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AN ERROR ESTIMATE FOR THE ISOPERIMETRIC
DEFICIT
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To Gerald Klain on his 70th birthday

Abstract. A four part dissection and rearrangement provides a new
proof of the isoperimetric inequality in the plane as well as a new ap-

proach to Bonnesen-type error estimates for the isoperimetric deficit of
compact convex sets and of star bodies that are centrally symmetric
with respect to the origin.

An isoperimetric inequality in R2 bounds the area (or related functional)
of a compact set by some function of the perimeter (or related functional) of
that same set.

The classical isoperimetric inequality asserts that, for any compact subset
S ⊆ R2 having well-defined perimeter,

(1) P (S)2 ≥ 4πA(S),

where A(S) and P (S) respectively denote the area and perimeter of the set
S. Equality holds in (1) if and only if S is a disk. In other words, the largest
planar region one can enclose with a string of length ` is the disk of radius
`/2π. Proofs of (1) are as common as dandelions. See, for example, any of
[2], [4], [5], [6], [10], [17], [19], [20]. A proof of (1) using cyclic rearrangement
is described in Section 3 of this article.

In Section 1 we introduce cyclic rearrangement, a four part dissection and
rearrangement that preserves much of the boundary structure of a planar star
body (including its perimeter), while potentially increasing the area of the
region enclosed by the boundary (itself a simple closed curve).

A Bonnesen-type inequality is an isoperimetric inequality together with an
error estimate, usually involving radii or widths of the original set, or of sets
that inscribe and circumscribe the original set. Bonnesen-type inequalities are
surveyed in [15] and are also treated in [16], [17]. In Section 2 we give a new
method of proof for some of these error estimates. Although these methods
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Figure 1. K and its cyclic rearrangement �(K).

do not give the strongest estimates possible (due to Fuglede [3]) the resulting
error bounds do improve on the classical result of Bonnesen in a number of
instances, while simplifying the proof substantially. Moreover, the method
of rearrangement uses only a finite number of dissections, translations, and
reflection, so that the methods of this article may be generalized to inequalities
for other geometric functionals besides area and perimeter (certain invariant
valuations [9], for example) provided those functionals are also invariant under
such elementary geometric transformations.

The four part dissection and rearrangement technique for star-shaped sets
developed in Section 1, and applied in the subsequent sections, was inspired
in part by a much simpler problem (and solution) posed by Steinhaus [18, p.
87].

1. Cyclic rearrangement

A non-empty set K said to be star-shaped with respect to the origin o if,
for all x ∈ K, the line segment ox lies entirely inside K. Let S1 denote the
unit circle in R2 centered at the origin. The radial function ρK : S1 −→ [0,∞]
of a star-shaped set K is a non-negative function on the unit circle, defined
by

ρK(u) = max{a ∈ R | au ∈ K}.
In other words, ρK(u) is the radius of the set K in the direction of the unit
vector u.

A star-shaped set K is called a star body if ρK is a continuous function and
K has non-empty interior; that is, ρK > 0. Note that a star body is always
compact.

Let {u, v} form a basis of unit vectors for R2, and let θ denote the angle
between u and v. Without loss of generality in what follows, we will assume
0 ≤ θ ≤ π/2.
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Suppose that K is a star body such that K has equal radii in the directions
±u and also equal radii in the directions ±v. Let b = ρK(±u) and a = ρK(±v)
denote the radii of K in the direction of ±u and ±v, as shown in Figure 1.
We will define the cyclic rearrangement of K with respect to the basis {u, v},
denoted �(K)u,v, or simply �(K), to be the set formed by the four part
dissection and rearrangement shown in Figure 1.

Note: We do not perform cyclic rearrangement of K with respect to {u, v}
if ρK(u) 6= ρK(−u) or if ρK(v) 6= ρK(−v).

