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Abstract. One of the most beautiful and important results in geometric
convexity .is Hadwiger’s characterization theorem for the quermassintegrals.
Hadwiger’s theorem classifies a// continuous rigid motion invariant valuations
on convex bodies as consisting of the linear span of the quermassintegrals (or,
equivalently, of the intrinsic volumes) [4]. Hadwiger’s characterization leads
to effortless proofs of numerous results in integral geometry, including various
kinematic formulas [7, 9] and the mean projection formulas for convex bodies
[10]. Hadwiger’s result also provides a connection between rigid motion invari-
ant set functions and symmetric polynomials [1, 7].

Unfortunately the only known proof of Hadwiger’s result until now has
been that given in [4] and is the product of a long and arduous sequence of
cut and paste arguments.

The purpose of this paper is to present a new and shorter proof of
Hadwiger’s characterization theorem, digestible within a few minutes. En route
to this result is a more general characterization of volume in Euclidean space.
The proof relies almost entirely on elementary techniques, with the exception
of Proposition 3.1, a well-known consequence of the theory of spherical
harmonics.

§1. Background. Denote by 2" the collection of all compact convex sub-
sets of R”, that is, n-dimensional Euclidean space. The elements of ¢ " are
also known as convex bodies. A convex body K is centred about the origin, if
K is symmetric under reflection through the origin; that is, if K=—K. A convex
body K is centred, if there exists a translate of K that is centred about the
origin. Denote by ", the collection of all centred convex bodies in " ".

A convex body Ke# " is determined uniquely by its support function, hy :
S"~' >R, defined by hx(u) =max,.x {x . u}, where . denotes the standard inner
product on R”. ‘

For all K, Le"" and all A>0, the Minkowski sum K+ AL is defined by

K+AL={x+Ay:xeK and yelL},

and has support function kg, =hg+ Ak, .

Every convex body K has a volume, denoted V(K). Let B denote the unit
ball in R”, centred at the origin. For all £>0, the volume V(K+ ¢B) is given
by Steiner’s formula (see [10]):

V(K+ eB) = Wo(K) + (’;) W, (K)s+® Wa(K)E+. . .+ Wy(K)&".

[MATHEMATIKA, 42 (1995), 329-339]
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For 0<i<n, the coefficient W,(K) depends only on the body K (independent
of &) and is called i-th quermassintegral of K. Setting £=0, we see that

V(K) = W(K).

The definition for W; depends on the dimension 7 of the ambient Euclidean
space. The resultant ambiguity is eliminated by replacing the quermassintegrals
with McMullen’s intrinsic volumes [5][10, p. 210], defined by

ViK) = (”) Vol
4 Kp—-i
for 0<i<n, where x,-; denotes the (n—i)-volume of the (n—i)-dimensional
unit ball. The intrinsic volumes are normalized so that each V; is equal to the
i-dimensional volume when restricted to an i-dimensional subspace of R”.

A sequence of convex bodies K; is said to converge to K in the Hausdorff

topology, if, for all £>0, there exists N> 0 such that

K, cK+¢eB and K<K,+¢B

for all i> N. In this case we write K,— K.
A function p: "R is called a valuation on # " if u(Zf) =0, where & is
the empty set, and

p(KOL)y=pu(K)+u(L)=p(Kn L), ey

for all K, Le A " such that Ku Les " as well.
A valuation y on " is said to be simple, if u vanishes on all convex bodies
of dimension strictly less than n.

A valuation p on A" is said to be continuous if, for any convergent sequence
K—Kin A", '

}irg (K= p(K).

The condition on (1) that K'u L be convex may seem excessively restrictive.
However, any continuous valuation y on " can be extended in a unique way
to the lattice Polycon (R”™) of polyconvex subsets of R”; that is, the set of all
finite unions of compact convex subsets of R”. The extension is constructed as
follows. Given a valuation y on %" and a set MePolycon (R"), express M
as a finite union of convex bodies,

M=K v ...UK,,

and then compute u(K; u. ..U K,,) by iterating (1). Groemer [3] has shown
that this extension of p is well-defined. In the arguments that follow, this
unique extension of u shall allow us to consider the value of u on all finite
unions of convex bodies, whether or not such unions are actually convex.

Let T, denote the group of translations in R". The group T, is naturally
isomorphic to the group R” under vector addition. A valuation g on 4 " is
translation invariant if u(TK)=p(K) for all TeT,. Let E, denote the group
of Euclidean (or rigid) motions; that is, the group generated by all translations
and rotations in R". A valuation y on X" is invariant under rigid motions if
H(pK)=pu(K) for all peE,.
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A well-known example of a continuous rigid motion invariant valuation on
A " is the volume V. Another example is surface area. It turns out that all of
the intrinsic volumes Vy, Vi, ..., V, are continuous rigid motion invariant
valuations on %" (see [10, p. 290]).

