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Abstract. In analogy to valuation characterizations and kinematic formulas of convex geome-
try, we develop a combinatorial theory of invariant valuations and kinematic formulas for finite

lattices. Combinatorial kinematic formulas are shown to have application to some probabilistic
questions, leading in turn to polynomial identities fooMtis functions and Whitney numbers.
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1. Introduction

The lattice structure of the collection of polyconvex sets, that is, the collection of all
finite unions of compact convex setslifi (also known as theonvex ring, provides a
crucial link between convex geometry and combinatorial theory. This connection was
highlighted by Rota in [20], where a valuation characterization theorem and kinematic
formula were derived for the Boolean algebra of subsets of a finite set (see also [11]).
In [10], the author extended these notions to the lattice of subspaces of a vector space
over a finite field. In this paper we develop a general theory in the broader context of
finite posets and lattices of order ideals.

We begin by recalling briefly two important results from classical convex geometry.
Denote byK " the set of all compact convex setsiA. The seK " is endowed with the
topology induced by thelausdorff metrimn compact sets iR" (see [22]). A function
¢ : K" — R is called avaluationonK " if ¢(0) = 0, whered is the empty set, and

¢(KUL) = 0(K) +¢(L) —p(KNL), (1.1)

for all K,L € K" such thatk UL € K" as well. A valuationp on K" is said to be
rigid motion invariantif ¢(gK) = ¢(K) for all rigid motions (translations, rotations,
and reflectionsy of R".
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Of particular interest are McMullen®trinsic volumeq11, 13-15, 22, p. 210],
which give invariant extensions @fdimensional volume (onplanes) to polyconvex
subsets oR", wheren > i. Denote byG(n,i) the set of ali-dimensional subspaces of
R", equipped with the invariant (Haar) measur@ormalized so that

wei) = (]) g

wherew is the i-dimensional volume of the unit ball iik. Denote byV; the i-
dimensional volume iRR'. Thei-volumeV is extended ta-th intrinsic volume (also
denoted by;) on all of K™ by

Vi(K) = [ Vi(K[E) dvi,
G(n,i)
whereK|¢ denotes the orthogonal projectionkfonto the subspade The valuation
V; then extends uniquely to the lattice of polyconvex sets via inclusion-exclusion (see,
for example, [11, 22]).

The valuationVp, which takes the value 1 on all non-empty compact convex sets,
extends to the Euler characteristic on the lattice of polyconvex sets (see, for example,
[11,14,15,22]).

Hadwiger’s volume theorem states tRgtis the only continuous rigid motion in-
variant valuation ofK " that vanishes on compact convex sets of dimension lessithan
i.e., on sets with an empty interior. This theorem is easily shown to be equivalent to the
following [7,9,11,22].

Theorem 1.1.(Hadwiger’s Characterization Theorenguppose is a continuous rigid
motion invariant valuation oK ". Then there existgcy, ... ,c, € R such that

n

0(K) = 3 AU(K),

forallK e K",

Hadwiger’s characterization leads to simple and straightforward proofs of many
classical theorems of integral geometry, an important example of which sitiegpal
kinematic formula

Denote byE, the group of rigid motions oR", that is, the indirect sum of the
translations group dR" with the orthogonal grou@(n).

Theorem 1.2.(Principal Kinematic Formula)For all polyconvex sets A and K,

| Vo(angK) dg= Zo () _1”2‘iw<A>vni<K>. (1.2)

The integral in (1.2) is taken with respect to the indirect sum of the Lebesgue mea-
sure onR" with the Haar probability measure @(n). For compactonvexsetsA and
K, this integral has an evident geometric interpretation as the measure of the set of all
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g € En such thaAngK # 0. Alternatively, one may think of (1.2) as the “measure” of
all convex setgK in R" congruent tak that meetA.

Theorem 1.2 is one of a family of kinematic formulas for valuations on polyconvex
sets, attributed in origin to Blaschke [1], Chern [3], and Sanfal]. The techniques
of the present work are inspired by those of Hadwiger [7] and Rota [20] (see also [11]).
Kinematic formulas remain a topic of current interest in convex and integral geometry
(see [4,5,8,11,22,23,26,27]).