A more careful definition of �(K) runs as follows:

Let Q1, . . . , Q4 denote the four quadrants of R2 induced by
the basis {u, v}, listed counterclockwise starting with the pos-
itive quadrant. Let ψ denote reflection across the line passing
through the origin and u + v. For each i, let Ki = K ∩ Qi,
and let

K̂1 = ψK1 +
b− a

2
(u− v)

K̂2 = K2 +
b− a

2
(u+ v)

K̂3 = ψK3 +
b− a

2
(−u+ v)

K̂4 = K4 +
b− a

2
(−u− v)

Let M be the rhombus, centered at the origin, with sides of
length b− a and parallel to u and v. Finally, define �(K) to
be the union

�(K) = K̂1 ∪ K̂2 ∪ K̂3 ∪ K̂4 ∪M.

Note that �(K) is not necessarily a star-shaped set. However, �(K) is a
compact simply-connected set, such that

P (�(K)) = P (K) and A(�(K)) = A(K) + (b− a)2| sin θ|,

where the term (b − a)2| sin θ| is the area of the central rhombus M inside
�(K). In other words, �(K) has the same perimeter as does K, while having
equal or larger area. If A(�(K)) = A(K), then a = b; that is, K has the same
radii in each of the directions u and v.

Evidently if D is a disk centered at the origin then �(D) = D. While the
converse of this assertion is false (see Figure 3), the following propositions
describe all possible pre-images �−1(D) of a disk D under certain conditions.
These characterizations of �−1 will be helpful in determining the equality
cases for the geometric inequalities that follow.
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Figure 2. Concentric disk and rhombus (impossible!)

Proposition 1. Let K be a star body containing the origin in its interior
such that ρK(±u) = b and ρK(±v) = a. Suppose that �(K) = D, where D is
a disk. Then D is centered at the origin, and the rhombus M associated with
this 4-part decomposition is a square concentric with D.

Proof. Since �(K) = D, the disk D is decomposed into 4 parts K̂i of the
original set K, along with a rhombus M that is concentric with D. The
definition of the rearrangement � implies that each side of the rhombus M
can be continued the same distance a to the boundary of the disk D. This
implies, in turn, that D and M are concentric at the origin.

In Figure 2, the rhombus M is represented by �PQRS. This rhombus
purposely appears non-square in the figure so as not to assume the proposition
beforehand—it will be seen that Figure 2 is in fact impossible as labelled
(when we prove that M must be a square). The fact that M is square will
follow from the assumptions about the lengths a and the concentricity of M
and D. (An accurately illustrated cyclic decomposition of the disk appears in
Figure 3.)

Since M = �PQRS arises from a 4-part decomposition, we know that
|PX| = |SZ| = a. Since M and D are concentric and both symmetric
under reflection across the line through the segment SQ, it follows that
|SY | = |SZ| = a as well. Since the segments SY and PX are parallel (being
extensions of the edges of the rhombus M), it now follows that �XPSY is a
parallelogram (contrary to appearances in Figure 2).
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Figure 3. 4-part decomposition of a disk D and its pre-
image �−1(D)

The line γ that bisects both PS and QR is a diameter of D, and is parallel
to PX and SY . Therefore, the reflection ψγ across γ exchanges Y and X as
well as the lines through SY and PX. Since |PX| = |SY | = a, it follows that
ψγ exchanges the points P and S as well, so that the parallelogram �XPSY
is symmetric under the reflection ψγ . It follows that �XPSY is a rectangle,
so that the rhombus M = �PQRS must be a square. �

Proposition 1 has the following immediate consequence.

Proposition 2. Let K be a star body containing the origin in its interior
such that ρK(u) = ρK(−u) and ρK(v) = ρK(−v). Suppose also that �(K) =
D, where D is a disk centered at the origin.

If K is not a disk then u ⊥ v.

When the original body K is convex, the situation is even more straight-
forward.

Proposition 3. Suppose that K is a convex body containing the origin
in its interior such that ρK(±u) = b and ρK(±v) = a. If �(K) is a disk then
K must also be a disk centered at the origin.

Proof. Since �(K) is a disk D, Proposition 1 implies that the associated
rhombus M is a square concentric with D, so that the remaining parts K̂i are
all congruent under 90o rotations. Subdivide D = �(K) into the square M
and the congruent parts K̂i as defined above. Recall that the sets K̂i can be
reflected and translated to reconstitute K, as in Figure 3.

