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IF YOU CAN HIDE BEHIND IT, CAN YOU HIDE INSIDE IT?

DANIEL A. KLAIN

Abstract. Let K and L be compact convex sets in Rn. Suppose that, for a
given dimension 1 ≤ d ≤ n − 1, every d-dimensional orthogonal projection of
L contains a translate of the corresponding projection of K. Does it follow
that the original set L contains a translate of K? In other words, if K can be
translated to “hide behind” L from any perspective, does it follow that K can
“hide inside” L?

A compact convex set L is defined to be d-decomposable if L is a direct
Minkowski sum (affine Cartesian product) of two or more convex bodies each
of dimension at most d. A compact convex set L is called d-reliable if, when-
ever each d-dimensional orthogonal projection of L contains a translate of the

corresponding d-dimensional projection of K, it must follow that L contains a
translate of K.

It is shown that, for 1 ≤ d ≤ n− 1:
(1) d-decomposability implies d-reliability.
(2) A compact convex set L in Rn is d-reliable if and only if, for all m ≥ d+2,

no m unit normals to regular boundary points of L form the outer unit
normals of an (m− 1)-dimensional simplex.

(3) Smooth convex bodies are not d-reliable.
(4) A compact convex set L in Rn is 1-reliable if and only if L is 1-decompos-

able (i.e. a parallelotope).
(5) A centrally symmetric compact convex set L in Rn is 2-reliable if and

only if L is 2-decomposable.
However, there are non-centered 2-reliable convex bodies that are not
2-decomposable.

As a result of (5) above, the only reliable centrally symmetric covers in R3

from the perspective of 2-dimensional shadows are the affine convex cylin-
ders (prisms). However, in dimensions greater than 3, it is shown that 3-
decomposability is only sufficient, and not necessary, for L to cover reliably
with respect to 3-shadows, even when L is assumed to be centrally symmetric.

Consider two compact convex subsetsK and L of n-dimensional Euclidean space.
Suppose that, for a given dimension 1 ≤ d < n, every d-dimensional orthogonal
projection (shadow) of L contains a translate of the corresponding projection of K.
Does it follow that the original set L contains a translate of K? In other words, if
K can be translated to “hide behind” L from any perspective, does it follow that
K can “hide inside” L?

In dimension 2 it is easy to see that the answer is no. For example, if an
equilateral triangle Δ is inscribed in a disc D of unit diameter, the slightly larger
triangle (1 + ε)Δ still has less than unit width in every direction (provided ε > 0
is sufficiently small), but no longer fits inside D. The same construction works for
any set K inscribed in D and having strictly less than unit diameter. Another
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counterexample arises from comparing Δ and the dilated and reflected triangle
−(1 + ε)Δ for small ε > 0.

Although the details are less obvious, counterexamples also exist in higher di-
mensions. Let B denote the Euclidean 3-ball of unit radius, and let T denote
the regular tetrahedron having edge length

√
3. Jung’s Theorem [3, p. 84], [31,

p. 320] implies that every 2-projection of T is covered by a translate of the unit
disk. But a simple computation shows that B cannot cover the tetrahedron T .
An analogous construction yields a similar result for higher dimensional simplices
and Euclidean balls. One might say that, although T can be translated within a
fixed distance from B (i.e. without moving far away) to hide behind B from any
observer’s perspective, this does not imply that T can hide inside B.

Indeed, for 1 ≤ d ≤ n−1, it is shown in [17] that, if K is a compact convex set in
R

n having at least d+ 2 exposed points, then there exists another compact convex
set L such that every d-dimensional orthogonal projection (shadow) of L contains a
translate of the corresponding projection of K, while L does not contain a translate
of K. In certain cases one can even find examples where K also has larger volume
than L (and so certainly could not fit inside L). For a detailed example of this
volume phenomenon, see [16].

This leads to the question: under what additional conditions on either of the
sets K or L does covering of the shadows of K by translates of the shadows of L
imply covering of the original set K by a translate of the set L?

This question is easily answered when a sufficient degree of symmetry is imposed.
For example, a support function argument implies that shadow covering implies
actual covering if both of the bodies K and L are centrally symmetric. It is also
not difficult to show that, if every d-projection of K (for some 1 ≤ d < n) can be
translated inside the corresponding shadow of an orthogonal n-dimensional box C,
then C contains a translate of K, since one needs only to check that the widths
are compatible in the n edge directions of C. Related special cases occur if C is
a parallelotope (an affine image of a box), or even a cylinder (the product of an
(n− 1)-dimensional compact convex set with a line segment).

In [22] Lutwak uses Helly’s theorem to prove that, if every n-simplex containing
L also contains a translate of K, then L contains a translate of K. In the present
article we generalize Lutwak’s theorem in order to reduce questions about shadow
covering to questions about circumscribing simplices and simplicial cylinders. A
compact convex set L will be called d-decomposable if L is a direct Minkowski sum
(affine Cartesian product) of two or more convex bodies each of dimension at most
d (see Section 1). A compact convex set L will be called d-reliable if, whenever
each d-shadow of L contains a translate of the corresponding d-shadow of K, it
follows that L contains a translate of K (see Section 3). It will be shown that, for
1 ≤ d ≤ n− 1:

(1) d-decomposability implies d-reliability. (Theorem 1.3)
(2) A compact convex set L in R

n is d-reliable if and only if, for all m ≥ d+2,
no m unit normals to regular boundary points of L form the outer unit
normals of an (m− 1)-dimensional simplex. (Theorem 3.4)

(3) Smooth convex bodies are not d-reliable. (Corollary 3.6)
(4) A compact convex set L is 1-reliable if and only if L is 1-decomposable

(i.e. a parallelotope). (Corollary 3.7)
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(5) A centrally symmetric compact convex set L is 2-reliable if and only if L is
2-decomposable (Theorem 4.1). However, there are non-centered 2-reliable
convex bodies that are not 2-decomposable. (Corollary 3.8)

As a result of (5) above, the only reliable centrally symmetric covers in R
3 from

the perspective of 2-dimensional shadows are the affine convex cylinders (prisms).
However, in dimensions greater than 3, it will be seen (at the end of Section 4) that
3-decomposability is only sufficient, and not necessary, for L to cover reliably with
respect to 3-shadows, even when L is assumed to be centrally symmetric.

