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Abstract. In analogy to valuation characterizations and kinematic formulas of convex geome-
try, we develop a combinatorial theory of invariant valuations and kinematic formulas for finite
lattices. Combinatorial kinematic formulas are shown to have application to some probabilistic
questions, leading in turn to polynomial identities for M¨obius functions and Whitney numbers.
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1. Introduction

The lattice structure of the collection of polyconvex sets, that is, the collection of all
finite unions of compact convex sets inRn (also known as theconvex ring), provides a
crucial link between convex geometry and combinatorial theory. This connection was
highlighted by Rota in [20], where a valuation characterization theorem and kinematic
formula were derived for the Boolean algebra of subsets of a finite set (see also [11]).
In [10], the author extended these notions to the lattice of subspaces of a vector space
over a finite field. In this paper we develop a general theory in the broader context of
finite posets and lattices of order ideals.

We begin by recalling briefly two important results from classical convex geometry.
Denote byK n the set of all compact convex sets inRn. The setK n is endowed with the
topology induced by theHausdorff metricon compact sets inRn (see [22]). A function
ϕ : K n �! R is called avaluationonK n if ϕ( /0) = 0, where/0 is the empty set, and

ϕ(K[L) = ϕ(K)+ϕ(L)�ϕ(K\L); (1.1)

for all K;L 2 K n such thatK [ L 2 K n as well. A valuationϕ on K n is said to be
rigid motion invariantif ϕ(gK) = ϕ(K) for all rigid motions (translations, rotations,
and reflections)g of Rn.
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Of particular interest are McMullen’sintrinsic volumes[11, 13-15, 22, p. 210],
which give invariant extensions ofi-dimensional volume (oni-planes) to polyconvex
subsets ofRn, wheren� i. Denote byG(n; i) the set of alli-dimensional subspaces of
R

n, equipped with the invariant (Haar) measureνi normalized so that

νi(G(n; i)) =

�
n
i

�
ωn

ωiωn�i
;

whereωi is the i-dimensional volume of the unit ball inRi . Denote byVi the i-
dimensional volume inRi . The i-volumeVi is extended toi-th intrinsic volume (also
denoted byVi) on all ofK n by

Vi(K) =
Z

G(n;i)
Vi(Kjξ) dνi ;

whereKjξ denotes the orthogonal projection ofK onto the subspaceξ. The valuation
Vi then extends uniquely to the lattice of polyconvex sets via inclusion-exclusion (see,
for example, [11,22]).

The valuationV0, which takes the value 1 on all non-empty compact convex sets,
extends to the Euler characteristic on the lattice of polyconvex sets (see, for example,
[11,14,15,22]).

Hadwiger’s volume theorem states thatVn is the only continuous rigid motion in-
variant valuation onK n that vanishes on compact convex sets of dimension less thann,
i.e., on sets with an empty interior. This theorem is easily shown to be equivalent to the
following [7,9,11,22].

Theorem 1.1.(Hadwiger’s Characterization Theorem)Supposeϕ is a continuous rigid
motion invariant valuation onK n. Then there exist c0;c1; : : : ;cn 2 R such that

ϕ(K) =
n

∑
i=0

ciVi(K);

for all K 2 K n.

Hadwiger’s characterization leads to simple and straightforward proofs of many
classical theorems of integral geometry, an important example of which is theprincipal
kinematic formula.

Denote byEn the group of rigid motions ofRn, that is, the indirect sum of the
translations group ofRn with the orthogonal groupO(n).

Theorem 1.2.(Principal Kinematic Formula)For all polyconvex sets A and K,

Z
En

V0(A\gK) dg=
n

∑
i=0

�
n
i

��1 ωiωn�i

ωn
Vi(A)Vn�i(K): (1.2)

The integral in (1.2) is taken with respect to the indirect sum of the Lebesgue mea-
sure onRn with the Haar probability measure onO(n). For compactconvexsetsA and
K, this integral has an evident geometric interpretation as the measure of the set of all
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g2 En such thatA\gK 6= /0. Alternatively, one may think of (1.2) as the “measure” of
all convex setsgK in Rn congruent toK that meetA.