Let α, β denote the two interior angles of each sector K̂i where its straight
boundary edges meet the circular portion of the boundary of K̂i. See Figure 3.
Since �(K) is a disk, we have α + β = π. In order for K to be convex, we
must also have α + α ≤ π and β + β ≤ π. These identities and inequalities
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imply that α = β = π/2. But this implies that the square M is a singleton,
M = {o}, so that a = b and �(K) = K. In other words, K is also a disk. �

If �(K) is a disk when the original star body K is not convex, then K

is still formed by gluing four congruent convex portions K̂i of the disk along
their boundaries, so that the boundary ∂K of K is a locally convex curve at
every point except possibly where the radial lines from the origin through ±u
and ±v meet ∂K. In other words, there are at most these four points on the
boundary at which ∂K fails to be locally convex. For example, in Figure 3
the star body K = �−1(D) has exactly two points on its boundary where
locally convexity fails to hold.

Proposition 4. Suppose that K is a star body containing the origin in
its interior. Suppose that {u, v} and {u′, v′} are two unit vector bases for the
plane such that {±u,±v} ∩ {±u′,±v′} = ∅.

If �u,v(K) is a disk and �u′,v′ (K) is a disk, then K must be a disk centered
at the origin.

Proof. As noted above, the boundary ∂K of K is a locally convex curve
except possibly in the radial directions ±u or ±v, since �u,v(K) is a disk.

Since {±u,±v} ∩ {±u′,±v′} = ∅ and �u′,v′(K) is also a disk, the curve
∂K must be locally convex in the radial directions ±u or ±v as well. In other
words, ∂K is a convex curve, and K is a convex body such that �(K) is a
disk. It follows from Proposition 3 that K is a disk. �

2. Cyclic rearrangement inequalities for star bodies

Cyclic rearrangement will now be used to prove a family of Bonnesen-type
isoperimetric inequalities for star-shaped sets.

Theorem 1. Let K be a star body in R2, and let u, v be a pair of inde-
pendent unit vectors in R2. Let θ denote the angle between u and v.

Suppose that ρK(u) = ρK(−u) = b and ρK(v) = ρK(−v) = a. Then

(2) P (K)2 − 4πA(K) ≥ 4π(b− a)2| sin θ|.

If K is a convex body, then equality holds in (2) if and only if K is a disk.
If K is a star body and if equality holds in (2) with respect to any non-

orthogonal basis {u, v}, or with respect to two or more disjoint orthogonal
frames {±ui,±vi} such that ρK(ui) = ρK(−ui) and ρK(vi) = ρK(−vi), then
K must be a disk.

Expressed in the terms of the radial function ρK , the inequality (2) becomes

P (K)2 − 4πA(K) ≥ 4π(ρK(u)− ρK(v))2|u× v|,

where |u× v| is the vector cross product of the unit vectors u and v.
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Proof. Since ρK(u) = ρK(−u) and ρK(v) = ρK(−v), we can perform a
cyclic rearrangement of K with respect to the basis {u, v}, as in Figure 1. Let
K ′ = �u,v(K). Then P (K ′) = P (K) and

A(K ′) = A(K) + (b− a)2| sin θ|.

Hence,

P (K)2 − 4πA(K) = P (K ′)2 − 4πA(K ′) + 4π(b− a)2| sin θ|.

By the isoperimetric inequality (1), P (K ′)2 − 4πA(K ′) ≥ 0, so that (2) now
follows.

If K is convex and equality holds in (2), then P (K ′)2 − 4πA(K ′) = 0.
From the equality conditions of the isoperimetric inequality (1) it follows that
K ′ = �(K) is a disk. It then follows from Proposition 3 that K is a disk.

If K is a star body and if equality holds in (2) with respect to any non-
orthogonal basis {u, v}, then P (K ′)2 − 4πA(K ′) = 0 and K ′ = �(K) is a
disk once again. Since u and v are not orthogonal, K must also be a disk by
Proposition 2.