The containment and covering problems addressed in this article are special
cases of the following question: under what conditions will a compact convex set
necessarily contain a translate or otherwise congruent copy of another? Progress
on different aspects of this general question also appears in the work of Gardner
and Volčič [10], Groemer [12], Hadwiger [13, 14, 15, 18, 26], Jung [3, 31], Lutwak
[22], Rogers [25], Soltan [30], Steinhagen [3, p. 86], Zhou [34, 35], and others (see
also [8]).

These questions are also motivated in part by dramatic progress on two notorious
related problems: the Shephard Problem [29] and the Busemann-Petty Problem [5].
Both address properties of bodies K and L that are assumed to be centrally sym-
metric about the origin (for which these particular questions become non-trivial).
The Shephard Problem asks: if each orthogonal (n−1)-projection of K has smaller
(n − 1)-volume than the corresponding projection of L, does it follow that K has
smaller n-volume than L? The Busemann-Petty Problem addresses an analogous
question by comparing the volumes of (n− 1)-dimensional cross-sections of K and
L through the origin. The Shephard Problem was solved independently by Petty
[24] and Schneider [27], who showed that, while the answer in general is no for di-
mensions n ≥ 3, the answer is yes when the convex set L is a projection body; that
is, a zonoid. The solution to the Busemann-Petty Problem proved more subtle and
elusive. After decades of partial results by several researchers (see, for example,
[1, 4, 6, 7, 9, 11, 19, 20, 23, 32, 33]) the surprising answer was revealed to be no
for bodies of dimension n ≥ 5 and yes for bodies of dimension n ≤ 4. Moreover, in
analogy to the Petty-Schneider theorem, the answer is always yes when the set L is
an intersection body [21]. A more complete discussion of these and related problems
(some of which remain open) can be found in the comprehensive book by Gardner
[8].

0. Background

Denote n-dimensional Euclidean space by R
n, and let S

n−1 denote the set of
unit vectors in R

n; that is, the unit (n− 1)-sphere centered at the origin.
Denote by Kn the set of compact convex subsets of R

n. The n-dimensional
(Euclidean) volume of a convex set K will be denoted Vn(K). If u is a unit vector
in R

n, denote by Ku the orthogonal projection of a set K onto the subspace u⊥.
More generally, if ξ is a d-dimensional subspace of Rn, denote by Kξ the orthogonal
projection of a set K onto the subspace ξ. The boundary of a compact convex set
K will be denoted by ∂K.

Let hK : Rn → R denote the support function of a compact convex set K; that
is,

hK(v) = max
x∈K

x · v.
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If ξ is a subspace of Rn then the support function hKξ
is given by the restriction

of hK to ξ. If u is a unit vector in R
n, denote by Ku the support set of K in the

direction of u; that is,

Ku = {x ∈ K | x · u = hK(u)}.

If P is a convex polytope, then Pu is the face of P having u in its outer normal
cone.

Given two K,L ∈ Kn and a, b ≥ 0 denote

aK + bL = {ax+ by | x ∈ K and y ∈ L}.

An expression of this form is called a Minkowski combination or Minkowski sum.
Because K and L are convex, the set aK+bL is also convex. Convexity also implies
that aK + bK = (a + b)K for all a, b ≥ 0. Support functions satisfy the identity
haK+bL = ahK + bhL. (See, for example, [3, 28, 31].)

If K ∈ Kn has non-empty interior, define the surface area measure SK on
the (n − 1)-dimensional unit sphere S

n−1 as follows: for A ⊆ S
n−1 denote by

KA =
⋃

u∈A Ku, and define SK(A) = Hn−1(K
A), the (n − 1)-dimensional Haus-

dorff measure of the subset KA of the boundary of K. (See [28, p. 203].) If P is a
polytope, then SP is a pointed measure concentrated at precisely those directions
u that are outer normals to the facets of P .

The measure SK is easily shown to satisfy the property

(0.1)

∫
Sn−1

u dSK = �o,

that is, the mass distribution on the sphere described by SK has center of mass at
the origin. For a convex polytope P having outward facet unit normals u1, . . . , um

and corresponding facet areas α1, . . . , αm > 0, the identity (0.1) takes the simple
and intuitive form:

(0.2) α1u1 + · · ·+ αmum = �o.

Minkowski’s Existence Theorem [3, p. 125], [28, p. 390] gives a useful converse
to the identity (0.1): if μ is a non-negative measure on the unit sphere S

n−1 such
that μ has center of mass at the origin, and if μ is not concentrated on any great
(equatorial) (n − 1)-subsphere, then μ = SK for some K ∈ Kn. Moreover, this
convex body K is unique up to translation.

Suppose that F is a family of compact convex sets in R
n. Helly’s theorem

[3, 28, 31] asserts that if every n + 1 sets in F share a common point, then the
entire family shares a common point. In [22] Lutwak used Helly’s theorem to prove
the following fundamental criterion for whether a set L ∈ Kn contains a translate
of another set K ∈ Kn.