2. Invariant Valuations on Finite Lattices

Let P denote a finite set, partially ordered by the relatgrand with a minimal element
0. We shall also refer to the partially ordered Beds aposet An automorphisnof a
posetP is a bijective functiorg : P — P which preserves the ordering The collec-
tion of all automorphisms of a posBtforms a group under composition of functions,
denoted byAut(P). If G is a subgroup oAut(P), thenG acts onP by evaluation of the
functionsg € G at elements € P.

Forx € P, denote

U(x) ={gx:g€ G},

that is, theorbit of x under the action o6. Let U(G;P) denote the collection of all
orbits in P of the action of the grouf®, except the singleton orb{0} of the minimal
element 0. We shall refer 1d (G; P) asU where no confusion is possible. Denote

Stal{x) = {g€ G: gx=x},

that is, thestabilizerof x under the action oB. Recall thatStal{x) is a subgroup o6.
If Ais afinite set, denote G| the number of elements 8f The orbit and stabilizer
of an elemenk € P satisfy the identity:

U (x| [Statix)| = [G].

An order ideal lis a subset oP such that, ifx € A andy < x, theny € A. An order
ideal is a partially ordered set in the order inducedPbyAn order ideal having exactly
one maximal element is calledogincipal ideal

The (set-theoretic) union and intersection of any number of order ideals is again an
order ideal. Thus, the s&{P) of all order ideals irP is a distributive lattice and we can
study valuations od(P).

A function¢ : J(P) — R is called avaluationif $({0}) =0 and

O(AUB) +¢(ANB) = ¢(A) +¢(B),

forall A,B e J(P).
Forx € P, denote byx the principal ideal whose maximal elemenkjghat is, the
set of ally € P such thaty < x.
It is well known (or see [11, 19]) that every valuatipron J(P) extends uniquely to
a valuation, again denoted lpy on the Boolean algebB(P) of all subsets oP, which
is generated by(P). Such a valuation is evidently determined by its value on the one
element subsets &{(P), that is, by arbitrarily assigning a valg¢{x}) for eachx € L.
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Letxe Pandletly,l,... Iy be the maximal principal idealg C X such thaty # X.
Then

O({x}) = 0(X) = (l1Ul2U---Ulm).

The right-hand side can be computed in terms of principal ideals of lower order by the
inclusion-exclusion principle (1.1). Thus, by induction on the partial ordering, we have
the following theorem (due to Rota [12, 19]).

Theorem 2.1. Every valuationg on the distributive lattice @P) of all order ideals
is uniquely determined by the valugéx), over all xe P. The value(X) may be
arbitrarily assigned.

Supposés is a group acting on the podet Forl € J(P), the set

gl ={gx:xel} (2.1)

is also an order ideal d?. It is easily verified that (2.1) defines a group actiorGodn
the latticeJ(P). We say that thi§s-action onJ(P) is inducedby the action ofG onP.

A valuation$ on J(P) is calledinvariantif it is invariant under the action of group
G, thatis, if¢(1) = §(gl) for every order ideal € J(P) and allg € G.

Among the most important invariant valuations on any lattice is the Euler charac-
teristic, which we now define. The following is an immediate consequence of Theo-
rem 2.1. (See also [19].)

Theorem 2.2. There exists a unique invariant valuatignon J(P) called the Euler
characteristic, such thagt(X) = 1 for every principal ideak with x> 0 andx({0}) =0.

Recall that the Euler characteristic of the distributive latfil) of order ideals of
a posepP satisfies

X =- Z ou(O,X), (2.2)

where 0 denotes the minimal elementoindp is theMobius functiorof P (see [12,
18, 19, 24, p.120, 25]).
ForU € U(P;G), define

¢U()_() = |)_(ﬂU |7
and extendb, to all of J(P) by Theorem 2.1. For every order idéal
du(l)=|INUJ.

In other words, the valuatiafy, counts the number of elements of the otbitontained
in an order ideal.

Note that ify € U(x), thenp(0,x) = u(0,y). This follows from the fact thag = gx
for some automorphism of P. Therefore, we denote lyU) the value ofu(0,x) for
anyx € U. It now follows from (2.2) that

) =— 0,X) = — U)ou(l), 2.3
x(1) Uegp;G) XEZJ“( X) Uegp;G)u( )du(l) (2.3)
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for any order ideal.
More generally, we have the following combinatorial analogue of Hadwiger's char-
acterization theorem for invariant valuations.

