A&
[x1 , ..., xm]); that is, the convex hull of the points of P & A that are not
extreme in P. Recall from Proposition 1.1 that, for Q�P, we have +(Q, P)=0
unless P0 �Q. From Corollary 8.2 and +(P, P)=1 it follows that

.(P)=& :
P0�Q / P

+(Q, P) .(Q). (29)

Each Q # I(A) such that P0 �Q / P can be expressed uniquely in the form
P0 6 xI , where I�[1, 2, ..., m] and xI=�i # I x i . Recall that the join 6
denotes convex hull. (See Section 1 for the definition of the meet 7 and
join 6 of polytopes in I(A).)

In this case, Proposition 1.1 implies that

+(Q, P)=+(P0 6 xI , P)=(&1)m&|I |,
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where |I | denotes the size (cardinality) of the finite set I. We are now able
to reformulate (29) as an inclusion-exclusion principle for polytope valua-
tions . with respect to the convex hull join 6.

Corollary 8.3. If P # I(A) is not free and has m extreme points then

.(P)= :
I / [1, 2, ..., m]

(&1)m&|I |+1 .(P0 6 xI),

where P0 and xI are defined as above.

Similar relations exist for the 7 operation. For each extreme point xi of
P define

Pi=P0 6 x1 6 } } } 6 x̂i 6 } } } 6 xm ,

where x̂i denotes omission of xi from the convex hull join. Evidently
P=P1 6 } } } 6 Pm , while P0=P1 7 } } } 7 Pm . In analogy to Corollary 8.3
we have the following inclusion�exclusion principle for polytope valuations
with respect to the meet 7 .

Corollary 8.4. If P # I(A) is not free then

.(P0)= :
I / [1, 2, ..., m]

(&1)m&|I |+1 .(Pi 1
7 } } } 7Pi |I|

), (30)

where I=[i1 , i2 , ..., i |I |] and each Pi is defined as above.

Proof. From the identity (29) we obtain

:
P0�Q�P

+(Q, P) .(Q)=0.

It follows that

+(P0 , P) .(P0)=& :
P0 / Q�P

+(Q, P) .(Q)

= :
< / J�[1, 2, ..., m]

(&1)m&|J |+1 .(P0 6 xJ). (31)

For all J�[1, 2, ..., m], let I=[i1 , i2 , ..., i |I |] denote the complement of J
in [1, 2, ..., m]. We then have P0 6 xJ=Pi1

7 } } } 7 Pi |I|
and |I |+|J |=m.

Recall also that +(P0 , P)=(&1)m. After making appropriate substitutions
in (31) we obtain (30). K
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9. INVARIANT POLYTOPE FUNCTIONALS

Let Zn denote the set of all points in Rn having integer coordinates. We
consider an application of the preceding results to the case of A=Zn.
Denote by I(Zn) the set of all convex polytopes having all of their vertices
in Zn. Elements of I(Zn) will also be referred to as convex integral
polytopes.

The group of integer translations of Rn, also denoted Zn, acts on the lat-
tice I(Zn). Moreover, the stabilizer of any given polytope P # I(Zn) is just
the trivial group, while the orbits of this Zn-action are congruence classes
of integral polytopes under translation. Denote by [P] the Zn-orbit of a
polytope P.

The lattice B(Zn) inherits the action of Zn on I(Zn) as follows. For
A # B(Zn) and x # Zn, define

A+x=[P+x | P # A].

A function f: I � R is said to be integer translation invariant or Zn-
invariant if f (P+x)= f (P) for all x in Zn. Recall from Section 2 that such
a function will induce an invariant valuation f� : B(Zn) � R.

The following is an important example of an invariant valuation on
B(A). For a fixed orbit [P], define

:P(A)=|A & [P]|,

for all A # B(Zn). In other words, :P counts the number of polytopes in the
set A that are congruent to P under integer translations. Evidently :P is Zn-
invariant. The valuation :P is induced by the (Zn-invariant) function on
I(Zn) which takes the value 1 on polytopes Q # [P] and is otherwise zero.
Note that :P is a valuation on B(A), but is not in general a polytope
valuation (on Pn).

In analogy to Hadwiger's Characterization Theorem [15, 16, 20] for
invariant valuations on compact convex sets in Rn, we have the following
basis theorem for translation invariant valuations on B(Zn).