Theorem 0.1 (Lutwak’s containment theorem). Let K,L ∈ K n. The following
are equivalent:

(i) For every simplex Δ such that L ⊆ Δ, there exists v ∈ R
n such that K+v ⊆

Δ.
(ii) There exists v0 ∈ R

n such that K + v0 ⊆ L.

In other words, if every n-simplex containing L also contains a translate of K,
then L contains a translate of K.
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1. Circumscribing sets and shadows

A convex set K ∈ Kn will be called d-decomposable if there exists a subspace
decomposition

R
n = ξ1 ⊕ · · · ⊕ ξm,

where dim ξi ≤ d for each i, and compact convex sets Ki ⊆ ξi for each i, such that
K = K1 + · · ·+Km. Decompositions of this kind will be denoted

K = K1 ⊕ · · · ⊕Km.

If K = Δ1⊕· · ·⊕Δm, where the component sets Δi are simplices, each of dimension
at most d, then we will say thatK is a d-decomposable simplex product. The product
will be called orthogonal if the subspaces ξi are mutually orthogonal.

The 2-decomposable sets in R
3 (as well as products of (n− 1)-dimensional sets

with line segments in R
n) are often called cylinders or prisms.

If the circumscribing simplices are replaced by circumscribing simplex products
for L, then the following generalization of Lutwak’s theorem 0.1 is obtained.

Theorem 1.1 (Prismatic containment theorem). Let K,L ∈ K n. The following
are equivalent:

(i) For every d-decomposable set C ∈ Kn such that L ⊆ C, there exists v ∈ R
n

such that K + v ⊆ C.
(ii) For every d-decomposable orthogonal simplex product C such that L ⊆ C,

there exists v ∈ R
n such that K + v ⊆ C.

(iii) For every d-dimensional subspace ξ ⊆ R
n, there exists w ∈ ξ such that

Kξ + w ⊆ Lξ.

In other words, if every d-decomposable (simplex) product C containing L also
contains a translate of K, then every d-shadow Lξ contains a translate of the
corresponding shadow Kξ, and vice versa.

The following proposition will simplify the proof of Theorem 1.1.

Proposition 1.2. Let K,L ∈ Kn. Let ψ : Rn → R
n be a non-singular linear

transformation. Then Lu contains a translate of Ku for all unit directions u if and
only if (ψL)u contains a translate of (ψK)u for all u.

This proposition implies that nothing is gained (or lost) by allowing more general
(possibly non-orthogonal) linear projections.

Proof. For S ⊆ R
n and a non-zero vector u, let LS(u) denote the set of straight

lines in R
n parallel to u and meeting the set S. The projection Lu contains a

translate of Ku for each unit vector u if and only if, for each u, there exists vu such
that

(1.1) LK+vu(u) ⊆ LL(u).

But LK+vu(u) = LK(u) + vu and ψLK(u) = LψK(ψu). It follows that (1.1) holds
if and only if LK(u) + vu ⊆ LL(u), if and only if

LψK(ψu) + ψvu ⊆ LψL(ψu) for all unit u.

Set

ũ =
ψu

|ψu| and ṽ = ψvu.
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The relation (1.1) now holds if and only if, for all ũ, there exists ṽ such that

LψK(ũ) + ṽ ⊆ LψL(ũ),

which holds if and only if (ψL)ũ contains a translate of (ψK)ũ for all ũ. �

Proof of Theorem 1.1. To begin, note that (i) implies (ii) trivially.
Suppose that (ii) holds. Given a d-subspace ξ ⊆ R

n, let T be a simplex in ξ
that circumscribes Lξ. Let ud+1, . . . , un be an orthonormal basis for ξ⊥, and let C ′

be a cube in ξ⊥ with edges parallel to the directions ui and large enough so that
Lξ⊥ ⊆ C ′. Now let C = T ⊕C ′. Since L ⊆ C, it follows from (ii) that there exists
v ∈ R

n such that K + v ⊆ C. This implies that Kξ + vξ ⊆ Cξ = T . On applying
Lutwak’s theorem 0.1 in the subspace ξ it follows that Kξ+w ⊆ Lξ for some w ∈ ξ.
Therefore, (ii) implies (iii).

Next, suppose that (iii) holds. If L ⊆ C = C1⊕· · ·⊕Cm, where each dim ξi ≤ d,
then let ψ be a non-singular linear operator on R

n such that the subspaces ψ(ξi)
are mutually orthogonal. By Proposition 1.2, the condition (iii) also holds for ψK
and ψL. For each i we obtain vi ∈ ψξi such that

(ψK)ψξi + vi ⊆ (ψL)ψξi ⊆ (ψC)ψξi = ψCi.

Let v = v1 + · · · + vm. Since the subspaces ψξi are mutually orthogonal, we have
ψK + v ⊆ ψC, so that K + ψ−1v ⊆ C. Therefore, (iii) implies (i), and the three
assertions are equivalent. �

It is worth noting the following special case of Theorem 1.1.

Theorem 1.3. Let K,C ∈ K n, where C is d-decomposable.
Suppose that, for each d-dimensional subspace ξ ⊆ R

n, there exists w ∈ ξ such
that Kξ + w ⊆ Cξ. Then there exists v ∈ R

n such that K + v ⊆ C.

When d = n− 1, Theorem 1.3 says that if you can hide behind a cylinder from
any perspective (and without rotating), then you can also hide inside the cylinder.

More consequences of Theorem 1.1 are explored in [16].

2. Simplicial families of unit normals

Theorem 1.3 motivates a converse question: if L is not d-decomposable, does
there necessarily exist K such that every d-shadow of L contains a translate of the
corresponding d-shadow of K, while L itself does not contain a translate of K? The
answer is not necessarily. We will show in a later section (see Corollary 3.8) that
if L is a square pyramid (the convex hull of a square in R

3 with a point above its
center), then no K can hide behind L unless K can also hide inside L. However,
the square pyramid is not 2-decomposable. In other words, the condition of being
d-decomposable is sufficient, but not necessary.