Theorem 2.3.(Basis Theorem)The invariant valuationgd, : U € U(P;G)} span the
vector space of all valuatiors on J(P) that are invariant under the action of G.

Proof. Suppose} is an invariant valuation od(P). Extend¢ to all of B(P). The
extended valuation, which is still denoted dyis again invariant. 1fJ(x) =U(y) =
U, then there exists an automorphignof P such thatgx=y. Thereforep({x}) =
d({y}) = c,, for some constarg, € R. Thus, the valuation

RS UEL%P;G)CU(I)U

vanishes on all singleton sefg} for all x € P, and consequently vanishes on all of
B(P). |

In order to compute the coefficierts given by the Basis Theorem 2.3, note that if
x € U, then

o({x}) = g cudu({x}) = cu. (2.4)
UeU(P;G)

If we know the values o§ ({x}) for somex in each orbilJ, then we are done.

However, a valuatio® is often given in terms of its values on principal ideafer
x € P (as in, for example, Theorem 2.1). In order to compute the vaiggs}), given
the valuesh(X), we use Mibius inversion. Recall that the extension of a valuadiam
J(P) to all of B(P) is given inductively by

¢({0})=0
and
({x}) =0(x®) — > ¢({y}),
y<X
so that
X =>0 (2.5)
(%) ygx (v}
for all x € P. Applying Mébius inversion to (2.5) yields
O(xh) = 3 uy X0 (). (2.6)
y<x

Combining (2.6) with (2.4) along with the invariancednfwe obtain

¢ =9({x}) = Z (Y, %) (9), (2.7)
YRy

foreachU € U.
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3. Kinematic Formulas for the Lattice of Order Ideals

As an application of the Basis Theorem 2.3 we shall derive a combinatorial analogue of
the principal kinematic formula (1.2).

One way to construct invariant valuations &) is the following. Start with any
valuationg on J(P) such thath({0}) = 0 and letA be any order ideal. For any order
ideal B, define

O(AB) = 5 3 H(ANGB)
g

whereg varies over the groufs. For fixedA, the set functiorp(A; B) is a valuation in
the variableB; in fact, it is an invariant valuation, since

O(MWB) = 5 S H(AN OGS
g

& S (ANgB),
g

for each automorphisrgo € G. By Theorem 2.3, the functiondl(A;B) can be ex-
pressed as a linear combination of the valuatippsvith coefficientsx, (A) depending
onA:

O(AB) = Y au(A)pu(B). (3.1)
Ugu u(A)by
Meanwhile, for fixedB, the set functiord(A;B) is a valuation in the variablé.

From this it follows that each of the coefficierts(A) is a valuation in the variabla.
Now consider the case whenis aninvariantvaluation. If so, then

o 1 1 _
¢(AB) = @%d)(AﬂgB)— @%4)(9 'ANB)

5 S 0(GANE) = §(BIA)
g

It follows thatay (A) is an invariant valuation in the parameferso that

A B) = wOu(A)dy (B).
¢(A;B) U;EUG b (A)9v(B)

Sinced(A; B) = §(B;A), it is evident thati,, = a,,. It turns out that most of the
constantsi,, are equal to zero. To compute the coefficiamis extend the valuation
¢ to the Boolean algebia(P) generated by(P) and letc, denote the value daf on a
singleton set iB(P) whose single element lies in the orbit(that is,c, = $({x}), for
anyx € U). Recall that the values, may be obtained from (2.4) or (2.7).