Theorem 1.2 is one of a family of kinematic formulas for valuations on polyconvex
sets, attributed in origin to Blaschke [1], Chern [3], and Santal´o [21]. The techniques
of the present work are inspired by those of Hadwiger [7] and Rota [20] (see also [11]).
Kinematic formulas remain a topic of current interest in convex and integral geometry
(see [4,5,8,11,22,23,26,27]).

2. Invariant Valuations on Finite Lattices

Let P denote a finite set, partially ordered by the relation�, and with a minimal element
0. We shall also refer to the partially ordered setP as aposet. An automorphismof a
posetP is a bijective functiong : P�! P which preserves the ordering�. The collec-
tion of all automorphisms of a posetP forms a group under composition of functions,
denoted byAut(P). If G is a subgroup ofAut(P), thenG acts onP by evaluation of the
functionsg2G at elementsx2 P.

Forx2 P, denote
U(x) = fgx : g2Gg;

that is, theorbit of x under the action ofG. Let U(G;P) denote the collection of all
orbits inP of the action of the groupG, except the singleton orbitf0g of the minimal
element 0. We shall refer toU(G;P) asU where no confusion is possible. Denote

Stab(x) = fg2G : gx= xg;

that is, thestabilizerof x under the action ofG. Recall thatStab(x) is a subgroup ofG.
If A is a finite set, denote byjAj the number of elements ofA. The orbit and stabilizer

of an elementx2 P satisfy the identity:

jU(x)j jStab(x)j= jGj:

An order ideal I is a subset ofP such that, ifx2 A andy� x, theny2 A. An order
ideal is a partially ordered set in the order induced byP. An order ideal having exactly
one maximal element is called aprincipal ideal.

The (set-theoretic) union and intersection of any number of order ideals is again an
order ideal. Thus, the setJ(P) of all order ideals inP is a distributive lattice and we can
study valuations onJ(P).

A functionϕ : J(P)�! R is called avaluationif ϕ(f0g) = 0 and

ϕ(A[B)+ϕ(A\B) = ϕ(A)+ϕ(B);

for all A;B2 J(P).
For x2 P, denote byx the principal ideal whose maximal element isx, that is, the

set of ally2 P such thaty� x.
It is well known (or see [11,19]) that every valuationϕ onJ(P) extends uniquely to

a valuation, again denoted byϕ, on the Boolean algebraB(P) of all subsets ofP, which
is generated byJ(P). Such a valuation is evidently determined by its value on the one
element subsets ofB(P), that is, by arbitrarily assigning a valueϕ(fxg) for eachx2 L.
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Let x2P and letI1; I2; : : : ; Im be the maximal principal idealsIk� x such thatIk 6= x.
Then

ϕ(fxg) = ϕ(x)�ϕ(I1[ I2[ �� �[ Im):

The right-hand side can be computed in terms of principal ideals of lower order by the
inclusion-exclusion principle (1.1). Thus, by induction on the partial ordering, we have
the following theorem (due to Rota [12,19]).

Theorem 2.1. Every valuationϕ on the distributive lattice J(P) of all order ideals
is uniquely determined by the valuesϕ(x), over all x2 P. The valuesϕ(x) may be
arbitrarily assigned.

SupposeG is a group acting on the posetP. For I 2 J(P), the set

gI = fgx : x2 Ig (2.1)

is also an order ideal ofP. It is easily verified that (2.1) defines a group action ofG on
the latticeJ(P). We say that thisG-action onJ(P) is inducedby the action ofG onP.

A valuationϕ on J(P) is calledinvariant if it is invariant under the action of group
G, that is, ifϕ(I) = ϕ(gI) for every order idealI 2 J(P) and allg2G.

Among the most important invariant valuations on any lattice is the Euler charac-
teristic, which we now define. The following is an immediate consequence of Theo-
rem 2.1. (See also [19].)

Theorem 2.2. There exists a unique invariant valuationϕ on J(P) called the Euler
characteristic, such thatχ(x) = 1 for every principal idealx with x> 0 andχ(f0g) = 0.

Recall that the Euler characteristic of the distributive latticeJ(P) of order ideals of
a posetP satisfies

χ(I) =� ∑
x2I ;x>0

µ(0;x); (2.2)

where 0 denotes the minimal element ofP andµ is theMöbius functionof P (see [12,
18, 19, 24, p.120, 25]).