In this section we develop some tools for constructing necessary and sufficient
conditions for when shadow covering implies actual covering. These tools are ap-
plied in later sections.

A set of unit vectors {u0, . . . , ud} ⊆ S
n−1 will be called a d-simplicial family, or

d-simplicial, if u0, . . . , ud span a d-dimensional subspace of Rn, and if there exist
real numbers c0, . . . , cd > 0, such that

c0u0 + c1u1 + · · ·+ cdud = o.
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Equivalently, u0, . . . , ud are the outer unit normals of some d-dimensional simplex.
Note that a d-simplicial family contains exactly d+ 1 unit vectors.

It will be seen in Sections 3 and 4 that certain translative covering properties of
a compact convex set L hinge in the existence of simplicial families of unit normals
to regular points of L. The next three propositions will be used in that context.
(Readers in a hurry may wish to scan Sections 3 and 4 and return to these technical
points later on.)

Proposition 2.1. Suppose that A = {u1, . . . , um} ⊆ S
n−1 contains no simplicial

families of size 3 or greater, and that

(2.1) c1u1 + · · ·+ cmum = o

for some c1, . . . , cm > 0. Then m = 2s for some integer s, and there exist linearly
independent vectors v1, . . . , vs ∈ S

n−1, where s ≤ n, such that

A = {±v1, . . . ,±vs}.

Proof. By (2.1) the set A must have at least 2 elements, and if A has size 2 then
the proposition is trivial.

Suppose that the proposition fails for some set A of minimal sizem, wherem > 2.
By (2.1) there exists a minimal subfamily {ui1 , . . . , uik} ⊆ A such that

a1ui1 + · · ·+ akuik = o

for some a1, . . . , ak > 0. Let d = dim(Span{ui1 , . . . , uik}). Since the uij are
dependent, we have k ≥ d+1. If k > d+1 then Carathéodory’s theorem [28, p. 3]
(applied in the span of the {uij}) implies that the origin o lies in the convex hull
of a sub-subfamily of size at most d + 1 < k of the uij , violating the minimality
of k. Therefore k = d + 1, and {ui1 , . . . , uik} is a simplicial set. By the original
assumption on simplicial families in A, it follows that k = 2, so that ui = −uj for
some i 	= j.

Without loss of generality, suppose that u1 = −u2 and that c1 ≥ c2. It now
follows from (2.1) that

o = (c1 − c2)u1 + c3u3 + · · ·+ cmum.

Suppose c1−c2 > 0. The minimality of m implies that the proposition holds for the
set {u1, u3, . . . , um}, so thatm−1 is even and these remaining vectors u1, u3, . . . , um

can be partitioned into distinct antipodal pairs. Since u1 = −u2, this would violate
the original assumption that the ui are distinct. Therefore c1 = c2, and

o = c3u3 + · · ·+ cmum.

Once again the minimality of m implies that the proposition holds for the set
u3, . . . , um, so that m − 2 is even (and therefore m is even), and the remaining
ui can be separated into distinct antipodal pairs ±v2, . . . ,±vs, where the vi are
linearly independent.

It remains to show that u1 (and similarly u2) is linearly independent from the
vectors vi. If u1 lies in the span of v2, . . . , vs, then u1 lies in the span of a minimal
subset of v2, . . . , vk of size at least 2, since u1 is distinct from each ±vi. The
resulting linear dependence relation violates the non-existence of simplicial subsets
of size 3 or greater inside A.

Setting v1 = u1 now completes the proof of the proposition. �
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Proposition 2.2. Suppose that A ⊆ S
n−1 contains no simplicial sets of size 3 or

greater, and that the origin lies in the interior of the convex hull of A. Then there
exist linearly independent vectors v1, . . . , vn ∈ S

n−1, such that

A = {±v1, . . . ,±vn}.

Proof. By Carathéodory’s theorem there exists a finite subfamily u1, . . . , um of A,
such that (2.1) holds. Since o lies in the interior of the convex hull of A, we can take
m large enough so that u1, . . . , um spans R

n. By Proposition 2.1, this subfamily
has the form {±v1, . . . ,±vs} ⊆ A, where v1, . . . , vs are linearly independent and
span R

n. It follows that s = n.
If w ∈ A and w 	= ±vi, then w lies in the span of some vi1 , . . . , vik , where k ≥ 2

is minimal. This linear dependence relation violates the non-existence of simplicial
sets of size 3 or greater inside the set A.

It follows that {±v1, . . . ,±vn} = A. �
Proposition 2.3. Suppose that A ⊆ S

n−1 is symmetric under reflection through
the origin; that is, A = −A. Suppose also that A contains no simplicial sets of size
4 or greater, and that the origin lies in the interior of the convex hull of A.

Then there exists a subspace direct sum decomposition

R
n = W1 ⊕ · · · ⊕Wk,

where each dimWi ≤ 2, and such that A ⊆ W1 ∪ · · · ∪Wk.

Proof. Since A = −A, the set A is composed of antipodal pairs ±v of unit vectors.
Moreover, since the convex hull of A has interior and is centrally symmetric, there
exist at least n pairs ±u1, . . . ,±un in A whose n directions are linearly independent.
If A = {±u1, . . . ,±un}, then R

n is a direct sum of the lines spanned by each ±ui,
and the proposition follows.