Theorem 3.1.(General Kinematic Formula)Supposé is an invariant valuation on
J(P). Forall A,B e J(P),

1 1
6 5. $ANGB = 5 et (A0.(B). (3.2)
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WhenP is a modular lattice and the orbit$ coincide with the grades d®, the
values|U | are sometimes called the Whitney numbers (of the second kin) for
Proof. Suppose,, Yy € Plie in orbitsU andV respectively. LeA = {x,} andB={y, }.
For anyg € G, the seANgB=0if U #V. If U =V, thenANgB= 0if X, # gy, while
there argStal{x,)| automorphismg of V such thak, = gy,. Hence, we have

|Stal{x,)| _ 1
——?ﬁ—MM—NWU

d(A;B) = d(ANg

G2 Z
Meanwhile,¢,,(A) = 1 if Up = U; otherwise, it is equal to zero. Similarky,,(B) =1
if Vo = V; otherwise, it is equal to zero. Hence,

¢(AB) = ; AugvoPug (A)dvo (B) = Oty .
U()7 cU

Thereforep,, = (1/|U])c, if U =V, otherwise, it is equal to zero. |
For example, ifh = ¢, then (3.2) becomes

1

o7 ®o(A.(8). (33)

G2 Zcb (ANgB) =

The basis theorem implies that every kinematic formula for an invariant valuation can
be expressed by taking linear combinations of the identity (3.3).

The casep = X is of particular interest. The Euler formula (2.3) implies that
X({x}) = —u(U). Theorem 3.1 then specializes to the following combinatorial ana-
logue of Theorem 1.2.

Theorem 3.2.(Principal Kinematic Formula)For all A;B € J(P),

1 1
@%X(AHQB) =Ugu—u(U)m¢u(A)¢u(B). (3.4)

The probability that a randomly chosen principal idgahall meet a fixed principal
idealX is now given by

1 I B i o
o] S XX = 5 —HU) 50 (R0 (9) (3.5)

By combining (3.3) and (3.5) with standard probabilistic arguments, one may derive
new combinatorial identities, as is demonstrated in the examples that follow.

4. Examples and Applications

We now apply the the theory of invariant valuations to central examples of posets in
enumerative combinatorics.
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4.1. Finite Boolean Algebras

Consider the lattic®, of all subsets 0{1,2,...,n}, a Boolean algebra. The collection
B, is a poset when ordered by inclusion of subsets.G.et S,, the group of permuta-
tions onn elements. The orbits of the action Gfare the collection8X of k-element
subsets of1,2,...,n}, having siz¢BY| = ().

The Mobius function of the posd&, is given by

H(x,Y) = (1)

for x,y € B, such thak C y. The Basis Theorem 2.3 implies that all invariant valuations
onJ(Bp) are linear combinations of the valuatiops given by

¢i(1) = [1NBY,
foralll € J(By) andi =1,...,n.

It then follows from Theorem 3.2 that

n

1 n _ -1
3 2 XA = 3 (T) aiwae), @)

forall A,B € J(By). If A=X andB =Y, then the left-hand side of (4.1) expresses the
probability that a randomly chosérsimplex will meet a giverk-simplex. Using ele-
mentary probabilistic reasoning, one can easily check that the probability that a random
[-simplex doesiot meet a given fixe#t-simplex is

m ! /n-K
I (I
From (4.1), we then obtain

() (7 -4 ganeam-3() () e

By adding the term correspondimng-= 0 to both sides of (4.2) and multiplying by1,
we obtain the identity

500 (-0 %) =

for all positive integers & k,I <n.
Note that ifk+1 > n, then(”l‘k) = 0. In the preceding argument, this corresponds
to the case in which the two seagg andx, have non-empty overlap fanypermutation
g, i.e., the case in whickcN gy = 0 with probability zero.
The left-hand side of (4.1) can be computed once again using standard combinato-
rial arguments. Letk € B,. The number of-setsy € B, such that Ny is a set of size

i is given by (‘:) (T: Ik) |
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On combining this with (4.1), we obtain the identity

Se0() (0 -0) 500

On simplifying, we then obtain

5.()((=) e (177)) -0 @

Similarly, we use the identity (3.3) to compute the expected valude0f N gyi),
yielding the identity

50 N0 W6 e

for all 0 < k,I,m < n. The left-hand side of (4.5) is obtained from the definition of
expectation, while the right-hand side follows immediately from (3.3).
4.2. Finite Vector Spaces