ForU 2 U(P;G), define
ϕU(x) = jx\U j;

and extendϕU to all of J(P) by Theorem 2.1. For every order idealI ,

ϕU(I) = jI \U j:

In other words, the valuationϕU counts the number of elements of the orbitU contained
in an order ideal.

Note that ify2U(x), thenµ(0;x) = µ(0;y). This follows from the fact thaty= gx
for some automorphismg of P. Therefore, we denote byµ(U) the value ofµ(0;x) for
anyx2U . It now follows from (2.2) that

χ(I) =� ∑
U2U(P;G)

∑
x2U

µ(0;x) =� ∑
U2U(P;G)

µ(U)ϕU(I); (2.3)
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for any order idealI .
More generally, we have the following combinatorial analogue of Hadwiger’s char-

acterization theorem for invariant valuations.

Theorem 2.3.(Basis Theorem)The invariant valuationsfϕU : U 2U(P;G)g span the
vector space of all valuationsϕ on J(P) that are invariant under the action of G.

Proof. Supposeϕ is an invariant valuation onJ(P). Extendϕ to all of B(P). The
extended valuation, which is still denoted byϕ, is again invariant. IfU(x) =U(y) =
U , then there exists an automorphismg of P such thatgx= y. Therefore,ϕ(fxg) =
ϕ(fyg) = cU, for some constantcU 2 R. Thus, the valuation

ϕ� ∑
U2U(P;G)

cUϕU

vanishes on all singleton setsfxg for all x 2 P, and consequently vanishes on all of
B(P).

In order to compute the coefficientscU given by the Basis Theorem 2.3, note that if
x2U , then

ϕ(fxg) = ∑
U2U(P;G)

cUϕU(fxg) = cU: (2.4)

If we know the values ofϕ(fxg) for somex in each orbitU , then we are done.
However, a valuationϕ is often given in terms of its values on principal idealsx for

x2 P (as in, for example, Theorem 2.1). In order to compute the valuesϕ(fxg), given
the valuesϕ(x), we use Möbius inversion. Recall that the extension of a valuationϕ on
J(P) to all of B(P) is given inductively by

ϕ(f0g) = 0

and
ϕ(fxg) = ϕ(x)�∑

y<x
ϕ(fyg);

so that

ϕ(x) = ∑
y�x

ϕ(fyg) (2.5)

for all x2 P. Applying Möbius inversion to (2.5) yields

ϕ(fxg) = ∑
y�x

µ(y;x)ϕ(y): (2.6)

Combining (2.6) with (2.4) along with the invariance ofϕ, we obtain

cU = ϕ(fxUg) = ∑
y�xU

µ(y;xU)ϕ(y); (2.7)

for eachU 2 U.
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3. Kinematic Formulas for the Lattice of Order Ideals

As an application of the Basis Theorem 2.3 we shall derive a combinatorial analogue of
the principal kinematic formula (1.2).

One way to construct invariant valuations onJ(P) is the following. Start with any
valuationϕ on J(P) such thatϕ(f /0g) = 0 and letA be any order ideal. For any order
idealB, define

ϕ(A;B) =
1
jGj∑g

ϕ(A\gB);

whereg varies over the groupG. For fixedA, the set functionϕ(A;B) is a valuation in
the variableB; in fact, it is an invariant valuation, since

ϕ(A;g0B) =
1
jGj∑g

ϕ(A\gg0B)

=
1
jGj∑g

ϕ(A\gB);

for each automorphismg0 2 G. By Theorem 2.3, the functionalϕ(A;B) can be ex-
pressed as a linear combination of the valuationsϕU, with coefficientsαU(A) depending
onA:

ϕ(A;B) = ∑
U2U

αU(A)ϕU(B): (3.1)

Meanwhile, for fixedB, the set functionϕ(A;B) is a valuation in the variableA.
From this it follows that each of the coefficientsαU(A) is a valuation in the variableA.

Now consider the case whenϕ is aninvariantvaluation. If so, then

ϕ(A;B) =
1
jGj∑g

ϕ(A\gB) =
1
jGj∑g

ϕ(g�1A\B)

=
1
jGj∑g

ϕ(gA\B) = ϕ(B;A):

It follows thatαU(A) is an invariant valuation in the parameterA, so that

ϕ(A;B) = ∑
U;V2U

αUVϕU(A)ϕV(B):

Sinceϕ(A;B) = ϕ(B;A), it is evident thatαUV = αVU. It turns out that most of the
constantsαUV are equal to zero. To compute the coefficientsαUV, extend the valuation
ϕ to the Boolean algebraB(P) generated byJ(P) and letcU denote the value ofϕ on a
singleton set inB(P) whose single element lies in the orbitU (that is,cU = ϕ(fxg), for
anyx2U). Recall that the valuescU may be obtained from (2.4) or (2.7).