Theorem 9.1 (Basis Theorem). Suppose f� : B(Zn) � R is invariant
under the action of Zn. For all A # B(Zn),

f� (A)= :
[Q]

f ([Q]) :Q (A)

For other combinatorial analogues of Hadwiger's Theorem, see also [4,
17, 18, 20]. Note also that R can be replaced by any abelian group as the
range of f� .
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Proof. For A # B(Zn),

f� (A)= :
Q # A

f ([Q])= :
[Q]

f ([Q]) :Q (A),

where we collect terms over congruence classes [Q]. K

Once again, it is important to distinguish between polytope valuations
(on Pn) and the valuations on the Boolean algebra B(Zn), which are in
one-to-one correspondence with all functions on convex polytopes in
I(Zn). Theorem 4.1 now implies that Zn-invariant polytope valuations can
be expressed as linear combinations of the functions :P where each P is
free.

Corollary 9.2. Suppose . is a Zn-invariant valuation on Pn. For all
A # B(Zn),

.(A)= :
[[P]: P free]

.([P]) :P(A),

Proof. Recall from Theorem 4.1 that .([P])=0 when P is not free.
The corollary then immediately follows from Theorem 9.1. K

Theorem 4.1 asserts that .([P])=&+(<, P) .*(P). From Proposi-
tion 1.1 we then obtain

.(A)= :
[[P]: P free]

(&1):1(P)+1 .*(P) :P(A),

for all A # B(Zn).
In the treatment above we could replace the translation group Zn with

the affine unimodular group Aff (Zn) generated by all integer translations
and integer linear transformations with determinant \1. In this case we
would obtain basis theorems for affine unimodular invariant polytope func-
tionals, summing over affine unimodular invariant congruence classes in
I(Zn), in analogy to Theorem 9.1. For affine unimodular invariant valua-
tions the summation would be over all affine unimodular invariant con-
gruence classes of free polytopes (by Theorem 4.1), in analogy to
Corollary 9.2.

Evidently similar basis theorems could be also derived for polytopes
using hexagonal point lattices, symmetric tilings of spheres and hyperbolic
spaces, and many other locally finite families of polytopes compatible with
the symmetry group of an underlying space.

Basis theorems of the form of Theorem 9.1 (or its classical antecedents,
such as Hadwiger's characterization theorem [15, 16, 20]) are often used
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to evaluate kinematic formulas for the expected value of an invariant valua-
tion . on a random intersection of polytopes (where one polytope is fixed
and the other is moved at random by a symmetry of the space). Classical
kinematic formulas play a prominent role in integral geometry [20, 36,
38]. Kinematic formulas in combinatorial theory are treated in detail in
[17] (see also [18, 20]), and the techniques of [17] apply as well in the
context of I(Zn) and other locally finite polytope families admitting the
action of a symmetry group.

10. CLOSING REMARKS AND OPEN QUESTIONS

There remain a number of open questions regarding the locally finite lat-
tice P(A) and the important special case of P(Zn).

First, it is well known that Macdonald's relation and the Dehn�Sommer-
ville equations hold not only for convex polytopes, but for triangulated
compact manifolds with boundary. In this article we showed that the iden-
tities of Theorem 4.2 hold for all polytopes in P(A) having a visible
decomposition (see Theorem 4.5). The author conjectures that these iden-
tities also hold for all non-singular polytopes P that can be triangulated
using the points P & A as vertices and such that P is a topological (or even
Eulerian) manifold with boundary. Using combinatorial arguments and an
induction on dimension one can prove this conjectured generalization of
Theorem 4.2 in the case of A�R2, but this particular approach will break
down in higher dimension. Nonetheless, the author believes Theorem 4.2
will be seen to hold for non-singular polytopes in P(A) for any locally
finite A�Rn.

A second question concerns the behavior of the free polytope
enumerators with respect to dilation in the integer lattice. It is well known
that, for P # P(Zn), and positive integers k, the lattice point enumerator
:1 (kP) is a polynomial:

:1 (kP)=Gn (P) kn+Gn&1 (P) kn&1+ } } } +G1 (P) k+/(P),

where Gn (P)=Vol(P), the n-dimensional volume of P, where Gn&1 (P)
denotes the relative surface area of P, and where the remaining coefficients
are other affine unimodular invariant valuations of P. This polynomial is
known as the Ehrhart polynomial of P (see, for example, [13, 40]). One
might ask, how do the functions :i (kP) behave as functions of k, where
P and i are fixed? Because the functionals :i are not valuations for i>1,
their behavior under dilations, unions, and Minkowski sums remains
mysterious.