Denote bylL,(q) the set of all subspaces of a vector sp¥cef dimensionn over a
finite field of orderq. The collectiorLy(q) is a poset when ordered by the inclusion of
subspaces. L& = GLn(q), the group of linear automorphisms\f The orbits of the
action ofG are the collectionkk(q) of k-dimensional subspaces¥f having size

koo (M) (@ —1) (g 1)
'L”(Q)"@q‘ @D @D

the Gaussiarcoefficients. Recall also that

GLa(a)| = (@" = 1)(q"—a)--- (a"— " ).
The Mébius function of the posét,(q) is given by

dim(y)—dim(x))

H(xy) = (1) fmo=amog(TR T (4.6)

for x,y € Ln(q) such thak C y.
By the Basis Theorem 2.3, the collection of valuati¢fs}' , onJ(Bn) given by

¢i(1) = |1 NLn()]

is a basis for the space of invariant valuationsLatg). From Theorem 3.2, we then
obtain

=}

) -1
ot TXAe =3 (00 (7) ewne. @

q
forall A,B € J(Ln(q)).
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Similarly, the kinematic formula (3.3) now becomes

-1

n
S aanos = (1) “owne @8)

q

1
|GLa(a)]

forall A/B € J(Ln(g)) and for eachi=1,... ,n. Letxx andy; be subspaces &f having
dimensionk andl, respectively. In the case whén= X, andB =y, the formula (4.8)
gives the expected number Bflimensional subspaces inside the intersection of the
k-dimensional subspacg with a random -dimensional subspacgy .

By applying elementary probabilistic reasoning to (4.7), we obtairgthaalogue
of (4.3), to wit;

50 (), (0,0, (), 7,

for all positive integers,q and all 0< k,| < n. This formula was originally obtained
by Chen and Rota (see [2, (4.4)] and also [12, p. 273]).

For additional details, see [10]. See also [6, 12, 24, pp. 126-127, 25, pp. 291-197]
for a treatment ofi-analogues, Gaussian coefficients, and tlubdis function (4.6).

4.3. The Lattice of Partitions (Order Ideals)

Denote byl, the set of allpartitions of the set{1,2,...,n}. The collectiony is a
poset when ordered by a refinement of partitions. Specifically, we have in I,
provided each block of the partitiamis contained inside a block af. We denote by
|1y the number of blocks in the partitian

Let G = S,, the group of permutations dfL,2,... ,n}. The orbits off1, under the
action of G are collections of partitions having the sast@ape Let te N, and leta
denote the number of blocks mfof sizei. Then the orbit) (1) has size

n! L 1
e (e " L] iaad

U(m| =

Fort,o € My, such thatt < g, the Mobius functioru(m, o) is given by

(o) = (—1)m-ll J‘| (np—1)1, (4.9)

(S{e)

wherenp denotes the number of blocks mitontained in the block. For a derivation
of (4.9), see [25, p. 301].
Note that ifrt= On,,, the discrete partition, then (4.9) becomes

n

M(On,,0) = (—=1)" ! J_| (1Pl = 1)t = (=" ﬂ(k— I, (4.10)

whereay denotes the number of blocks ofof sizek.
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Combining (4.10) with Theorem 3.2 we obtain

S X(ANgB)
9

_yn=lo 1 [ M 1(F
DI (ﬂ(k 1>!ak> 5 (ﬂm)akak!) 2,(A)0u(B)

(_1)n—|0|+1 n

= )3 = <|_|((k—1)!)ak(k!)akak!> du(A)Pu(B)  (4.11)

|
ag+2ap+--+nap=n n: k=1

forall A,B € J(My), and wherdo| =ai + - -- + an.
Unfortunately, the values dfy (A) are very difficult to compute for a typical order
idealAin M.

4.4. The Lattice of Partitions (Filters)

Unlike the previous examples, the lattidg is not self-dual. Denote b}, the lattice
dual toly, in which all order relations ifl, are reversed. Denote by; 1the indiscrete
partition consisting of a single blockpl= {{1,...,n}}. The Mdbius function forf1;,
is then given by

H(0n;,0) = (0, 1n,) = (1)1 [1 (ne—1)t= (=D "*(jo] — 1)1,
Beln,

It follows from Theorem 3.2 that

: _ o (lo]=1)! 0
Egéx(Am 9B) = 31+26\2-|Z+na1=n(_1)| |T (kﬂ(k!)akak!> bu(A)dy(B).