Theorem 3.1.(General Kinematic Formula)Supposeϕ is an invariant valuation on
J(P). For all A;B2 J(P),

1
jGj∑g

ϕ(A\gB) = ∑
U2U

1
jU j

cUϕU(A)ϕU(B): (3.2)



Kinematic Formulas for Finite Lattices 359

WhenP is a modular lattice and the orbitsU coincide with the grades ofP, the
valuesjU j are sometimes called the Whitney numbers (of the second kind) forP.
Proof.SupposexU;yV 2P lie in orbitsU andV respectively. LetA= fxUg andB= fyVg.
For anyg2G, the setA\gB= /0 if U 6=V. If U =V, thenA\gB= /0 if xU 6= gyV, while
there arejStab(xU)j automorphismsg of V such thatxU = gyV. Hence, we have

ϕ(A;B) =
1
jGj∑g

ϕ(A\gB) =
jStab(xU)j

jGj
ϕ(A) =

1
jU j

cU:

Meanwhile,ϕU0(A) = 1 if U0 =U ; otherwise, it is equal to zero. Similarly,ϕV0(B) = 1
if V0 =V; otherwise, it is equal to zero. Hence,

ϕ(A;B) = ∑
U0;V02U

αU0V0ϕU0(A)ϕV0(B) = αUV:

Therefore,αUV = (1=jU j)cU if U =V, otherwise, it is equal to zero.

For example, ifϕ = ϕU, then (3.2) becomes

1
jGj∑g

ϕU(A\gB) =
1
jU j

ϕU(A)ϕU(B): (3.3)

The basis theorem implies that every kinematic formula for an invariant valuation can
be expressed by taking linear combinations of the identity (3.3).

The caseϕ = χ is of particular interest. The Euler formula (2.3) implies that
χ(fxUg) = �µ(U): Theorem 3.1 then specializes to the following combinatorial ana-
logue of Theorem 1.2.

Theorem 3.2.(Principal Kinematic Formula)For all A;B2 J(P),

1
jGj∑g

χ(A\gB) = ∑
U2U

�µ(U)
1
jU j

ϕU(A)ϕU(B): (3.4)

The probability that a randomly chosen principal idealy shall meet a fixed principal
idealx is now given by

1
jGj∑g

χ(x\gy) = ∑
U2U

�µ(U)
1
jU j

ϕU(x)ϕU(y): (3.5)

By combining (3.3) and (3.5) with standard probabilistic arguments, one may derive
new combinatorial identities, as is demonstrated in the examples that follow.

4. Examples and Applications

We now apply the the theory of invariant valuations to central examples of posets in
enumerative combinatorics.
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4.1. Finite Boolean Algebras

Consider the latticeBn of all subsets off1;2; : : : ;ng, a Boolean algebra. The collection
Bn is a poset when ordered by inclusion of subsets. LetG= Sn, the group of permuta-
tions onn elements. The orbits of the action ofG are the collectionsBk

n of k-element
subsets off1;2; : : : ;ng, having sizejBk

nj=
�n

k

�
:

The Möbius function of the posetBn is given by

µ(x;y) = (�1)jyj�jxj

for x;y2 Bn such thatx� y. The Basis Theorem 2.3 implies that all invariant valuations
onJ(Bn) are linear combinations of the valuationsϕi , given by

ϕi(I) = jI \Bi
nj;

for all I 2 J(Bn) andi = 1; : : : ;n.
It then follows from Theorem 3.2 that

1
n! ∑

g2Sn

χ(A\gB) =
n

∑
i=1
(�1)i+1

�
n
i

��1

ϕi(A)ϕi(B); (4.1)

for all A;B2 J(Bn). If A= xk andB= yl , then the left-hand side of (4.1) expresses the
probability that a randomly chosenl -simplex will meet a givenk-simplex. Using ele-
mentary probabilistic reasoning, one can easily check that the probability that a random
l -simplex doesnotmeet a given fixedk-simplex is�

n
l

��1�n�k
l

�
:

From (4.1), we then obtain

1�

�
n
l

��1�n�k
l

�
=

1
n! ∑

g2Sn

χ(xk\gyl ) =
n

∑
i=1
(�1)i+1

�
n
i

��1�k
i

��
l
i

�
: (4.2)

By adding the term correspondingi = 0 to both sides of (4.2) and multiplying by�1,
we obtain the identity

n

∑
i=0
(�1)i

�
n
i

��1�l
i

��
k
i

�
=

�
n
l

��1�n�k
l

�
; (4.3)

for all positive integers 0� k; l � n.
Note that ifk+ l > n, then

�n�k
l

�
= 0. In the preceding argument, this corresponds

to the case in which the two setsgyl andxk have non-empty overlap foranypermutation
g, i.e., the case in whichxk\gyl = /0 with probability zero.

The left-hand side of (4.1) can be computed once again using standard combinato-
rial arguments. Letxk 2 Bn. The number ofl -setsy2 Bn such thatxk\y is a set of size
i is given by �

k
i

��
n�k
l � i

�
:
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On combining this with (4.1), we obtain the identity

n

∑
i=1
(�1)i+1

�
n
i

��1�k
i

��
l
i

�
=

�
n
l

��1 n

∑
i=1

�
k
i

��
n�k
l � i

�
:

On simplifying, we then obtain

n

∑
i=1

�
k
i

���
n�k
l � i

�
+(�1)i

�
n� i
l � i

��
= 0: (4.4)

Similarly, we use the identity (3.3) to compute the expected value ofϕm(xk\gyl ),
yielding the identity

n

∑
i=1

�
n
l

��1�k
i

��
n�k
l � i

��
i
m

�
=

�
n
m

��1�k
m

��
l
m

�
; (4.5)

for all 0� k; l ;m� n. The left-hand side of (4.5) is obtained from the definition of
expectation, while the right-hand side follows immediately from (3.3).

4.2. Finite Vector Spaces

Denote byLn(q) the set of all subspaces of a vector spaceV of dimensionn over a
finite field of orderq. The collectionLn(q) is a poset when ordered by the inclusion of
subspaces. LetG= GLn(q), the group of linear automorphisms ofV. The orbits of the
action ofG are the collectionsLk

n(q) of k-dimensional subspaces ofV, having size

jLk
n(q)j=

�
n
k

�
q
=
(qn�1) � � �(qn�k+1�1)
(qk�1) � � �(q�1)

;

theGaussiancoefficients. Recall also that

jGLn(q)j= (qn�1)(qn�q) � � �(qn�qn�1):

The Möbius function of the posetLn(q) is given by

µ(x;y) = (�1)dim(y)�dim(x)q(
dim(y)�dim(x)

2 ); (4.6)

for x;y2 Ln(q) such thatx� y.
By the Basis Theorem 2.3, the collection of valuationsfϕig

n
i=1 onJ(Bn) given by

ϕi(I) = jI \Li
n(q)j

is a basis for the space of invariant valuations onLn(q). From Theorem 3.2, we then
obtain

1
jGLn(q)j

∑
g

χ(A\gB) =
n

∑
i=1
(�1)i+1q(

i
2)
�

n
i

��1

q
ϕi(A)ϕi(B); (4.7)

for all A;B2 J(Ln(q)).



362 Daniel A. Klain

Similarly, the kinematic formula (3.3) now becomes

1
jGLn(q)j

∑
g

ϕi(A\gB) =

�
n
i

��1

q
ϕi(A)ϕi(B) (4.8)

for all A;B2 J(Ln(q)) and for eachi = 1; : : : ;n. Let xk andyl be subspaces ofV having
dimensionsk andl , respectively. In the case whenA= xk andB= yl , the formula (4.8)
gives the expected number ofi-dimensional subspaces inside the intersection of the
k-dimensional subspacexk with a randoml -dimensional subspacegxl .

By applying elementary probabilistic reasoning to (4.7), we obtain theq-analogue
of (4.3), to wit:

n

∑
i=0
(�1)iq(

i
2)
�

n
i

��1

q

�
k
i

�
q

�
l
i

�
q
= qkl

�
n
l

��1

q

�
n�k

l

�
q
:

for all positive integersn;q and all 0� k; l � n. This formula was originally obtained
by Chen and Rota (see [2, (4.4)] and also [12, p. 273]).