If, instead, ±v is another antipodal pair in A, where v 	= ±ui for all i, then
without loss of generality (relabeling the signs on ±ui as needed), we have

−v = c1u1 + · · ·+ cdud

for some c1, . . . , cd > 0, where d is minimal. If d ≥ 3, then the relation

v + c1u1 + · · ·+ cdud = 0

implies that {v, u1, . . . , ud} form a simplicial family in A of size at least 4, contra-
dicting hypothesis. Meanwhile, since v 	= ±ui, we must have d > 1. The remaining
possibility is d = 2, so that v lies in the span of {u1, u2}.

If w ∈ A and w 	= ±v,±u1, . . . ,±un, then w lies in the span of 2 of the ui by a
similar argument. But if w = a1u1 + a3u3, say, where a1, a3 > 0, then

w =
a1
c1

(−c2u2 − v) + a3u3 =
a1c2
c1

(−u2) +
a1
c1

(−v) + a3u3.

Since every 3 of the 4 vectors v, w, u2, u3 are linearly independent, we obtain a
simplicial set of size 4, another contradiction. Therefore, either w also lies in the
span of {u1, u2} or in the span of {ui, uj} for j > i > 2. An iteration of this
argument implies that Rn is decomposed into a direct sum R

n = W1⊕· · ·⊕W�n+1
2 �

of subspaces Wi each having dimension at most 2, and where every v ∈ A also lies
in some Wi. �

We will also need the following proposition, which clears up ambiguities regarding
when shadows cover inside a larger ambient space.
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Proposition 2.4. Suppose that ξ is a linear flat in R
n. Let K and L be compact

convex sets in ξ. Suppose that, for each d-subspace η ⊆ ξ, the projection Lη contains
a translate of Kη. Then Lη contains a translate of Kη for every d-subspace η ⊆ R

n.

In other words, embedding K and L in a higher-dimensional space does not
change whether or not every d-shadow of L contains a translate of the corresponding
d-shadow of K (even though there are now more shadow directions to verify).

Proof. Suppose that η is a d-subspace of Rn. Let η̂ denote the orthogonal projection
of η into ξ. Since dim(η̂) ≤ dim(η) = d, we can translate K and L inside ξ so that
Kη̂ ⊆ Lη̂. Let us assume this translation has taken place. Note that, for v ∈ η̂, we
now have hK(v) ≤ hL(v).

If u ∈ η, then express u = uξ + uξ⊥ . Since K ⊆ ξ,

hK(u) = max
x∈K

x · u = max
x∈K

x · uξ = hK(uξ),

and similarly for L. But since u ∈ η, we have uξ ∈ η̂, so that

hK(u) = hK(uξ) ≤ hL(uξ) = hL(u).

In other words, Kη ⊆ Lη. �

3. When can a convex set conceal without covering?

We now address the possibility of a converse to Theorem 1.3.

Definition 3.1. Suppose that 1 ≤ d ≤ n − 1. A compact convex set L in R
n is

said to be a d-reliable cover, or d-reliable, if whenever K ∈ Kn and every d-shadow
Lξ contains a translate of the corresponding shadow Kξ, it follows that L contains
a translate of K.

Evidently, if L is d-reliable, then L is also m-reliable for all m > d.
Theorem 1.3 asserts that if L is d-decomposable, then L is also d-reliable. How-

ever, we will see that a square pyramid gives a counterexample to the converse
assertion. It is 2-reliable, but not 2-decomposable (Corollary 3.8).

The next two theorems describe a necessary and sufficient condition for L to be
a d-reliable cover. Recall that a point x on the boundary of a compact convex set
L is said to be regular if the outward normal cone to L at x contains exactly one
unit vector.

Theorem 3.2. Suppose that L has regular boundary points x0, . . . , xd+1, whose
corresponding unit normals u0, . . . , ud+1 are a simplicial family. Then there exists
a polytope S such that Lξ contains a translate of Sξ for each d-subspace ξ of Rn,
while L does not contain a translate of S. In particular, L is not d-reliable.

Proof. First, note that, by Proposition 2.4, it is sufficient to prove this theorem
for the case in which L has interior. For if L lacks interior, we simply restrict
our attention to the affine hull of L. Once the theorem is verified in this case,
one can apply Proposition 2.4 to verify the theorem when L is re-embedded in a
higher-dimensional space. So let us now assume that L has interior.

Suppose that L has regular boundary points x0, . . . , xd+1, as in the hypothesis
of the theorem. Let S be the convex hull of {x0, . . . , xd+1}. Evidently S ⊆ L. Since
{u0, . . . , ud+1} is a simplicial family, there exist ci > 0 such that

(3.1) c0u0 + · · ·+ cd+1ud+1 = o.
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Moreover, every d + 1 of the ui are linearly independent, so that no subfamily of
the ui contains the origin in its convex hull, and the property (3.1) does not hold
for any subfamily.

Since S ⊆ L, we have hS ≤ hL. Moreover, by our choices of xi and ui, hL(ui) =
ui · xi ≤ hS(ui). Therefore, hL(ui) = hS(ui) for each i.

Let ξ be a d-dimensional subspace of Rn. Let πξ denote the orthogonal projection
of Rn onto ξ. If πξ(xi) lies on the boundary of Lξ, then hLξ

(w) = xi · w for some
unit w ∈ ξ. Since hLξ

is given by the restriction of hL to the subspace ξ, it follows
that hL(w) = xi · w. By the regularity of the boundary point xi, we have w = ui,
so that ui ∈ ξ.

Similarly, if ui ∈ ξ, then

hLξ
(ui) = hL(ui) = xi · ui = πξ(xi) · ui,

so that πξ(xi) lies on the boundary of Lξ, with outward unit normal ui.
Since the ui form a simplicial family of size d+ 2, at most d of these vectors ui

can lie in ξ. It follows that Sξ meets the boundary of Lξ at j + 1 points, for some
j ≤ d− 1, having outward normals u0, . . . , uj (without loss of generality). Since o
does not lie in the convex hull of u0, . . . , uj , there exists a unit vector v ∈ ξ such
that v · ui < 0 for i ≤ j.