30 DANIEL A. KLAIN



Similarly, if P # P(A) for some locally finite set A, what can be said about
how the functionals :i (P) vary when A is replaced with a refinement A$, such
the barycentric subdivision with respect to some A-triangulation of P?

The free polygon area formula, Theorem 7.2, should have interesting
analogues for other locally finite families of points in R2 having appropriate
symmetry. For example, one can show that if A is a hexagonal point lattice
(such as would arise in the cross-section of a beehive), free polygons can
have no more than 6 vertices, and an area formula analogous to
Theorem 7.2 should not be too difficult to find.

In recent years much attention has been given to f-vectors, h-vectors,
and the cd-index. Given a convex polytope P in Rn, the f-vector of P is the
vector

( f0 (P), f1 (P), ..., fn&1 (P)),

where fi (P) is the number of i-dimensional faces of P. The h-vector and
cd-index are related expressions of face data for a polytope P. See, for
example, [3, 11, 40, 41].

Consider instead a polytope P # I(A). In place of the f-vector of P, one
can consider the :-vector of P, namely, :=(:1 (P), :2 (P), ..., :m (P)), where
:i (P) is the number of free polytopes Q�P with |Q & A|=i, and where m
is the maximal number of vertices in a free polytope of I(A). Since the free
polytope enumerators :i (P) do not satisfy the Dehn�Sommerville equa-
tions (since the functionals :i are not valuations for i>1), one cannot
immediately generalize the notions of h-vector and cd-index to the func-
tionals :i . On the other hand, the functionals :i do satisfy a number of
linear relations given by the free polytope inversion identity of
Theorem 4.2, such as the free polytope Euler formula (5) and the interior
point formula (25). It remains an open question how to find a complete set
of linear relations satisfied by the :-vectors of polytopes in a locally finite
collection I(A), and to determine which vectors are realizable as :-vectors
of a polytope with respect to a given locally finite point set A.

For convenience we have considered only real-valued polytope func-
tionals in this article. One could consider instead functionals (and valua-
tions) taking values in an arbitrary vector space V over a field K. In this
instance, indicator functions for polytopes would be defined having images
in the field K. It is also possible to replace the collection Pn (resp. In) with
the collection of all rational polytopes (resp. rational convex polytopes)
in Rn and to consider rational-valued functionals on these polytopes.
Groemer's integral and extension theorems for valuations on polytopes
remain valid in these contexts [14], and the functional (and valuation)
identities of Theorem 4.2 and its corollaries also remain valid, following the
same arguments as those given above.
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APPENDIX: NOMENCLATURE

Rn n-dimensional Euclidean space
Zn Points of Rn having integer coordinates
A A locally finite subset of Rn

Kn Set of all compact convex subsets of Rn

Pn Set of all (possibly non-convex) polytopes in Rn

P(A) Set of all polytopes Pn which can be triangulated with vertices in A

I(A) Set of all convex polytopes having extreme points in A

B(A) Power set of I(A)
< The empty set
P� Set of all Q # I(A) such that Q�P
P6Q Convex hull of P _ Q
P7Q Convex hull of P & Q & A

:i (A) Number of free polytopes in A having i vertices
/ Euler characteristic
+ Mo� bius function
f� Valuation on the Boolean algebra B(A) induced

by a function f on I(A)
ri P Relative interior of P
�P Boundary of a non-singular polytope P
dim(P) Dimension of P
Vis(P) Visibility complex of P
2(P) Convex hull of Vis(P) (a simplex), also denoted 2
? Orthogonal projection of 2(P) (or Vis(P)) onto P
Q� The unique simplex in Vis(P) corresponding to

a free polytope Q�P.
1P Indicator function of P
.* Dual valuation of .
StPQ The (open) star of Q� in the complex Vis(P)
Ext(P) Set of extreme points of the polytope P
St Q the (open) star of Q
St Q The closed star of Q
Lk Q The link of Q
NbC (Q) Set of closed cells in C that intersect Q
fk (T) Number of k-dimensional faces of a cell complex T

[P] Integer translative congruence class of P
:P(A) Number of free polytopes in A that are congruent to P

under Zn translations
vol(P) Euclidean volume of P
Area(P) Euclidean area of P
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