§2. Hadwiger’s characterization theorem. Hadwiger’s characterization
theorem classifies all continuous valuations on " that are invariant under
rigid motions. The original proof is long and difficult (see [4]).

THEOREM 2.1 (Hadwiger’s Characterization Theorem). Suppose that u is
a continuous rigid motion invariant valuation on A ". Then there exist
Co, Cl, - - - » CoER such that, for all Ke A",

W(K)=3 eV(K).

i=0

A valuation pu on %" is said to be homogeneous of degree i, if

p(ak)=a'u(K),

for all @ >0 and all Kex"". 1t is well-known that, for 0 <i<n, the valuation
V: is homogeneous of degree i. The following is an immediate corollary of
Theorem 2.1.

COROLLARY 2.2. Suppose that u is a continuous rigid motion invariant
valuation on A" that is homogeneous of degree i, where 0<i<n. Then there
exists ceR such that

u(K)=cV(K),
for all KeA™".

Theorem 2.1 and Corollary 2.2 are extremely useful for the development
and proof of integral geometric and kinematic formulas for convex bodies [1,
6,7, 9]

To begin the proof of Hadwiger’s characterization theorem, let us state the
following equivalent result.

THEOREM 2.3.  Suppose that u is a continuous rigid motion invariant simple
valuation on A" ". Then there exists ceR such that u(K)=cV(K), for all Ke A" ".

Proof of Equivalence. We first prove that Theorem 2.3 implies Theorem
2.1. The argument is carried out by induction on dimension. The result is
obvious in dimension zero. Suppose then that Theorem 2.1 holds for the case
of " 1.

Let u be a valuation satisfying the hypotheses of Theorem 2.1. By restrict-
ing p to convex bodies in R”™' we obtain a continuous rigid motion invariant
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valuation v on # "', By the induction hypothesis, Theorem 2.1 (for dimen-
sion n— 1) implies that there exist co, . .., ¢,~; €R such that

n—1

v(K)= ) aV{K), (2)
i=0
for all Kex™ "',
Let n=u —-Z::O’ ¢;V:. Equation (2) implies that n vanishes on "', so
that the valuation 7 satisfies the hypothesis of Theorem 2.3. Therefore, there
exists ¢,€R, such that n=c¢,V=¢,V, on 2 ". In other words,

u=>y oV
i=0

This completes the proof that Theorem 2.3 implies Theorem 2.1.

Next, assume that Theorem 2.1 holds, and suppose that u satisfies the
hypothesis of Theorem 2.3. By Theorem 2.1, there exist ¢, ¢4, . . ., ¢c,€R such
that, for all Kex ",

w(EK)=3 cV(K).
; =0

14

Suppose that K has dimension 0. Then Vo(K)=1, and V(K)=0 for all i>0.
Since u vanishes on bodies of dimension less than n, we have

O0=pn(K)= 3} caVi(K)=co.
i=Q
Suppose that co=c¢;=...=¢,=0, where 0<k<n—2. Let K be a convex body
of dimension k+ 1 such that ¥, (K)=1. Then V(K)=0 for all i>k+1, so
that
k+1
O0=p(K)=Y c:VAK)=cr+1.

i=0
This process can be continued until we have ¢o=...=¢,_, =0, so that
u(K)=c,V,(K)=c,V(K),

for all Kex ". This completes the proof that Theorem 2.1 implies Theorem
2.3.

So far, all of this material is well-known (see [6, 7]). The purpose of this
paper is to give a new and straightforward proof of Theorem 2.3.

§3. A characterization theorem for volume. In this section we state and
prove a more general characterization theorem for volume, from which
Theorem 2.3 will be seen to follow. For the sake of completeness, we recall
the following facts.

Recall that a zonotope is a finite Minkowski sum of straight line segments.
A convex body Y is called a zonoid if Y can be approximated in 4 ” by a
convergent sequence of zonotopes [10, p. 183]. We shall need the following
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useful fact concerning zonoids and smooth convex bodies. A complete discus-
sion of this result and its proof may be found in [2] and [10].

ProrosITiON 3.1, Let Ke X[, and suppose that the support function hy is
C®. Then there exist zonoids Y\, Y, such that

K+ Y2:Y1.