Let yi = πξ(xi). If i ≤ j, then yi is a regular point of the boundary ∂Lξ with
outward unit normal ui. Since each v · ui < 0 in this case, there exists ε > 0 such
that each yi + εv lies in the relative interior of Lξ.

Meanwhile, if i > j, then yi lies in the relative interior of Lξ already, so that
yi + εv lies in the relative interior of Lξ as well, provided we have chosen ε > 0
small enough. In other words, there exists ε > 0 so that yi + εv lies in the relative
interior of Lξ for all i.

Let T = Sξ + εv. Since the polytope T is the convex hull of the points yi + εv,
it follows that T lies in the relative interior of Lξ. Therefore, there exists aξ > 1
such that Lξ contains a translate of aξT , whence Lξ contains a translate of aξSξ.

Since the set of all d-subspaces of Rn is compact, there exists α > 1, independent
of ξ, such that some translate of αSξ lies inside Lξ for each ξ.

On the other hand, if αS + w ⊆ L for some w, then

hL(ui) ≥ hαS+w(ui) = αhS(ui) + ui · w = αhL(ui) + ui · w > hL(ui) + ui · w,

so that ui · w < 0 for all i. This strict inequality contradicts (3.1). �

To prove the converse to Theorem 3.2, we first consider the polytope case. Recall
that a facet of a polytope Q is a face of co-dimension 1 in the affine hull of Q.

Theorem 3.3. Let K ∈ Kn, and let Q be a convex polytope in R
n. Suppose

that Qξ contains a translate of Kξ for every d-subspace ξ, and that Q does not
contain a translate of K. Then there exists a simplicial family of facet unit normals
{u0, . . . , um} to Q, for some m ≥ d+ 1.

In other words, if a polytope Q is not d-reliable, then Q has a simplicial family
of facet unit normals of size at least d+ 2.

Proof. As in the previous proof, Proposition 2.4 makes it sufficient to verify the
case in which Q has interior.
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Suppose that Kξ can be translated inside Qξ for each d-subspace ξ, while K
cannot be translated inside Q. Without loss of generality, translate K so that the
origin o lies inside the relative interior of K. This implies that hK ≥ 0.

Since Q has interior, there exists ε > 0 such that εK can be translated inside
Q. Since Q is compact we may assume ε to be maximal. Evidently ε < 1, since no
translate of K fits inside Q. Without loss of generality, translate Q so that εK ⊆ Q.

Denote the facets of Q by F0, . . . , Fq, having outward unit normals u0, . . . , uq.
Suppose that εK meets facets F0, . . . , Fm, and misses the others.

If the convex hull of {u0, . . . , um} does not contain the origin o, then there exists
a vector v such that v · ui < 0 for i = 0, . . . ,m. This implies that, for sufficiently
small δ, the translate εK+δv lies in the interior of Q. This violates the maximality
of ε. Therefore, there exist a0, . . . , am ≥ 0 such that

a0u0 + · · ·+ amum = o.

Renumbering the facets as necessary, we have

(3.2) c0u0 + · · ·+ csus = o,

where each ci > 0 and s is minimal, so that {u0, . . . , us} is a simplicial family.
If s ≤ d, then the s+1 unit vectors ui lie inside a d-subspace ξ. Since εK meets

each of the facets F0, . . . , Fs, we have

(3.3) εhK(ui) = hεK(ui) = hQ(ui) = hQξ
(ui)

for each i = 0, . . . , s. Since Qξ contains a translate of Kξ, there exists w ∈ ξ so
that Kξ + w ⊆ Qξ, and

εhK(ui) = hQξ
(ui) ≥ hKξ

(ui) + w · ui = hK(ui) + w · ui

for each i = 0, . . . , s. After summing over i, it follows from (3.2) that

ε

s∑
i=0

cihK(ui) ≥
s∑

i=0

cihK(ui) + w ·
s∑

i=0

ciui =

s∑
i=0

cihK(ui).

Recall that hK ≥ 0 and each ci > 0. Since ε < 1, it follows that

s∑
i=0

cihK(ui) = 0,

so that each hK(ui) = 0. Therefore, each hQ(ui) = 0, by (3.3). It now follows
from (3.2) and the sublinearity of the support function hQ that the projection of
Q onto the span of {u0, . . . , us} is a single point. This is a contradiction, since Q
has interior. It follows that s ≥ d+ 1.

Therefore, there exists a simplicial family of facet unit normals u0, . . . , us to Q,
where s ≥ d+ 1. �

Putting Theorems 3.2 and 3.3 together, we obtain the following.

Theorem 3.4 (Reliability theorem). Let L ∈ Kn. Then L is a d-reliable cover if
and only if every simplicial family of normals to regular boundary points of L has
size at most d+ 1.

Proof. Suppose a simplicial family of unit normals to regular boundary points of L
has size d+ 2 or greater. By Theorem 3.2, L is not d-reliable.
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To prove the converse, suppose that L is not d-reliable. Then there exists K ∈
Kn such that Lξ contains a translate of Kξ for every d-subspace ξ, while L does
not contain a translate of K.

Since regular points are dense on the boundary of L (see [28, p. 73]), there
exists a countable dense set of regular points on the boundary of L. By intersecting
half-spaces that support L at these points, construct a sequence of polytopes Pi,
decreasing with respect to set inclusion, such that Pi → L and each Pi has facet
normals that are unit normals at regular points of L.