If K is a star body and if equality holds in (2) with respect to two or more
disjoint bases {±u,±v}, then K ′u,v = �u,v(K) is a disk with respect to two
or more disjoint bases {±u,±v}, so that K is a disk, by Proposition 4. �

Note that if K is merely star-shaped, and not convex, it is possible for
equality to hold in (2) when K is not a disk, as in Figure 3.

A star body will be called symmetric if K is origin-symmetric; that is,
K = −K. This occurs if and only if the radial function ρK is an even function
on the circle S1.

The following theorem is an immediate consequence of Theorem 1.

Theorem 2 (Cyclic rearrangement inequality for symmetric star bodies).
Let K be a symmetric star body in R2. Let b, a respectively denote the radii of
K in the directions of two independent unit vectors u, v in R2. Let θ denote
the angle between u and v. Then

(3) P (K)2 − 4πA(K) ≥ 4π(b− a)2| sin θ|.

If K is a convex body, then equality holds in (3) if and only if K is a disk.
If K is not a convex body, then the inequality (3) is strict whenever u and

v are not orthogonal.
If K is a symmetric star body then equality holds in (3) with respect to two

or more disjoint orthogonal frames {±ui,±vi} if and only if K is a disk.

Theorem 2 no longer applies when the central symmetry condition is omit-
ted. However, the following variation of Theorem 2 holds for non-symmetric
compact convex bodies.
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Theorem 3. Let K be a convex body in R
2, and let u, v be a pair of

independent unit vectors in R2. Let ` denote the line parallel to u that cuts
K into two parts having equal areas.

Let b denote the radius of K along ` measuring from the midpoint of K ∩ `;
that is, let b = (1/2) length(K ∩ `). Let a denote the radius of K in the
direction parallel to v that lies on the side of ` where K has lesser perimeter,
measuring again from the midpoint of K ∩ `. Finally, let θ denote the angle
between u and v. Then

(4) P (K)2 − 4πA(K) ≥ 4π(b− a)2| sin θ|.

Proof. The hypotheses of the theorem assert that K = K1 ∪ K2, where
K1 ∩K2 = K ∩ ` and A(K1) = A(K2), while P (K1) ≤ P (K2). Let Z denote
the rotation of K1 by the angle π around the midpoint of K ∩ `, and let
K ′ = K1 ∪ Z.

Although the set K ′ may not be convex, it is star-shaped and symmetric
with respect to the midpoint of K∩`. Moreover, A(K ′) = A(K) and P (K ′) ≤
P (K), while b = ρK′(u) and a = ρK′(v). It follows that

P (K)2 − 4πA(K) ≥ P (K ′)2 − 4πA(K ′) ≥ 4π(b− a)2| sin θ|,

where the second inequality follows from Theorem 2. �

Note that equality may hold in Theorem 3 in some instances where the
body K is not a disk.

Theorems 1, 2, and 3 do not give the strongest results possible in this
context. In [1] (see also [15], [17]) Bonnesen showed that if K is a compact
convex set in the plane then

P (K)2 − 4πA(K) ≥ 4πd2,

where d is the minimal width over all annuli containing the boundary ∂K. Us-
ing a different approach, Fuglede [3] extended this inequality to any compact
planar region having a simple closed curve as its boundary.

More comparisons to Bonnesen’s original inequalities are treated in the last
section of this article.

3. Using cyclic rearrangement to prove the isoperimetric
inequality

We assumed the isoperimetric inequality (1) in the proof of Theorems 1, 2,
and 3. However, it is also possible to use cyclic rearrangement to prove the
isoperimetric inequality (1) directly.

Independent Proof of Inequality (1). Let K be a symmetric star body in
R

2.
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If S ⊆ R2, denote by c(S) the convex hull of S. Let ΛK denote the collection
of all finite iterates of the composed operator

ζu,v(S) = c(�u,v(S))

on the symmetric star body K with respect to all bases {u, v} of R2. Note that
all such iterates of ζ are symmetric convex sets. Moreover, A(ζu,v(S)) = A(S)
for all bases {u, v} if and only if S is a disk; that is, if and only if the radial
function of S is constant.