Proof. For ge C*(S"™"), the cosine transform of g, denoted Cg, is given
by the equation

Ce(u)= j |u .v| g(v)dv.
Sn-—l

The transform C is a linear bijection on the space of all even C* functions on
S”~!'. This fact is a consequence of the Funke-Hecke theorem for spherical
harmonics (see [10, p. 184]).

Since the function hx: S” 'R is C* and even, there exists an even C*®
function g: 8" 'R such that

hx(u) = J‘ lu . vjg(v)dv.
Sn“l

Let g"(v) =max {g(v), 0} and let g (v) =max {—g(v), 0}. Then

h(u) + f |u.v|g” (v)dv= J lu.v|g" (v)dv. 3
gl !

It is easy to check that the functions 4y,= Cg" and hy,= Cg~ each satisfy the
properties of a support function of a centred convex body, which we denote
by Y; and Y; respectively. Equation (3) is then equivalent to the statement that
K+ Y,=7Y,. Moreover, since the Riemann sums converging to the integrals in
(3) are linear combinations of support functions of line segments (i.e., support
functions of zonotopes), it follows that Y; and Y, are zonoids.

Let #={ei,...,e,} denote the standard basis for R", and denote by
SO(n, #) the set of all rotations in SO(n) that fix at least one of the (n—2)-
dimensional subspaces spanned by n—2 elements of the basis 4.

ProOPOSITION 3.2.  Suppose that pe SO(n). Then there exists a finite collec-
tion @1, @z, . .., PueESO(n, B) such that ¢= @10, . .. Q.

Proof. The proposition holds trivially in dimension »n=2, since
SO(2, 8)=S0O(2). Suppose that the proposition holds for dimension n—1>2.
Let peSO(n). Let v=pe,. Assume without loss of generality that v#e,.
Let v denote the unit normalization of the orthogonal projection of v onto
Span {e;, ..., e,—1}=R""'. There exists yeSO(n) such that ye,=e, and
wv'=e,—,. Since v lies in Span {v/,e,}, it follows that wov lies in
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Span {e,_i, e,}. Let { be the rotation that fixes ey, . . . » €n—2 and rotates yv
to e,. Then {eSO(n, #), and {yge,=lyv=ec,. Let n={Lyop.

Since y, n both fix e,, it follows from the induction assumption on
SO(n—1) that there exist y,...y;, 1,...n€S0(n, B) such that Y=
Wi...y;and n=1;...n,. Thus,

o=y =y oy Ty
The following result provides the key step to the proof of Theorem 2.3.

THEOREM 3.3.  Suppose that u is a continuous translation invariant simple
valuation on A"". Suppose also that u([0, 11") =0, and that u(K)=pu(—K), for
all KeA™". Then u(K)=0, for all Ke A" ".

Here [0, 1]” denotes the n-fold cartesian product of the closed unit interval
[0, 1] with itself; that is, a unit n-cube.

Proof. 1f n=1 then the result follows readily, since a compact convex
subset of R is merely a closed line segment. Since y is simple and vanishes on
the closed line segment [0, 1], it must vanish on all closed line segments of
rational length. It then follows from continuity that u vanishes on all closed
line segments.

For n>1, assume that Theorem 3.3 holds for valuations on 2 "~'. Since
p is translation invariant and simple, the fact that ([0, 1]")=0 implies that
#([0, 1/k]") =0 for all integers k>0. Therefore, u(C)=0 for every box C of
rational dimensions, with sides parallel to the coordinate axes. This follows
from the fact that such a box can be built up out of cubes of the form [0, 1/k]"
for some k>0. The continuity of z then implies that u(C)=0 for every box
C of positive real dimensions, with sides parallel to the coordinate axes.

Next, suppose that D is a box with sides parallel to a different set of
orthogonal axes. If n=2 then it is easy to see that D can be cut into a finite
number of pieces, translations of which can be pasted to form a box C with
sides parallel to the original coordinate axes (see Fig. 1). Since y is simple and
translation invariant, it follows that H(D)=u(C)=0. If n>2, then for all
rotations {€SO(n, #), a box with sides parallel to the basis (% can be cut,
translated, and re-pasted into a box parallel to %, using precisely the operations
followed in the case n=2. This works because the rotation ¢ fixes at least n— 2
of the original coordinate axes. More generally, for y € SO(n), Proposition 3.2
states that y is a finite product of elements of SO(n, #). Therefore, a box
with sides parallel to the basis w48 can be cut, translated, and re-pasted into a

Figure 1. Re-orient a frame without use of rotations.
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box parallel to 4, using a finite iteration of operations of the type used in the
case n=2. ‘

It follows that if D is a box with sides parallel to any frame in R”, then D
can be transformed into a box C with sides parallel to the original coordinate
axes, by means of cutting, pasting, and translations. Therefore, we have u(D) =
p(C)=0.