If Pi contains a translate ofK for all i, then so does L, a contradiction. Therefore,
there exists j such that Pj does not contain a translate of K. But each projection
Lξ ⊆ (Pj)ξ, so that each projection (Pj)ξ contains a translate of Kξ. In other
words, the polytope Pj is not d-reliable. By Theorem 3.3, there are facet unit
normals u0, . . . , um for the polytope Pj that form a simplicial family, for some
m ≥ d+ 1. Since the facet normals of Pj were taken from unit normals to regular
points of L, this completes the proof. �

Recall that a simplex T circumscribes L if L ⊆ T and if aT contains no translate
of L when a < 1. An n-simplex T ⊇ L circumscribes L if and only if L meets every
facet of T . Theorem 3.4 therefore implies the following.

Corollary 3.5. Let L ∈ Kn. Then L is (n − 1)-reliable if and only if there is no
circumscribing n-simplex T of L such that ∂T ∩ L consists of regular points of L.

Since every boundary point of a smooth convex body is a regular boundary point,
the following corollary is now immediate.

Corollary 3.6. If L is a smooth convex body in R
n, there exists an n-simplex S

such that Lu contains a translate of Su for every unit direction u, while L does not
contain a translate of S.

We can now characterize 1-reliability.

Corollary 3.7. A convex set L ∈ Kn is a 1-reliable cover if and only if L is a
parallelotope.

Proof. If L is a parallelotope then L is 1-reliable, by Theorem 1.3.
Conversely, if L is 1-reliable, then Theorem 3.4 asserts that there are no sim-

plicial sets of size 3 or more among the unit normals at regular points of L. By
Proposition 2.4 we may assume, without loss of generality, that L has interior. In
this case there exist affinely independent unit normals u1, . . . , um at regular points
of L, where m ≥ n+ 1, and where the ui do not all lie in the same hemisphere. It
follows that

o = c1u1 + · · ·+ cmum

for some c1, . . . , cm > 0. By Proposition 2.2, the set of regular normals of L has
the form {±v1, . . . ,±vn}, for some linearly independent set v1, . . . , vn ∈ S

n−1. Let
P be the unique (up to translation) parallelotope having facet unit normals ±vi
and corresponding facet areas ci. Since the regular points of L are dense in the
boundary of L, it follows that L and P must be translates. �

Corollary 3.8. Suppose that P is a polytope in R
n. Then P is a d-reliable cover

if and only if, for all m ≥ d+ 2, no m facets of P share normal directions with an
(m− 1)-simplex.
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Since no four facet normals of the square pyramid P in R
3 contain the origin in

the interior of their convex hull, any K ∈ K3 that can “hide behind” P can also
“hide inside” P . In other worlds, P is 2-reliable, in spite of being indecomposable.

4. Centrally symmetric covering sets

We saw in the previous section that L is a reliable 1-cover if and only if L is
1-decomposable (i.e. a parallelotope). However, the square pyramid is 2-reliable in
spite of being indecomposable.

A compact convex set L is said to be centrally symmetric if L and −L are
translates. For equivalence of 2-reliability and 2-decomposability to hold, we must
restrict our attention to centrally symmetric bodies.

Theorem 4.1. A centrally symmetric set L ∈ Kn is 2-reliable if and only if L is
2-decomposable.

The 3-dimensional case of Theorem 4.1 has the following especially simple form.

Corollary 4.2. A centrally symmetric set L ∈ K3 is 2-reliable if and only if L is
a cylinder.

The proof of Theorem 4.1 will use the following auxiliary results.

Proposition 4.3. Let P be a convex polytope in R
n with non-empty interior. Sup-

pose that ξ is a proper subspace of Rn, and suppose that each facet unit normal of
P lies either in ξ or in ξ⊥.

Then there exist polytopes P1 ⊆ ξ and P2 ⊆ ξ⊥ such that P = P1 ⊕ P2.

Proof. Suppose that the facet unit normals of P are given by

{u1, . . . , up, v1, . . . , vq},
where u1, . . . , up ∈ ξ and v1, . . . vq ∈ ξ⊥. Suppose that each facet of P with normal
ui has area ai and each facet with normal vj has area bj . By the Minkowski
condition,

a1u1 + · · ·+ apup + b1v1 + · · ·+ bqvq = o.

It follows from the independence of ξ and ξ⊥ that

a1u1 + · · ·+ apup = o and b1v1 + · · ·+ bqvq = o.

By the Minkowski Existence Theorem [2, 28] there exists a polytope Q1 ⊆ ξ
having facet normals ui and corresponding facet areas ai. Similarly, there exists a
polytope Q2 ⊆ ξ⊥ having facet normals vj and corresponding facet areas bj .

Let d = dim ξ, so that dim ξ⊥ = n − d. For x, y > 0, the Minkowski sum
xQ1 + yQ2 has the same unit normals as P and has corresponding facets xQui

1 +
yQ2 and xQ1 + yQ

vj
2 , having the respective facet areas xd−1yn−dVn−d(Q2)ai and

xdyn−d−1Vd(Q1)bj . Set

x =

(
Vn−d(Q2)

n−d−1

Vd(Q1)n−d

) 1
n−1

and y =

(
Vd(Q1)

d−1

Vn−d(Q2)d

) 1
n−1

,

and let P1 = xQ1 and P2 = yQ2. The polytope P1 ⊕ P2 now has the same
facet normals and the same corresponding facet areas as P . It follows from the
uniqueness assertion of the Minkowski Existence Theorem that P and P1 ⊕ P2

must be translates. �
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Proposition 4.4. Let K ∈ Kn have non-empty interior. Suppose that there is a
subspace decomposition R

n = ξ ⊕ ξ′ such that each unit normal at a regular point
of K lies either in ξ or in ξ′.