Neither the convex hull operation nor the � operator increase perimeter.
Hence, if L ∈ ΛK , then P (L) ≤ P (K). It follows that the diameter of L is
bounded, since

diameter(L) ≤ P (L)
2
≤ P (K).

In other words, the diameter is uniformly bounded above by the value P (K)
over the collection ΛK . This implies that the collection ΛK has a compact
closure ΛK with respect to the Hausdorff metric on compact sets, so that the
continuous function A(L) must attain a maximum at some compact convex
set K̃ ∈ ΛK . (This topological assertion follows from the Blaschke selection
theorem; see any of [2], [17], [20].)

Since area is maximized over the closure of ΛK at K̃, it follows that
A(ζ(K̃)) = A(K̃) with respect to any frame {u, v}, so that K̃ is a disk.
Moreover, since ζ does not decrease area, A(K) ≤ A(K̃), with equality iff
K = K̃. For if K has radii a < b with respect to any pair of directions u, v
differing by an acute angle θ > 0, then

A(K̃) ≥ A(ζ(K)) = A(K) + (b− a)2| sin θ| > A(K),

where the symmetrization ζ is performed with respect to u and v.
Because K̃ is a disk, we have P (K̃)2 = 4πA(K̃). Since the operator ζ can

never increase perimeter, it follows that

(5) P (K)2 ≥ P (K̃)2 = 4πA(K̃) ≥ 4πA(K) + 4π(b− a)2| sin θ|.

It follows immediately from (5) that if K is a symmetric star body, centered
at the origin, then P (K)2 − 4πA(K) ≥ 0. Moreover, if P (K)2 − 4πA(K) =
0 then ρK(u) = ρK(v) for all pairs u, v, so that K must be a disk. This
verifies (1) for symmetric star bodies.

To verify (1) for more general sets, recall that the convex hull of a compact
set has at once greater (or equal) area and smaller (or equal) perimeter. It is
therefore sufficient to demonstrate (1) for compact convex sets.

If K is a compact convex set, choose a line ` that divides K into two parts
K1 and K2 of equal area, and suppose P (K1) ≤ P (K2). Let x denote the
midpoint of K ∩ `, and let K ′ denote the union of K1 with the 180o rotation
of K1 around the point x. Then K ′ is centrally symmetric and star-shaped
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with respect to the point x, so that

P (K)2 − 4πA(K) ≥ P (K ′)2 − 4πA(K ′) ≥ 0

once again.
If P (K)2 − 4πA(K) = 0, then P (K ′)2 − 4πA(K ′) = 0 as well, so that K ′

is a disk. Therefore, the K1 portion of K is a half-disk, for all choices of
orientation for the line `. Since K is convex, these variously oriented half-
disks must be concentric with the same radius, so that K itself must be a
disk.

This verifies the isoperimetric inequality (1) for compact convex sets, and
thereby for all compact sets having well-defined perimeter. �

4. Comparisons to Bonnesen’s inequality

The classical inequality of Bonnesen runs as follows [6], [15], [16], [17]:
Suppose that K is a compact convex set in R2. Let R denote
the circumradius of K, and let r denote the inradius of K.
Then

(6) P (K)2 − 4πA(K) ≥ π2(R− r)2.

This assertion was later strengthened to apply to any region K of the plane
bounded by a Jordan curve [15]. Here the inradius r of K is defined to be the
maximal radius over all disks contained inside K, while the circumradius R
of K is the minimal radius taken over all disks containing K.

Bonnesen was also able to strengthen (6) by replacing the constant π2 with
4π, but only for the case where K is convex and the inradius and circumradius
are realized by concentric circles [1], [15], [17]. This result was later extended
by Fuglede [3] to any planar region enclosed by a simple closed curve. In other
words, if K is a planar region enclosed by a simple closed curve, then

(7) P (K)2 − 4πA(K) ≥ 4πd2,

where d is the minimal width over all annuli containing the boundary ∂K.
For non-convex star bodies, the inequalities of Theorems 1, 2, and 3 are

intermediate in strength between Bonnesen’s original inequality (6) and Fu-
glede’s generalization (7).