Next, define a valuation 7 on "~ as follows. Given a compact convex
subset K of R"™!, set

T(K)=p(Kx[0, 1]).

Note that ([0, 117" ")=pu([0, 1]")=0. Notice also that ¢ satisfies the
hypotheses of Theorem 3.3 in dimension »—1. The induction hypothesis then
implies that 7=0.

Since p is simple, it then follows that u(X x [a, b]) =0, for any convex body
K<R"™' and any rational numbers a, b, with a<b. The continuity of u then
implies that g(K X [a, b]) =0 for all a, beR. Said differently, u is zero on any
right cylinder with a convex base.

Let X, ..., X, be the coordinates on R”. We can represent R" ™' by the
hyperplane x,=0. The right cylinders for which we have shown pu to be zero
have top and bottom that are congruent and that lie directly above and below
each other. In other words, the edges connecting the top face to the bottom
face are orthogonal to the hyperplane x,=0.

This process can be applied to right cylinders with base in any (n—1)-
dimensional subspace of R”. Since uy=0 on boxes in every orientation, it
follows (from the preceding argument) that p =0 on right cylinders of every
orientation.

Suppose that M is a prism, or slanting cylinder, for which the top and
bottom faces are congruent and both parallel to the hyperplane x,=0, but
whose cylindrical boundary is no longer orthogonal to x,, =0, meeting it instead
at some constant angle. See Fig. 2.

Cut M into two pieces, M, and M,, separated by a hyperplane that is
orthogonal to the cylindrical boundary of the prism. Rearrange the pieces M;
and re-paste them together along the original (and congruent) top and bottom
faces. We are then left with a right cylinder C whose surrounding boundary is
orthogonal to the new top and bottom faces. Since y remains constant under
this operation, it follows that

p(M)=p(M)+ p(Mz)=p(C)=0.

(Note. Actually, such a cut and re-arrangement is possible only if the
diameter of the top/bottom of M is sufficiently small as compared to the height

E@}

Figure 2. Turn a prism into a right cylinder.
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and angle of the cylindrical boundary; i.e., provided M is not too “fat”. If the
base of M is too large, however, we can subdivide M into “skinny” prisms by
sub-dividing the top/bottom of M into convex bodies of sufficiently small
diameter and considering separately each prism formed by taking the convex
hull of the (disjoint) union of a piece of the bottom of M with its corresponding
piece of the top of M.)

Now let P be a convex polytope having facets Py, . .., P, and correspond-
ing outward unit normal vectors u,, ..., u,. Let veR”, and let & denote the
straight line segment connecting the point v to the origin 0. Without loss of
generality, let us assume that Py, . . ., P; are exactly those facets of P such that
u; .v>0, for each 1<i<j. In thlS case, the Minkowski sum P+0 can be
expressed in the form

P+5=Pu< C) (P,-+5)),

where each term of the above union is either disjoint from the others, or
intersects another in a convex body of dimension at most n—1. It follows that

u(P+5)=ﬂ(P)+( 5 #(P,-+ﬁ))-

=

Notice, however, that each term of the form P;+ & is a prism, so that u(P;+ ) =
0. Hence,

p(P+0)=pu(P), C))

for all convex polytopes P and all line segments .
By induction over finite Minkowski sums of lihe¢ segments, it immediately
follows from (4) that, for all convex polytopes P and all zonotopes Z,

u(Z)=0, and  p(P+Z)=u(Pp).
The continuity of p then implies that
u(Y)=0, and p(K+7Y)=pu(K), (5)

for all Ke " and all zonoids Y.

Next, suppose that Ke £ has a C® support function 4x. By Proposition
3.1, there exist zonoids ¥, and Y, such that K+ Y,=Y;. In this case, (5)
Implies that

H(K)=pu(K+Yy)=p(Y,)=0.

Since any centred convex body K can be approximated by a sequence K; of
C* centred convex bodies, it follows (by continuity) that y is zero on all of
AL

Now let A be an n-dimensional simplex, with one vertex at the origin. Let
ui, ..., u, denote the other vertices of A, and let P be the parallelotope spanned
by the vectors u;, ..., u,. Let v=u;+...+u,. Let & be the hyperplane pass-
ing through the points ul s+ .., Uy, and let &, be the hyperplane passing through
the points v—~u,, ..., v—u,. Finally, denote by P, the set of all points of P
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lying between the hyperplanes &; and &,. We can now write
P=AuUP, u(—A+v),

where each term of the union intersects another in dimension at most n—1.
Since P and P, are centred, we have

0=p(P)=p(A) +p(Py) +p(-A+v)=p(d)+pu(=A).