For additional details, see [10]. See also [6, 12, 24, pp. 126-127, 25, pp. 291-197]
for a treatment ofq-analogues, Gaussian coefficients, and the M¨obius function (4.6).

4.3. The Lattice of Partitions (Order Ideals)

Denote byΠn the set of allpartitions of the setf1;2; : : : ;ng. The collectionΠn is a
poset when ordered by a refinement of partitions. Specifically, we haveπ � σ in Πn

provided each block of the partitionπ is contained inside a block ofσ. We denote by
jπj the number of blocks in the partitionπ.

Let G= Sn, the group of permutations off1;2; : : : ;ng. The orbits ofΠn under the
action ofG are collections of partitions having the sameshape. Let π 2 Πn and letai

denote the number of blocks ofπ of sizei. Then the orbitU(π) has size

jU(π)j=
n!

(1!)a1a1! � � � (n!)anan!
= n!

n

∏
k=1

1
(k!)akak!

:

For π;σ 2 Πn such thatπ� σ, the Möbius functionµ(π;σ) is given by

µ(π;σ) = (�1)jπj�jσj ∏
P2σ

(nP�1)!; (4.9)

wherenP denotes the number of blocks ofπ contained in the blockP. For a derivation
of (4.9), see [25, p. 301].

Note that ifπ = 0Πn, the discrete partition, then (4.9) becomes

µ(0Πn;σ) = (�1)n�jσj ∏
P2σ

(jPj�1)! = (�1)n�jσj
n

∏
k=1

(k�1)!ak; (4.10)

whereak denotes the number of blocks ofσ of sizek.
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Combining (4.10) with Theorem 3.2 we obtain

1
n! ∑

g
χ(A\gB)

= ∑
a1+2a2+���+nan=n

(�1)n�jσj+1

 
n

∏
k=1

(k�1)!ak

!
1
n!

 
n

∏
k=1

(k!)akak!

!
ϕU(A)ϕU(B)

= ∑
a1+2a2+���+nan=n

(�1)n�jσj+1

n!

 
n

∏
k=1

((k�1)!)ak(k!)akak!

!
ϕU(A)ϕU(B) (4.11)

for all A;B2 J(Πn), and wherejσj= a1+ � � �+an.
Unfortunately, the values ofϕU(A) are very difficult to compute for a typical order

idealA in Πn.

4.4. The Lattice of Partitions (Filters)

Unlike the previous examples, the latticeΠn is not self-dual. Denote byΠ�
n the lattice

dual toΠn, in which all order relations inΠn are reversed. Denote by 1Πn the indiscrete
partition consisting of a single block, 1Πn = ff1; : : : ;ngg. The Möbius function forΠ�

n
is then given by

µ(0Π�

n
;σ) = µ(σ;1Πn) = (�1)jσj�1 ∏

B21Πn

(nB�1)! = (�1)jσj�1(jσj�1)!:

It follows from Theorem 3.2 that

1
n! ∑

g2Sn

χ(A\gB) = ∑
a1+2a2+���+nan=n

(�1)jσj
(jσj�1)!

n!

 
n

∏
k=1

(k!)akak!

!
ϕU(A)ϕU(B):

Once again the values ofϕU(A) are very difficult to compute for a typical order idealA
in Π�

n (a filter in Πn).

4.5. The Lattice of Faces of ann-cube

Let Cn denote then-dimensional unit cube inRn. Let C n denote the regular cell de-
composition of the cubeCn into lower-dimensional unit cubes. The cell complexC n

is partially ordered by set inclusion of the faces ofCn. The null set/0 is included as
the minimal element of the latticeC n. For a description of the lattice structure ofC n,
see [16,17]. See also [12] for an extensive bibliography.

The Möbius function of the latticeC n is characterized as follows.

Proposition 4.1. Let C;D 2 C n be any two cells with C� D and C 6= /0. If dimC= k
anddimD = l, then

µ(C;D) = (�1)l�k and µ( /0;C) = (�1)k+1
: (4.12)
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Proposition 4.1 is not difficult to prove directly. For a more general result, see [24,
p. 122].