Then there is a subspace decomposition R
n = η ⊕ η′, where dim η = dim ξ and

dim η′ = dim ξ′, and compact convex sets K1 ⊆ η and K2 ⊆ η′ such that K =
K1 ⊕K2.

Proof. To begin, suppose that ξ′ = ξ⊥, so that R
n = ξ ⊕ ξ′ is an orthogonal

decomposition. Since regular points are dense on the boundary of K (see [28,
p. 73]), there exists a countable dense set of regular points on the boundary of K.
By intersecting half-spaces that support K at these points, construct a sequence of
polytopes Pi, decreasing with respect to set inclusion, such that Pi → K and each
Pi has facet normals that are unit normals at regular points of K.

By Proposition 4.3, each Pi = Qi ⊕ Q′
i, where Qi ⊆ ξ and Q′

i ⊆ ξ′. Since
projections are continuous, the Qi = (Pi)ξ converge to Kξ, and similarly Q′

i → Kξ′ .
Therefore K = limi Pi = Kξ ⊕Kξ′ .

More generally, if ξ and ξ′ are not orthogonal complements, then let ψ : Rn →
R

n be a non-singular linear transformation such that ψ−T ξ ⊥ ψ−T ξ′, where ψ−T

denotes the inverse transpose of ψ. Let η = ψ−1ψ−T ξ and η′ = ψ−1ψ−T ξ′.
Recall that (ψξ)⊥ = ψ−T (ξ⊥). Therefore, if each unit normal at a regular point

ofK lies either in ξ or in ξ′, then each unit normal at a regular point of ψK lies either
in ψ−T ξ or in ψ−T ξ′. Since these subspaces form an orthogonal decomposition, the
previous argument implies that ψK = L1⊕L2, where L1 ⊆ ψ−T ξ and L2 ⊆ ψ−T ξ′.
It follows that K = K1 ⊕K2, where K1 = ψ−1L1 ⊆ η and K2 = ψ−1L2 ⊆ η′. �

Proof of Theorem 4.1. If L is 2-decomposable then L is 2-reliable by Theorem 1.3.
For the converse, suppose that L is 2-reliable. Let A denote the set of unit

normals at regular points of L. Since L is 2-reliable, A contains no simplicial
subsets sets of size 4, by Theorem 3.4.

Since L is centrally symmetric, we have A = −A. By Proposition 2.3, there
exists a subspace direct sum decomposition

R
n = W1 ⊕ · · · ⊕Wk,

where each dimWi ≤ 2, and such that A ⊆ W1 ∪ · · · ∪Wk. It follows from Propo-
sition 4.4 that L is 2-decomposable. �

In view of Theorem 4.1, one may be tempted to conjecture that d-reliability is
equivalent to d-decomposability for centrally symmetric bodies, but this turns out
to be false for d = 3. Consider the following 12 vectors in R

4:

±(1, 1, 0, 0),±(1, 0, 1, 0), ±(1, 0, 0, 1), ±(0, 1, 1, 0), ±(0, 1, 0, 1), ±(0, 0, 1, 1).

By Minkowski’s Existence Theorem, there exists a unique 12-faceted polytope Q in
R

4, centrally symmetric about the origin (i.e. Q = −Q), having facet normals par-
allel to the directions above, with each facet having unit 3-volume. One can verify
that the set of vectors above contains no simplicial 5-family, so that Q is 3-reliable
by Corollary 3.8. A routine linear algebra computation (using Proposition 4.4) also
verifies that Q is not 3-decomposable.
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5. Some open questions

There remain several fundamental open questions about convex bodies and pro-
jections, among them the following:

I. Under what symmetry (or other) conditions on L ∈ Kn is d-reliability
equivalent to d-decomposability, for d > 2?

A solution to Problem I would generalize Corollary 3.7 and Theorem 4.1. For
example, what happens if we assume that L is a zonoid?

Denote the n-dimensional (Euclidean) volume of L ∈ Kn by Vn(L).

II. Let K,L ∈ Kn such that Vn(L) > 0, and let 1 ≤ d ≤ n− 1. Suppose that
Lξ contains a translate of Kξ for every d-subspace ξ of Rn.

What is the best upper bound for the ratio Vn(K)
Vn(L) ?

Some partial answers to Problem II are offered in [16]. There it is shown that if Kξ

can be translated inside Lξ for all d-dimensional subspaces ξ, then K has smaller
volume than L whenever L can be approximated by Blaschke combinations of d-
decomposable sets. However, there are cases in which Vn(K) > Vn(L), in spite of
the covering condition on shadows. For all L ∈ Kn it is also shown that, if Ku can
be translated inside Lu for all unit directions u, then Vn(K) ≤ nVn(L), where n is
the dimension of the ambient space for K and L. However, I doubt this is the best
possible bound.

III. Let K,L ∈ Kn, and let 1 ≤ d ≤ n− 1. Suppose that, for each d-subspace ξ
of Rn, the orthogonal projection Kξ of K can be moved inside Lξ by some
rigid motion (i.e. a combination of translations, rotations, and reflections).
Under what simple (easy to state, easy to verify) additional conditions does
it follow that K can be moved inside L by a rigid motion?

Problem III is an intuitive generalization of the questions addressed in this article.
Indeed, each question can be re-phrased allowing for rotations (and reflections) as
well as translations. However, the arguments presented so far rely on the observa-
tion that the set of translates of K that fit inside L, that is, the set

{v ∈ R
n | K + v ⊆ L},

is a compact convex set in R
n. By contrast, the set of rigid motions of K that fit

inside L will lie in a more complicated Lie group. For this reason (at least) the
questions of covering via rigid motions may be more difficult to address than the
case in which only translation is allowed.
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