One important instance for which Theorem 2 agrees with the strongest
Bonnesen (and Fuglede) bound is the set of ellipses. If E is an ellipse, then
the inradius r and circumradius R are attained in orthogonal directions, so
that θ = π/2. In this instance, Theorem 2 asserts that

P 2 − 4πA ≥ 4π(R− r)2,

in agreement with Bonnesen’s inequality (7). The use of cyclic rearrange-
ment to address the isoperimetric problem for ellipses appears in a book by
Steinhaus [18, p. 87] and was a principal inspiration for this article.
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We conclude with the observation that cyclic rearrangement preserves far
more than perimeter. The boundary of the rearranged set �(K) is equidis-
sectable to the original boundary ∂K by a finite set of rigid motions, and has,
for example, identical local curvature except at four points. This suggests
that the symmetrization technique provided by cyclic rearrangement is likely
to offer insight into the behavior of many other geometric functionals besides
area and perimeter, such as valuations on convex bodies [9], [11], [12], dual
mixed volumes [7], [13], [14], and other valuations on star-shaped sets [4], [8].

Acknowledgement. The author is grateful to Shelley Rasmussen for her
helpful comments, and to Gerald Klain, for inspiring conversations about
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[1] T. Bonnesen, Über das isoperimetrische Defizit ebener Figuren, Math. Ann. 91 (1924),

252–268. MR 1512192
[2] T. Bonnesen and W. Fenchel, Theorie der konvexen Körper, Chelsea, New York, USA,

1948. MR 0372748 (51 #8954)

[3] B. Fuglede, Bonnesen’s inequality for the isoperimetric deficiency of closed curves in
the plane, Geom. Dedicata 38 (1991), 283–300. MR 1112666 (92g:52007)

[4] R. Gardner, Geometric tomography, Encyclopedia of Mathematics and its Applica-

tions, vol. 58, Cambridge University Press, Cambridge, 1995. MR 1356221 (96j:52006)
[5] , The Brunn-Minkowski inequality, Bull. Amer. Math. Soc. (N.S.) 39 (2002),

355–405. MR 1898210 (2003f:26035)
[6] H. Groemer, Geometric applications of Fourier series and spherical harmonics, En-

cyclopedia of Mathematics and its Applications, vol. 61, Cambridge University Press,

Cambridge, 1996. MR 1412143 (97j:52001)
[7] D. A. Klain, Star valuations and dual mixed volumes, Adv. Math. 121 (1996), 80–101.

MR 1399604 (97i:52009)
[8] , Invariant valuations on star-shaped sets, Adv. Math. 125 (1997), 95–113.

MR 1427802 (98a:52009)
[9] D. A. Klain and G.-C. Rota, Introduction to geometric probability, Cambridge Univer-

sity Press, Cambridge, 1997. MR 1608265 (2001f:52009)

[10] T. W. Körner, Fourier analysis, Cambridge University Press, Cambridge, 1988.
MR 924154 (89f:42001)

[11] M. Ludwig, A characterization of affine length and asymptotic approximation of

convex discs, Abh. Math. Sem. Univ. Hamburg 69 (1999), 75–88. MR 1722923
(2000i:52005)

[12] M. Ludwig and M. Reitzner, A characterization of affine surface area, Adv. Math.
147 (1999), 138–172. MR 1725817 (2000j:52018)

[13] E. Lutwak, Dual mixed volumes, Pacific J. Math. 58 (1975), 531–538. MR 0380631

(52 #1528)
[14] , Intersection bodies and dual mixed volumes, Adv. in Math. 71 (1988), 232–

261. MR 963487 (90a:52023)
[15] R. Osserman, Bonnesen-style isoperimetric inequalities, Amer. Math. Monthly 86

(1979), 1–29. MR 519520 (80h:52013)
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