We shall consider the action of groupG of isometries of then-cubeCn, a finite
subgroup of the orthogonal groupO(n). Evidently,G acts transitively on the set ofi-
dimensional faces ofCn for eachi = 0;1; : : : ;n. It is not difficult to show thatjGj= 2nn!,
while the orbitUi of an i-dimensional face has size

jUij=

�
n
i

�
2n�i

:

Let J(C n) denote the lattice of order ideals inC n. The Basis Theorem 2.3 implies
that if ϕ is an invariant valuation onJ(C n), then

ϕ =
n

∑
i=0

ciϕi ;

whereϕi is the invariant valuation given by

ϕi(A) = jA\Uij;

for all A2 J(C n).
Kinematic formulas are now derived in the usual way. Supposeϕ is an invariant

valuation onJ(C n). For allA;B2 J(C n), we have the general kinematic formula

1
2nn! ∑

g
ϕ(A\gB) =

n

∑
i=0

�
n
i

��1

2i�nciϕi(A)ϕi(B); (4.13)

whereci = ϕ(fCig).
Supposeϕ is chosen to be the Euler characteristicχ for the latticeJ(C n). For

0� i � n, the valueci is then given by

ci = ϕ(fCig) =�µ( /0;Ci) = (�1)i:

This follows from Proposition 4.1.
Combining this with (4.13), we obtain the principal kinematic formula

1
2nn! ∑

g
χ(A\gB) =

n

∑
i=0

�
n
i

��1

2i�n(�1)iϕi(A)ϕi(B): (4.14)

If A=Ck andB=Cl are principal ideals, then the formula (4.14) becomes

1
2nn! ∑

g
χ(A\gB) =

n

∑
i=0
(�1)i

�
n
i

��1�k
i

��
l
i

�
2k+l�i�n

; (4.15)

giving the probability that a randoml -dimensional face ofCn meets a givenk-dimensional
face. It follows that there are�

n
l

�
2n�l

n

∑
i=0
(�1)i

�
n
i

��1�k
i

��
l
i

�
2k+l�i�n =

n

∑
i=0
(�1)i

�
n
i

��1�n
l

��
k
i

��
l
i

�
2k�i

(4.16)
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l -faces ofCn that meetCk.
Instead, if we apply the formula (4.13) to the caseϕ = ϕi for a particular fixed

i 2 f0;1; : : : ;ng, we have

1
2nn! ∑

g
ϕi(A\gB) =

�
n
i

��1

2i�nϕi(A)ϕi(B); (4.17)

for all A;B2 J(C n). If A=Ck andB=Cl are principal ideals, then the formula (4.17)
becomes

1
2nn! ∑

g
ϕi(Ck\gCl ) = 2k+l�n�i

�
n
i

��1�k
i

��
l
i

�
; (4.18)

giving the expected number ofi-faces of the intersection of a givenk-face ofCn with a
randoml -face ofCn.

Using the definition of expectation and standard probabilistic arguments, one can
compute the left-hand sides of (4.15) and (4.18) more directly. In this case, powers of
2 appearing on both sides of these expressions cancel out, resulting once again in the
same identities (4.4) and (4.5) obtained from the example of finite Boolean algebras.

5. Variations and Generalizations

There remain many other variations and applications of the general kinematic formula,
Theorem 3.1. For example, one can replace the random intersection of two order ideals
with a randomunion. For any invariant valuationϕ onJ(P), the valuation identity (1.1)
implies that

1
jGj ∑

g2G

ϕ(A[gB)+
1
jGj ∑

g2G

ϕ(A\gB) = ϕ(A)+ϕ(B): (5.1)

A kinematic formula for the expected value of a random union,ϕ(A[ gB), is then
derived from a combination of Theorem 3.1 with the identity (5.1).

One can also considermultipleintersections. The proof of Theorem 3.1 easily gen-
eralizes to the case of multiple intersections to yield the kinematic formula:

1
jGjk ∑

g1;::: ;gk2G

ϕ(A\g1B1\ �� �\gkBk) = ∑
U2U

1
jU jk

cUϕU(A)ϕU(B1) � � �ϕU(Bk);

for all order idealsA;B1; : : : ;Bk 2 J(P). Similarly, one can derive kinematic formulas
for multiple unions.
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