In other words, p(A)=—u(—A). Meanwhile, we are given that u(A)=pu(—A).
Therefore p(A)=0, for any simplex A.

Let P be a convex polytope in R”. The polytope P can be expressed as a
finite union of simplices

P=Au...UA,,

such that the intersection A; " A; has dimension less than n, for all i#j. It
follows that

u(P)= 3. 1(8)=0.

r

Since the set of all convex polytopes is dense in 2", the continuity of u then
implies that u(X)=0 for all Kex™".

Theorem 3.3 is equivalent to the following theorem.

THEOREM 3.4 (Volume Characterization Theorem). Suppose that u is a
continuous translation invariant simple valuation on A"". Then there exists ceR
such that p(K)+p(—K)=cV(K), for all Ke A ".

Note that Theorem 3.4 implies that u(K) = (¢/2) V(K) for all centred convex
bodies Ke A"

Proof of equivalence. Suppose that y is a continuous translation invariant
simple valuation on " ". For KeX ", define

v(K)=p(K) +p(=K) —2u({0, 1T V(K).

Then v satisfies the hypotheses of Theorem 3.3, so that v(K) =0 for all Ke ™"
Therefore,

(K) + p(—K)=cV(K),

where ¢=2u([0, 1]"). Hence, Theorem 3.3 implies Theorem 3.4. The reverse
implication is obvious.

§4. Proof of Hadwiger’s characterization theorem. We saw in Section 2
that Hadwiger’s characterization theorem (Theorem 2.1) is equivalent to
Theorem 2.3. The following fact is required for the proof of Theorem 2.3.
This proposition and its proof have been taken almost directly from [8, pp. 16-
17].
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ProrosITION 4.1.  Let A be an n-dimensional simplex. There exist polytopes
Py, ..., P, such that

A=P1U:...UPm,

where each term of this union intersects another in dimension at most n— 1, and
where each of the polytopes P;is symmetric under a reflection across a hyperplane.

Proof. Let xo, ..., x, be the vertices of A, and let A; be the facet of A
opposite to x;. Let z be the centre of the inscribed sphere of A, and let z; be
the foot of the perpendicular from z to the facet A;. For all i<j, let 4; ; denote
the convex hull of z, z;, z;, and the face A; N A;. Then

A= U Ay,
0<i<j<n
where the distinct terms A, ; of this union intersect in at most dimension n— 1.
It is also evident that each 4;; is symmetric under reflection across the n— 1
hyperplane determined by the point z and the face A; » A;. Now re-label the
polytopes 4;; by a linear ordering P, ... P,,, where m=3n(n+1). This gives

A=Pyu...UP,,

where the polytopes P; satisfy the desired conditions.
We now re-state and prove Theorem 2.3.

THEOREM 4.2. Suppose that p is a continuous rigid motion invariant simple
valuation on " ". Then there exists ceR such that p(K)=cV(K), for all Ke A" ",

Proof.  Since p is translation invariant (as well as rotation invariant) and
simple, Theorem 3.4 implies the existence of aeR such that u(K)+ H(—K)=
aV(K), for all Kex"".

Let A be a simplex in R”. Then we have

H(A) +p(—A)y=aV(A). (6)

If the dimension # of the ambient Euclidean space is even, then A differs
from —A by a rotation, so that u(A) =pu(—A)=(a/2) V(A).

Meanwhile, if » is odd, by Proposition 4.1 there exist polytopes Py, ..., P,
such that

A=P|U...UPm,

where each term of this union intersects another in dimension at most #— 1,
and where each of the polytopes P; is symmetric under a reflection across a
hyperplane.

It follows that each P; differs from —P; by a rigid motion, so that u(—P)=
u(P;). Therefore,

EED) HEP)= T w(P)=p(A). %)

Taken together, (6) and (7) imply that u(A)=(a/2) V(A) for any simplex A.
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Let c=a/2, and suppose that P is a convex polytope in R”. The polytope
P can be expressed as a finite union of simplices

P=A]Q...UAM,

such that the intersection A; N A; has dimension less than n, for all i#j. It
follows that

p(Py=p(A)+. ..+ u(A,)
=cV(A)+. ..+ cV(A)
=cV(P).

Since the set of all convex polytopes is dense in 2", the continuity of u then
implies that u(K) = cV(K) for all Ke # ". This concludes the proof of Theorem
4.2.
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