Once again the values of; (A) are very difficult to compute for a typical order idel
in M}, (afilter in Ny,).

4.5. The Lattice of Faces of ancube

Let C, denote then-dimensional unit cube ifR". Let C" denote the regular cell de-
composition of the cub€, into lower-dimensional unit cubes. The cell comp&%
is partially ordered by set inclusion of the facesGyf The null setd is included as
the minimal element of the latticg". For a description of the lattice structure®f,
see [16,17]. See also [12] for an extensive bibliography.

The Mdbius function of the lattic€" is characterized as follows.

Proposition 4.1. Let C_D € C" be any two cells with @ D and C# 0. If dimC =k
anddimD =1, then

H(C,D) = (-1)'% and WO,C) = (1)K (4.12)
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Proposition 4.1 is not difficult to prove directly. For a more general result, see [24,
p. 122].

We shall consider the action of grou of isometries of ther-cubeC,, a finite
subgroup of the orthogonal gro@@(n). Evidently,G acts transitively on the set of
dimensional faces @, foreach =0,1,...,n. Itis not difficult to show tha}G| = 2"n!,
while the orbitU; of ani-dimensional face has size

ui=(7)z.

Let J(C™) denote the lattice of order ideals@f. The Basis Theorem 2.3 implies
that if ¢ is an invariant valuation o#(C"), then

¢ :éociq)i’

where; is the invariant valuation given by
6i(A) = |ANUi[,

forall Ae J(C").
Kinematic formulas are now derived in the usual way. Supgog&ean invariant
valuation onJ(C"). For allA,B € J(C™), we have the general kinematic formula

n -1
2nln! %‘NAHQB) - ZO (?) 27"ci9i (A)9i(B), (4.13)

1
wherec; = ¢({Ci}).
Supposeb is chosen to be the Euler characteristidor the latticeJ(C"). For
0 <i < n, the valueg; is then given by

¢ =0({G}) = —n0,G) = (-1)"

This follows from Proposition 4.1.
Combining this with (4.13), we obtain the principal kinematic formula

2nln! 2 X(ANGB) = i <T> A1 A B, (4.14)

If A= Cy andB = C; are principal ideals, then the formula (4.14) becomes

Lpom-§u() (e s

giving the probability that a randolrdimensional face da, meets a givek-dimensional
face. It follows that there are

O30 () ()03 () (06

(4.16)
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|-faces ofC, that meeC.
Instead, if we apply the formula (4.13) to the cdse- ¢; for a particular fixed
i€{0,1,...,n}, we have

1
2"n!

-1
n i—Ng. )
gq»i(AmgB):(i) 27701 (A (B), (4.17)

forall A,B € J(C"). If A=Cy andB = C; are principal ideals, then the formula (4.17)

becomes
ann! LICHESIE 2= (?) ) (T) (:) ! (+.19)

giving the expected number o6faces of the intersection of a givérface ofC, with a
randoml-face ofC,.

Using the definition of expectation and standard probabilistic arguments, one can
compute the left-hand sides of (4.15) and (4.18) more directly. In this case, powers of
2 appearing on both sides of these expressions cancel out, resulting once again in the
same identities (4.4) and (4.5) obtained from the example of finite Boolean algebras.

5. Variations and Generalizations

There remain many other variations and applications of the general kinematic formula,
Theorem 3.1. For example, one can replace the random intersection of two order ideals
with a randonmunion For any invariant valuatiog onJ(P), the valuation identity (1.1)
implies that

1 1
@g;¢(AUQB)+@ggG¢(AﬂgB):¢(A)+¢(B)_ (5.1)

A kinematic formula for the expected value of a random unipfAU gB), is then
derived from a combination of Theorem 3.1 with the identity (5.1).

One can also considemnultipleintersections. The proof of Theorem 3.1 easily gen-
eralizes to the case of multiple intersections to yield the kinematic formula:

1

1
GF d(AN@1B1N---NgkBy) = ugu Wcud)u(A)q)u(Bl) - u(By),

O1,---,0kEG

for all order idealsA, By, ... ,Bx € J(P). Similarly, one can derive kinematic formulas
for multiple unions.
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